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ORDER-OF-MAGNITUDE BOUNDS FOR EXPECTATIONS
INVOLVING QUADRATIC FORMS

VicTor H. DE LA PENA! AND MICHAEL J. KLAsSS?

Columbia University and University of California, Berkeley

Let X1,X,...,X, be independent mean-zero random variables and let
a;;,1 < i,j < n, be an array of constants with a;; = 0. We present a
method of obtaining the order of magnitude of E®(Z; <;,j <naij X; X;) for
any such {X;} and {a;;} and any nonnegative symmetric (convex) function
& with ®(0) = 0 such that, for some integer & > 0, ®(x% k) is convex and
simultaneously <I>(x2_k_1) is concave on [0, o). The approximation is based
on decoupling inequalities valid for all such mean-zero {X;} and reals {a;;}
and a certain further “independentization” procedure.

0. Introduction. LetX;,i = 1,...,n, be independent mean-zero random
variables and let a;;, 1 < i, j < n, be an arbitrary double sequence of constants
with a; = 0. Let & be any nonnegative symmetric function with ®(0) = 0 such
that, for some integer & > 0,82 ") is convex and ®x2~*7") is concave on
[0, 00). In this paper we study the quadratic form

0.1) Sp 2= Z a;; X; X;

1<i,j<n
and present a method of approximating the exact order of magnitude of both
0.2) E®(S,,2) and E® (S.2)

where S} , = maXp<k<n|Sk,2|. When @ is convex and ®(y/x) is concave, our
approximation is based on two quantities. One of them can be expressed as
Tn1 = E¥(S).;5; X)), where s; = E| 53} a3, X;|. According to Klass (1980), Ty 1
can be approximated in terms of quantities depending only on aspects of the
one-dimensional X;-distributions as they relate to ® and the a;;’s. The other
quantity depends only on some aspects of the one-dimensional distributions of
the “interaction terms” such as a;; X; X;I(|a;; X;| > 10s;, a;; Xj| > 10s;) and is
similarly approximable. When d(x2"") is convex and (2" is concave (for
some k > 1), there are 2k + 2 approximating quantities which must be con-
structed, only one of which involves interaction terms. The random variables
from which these quantities arise depend on certain polynomials of the X;’s.
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The quadratic form S,, 5 is important in various areas of mathematics. The
study of its properties has led to the construction of certain stochastic integrals
as seen in Krakowiak and Szulga (1988) and Cambanis, Rosinski and Woyczin-
ski (1985). It was also used by Bourgain and Tzafriri (1987) in dealing with the
invertibility of large matrices.

One of the main tools used in the proofs is the so-called decoupling principle
of quadratic forms as introduced by McConnell and Taqqu (1984, 1986) and
later extended by Zinn (1985), de Acosta (1987), Kwapien (1987), Hitczenko
(1988), Zinn (1989) and the just-mentioned works of Bourgain and Tzafriri
and of Krakowiak and Szulga. The purpose of decoupling quadratic forms is to
facilitate the approximation of (0.2). To decouple a quadratic form with respect
to a function ® means that, for all quadratic forms of independent mean-zero
Xj’s, (0.2) has the same order of magnitude as

(0.3) Eq)( Z ainiX'j>,

1<i,j<n

where {X;} is an independent copy of {X;}. Heretofore, completely general de-
coupling results were known in the mean-zero case for ®(x) = |x|® with P > 1,
and for general convex ® in the symmetric and strictly stable cases. Developing
the ideas of Kwapien, Krakowiak and Szulga, and Zinn, we obtain decoupling
in the mean-zero case for all symmetric convex functions.

We are able to obtain a full-fledged approximation of E®(S, ;) via indepen-
dentization. The approach used begins by converting the problem to an anal-
ogous one involving a decoupled sum. This already introduces more indepen-
dence. Then we restrict to convex ® with ®(,/x) concave. Certain truncations
are applied so as to separate out terms that can be handled by Jensen’s in-
equality. What remains is a sum having certain enhanced independence-type
properties. It is thereby amenable to techniques used to approximate expecta-
tions involving sums of independent variates. The restriction on ®(,/x) is then
relaxed. An extension to the nonzero-mean case will be presented elsewhere.
This endeavor was prefaced by the work of de 1a Pefia (1988), where an accurate
approximation of E|%; <; 4 <» X; X;|” was obtained in the i.i.d. mean-zero case
for P > 1.

We also specialize to the quadratic form ¥ <;4j<,X; Xj, where we obtain
more explicit results: Let X;,X5,. .., X, be a sequence of independent mean-
zero random variables and let S, = X3 + X +---+X,. Fix P> 1. Let 1 < J, <n
be any index for which E| X, |P = max; <; <, E|X;|F. Then

>, XX

1<igj<n

P
(0.4) (96)~PE|S,|PE|S, - X,,IF <E

and
P

(0.5) E max < 25(16)°E|S, | E|S, — X;,|F.

2. XX

n —
1<i#j<m
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1. Summary of results. For easy reference we now present the main re-
sults of this paper. The first result is a so-called decoupling inequality.

