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DYNAMICS OF THE MCKEAN-VLASOV EQUATION

By TERENCE CHAN!

Heriot—Watt University

This note studies the deterministic flow of measures which is the
limiting case as n — « of Dyson’s model of the motion of the eigenvalues of
random symmetric n X n matrices. Though this flow is nonlinear, highly
singular and apparently of Wiener—Hopf type, it may be solved explicitly
without recourse to Wiener—Hopf theory. The solution greatly clarifies the
role of the famous Wigner semicircle law.

1. Some background to the problem. This note concerns a
Wiener-Hopf type equation which arises from the study of the limiting
McKean-Vlasov dynamics of random eigenvalue motions. In the limit as the
number of eigenvalues becomes large, the occupation density of the eigenval-
ues converges to the solution of a deterministic measure-valued equation
known as the McKean-Vlasov equation [see Chan (1992)]. Although the
“flow” of the limiting measure is specified via the McKean-Vlasov equation,
the fact that it is a weak equation which has to be integrated against suitable
test functions means that it is difficult to visualize the flow directly from this
equation. The aim of the present work is to find a more readily accessible way
of studying the dynamics of the McKean-Vlasov equation.

One of the earliest motivations for studying random eigenvalues was in
physics, particularly the statistical theory of energy levels pioneered by (among
others) E. P. Wigner. For example, there is the following result due to Wigner:
let S be an n X n symmetric matrix whose entries S/, i <j,i,j=1,...,n
are i.i.d. N(0,02n~1). Then as n — », the eigenvalues of S are distributed
according to the-semicircle law with density 27a?)~'y/40? — y2, |yl < 20.
The semicircle density will again feature prominently in the following sections.
The book by Mehta (1967) gives an excellent account of the importance of this
result in the statistical theory of energy levels. Roughly speaking, the symmet-
ric matrix S™ plays the role of a finite-dimensional approximation to a
Hamiltonian (which is a self-adjoint operator on some Hilbert space), and the
study of the Schrodinger equation for S naturally leads to consideration of
its eigenvalues. The randomness comes in here because rather than consider-
ing systems with a particular interaction mechanism, one considers a whole
ensemble of possible interaction mechanisms, each having a certain probabil-
ity; this is in direct analogy with ordinary statistical mechanics, where one
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considers a system which could be in any one of a whole ensemble of states.
Dyson, in a series of some four or five papers [see, e.g., Dyson (1962)], has also
made a detailed study of statistical mechanical models of so-called Coulomb
gases which involve spectral analysis of Brownian motions of symmetric
matrices, as well as other matrix ensembles, such as unitary ensembles.

In an attempt to explain the result of Wigner cited above and to extend
some of Dyson’s ideas, an earlier paper, Chan (1992), considers a diffusion
process valued on symmetric matrices which has the Normal distribution as its
invariant measure (i.e., a matrix-valued Ornstein—Uhlenbeck process) and
then goes on to consider the associated eigenvalue diffusion in R”. It turns out
that the eigenvalues behave like charged particles on the line, and the earlier
work Chan (1992) is closely related to that of Dawson (1983) and Dawson and
Gértner (1987) on diffusion models of interacting particles. In Dawson (1983)
and Dawson and Girtner (1987) the asymptotic behavior of the particle system
(as the number of particles become large) is studied via the large deviations
from the limiting McKean-Vlasov equation, while Chan (1992) takes a differ-
ent approach by considering the equilibrium points of the McKean-Vlasov
equation itself.

2. A nonlinear Wiener-Hopf equation. The following problem is stud-
ied in detail in Chan (1992). Consider the following finite system of n
interacting particles in R:

1
- A

1 1

(2.1) da; =
2n 7

1
— dB; dt, i=1,...,n.
Jn Bi
(Here B; are independent Brownian motions on R.) The associated measure-
valued empirical process u,(t) = n"'X?_;8 Aoy 15 shown to converge weakly as
n — « to a deterministic measure-valued function u, satisfying