THEOREM 2.1.  Let {X;} be a sequence of independent mean-zero random
variables with {X;} an independent copy of {X;}. Let {a;;}, 1 <i,j <n,bea
double sequence of constants with a;; = aj;, a; =0 for all i and j. Let ®(-) be any
symmetric convex function. Then

E@(G_l Z ainiX'j) < E@( Z ainin>

2.2) 1<i,j<n 1<i,j<n
§E<I>(4 > aij)g)?j>
1<i,j<n
and
Ezgl,f’é,,@(ﬁ'l 2 XX)SEmaM( 2 %Xin)
== 1<i, j<m == 1<i, j<m
(2.2 - T
SEzénn?JS(nq)<4 z aUX,X,)
1<i,j<m

Moreover, the upper bounds hold for all convex ®.

As Corollary 2.1 confirms, the quantities in (2.2) and (2.2’) all have the same
order of magnitude.

The next theorem represents a generalization of Khintchine’s inequality com-
bined with a decoupled version of this inequality.

Let Fpg be the set of nonnegative symmetric convex functions ® such that
®(0) = 0 and ®(2x) < 2°P(x).

THEOREM 2.3. Fix any 1 < 8 < oco. With the same notation as before but
with ® € Fg, we have that

1/2
E<I>( > ain,.Xj> zﬁEcp(( > agjxl.%g.z) )

1<i,j<n 1<i,j<n

1/2
z;;E@(( > a?inzXf) )
1<i,j<n

The symbol ~g denotes that the ratio of the adjacent quantities is bounded away
from 0 and oo by positive constants depending only on (.

(2.9)

The main result of Section 3 (Theorem 3.2) obtains the order of magnitude
of E®(S, o) for functions ® in Fg with the added restriction that ®(,/x) be a
concave function for x > 0. We restate it here.
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THEOREM 3.2. Let X1,X5,...,X, be independent mean-zero random vari-

ables. Let ® € Fp be such that ®(,/x) is concave on [0, c0). Then, for any reals a;j
such that a;j = a;; and a;; = 0 and for any fixed 0 < vy < 1 < o0,

E@( Z ainin)

i<i,j<n
(3.11)
A3 max E(I)(Zs})&}),E@< z aijZijEij> )
Jj=1 1<i,j<n
where
(3.12) si=E Zaini )
i=1
(3.13) LZip) = L(XX1( | 0, > v's)y | 0, X; > vsh)),

Yosj < sj’. < msj, 7 = 10y, 1 L(e; j) is symmetric Bernoulli and {Z;;, €;;:1 < i,
J < n}is a set of n? mutually independent random variables.

Since
(aij +a;)
_ j T aji
> axx- ¥ iy,
1<i,j<n 1<, j<n

Theorem 3.2 can be adapted to arbitrary a;; satisfying a;; = 0. In Section 4 we

treat the case of ® as before when ®x2 ") is convex and ®x2~""") is concave
for x > 0, obtaining the following result:

THEOREM 4.1. Let ® be a nonnegative, symmetric function with ®0) = 0
such that, for some k > 0,32 ") is convex on [0, 00) and ®(x2 "™ ") is concave
on [0, 00). Take any n > 2 and any reals a;; such that a; j = ajiand a;; = 0. Define
Y; o = X; and, by induction,

Y=Y, —-EY?;_; forj>1
and similarly for

Yi0,Yi1,...,Yir asderived from X;,...,X,.
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We then have & € Fg for B = 2¢+1 and

E@( )

g-m
om S
A3 max {1 Isn”t:usik ® (( Z (aij) EYi?m-1EYJ%m—1> ) )

1<i,j<n

> XX

1<i,j<n

(4.4)

S (a)” (BYE 1) YEn

m(

The quantities on the right-hand side of (4.4) can be approximatéd by means
of Klass (1980) and Theorem 3.2. In Section 5 we present a special case where a
direct approximation takes a more explicit form. For a statement of the result
see the last paragraph of the Introduction.

z (aij)zk Yi,kf",k

1<i,j<n

2. Decoupling inequalities. In this section we extend the usual results
on decoupling of quadratic forms to include nonsymmetric random variables.
We also present a variant of Khintchine’s inequality in Theorem 2.3. Both
results will be used repeatedly in Sections 3 and 5. In special cases extensions of
decoupling have been obtained by different authors. When the a;; are assumed
to be in a Banach space (as a general version of our result proves), Bourgain
and Tzafriri (1987) obtained an upper bound for the norm of the quadratic
form for random variables assumed to have mean 6,0 < § < 1. When the
variables are assumed to be strictly p-stable, the result appears in Krakowiak
and Szulga (1988). Kwapien (1987) dealt with the case of symmetric convex
functions and symmetric random variables. Zinn (1989) obtained the result for
LP norms (p > 1) and all mean-zero variables. However, we believe that the
general result for mean-zero variables was not known prior to this paper. The
proof of Theorem 2.1 was obtained by combining three lemmas available in
the current literature. We also greatly simplified the proof of Lemma 2.1. The
first lemma is due to Kwapien (1987) and was communicated to us by Zinn and
Hitczenko. The third lemma follows from a “polarization formula” of Mazur and
Orlicz (1935). We are indebted to A. de Acosta who pointed out to us the paper
of Krakowiak and Szulga (1988) which contains a variant of the second lemma.

We have also augmented these lemmas (and Theorem 2.1 as well) by notic-
ing that they continue to apply to certain maxima [see (2.2'),(2.4'),(2.5') and
Corollary 2.1].
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THEOREM 2.1. Let {X;} be a sequence of independent mean-zero random
variables with {X;} an independent copy of {X;}. Let

(2.1) Sn2= Z a; X; X,

1<i,j<n

where {a; j}1<j<n is a sequence of constants with a; = 0, a;; = aj;. Let () be
any symmetric convex function. Then

E<1><6-1 > aij&)?j)gm< 3 a,-J-Xin)

2.2) 1<i,j<n 1<i,j<n
§E<I>(4 > a,.jX,.Xj)
1<i,j<n
and
E2£nn?)<(n<p(6_1 Z ai‘i}{i}?j) SE22nn€u<(n<1)( Z ai‘i}(i)(")
- T 1<i,j<m - 1<i,j<m
2.2)
< E max @(4 Z aini)ij).
2Emsn N\ igij<m

The upper bounds hold for all convex .
ProoF. We require a succession of lemmas.

LEMMA 2.1. Let{X;}and {X’l} be independent copies of independent random
variables. Then, for i #j,

(X +X) (X; + X))
o

(2.3) E(XX | Xy +X, k> 1) =

Proor. By symmetry and independence,
E(XX | X +X, k> 1) =E(X,X; | X3+ X3, k> 1)
=E(XX; | X, +X;, k> 1)
=E(XX | Xy +X;, k> 1).
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Hence, by linearity of conditional expectations,
E(XX; | Xy + X,k > 1) = ‘—IL{E(Xin | X+ X, k> 1)

+E(X;X; | X5+ X5,k > 1) + E(XX; | X3 + Xs, k> 1)
+E(X X | X+ X, k2 1)}

X +X) (X + X ~
=E(( %) (% + X)) Xk+Xk,k21)
2 2
(by linearity)
ER) KX)o _
4
LEMMA 2.2. Let{X;}and {)?,} be independent copies of independent random
variables and let {a;;} be constants such that a; = 0. Then, for any convex
function ®,
(2.4) E<I>< > ainin) > Ed (4-1 3 aX+X) (X +X',~)>
1<i,j<n 1<i,j<n
and

EmM( 2 XX)

2.4') 1<i, j<m
2E231”?§n¢<4‘1 > aij(Xi+X})(X}+Xj))-
- T 1<i,j<m
PROOF.

E<I>( > XX ) =E E<I>( > aini)g) X +Xp, k> 1

1<i,j<n 1<i,j<n
2E<I>( 3 aijE<X,~Xj Xk+5(k,kz1>>

1<i,j<n

by the conditional Jensen inequality since & is convex

=E¢< S e (X,.+;z,.)(x,.+;z,.)>

s 4
1<i,j<n

by Lemma 2.1.
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Similarly,

=E<E22nn?§nq>( > ainiX}>

1<i,j<m

ZEZénn?)S{n(Ecb( Z ainin)

X +Xk, k> 1)

1<i,j<m

_E maan,( > aij(Xi+)~fi)(-’i}'+5§))_ -

— 4
1<i,j<m

X, +X’k, k> 1)

LEMMA 2.3. Let {X;} and {5(,} be independent copies of independent mean-
zero random variables and let {a;;} be constants with a;j = a;;,- a; = 0. Then,
for any symmetric convex function ®,

(2.5) E® (4_1 Z aij(Xi +Xi) (XI +X,)> >E® (6_1 Z ainif(j>

1<i,j<n 1<i,j<n
and
-1 v v
Ezg},?gn‘l’(4 > aX+X) X +Xj)>
- 1<i,j<m

2.5 s

PrOOF. Since leiyjs,lainin = Elsi,anainin, we have that

E‘D( Z aini g)

1<i,j<n

(I

=E@< Z aij(Xi +Xl)()fj +X’,)
1<i

i, j<n

-1 Y eXX-§ ) aij-’?iffj)

1<i,j<n 1<i,j<n

<3E®|} > ai; (X; + X;) (X; + X))

+%E(I)(-g- Z ainin> +%E<I)(-g- a;; ~i ~j>

-
IA

<

IA

B
N——
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by Jensen’s inequality and the fact that & is convex and symmetric. Notice that
E( Y X+ X)) (X% +X) | Xy, ,Xn) = > ;XX
1<i,j<n 1<i,j<n
Hence
E‘b( Z aij(Xi-k-}?i) (XI +}~{J)> ZE‘P( Z a,-jX,-Xj>
1<i,j<n 1<i,j<n
by the conditional Jensen inequality, and so (2.5) holds. Similarly,

EmM( 2 anin)

1<i, j<m

m<n

<35,mm o3 %) a0+ ) (%4 )