A

i

d 1 .,.¢'(x)—¢(y 1
@, =1 ff %_y(—lm(dx)ut(dy) - 5 Ja# () (dx)
for all test functions ¢. The space of test functions here consists of all bounded
continuous twice-differentiable functions with bounded continuous derivatives.
However, it is shown in Chan (1992) that if u, has no atomic component, then
w(-) can be equivalently characterized as the weak solution to the
McKean-Vlasov equation

d 1 (d
22) o [e(Duldr) =5 [ { “A(yy ) —/\}df()t)m(d/\)

for all suitable test functions ¢. (Here f denotes Cauchy principal value.)
Finally, it is shown in Chan (1992) that if for all ¢, u, has a density function
belonging to L? such that [xu,(x)dx < , and if the above equation is solved
for the family of test functions ¢,(A) = e™*%*, § € R, then the Fourier trans-
form of u satisfies the following strange-looking nonlinear Wiener—-Hopf type
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equation:
0 v

dv 0 ®
(28) — = Z{[_vat(u)vt(B —u)du - [0 v(u)v(6 —u) du} =39
where

v(t,8) = [jwe‘“”‘p,t(d)\).

We assume that u, has an L? density function because in many ways L2 is
the natural setting for the method used in the next section to solve (2.3),
although the L? assumption can be relaxed. The Hilbert transform of a
function f is defined to be

1 f(y)
Hf(x) = fo 2
The key to deriving (2.3) from (2.2) is the following identity: for f € L2,
(2.4) i(Hf)"(0) = sgn(6) ().

(Here f” is the fourier transform of f.) If (2.3) has a solution in L2 for all ¢,
then (2.2) has a solution which has an L? density for all ¢. We shall therefore
seek a solution to (2.3) in L2

The identity (2.4) also holds for functions in L? for 1 < p < 2, as does the
Fourier inversion formula (provided it is interpreted in an appropriate sense)
and there is also a corresponding H? theory, so in many cases our method can
be generalized to density functions in L?, p € (1,2]. Although the identity
(2.4) can also be generalized to measures if it is interpreted in a suitable weak
sense, the important point here is that when u, has a suitable density
function, using the test functions ¢,(1) = e *%*, § € R one obtains an equation
for the Fourier transform »(¢, §) which holds in the strong sense. The purpose
in considering (2.3) rather than (2.2) is that the former provides a concrete
means of interpreting the rather abstract weak equation (2.2). For instance,
(2.3) can be solved numerically, and the results of some numerical solutions to
(2.3) are shown in Chan (1992).

The main object of the earlier work Chan (1992) is to show that the Wigner

semicircle law
ﬂ*(y) :=7T_1V2_y2, |y|5\/§

is the unique equilibrium point of (2.2) having a Hélder-continuous density
belonging to L? which is also the unique equilibrium point possessing finite
moments of all orders. Moreover, if initially 1, possesses finite moments of all
orders, then we actually have u, = u, as ¢ » ». The object of the present
article is to show how the Wiener—Hopf type equation (2.3) can be solved
exactly and to investigate the asymptotic behavior of the solution and the way
it relates to the semicircle law. It is surprising that an explicit solution exists
at all, as on first sight (2.3) is probably among the most difficult Wiener—Hopf
type equations one is every likely to encounter. Yet, as we shall see shortly,
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despite its nonlinearity, there are certain special features of (2.3) which allow
an explicit solution to be obtained by very simple means.

The essential idea behind (2.3) is that by making an appropriate choice of a
(separating) family of test functions (or perhaps even one special test function),
one can obtain an equation for a functional of u which gives a more concrete
way of thinking about the dynamical evolution of the McKean-Vlasov limit
and which in some sense may be more amenable to analysis. The functions
(1) = e "% 9 € R are one such family but this is not necessarily the only, or
even the best, choice of test function. One alternative approach may be based
on the idea of Boltzmann’s so-called ‘“ H-theorem.” Firstly, observe that we are
not restricted to test functions of one variable: for example we could use test
functions of two variables and consider functionals of the form

F(p) = [ f(x,3)n(dz)n(dy)
for bounded twice-differentiable functions f with bounded partial derivatives.