Em@( 2 XX)

1<i,j<m

=E max @(E Z aij(Xi+)?i)(Xj +XI)

2<m<n
- 1<i,j<m

(Xy,... ,X,,))

gEE( max <1>< 3 aij(Xi+)~(i)(}g}+)~(j)) (Xl,...,Xn))

2<m<n —
1<i,j<m

e o T aneR)men)

2omE
=" \igijgm
the lemma is complete. O

Combining Lemmas 2.2 and 2.3, one gets (for any symmetric convex ®)

E<I>< 3 a,«inXj>2E‘I><4‘l > aij(Xi’in)()fj’fffj))

1<i,j<n 1<i,j<n

ZE@ (6_1 Z ainijfj),

1<i,j<n
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which gives the lower bound in (2.2) and similarly for the lower bound in (2.2).

PROOF OF THE UPPER BOUND. Lemma 2.1 gives

2.6) E(X.X | X+ Xy k>1) = (X; ;’X") (Xf;Xf) for i 4.

Therefore, ifa;; = 0,

E<I>( 3 a,-j)(i)?j)=EE ® ain,.)?j)
1<i,j<n

1<i,j<n

X, +Xk, k> 1)

(by the conditional Jensen inequality)
(X +X) (X+X)) ) :

a,‘j

> E<I>( aE(X X | Xy + X, k> 1))
1<i,j<n
( 2 2

1<i,j<n
(again by the conditional Jensen inequality).

To verify the right-hand side of (2.2'), note that

EmM( 2 XX)

1<i,j<m

=EE(22n”?.)S(n(I>< Z ainin)

1<i,j<m

2<m<n (Q( Z aij){i)(j)
-7 1<i,j<m
ZEzgl”?)S(nq)(E( Z ain,- j

1<i,j<m

X, +Xk, k> 1)

\Y
&
=
&
&

Xk +5€k, k> 1)
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In Klass (1993) it is shown that, for any nonnegative convex symmetric func-
tion ® and independent mean-zero random variables Y7,...,Y,,

2,200 £) <o (£0).
Jj= Jj=

By conditioning Y1 <;, j<nai in}Z'j on {X;} and applying the preceding fact to
Y; = ¥ia;;X;X; and then unconditioning, it follows that

E2I§nn?§nq>< Z ainin) S5E<D( Z ainin>.

1<i,j<m 1<i,j<n

Invoking Theorem 2.1 yields the following corollary.
COROLLARY 2.1. If ® is a nonnegative symmetric convex function,

2.7 Ezgn”?.)sch( > aij)ng>35E<1>(24 > a,-inXj).

1<i,j<m 1<i,j<n

The following extension of Khintchine’s inequality can be found in McConnell
and Taqqu [(1986), Lemma 2.1].

THEOREM 2.2. Let {¢;} bei.i.d. random variables satisfying P(¢; = 1) = P(g; =

—1) = 1 and let {&;} be an independent copy of {&;}. Let {ai;} be constants such
that a;j = a;; and a; = 0. Fix 1 < 3 < co. Let ® be in Fg. Then

1/2
(28) o] ( Z a%) ~p E‘D( Z aijsif—:vj) .
1<i,j<n 1<i,j<n

The next result represents a variant of Khintchine’s inequality.

THEOREM 2.3. Let {X;} be a sequence of independent mean-zero random

variables. Let {X;} be an independent copy of {X;}. Fix 1 < 8 < oo and let ® be
in Fg. Let {a;;} be constants such that a;; = a;; for all i, j and a; = 0 for all i.

Then
1/2
E<I>< > aij)g)(j> z[,m(( > a,?jxfzg2> )

1<i,j<n 1<i, j<n

1/2
zﬁEq)(( > afj}(f){jz) )
1<i,j<n

(2.9
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Proor. Let {¢;} be a sequence of independent random variables with P(e; =
1)=P(g=-1)= % and let {¢;} be an independent copy of {¢;}. Construct them

so that both {¢;} and {£;} are independent of {X;} and {}~(i}. From Theorem 2.1,

E<I>< > ainin> %E‘1>< > ainin>

1<i,j<n 1<i,j<n

n n
= E® Z( aini>Xj
j=1 \i=1
n n -
~p E® Z( aini> X&)
j=1 \i=1

(by conditioning on Xj, ..., X, and then
using Lemma 6.2)

g Ed (Za”}?,%> Xiei
i=1 \j=1

(as in the preceding line)
(2.10) ~p E® ( > @i X Xjej)
1<i,j<n
(by using Theorem 2.1)
~g E® ( Z aininaiE})
1<i,j<n
(by conditioning on Xj, ..., X, and using
using Theorem 2.1)

1/2
~p ED ( > a,%X?Xf)
1<ij<n

(by conditioning on Xj, ..., X, and using
Khintchine’s inequality in Theorem 2.2)

n j-1 1/2
~Ee((3(Sax)x) )
j=2 \i=1

by using monotonicity for the one side and the triangle inequality and the fact
that a;j = Qji, Qjj = 0 for the other,

n fj-1 B 1/2
(2.11) ~p E® ( Z ( Z a?j)(f) Xf) ,
j=2 \i=1
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by using Lemma 6.1 since {}_ 2(2_‘,{=‘llal?in2 )}?J?} is tangent to {%}_ o3 glla?j
XD}

n 1/2
~g E® (Z Z a?insz2> ) (as in a line above). m]
j=1li=1
3. Uniform bounds (mean-zero random variables). LetX;,X,,..., X,

be a sequence of independent mean-zero random variables. Let {a;;} be a double
sequence of constants such that a;; = aj;, a; =0, for 1 <i,j < n. In the first
part of this section we present a method of obtaining the order of magnitude of

Eq)( )

for functions ® such that ®(0) = 0, ®(x) is convex and increasing on [0, c0)
and ®(y/x) is concave on [0, o). Later these results will be extended to include
more general ®. To improve readability, we have placed three technical lemmas
needed in the proofs at the end of the section.

As we have previously indicated, quantities such as

n m
E@(ZakYk> and Elgl”?)gin‘b<kzlakYk>

k=1

Z a,-inXj

1<i,j<n

can be accurately approximated whenever the Y, £ = 1,...,n, are indepen-
dent (see Lemmas 6.2 and 6.3). But here we no longer have such total in-
dependence. However, we can create just enough. The decoupling results of
Section 2 are an important step in this direction. They permit us to consider
E®(Y1 <, j<n0ij X X)) instead of the original quadratic form. Conditioning on
{X;}, the K-function (see Lemma 6.2) approximation to

E(‘I’( Z aini)ij> {Xi})
1<i,j<n

is the same as that of
5{) {Xi}) :

Hence the two conditional expectations agree to within a proportionality factor
uniformly bounded away from 0 and co by constants independent of {X; }. Hence
so do the unconditional expectations. Thus

E<I>< > a,~,~X,~X,~) ~g3 E® (i

1<i,j<n J=1

n
> aiX;

i=1

iaini

i=1
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The expression T}, ; contributes a quick lower bound as follows: Let si=E|x,
a;; X;|. Then, by Jensen’s inequality,
) = Tn, 1-

n n
(3.0) E® Y ( )Xj >E || 5X;
J=1 j=1
Moreover, for any 1 < v < oo and any s’ € [7‘lsj,7sj], there exist 0 < Cj 1 <
Cg,~,2 < oo (depending only on 8 and 'ys such that

n

a;; X;
1

i=

Jj=1

Cﬁ,,y,lEcb( ) < Tn,l < Cg’,yyzE‘b (

n ~
2_ 5%
Jj=1
Hence there exists Cj, ., 3 > 0 such that, for any such S}

(3.1 E<I>< > aij)(i)(j)zcﬂ,ﬂ,,gEcp<Zs;)g>.

1<i,j<n Jj=1

Notice that both s; and T), ; can be approximated directly in terms of one-
dimensional integrals involving each component of the random vector X,...,
X,) separately. In fact, we regard s; as resulting from just such an approxima-
tion.

The lower bound T, ; can be insufficient by itself. It is incomplete because it
suffers from two defects. First of all, regardless of the growth of ®, the contri-
bution of |S}_,a;; X;| is assessed as s;. Second, it ignores the possible presence
of a significant interaction effect from the terms a; i X X

We will illustrate these two points by means of two examples.

ExaMPLE 1. The growth of @ must be considered.

Take P > 1 and let {X;} be i.i.d. mean zero with E|X|P < co. Put S, = XX
Let ®(x) = |x|” and a;; = I(i #5). Then

n n P
E<I>( 3 aini}z})=EE (Z}g)i{j Sn, X1, ..., X,
1<i, j<n j=1 \i=1
1344
P
>E (ZE(Xiisn))XJ
j=1 \i=1
i#)
1, &l
=E"—5.3%
Jj=1
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De la Pefia (1988) shows that (E|S,|P)? does, in fact, provide the order of mag-
nitude of E|215i,j5,,Xin|P. When P = 1, this is indeed also given by T}, ;.
However, in general,

T, 1 = (E|Sn_ 1) EIS,IP ~ (E|S.|)TEIS,F,

since here the X are i.i.d.
Since (E|S,|)¥ /E|S,|F can be arbitrarily small, 7', ; can greatly underrepre-
sent the actual order of magnitude of E®(L; <;, j<n0i; X; X)).

ExAMPLE 2. Even if ®(x) = |x|, the interaction effect must be considered.

Again assume {X;} are i.i.d. mean zero and put S; = X; + --- + X;. For
1<k<nletag_1,% =ax,x%-1 = 1 For all other (i, ) let a;; = 0. With
D(x) = |x|,

Z (Ko - 1522k +X2k}~(2k <1)
k=1

2n _
> XX
j=1
~ Kx,x,(2n) [by Klass (1980)],

E<I>( 3 a,.j)m?j>=E

1<i,j<2n

=E

where, for any random variable Z, Kz(y) = sup{K > 0: yE(Z? A |Z|K) > K2}.
On the other hand,

Ton,1 = E|X|E|Sg,| =~ E|X|Kx(2n).
We need to construct an X-distribution for which
E|X|Kx(2n) < Kx, x,(2n).