The same treatment as in Chan (1992) will yield the following equatlon for the
McKean-Vlasov limit:

r [y ) dy)

1 , - f.(z,
- EED BN )y

z

1 »¥) — (=,
Py yz - Z 2) (e (i)

1
= 5 J[#f(x. y) mdx)u(dy)

=5 [y ) u(dy),

and if for all ¢, u, has no atomic component, then

d
2 [T Y m(dx) i (dy)

(25) - e [ = o

2[[f( (][’ut( ?) _y)ﬂt(dx)ﬂt(dy)~

Now define a functional H by

H(p) = fxzu(dx) - ffIOng = ylu(dx)u(dy).
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Taking as our test function f(x,y) = loglx — y|, a formal calculation using
(2.5)—freely interchanging orders of integration—then gives

d pddy) \*
(2.6) S H(m) = —/(x -f sl R CORY
with equality only when u satisfies
d
fﬂ( ") i vxe supp( i),
x =y

which is the characterization of (nonatomic) fixed points of (2.2) given in Chan
(1992). In this way one also obtains the convergence to a fixed point which
corresponds to a minimum of H, since the functional H is bounded from
below. However, in order to justify the use of loglx — y| as a test function and
make the above formal calculation rigorous, one would need to impose regular-
ity conditions on the density of w, (for all #) which may or may not be reduced
to regularity conditions on the initial measure u,. It would seem that such
regularity conditions have to be much stronger than those imposed on u, in
Chan (1992), which only involve the moments of u,. (In order to obtain
convergence to the fixed point, it is not necessary to assume that w, even
possesses a density.) In any case, it is not at all clear that (2.6) gives a better
idea of the dynamics of u, than (2.2); the whole point of (2.3) is that it is an
autonomous equation for the Fourier transform v. More worrying perhaps, is
the fact that although H may have a unique minimum, H(u,) = H(u,) does
not imply that u, = w,. However, the idea of an ‘““H-theorem” does seem to
feature in the large deviations of the stationary empirical measure u, associ-
ated with the system (2.1) solved with its invariant (Gibbs) density as the
initial condition—see Dawson and Gartner (1988).

3. The solution. We assume that the initial measure u, for (2.2) has an
L? density function such that [xuy(x)dx < o. As with the classical
Wiener-Hopf integral equation, we solve the present problem by considering
the Fourier transform of (2.3). [The fact that in (2.3) v is already a Fourier
transform of something else does not greatly concern us for the moment.]
First, define the “positive’”’ and ‘“negative’ restrictions of v as follows:

V*(t,0) = v(t,0), 6=0,
0, # <0,

_ 0, 6=>0,
V(“m_{wLm,0<Q

The definition of v* at 8 = 0 is not of any great importance, so long as we
have v = v+ v~

The key to the solution lies in the following miraculous cancellations which
allow us to write down separate autonomous equations for v *. If we expand
v =v*+ v~ in (2.3), we see that the first integral does not involve v;"(x) and
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the second integral does not involve v; (u) since these are zero in the range of
integration, and we get the following ‘“‘cross-terms” which appear in each of
the convolutions:

(3.1a) [vat_(u)v;'(f) ~u)du,

(3.1b) [:V:(u)y,—(e ~u)du.

Now, the integrand in (3.1a) is nonzero only for u < 0, so it may be written as

[ v uyvi (0 —w)du = ["v7 (6 = )i () dy,

making a change of variables by putting y = 8 — u. Thus we see that the two
integrals in (3.1) are identical, and because they appear with opposite signs in
(2.3), the ““cross-terms” all vanish. Gathering up the remaining terms in (2.3)
involving only v* and only v, respectively, we arrive at the following pair of
equations:

(91/+ 0 . + 7] (91/+

(3.23.) 7=—Zovt(u)vt(0—u)du—gg, 6> 0,
w~ 0 .o 6 v

(32b) = Z[_wvt_(u)vt_(ﬁ —uw)du - —-,  6<0.