Let X be symmetric and satisfy

2
P(X|>y) = ¢ ;(;gy for y > e (logs are taken with base e).

Then Kx(n) ~ (ev/nlogn)/2, so Ty, 1 ~ v2nlog2n. A calculation shows that

4] 3
P( X1 Xs| >y) ~ ¢ 3§,g 24 asy — o0.

2

Hence

e2\/n
KX1X2(n)N 4\/6 Ingn
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T2n,1 <<E@< Z ain,-)?j).

1<i,j<2n

so indeed

Thus, even when ®(y) = |y|, Tq,,1 can be too small.

Clearly, a supplementary lower bound is needed. Notice that the (i, j)th term
of 1 <, j<na;j X; X] is independent of all but at most 2(n — 1) other terms: those
on the same “row” or “column.” What is somehow needed is a means of creating
more independence. How can this be accomplished? Prior to answering this
question, it seems wise to narrow the search via various truncations. Thereby
we partition ¥; <;, j < »ai; X; Xj into those components we can handle and those
which may still be elusive. Note that, from Theorem 2.3, )

E@( Z aini)(j)%gE<I>< Z aini)?j

1<i, j<n 1<i,j<n
~ 2 Y2 Y2
~p EQ ( > aX Xj)
Write af; X7 )~(j2 as Z;; and note that

1<i,j<n

max{Z;j 1, Zij 2, Zij,3} < Zij < Zij 1+ Zij 2 + Z;j 3,

where _
Zij1 =} X2 X (|ai; Xi| < vs;),

Zij o = o} X2 X (lai; Xj| < vsi),
Zij 3= a?ijijI(|ain,~| > vsj, |ai; X;| > vsi).

Let Z, = S1<i, j<nZi; and Z,, & = Si<i, j<nZij k> k = 1,2, 3. Conditioning on {X;}
and applying Jensen’s inequality followed by Lemma 3.3,

Ba( )

(J ) (Zaz X2 (|a;; Xi| < vsﬂ)fff)

< E<I>( \ 2E Zaz X2 (|a;j Xi| < vs)) ) (by Jensen’s inequality)

S

< E(I'<\ (g5, %;)* ) (by Lemma 3.3)
j=1
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Similarly,

Eq)(\/a) = E‘b(\l i (Zn:a?jifl(laij@ < ’Ysj)> Xiz)

i=1 \j=1

= O(Ty 1)

Next, note that whenever
ZﬁJ\/ZnJ\/ZE3fgzﬁf;ZﬁJf+Znﬂ'Fzﬂ3

(for Z,, ; > 0) we have

ez B0 (y/2,) <E0(VZ)
<E® (\/Z_,,I) +E® (\/R) +E® (\/éz) (since ®(+/x) is concave)
531?%3E®(\/ZTJ)' |
Therefore, since we also know that T}, ; = O(E®(T1 <, j<nai in}?j)),

mo [¥ axk
1<i, j<n

(3.2)

1<i,j<n

~p Tp1VE® ( > a? szzI (I X:| > s, lai; X;| > ’Ysi)) :

Now the crucial random quantity to be analyzed is

> ol X2XPI(lai; Xi| > vsp,laii X| > vsi).-

1<i,j<n

Its (7, j))th term is still independent of the other n2 — 2n + 1 terms involving
@,j") for i’ #i and j’ #j. Concerning the terms (z, ;') and (¥/, j'), however, an
important development has taken place. The terms along a row (same index i)
or column (same index j) enjoy a quasi-independence property. Specifically, if
~ > 2, then (see Lemma 3.2)

(3.3) > " P(laij X;| > vs;) <log (v/(y - 2)
i=1

and

(3.4) P(jay; X;| > ys;) <log (v/(y - 2)),
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so that for v > 2e'/4/(e!/* — 1) there is typically at most one nonzero term
on any row or column. This kind of independence by default will permit us
to use moment inequalities to obtain a kind of reverse Chebyshev inequality
(rather like Kolmogorov’s second inequality). This is perhaps the key ingredient
to bounding

1<i,j<n

( > af X2X2I (lai; X:| > s, lai; X5 > ’Y&'))
(for suitable v), as we now verify.
THEOREM 3.1. Let v > 261/4/(81/4 — 1). Let {Xi,}?i,aij,si; 1<i,j< n} be

as defined previously. Put U(x) = ®(y/x) for x > 0 so that ¥(-) is concave and
nondecreasing on [0, c0) with ¥(0) = 0. Set

(3.5) v,,zsup{vEO: Z E(Yij/\vn)zv_"},
— 2
1<i,j<n
where
Y = azJX12X2I(|aij)(i| > VSj, |aijjzj| > 'Ysi),
and put
(3.6) zn= Y, EWYNIY;;> vy
1<i,j<n
Then
(37) (80)_1(\11(1)”) +zn) < E\I/< Z Yu) < \I,(vn) +25.
1<i,j<n

Moreover, if {Yi"‘j} are independent random variables with L( Yi"‘j) = L(Y;}),
then

3.8) (50)"! (¥(vy) +2n) <E\I/< > ) < U(,) + 2n.

1<i,j<n

Proor. The upper bound is straightforward and will be proved first.

\II( Z Yij) < E\I’(Z(YU A v,,)) + Z E\I/(YU)I(YU > Uy)

1<i,j<n 1<i,j<n

<\II(E Z Y,J/\v,, ) +2,

1<i,j<n

<o)
< U(v,) + 2,.
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We now want to bound E¥(3; <;, j<Y; ;) below in terms of ¥(v,). Notice that

E(Y;,j, A vn)(Yigj, A Un)
E(Yiljl /\vn)E(Yim AUy), if i # i and j; #J‘z,
E(Y,j, AvavnP(lai,, X;,| > vsi,),  if iy =ip and j; # Ja,

. E(Yi,j, ANvn)onP(lay,j, Xiy| > vsj,), if i1 # iz and j; = jo,
EY;,j, ANva)vg, if iy =iz and j; =js.
Hence
2
(3w o)
1<i,j<n

= > E(Y;,j, Ava)Xiyj, An)

1<iy, i, j1yj2<n

S( > E(Yij/\vn)> +Zn: Y E(Yij, Ava)(Yij, Ava)

1<i,j<n i=11<j1#j2<n

+Zn: Y. EXiAva)(YuiAva)+ D E(Yij Ava)®

J=11<i1#i2<n 1<ijsn
2 & ~
< (%) +ZZE(Yi1~/\vn)vn Z P(|aij2ij| > ’)’Si)
i=1j=1 Jo=1
Ja#i
J2 #AJ
n n n
+ZZE(Yij/\Un)vn Z P(|a,~2jX,~2| >’)’Sj)+ Z v,,E(Yij/\vn)
j=1li=1 ig=1 1<i,j<n
ig #J
5 ig#1
g(%") +%’ Y E(Yi;Av.)
1<i,j<n
+2 N E(YijAve)+va S E(YiAva) (by choice of 7)
1<i,j<n 1<i,j<n
(i, 1,11
“\2T878 72
2

These inequalities used the fact that (see Lemma 38.2), for v > 2¢%/4/(e1/4—1),
we have

n
> P(lai; X; |> ysi) < &

j=1
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and

P(la;; X;| > 7s)) < -
i=1
Putting W = 1 <;, j<»(Yij Ava), we have proved that
EW? < 4EW).
Suppose v, > 0. Since

%V <EWI<W> %VK

< \/ Ew2p (W > T) (by Cauchy—Schwarz)

it follows that

Consequently,

i,j<n ,
EW EW
=v()r(v= )

> 473¥(v,) (since ¥ is concave),

and this inequality holds even if v, = 0.
It remains to find a lower bound for

( > YI(Y> v,,)>
1<i,j<n
Toward this end, let
A;j = {Yi,j, <vnforall Gy, j1) with iy #iandji #J},
Bij = {|ai1in1| < Sj for all i1 # i Ol‘j},
B;j = {laij, X;,| < s: for all jy #i or j}.

1063
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Notice that

Also,

Similarly,

Therefore,

V. H. DE LA PENA AND M. J. KLASS

P( fj) < 1611{)1 Z P(Yil,jl > Up +8)
1<i, 1<n
< lim Z E(Y_“’Jl__/\_gi‘ﬁ_). <

0 Un +
0 cindi<n nte

N[ =

1_3

i

P(B;;) >1nf{ H(l x): % > 0, Zxk<4 }
k
4-

1
=1-4"1=

P(By) > §-

il

P(A;;NB;;NBy;) > P(B;NB;j) — P(A3))

()()P(A)

=16"1>0

v
.Mc.o
DOf=

By construction, if {Y;; > v,} NA;; N B;j ﬂﬁi, j occurs, then

{Yi,j, > vn} NAij, N By, N By, jy

cannot occur for any other pair (i1, j1). Hence

Hence

Z Yij)ZE\I’< Z YijI({Yij>U,,},Aij,Bij,§ij)>

E@(
1<i,j<n

1<i,j<n

" EY(Yy,) I(Yi; > va) I(Ay, Bij, By))
1<i,j<n

Z E\I’(Yij)I(Yij > vn)P(Aij ﬂBij ﬂgij)
1<i,j<n
> (16)7!z,.

( Z,: )_( (vn)) V4%,

> (80)7}(%(va) +2n)

(by a simple optimization argument).
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By the same arguments as for 3 U,E‘I’(Elgi,jgnY{}) < ¥(v,) +2,. To find a
lower bound, consider

(5 o)

1<i,j<n

Z E( 11J1/\v")( 1212/\v")

1<y, ig, j1,j2<n

S( > E(Y, /\v,,) > E(YZAu?)