Anyone who has had any experience of Wiener-Hopf problems will appreci-
ate that it is very rare for a Wiener—-Hopf equation to decompose into its
respective halves like this; indeed the essential point of the theory of
Wiener-Hopf factorizations is that it is a way of dealing with equations whose
“positive’’ and ‘“‘negative’’ parts do not separate. Of course, it is now apparent
that in the present case, the reason for this cancellation and separation into
two halves is the presence in (2.3) of both the “positive’” and ‘“negative”
halves of the convolution with opposite signs.

The two equations at (3.2) can be solved separately by taking Fourier
transforms. Let

N=*(t,x) = [e-ix%t(t, 9) do.

Then, from (3.2) we obtain the following pair of quasilinear PDE’s for N *
(with Cauchy data):

ON* 1[oNT . N .
(3.3a) rrale _5[ p (iINT—x) =N ], N7(0,x) =n"(x),

AN~ 1[aN- B _ B
(3.3b) PP =§[ " (iN"+x)+ N |, N=(0,x) =n~(x).

Equations (3.3) can be solved by the so called method of characteristics. For
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example, writing (3.3a) as

aN* 1 NN Lo
+ = - =—
sr T (NI %)= = 5N,

we seek to integrate the exact differentials on both sides by solving the pair of
ODE’s:

dx*+ 1
(3.4a) o =5 (U= X*),  X*(0) = x{

vt 1 . .
(3.4b) -~ =5U" U (0) =y

This has solution
X(1) = X*(t,53,55) = (x5~ i95/2)e /% + iyge!/2/2,
U™ (8) =U™(t,x5,505) =yge'’?.
We now have an implicit formula for the solution:
(3.5a) N*(t, X*(t,x5,n*(x5))) = U (¢t,x5,n"(x§)) = n*(xg)e'’2
Similarly, we get an implicit solution to (3.3b):
(3:5b) N~(t, X~ (6,55, (x7))) = U=(t,x5,n (7)) = n™(x7)e'/%,
where
X7(t,%0,50) = (%0 + Wg/2)e™""* — iyge'/?/2,
U™ (¢, %5,50) =y5e'’%
Let
f(t,x) =X*(t,x,n*(x)) = e */?x + i sinh(¢/2)n*(x).

We conclude this section by verifying that the functions f * are invertible and
that the solution given by (3.5a, b) does indeed belong to L2 We first make
some important observations about n*(z) = fe™"*%»{(8) dg. Our assumption
that [xuq(x) dx < o implies that v, is continuously differentiable. An integra-
tion by parts then yields

—izn*(z) = -1 - / e %%y (8) do
0
for any z with a nonpositive imaginary part. Similarly,

izn”(2) = -1+ fo e %2y (0) do

for any 2z with nonnegative imaginary part. Putting z = 0 in the above yields
/vp(0)d6 <  and hence by the Riemann-Lebesgue lemma we deduce the
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asymptotic result
i
(3.6) n*(z) ~ ¢; as [z| = .

Next, observe that since n* is the Fourier transform of a function which
vanishes on R, it is a Hardy function of class H%" [see Dym and McKean
(1976)]. In particular, [because we adopt a different sign convention from that
of Dym and McKean (1976) in our definition of the Fourier transform], n* is
analytic on the lower half-plane H™ = {z: Jz < 0}. For u, € L% the recipe

f Ko(y )
RY t2
defines an analytic function on H™. Moreover, the mapping
. ro(y)
Mo i Jay + -
is a projection of L2 onto H2* and we have for z € H™
mo(y)
3.7 n*
(3.72) n*(2) = 4y+z

[See subsection 2.4 of Dym and McKean (1976)—but again bear in mind the
different sign conventions in our definitions of the Fourier transform and its
inverse.] Similarly, n~ is an H?~ Hardy function analytic in the upper
half-plane H*= {z: §z > 0} and for z e H*

(3.7b) n(2) = - < R’;°fryz)

Either by letting the imaginary part of z tend to zero in (3.7), as in subsection
2.11 of Dym and McKean (1976), or directly from (2.4) and the Fourier
inversion formula f* “(x) = 27 f(—x), we see that for x € R,

(3.8) nt(x) = m(mo( —x) + i(Huo)(~x)).

In particular, (3.7) and (3.8) show that #n*(x) > 0 for x € Rand Rn*(z) > 0
forze HY.

ProposiTiON 3.1. For each x € R and t > 0, there exist unique complex
numbers g*(t, x) in the closed lower half-plane {z: Iz < 0} and g~ (¢, x) in the
closed upper half-plane {z: Iz > 0} such that f *(¢t, g *(¢, x)) = x.

Proor. We prove the ““+’’ version of the statement of the proposition; the
proof of the ““—"’ version is similar. The uniqueness assertion follows form the
uniqueness of the solutions to the PDE’s (3.3).

To show that for fixed ¢ and x, f*(¢,2) =x has a solution in H™, it is
enough to show that the image of a simple closed curve in H™ under z — f*(t, 2)
either passes through or winds around x, by the argument principle. Fix an
arbitrary R, ¢ > 0 and let y be the lower semicircle of radius R centered at
—1ig, consisting of the diameter D = {z: z =a — i¢, a € R, |a| < R} and the
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lower circumference C = {z: z + ie = Re?, 0 € [, 27]}. (We want to avoid the
real line itself because n* may be badly behaved at certain points on R since
we are not assuming any regularity properties about u,.) If there is a point
z € y such that f*(#, z) =x then we have nothing more to prove, so we
assume that the image of y under f* does not pass through x. Since fin*"> 0
on v, by choosing ¢ sufficiently small we can ensure that J f*(¢, 2) > 0 along
the diameter D. Also, (8.6) implies that as R — «, the values of [n*| on y
remains bounded and it is therefore clear that for any fixed ¢, x, by taking R
sufficiently large and ¢ sufficiently small we can ensure that the image of y
under z — f*(¢, z) winds around x at least once and by the argument princi-
ple, y must enclose at least one root of the equation f*(¢,z) —x=0. O

Finally, to show that v, € L? for every ¢, where v is the solution to (2.3), we
need to check that N *(¢,-) € L% Since N *(t, f *(¢,x)) = n*(x)e’/? and
since the initial condition n*e L2, we have N *(¢, f (¢, - )) € L? for all ¢. But
(3.6) shows that for large x, f *(¢, x) ~ e */%x and the fact that N =(¢, - ) € L?
therefore follows immediately.

If we knew the initial conditions n* explicitly and if we could invert the
functions f *(¢, x) = X (¢, x, n*(x)), then we would obtain explicit formulae
for the solution. However, this is usually not possible.

4. Some example calculations. Although in general it is not possible to
invert the flow of the ODE’s (3.4) explicitly, one can nevertheless hope to say
something about the asymptotic behavior of the implicit solution (3.5). In
particular, since (3.5) essentially gives the density function of the measure-val-
ued solution to the McKean-Vlasov equation (2.2) [N(¢,x) = N*(¢, x) +
N~ (¢, x) is the Fourier transform of the solution to (2.3), which in turn is the
Fourier transform of the solution to (2.2)], one should be able to see how the
Wigner semicircle density can arise as the limit of the flow of (2.2).

Suppose now that we solve the McKean-Vlasov equation (2.2) with an
initial density u, which is in L? and has finite first moment. We need to solve
the Cauchy problems (3.3) with initial conditions

n*(x) = f:e—“’xuo(e) de,

n (x) = fo e %%y (0) de.

-— 00

The main result of this Section is the following:

PROPOSITION 4.1. Let uy € L? such that [xuo(x)dx < . Suppose further
that the initial data for (3.3), n*, have no zeros on the real line. Let N(t, x) =
N*(t,x) + N (¢,x), where N* are the solutions to (3.3). Then as t — x,

N(t, x) = 2V2 — x2 or 0, according as |x| < V2 or |x| > V2.

Proor. Let g* denote the inverses of f* given by Proposition 3.1; thus
f ¥, g*(t, x)) =x. From the solution (3.5) we have N *(¢, f*(¢, x)) =
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n*(x)e’’/? sothat N (¢, x) = n*(g =(¢, x))e’/? is the explicit solution to (3.3).
We are interested in N(¢,x) = N*(t,x) + N (t,x) = e/%(n*(g%) + n (g™,
and from the fact that
(4.1) x=F*(t,g*(t,x)) = e /?g*(¢t,x) + i sinh(t/2)n*(g *(¢,x))
we see that
e ?lg (t,x) —g*(¢,x)]
i sinh(¢/2)

From (3.7), #n*> 0 in the (open) half-planes H¥, so n* cannot have any
roots there; the assumption that n* have no roots on the real line therefore
means that n* have no roots in the closed half-planes H*, respectively.

Consider first the “+”” version of (4.1). The key now is to find the asymp-
totic behaviour of g*(¢, x) as ¢t — «. If we fix x and let £ - « in (4.1), we see
that we cannot have g* (¢, x) — h(x) as ¢ — « for some function h, otherwise
the right-hand side of (4.1) would tend to infinity because of our assumption
that n* has no zeros in H~; indeed, this assumption together with the
property (3.6) imply that, for fixed x, we must have [g* (¢, x)| > © as t —> .
For large |x|, we have already seen at (3.6) that [n*(x)| decays like |n*(x)| ~
1/lx|. So multiplying both sides of (4.1) by e’/? shows that for large ¢, g*
behaves asymptotically as g*(¢, x) ~ e/2h*(x); in this case, letting ¢+ - » on
the right-hand sides of (4.1) and (4.2) does indeed give sensible limits. It
remains now to find the function h*. .

Letting ¢ — « in (4.1), with g*(¢, x) ~ e’/?h*(x) and taking into account
(3.6), gives

(42) n*(g*(t,x)) +n (g (t,x)) =

+ ——
R+ Sy T

and writing A*(x) = u(x) + iv(x), we have

u

4.3 - =

(4.32) wr 2(u? + v?) ©

v
(4.3b) 0.

v 2(u? + v?)
Suppose first that v # 0. We then have u(x) = x/2 and more importantly, for
lx| < V2, v(x) = — V2 — x2 /2. Repeating the above calculations for g~ (¢, x)
shows that g7 (¢, x) ~ e?/2h~(x) as t — », where h~ satisfies exactly the same
equations as (4.3) by virtue of (3.6), except that this time, v(x) = +V2 — x2 /2
because g~ takes values in the upper half-plane. If we now substitute g *(¢, x)
~ e'/2h*(x) into the right-hand side of (4.2), we see that this gives N(¢, x) —
2V2 — x? as t - .

Finally, for |x| > V2, (4.3a) has no solution with u = x /2, so we must have
v=0 and hA*= h(x) is real. Since e ?/?2g* then tends to the same real
function, (4.2) shows that N(¢, x) — 0 as required. O

Since f" "(x) = 27 f(—x), the previous result gives exactly the expected
answer. Of course, depending on the choice of n*, we are not always so
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fortunate as to have g*(¢, x) ~ e//2h(x). In particular, if n* does have zeros
in H™, guessing the asymptotic growth of g* would be more difficult.

The crucial assumption in Proposition 4.1 is that n* have no zeros on R.
The following is a set of easy sufficient conditions for this to be the case, which
covers a wide class of initial densities u,.

ProposITION 4.2. Suppose that the support of the initial density function
Lo s a connected (possibly infinite) interval [a, b], where —© <a <b < +®
and that pyo(x) > 0 for all x € (a, b). Then n* have no roots on R.

Proor. It is clear from the definition of the Hilbert transform that for
x < a, Huy(x) < 0 while for x > b, Huy(x) > 0. Therefore, from (3.8) we see
that n* have no roots outside of (a, b) while the assumption that uq(x) > 0
for all x € (a, b) means that n* have no roots in (a, b) either, again by virtue
of (3.8). [Although strictly speaking, (3.8) only holds almost everywhere on R,
the identities (3.7) hold at every point of the respective half-planes and so the
values of n* on R can be defined as the limits of (3.7) as the imaginary part of
2z tends to zero. These limits exist almost everywhere on R and where they do
exist, they are given by (3.8); where they do not exist, n* are either not
defined or infinite—in any case n* certainly cannot be zero.] O
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