1<i,j<n 1<i,j<n
Un\ 2
< (?) + Z UnE(Yij/\Un)
1<i,j<n
_ 32
= YRS

Putting W* = 1<, j<a(Y}; A v,), we have proved that E(W*)2 < 3(EW*)2.
Hence

* *)2
P<W*2EW ) (EW*)

> —
2 T 4E(W*)32 T 12

and so
w( > Y,.*j) > E¥(W*)

1<i,j<n
Ew* . EW*
> (2o (> E)

~1g(Yn

> avte(%)

> (48)" 1 W (vy).

Note that (3.5) entails X1 <;, j<n P(Y}; > v,) < 3. Therefore,

ol >vn>)
> Y Eu(Y, >vn)I< N {YEf‘j/Svn}>

1<i,j<n {G@,J)#G, N}

> Y EY(Y;)I(Y] > va P(ﬂ{Y*,<vn}>

1<i,j<n vy

Z(z,,)(l— > P(Y> v,,)) > 5"

1<i,j<n
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Hence

( > ) ((48)1T(v,) v 27 12,)

1<i,j<n
>(50)"X(¥(vn) +2n)
(by a simple optimization argument). a0

REMARK 3.1. As a corollary,

3.9) E\I/( > Yij)zE\I’< > Yi’}>-
1<i,j<n 1<i,j<n

Moreover, even if each s; were replaced by s; for s/ satisfying yos; < s; < ms; for
some fixed 0 < v9 < 71 < 00, the same essentlal result would be obtained.

REMARK 3.2. Theorem 2.1 of de la Pefia (1988) shows that for ® convex and
non-decreasing on [0, oo) with ®(0)= 0 and ¥(x) = ®(,/x) concave, E®(|T?, d;|)
< const E®(|L]; d;|) where {d;} are martingale increments and {dl } are
independent random variables with £(d}) = L(d)) forj = 1,2,...,n. Motlvated
by this result, both B. Davis and Johnson and Schechtman (1989) mdependently
showed that for arbitrary non-negative random variables Yy, ..., Y,

(3.10) Ev(Yi+ - +Y,) < const EV(Y{ + --- +Y))

where {Y;} are independent and £(Y) = L(Y;). This inequality is recorded
as Propos1t10n A.l in de la Pefia (198’8) As mdlcated by (3.9), Theorem 3.1
represents an instance in which this inequality can be reversed.

Combining Theorem 2.3, (3.2) and Theorem 3.1, we obtain the following fun-
damental approximation theorem. Whereas Theorems 2.1 and 2.3 provide an
initial or one-step decoupling of Ya,; X; X;, Theorem 3.2 identifies the full ex-
tent to which these variates may be decoupled (or independentized). It thereby
constitutes an ultimate decoupling. Interestingly, the process of successive in-
dependentization has produced magnitude-equivalent quantities which are ap-
proximable.

THEOREM 3.2. Let X;,Xy,...,X, be independent mean-zero random vari-
ables. Let ® € Fp be such that ®(,/x) is concave on [0, 00). Then, for any reals a;;
such that a;;j = aj; and a; = 0 and for any fixed 0 < vy < 1 < 00,

Ecb( > ainin)

1<i, j<n

~g max{Ecb(Zstj),E(D( > aijZijeij>}’

J=1 i<i,j<n

(3.11)



ORDER-OF-MAGNITUDE BOUNDS FOR EXPECTATIONS 1067

where
(3.12) si=E|> a; X,
i=1
(3.13) L(Z) = L( XX 1(joi; Xi| > 7'} lai; X1 > 7'sf) ),

Y08; < ) < 18;,Y =107y LG ) is symmetric Bernoulli and {Z;;,¢;;: 1 <i,j <
n} is a set of n? mutually independent random variables.

REMARK 3.3. The quantity E@(Elsi,js,,aijzijeij) in Theorem 3.2 cannot
be replaced by 1 <;, j < nE®(a;; Z;j). To see this, let X, X;, X5, ... beii.d. mean-
zero random variables and let a;; be defined as in Example 2. Then, as shown
in Example 2,

E| Y @;XXj)|=2E ~ 2Ky .

1<i,j<2n
Observe that s; = E| X|. Take any such X with
P(|X| > 10EX]) > 0.

> Xop 1 X
k=1

Then
Z Ela;jZ;j| = 2nE|X1X2|I(|X1| > 10E|X|,|X,| > 10E|X])

1<i,j<2n

2
= 2n(E\X|1(1X] > 10E|X|)) > Ky asn— oc.

Hence ¥ E|a;; Z;;| cannot be substituted in place of E|%; <;,j<n€ij@ijZij| with-
out sometimes causing Theorem 3.2 to fail.

In what follows we introduce the three missing lemmas.

LEMMA 3.1. Take any 0 <\ <1 and any integer n > 1. Let C = {x =
(*1,...,%)in R*: 0<x; < land ¥7_;x; = A}. Then

n A n N
su l-x)={1—=) <e™ "
Eeg H ( 2 ( n) -
Jj=1
The proof is left to the reader.

LemMma 3.2. IfYy,...,Y, are independent, then, forallc > 1, P > 0,

n

>y,

n
P<|Y}|P<2cE
=1 i=1

P n
) > [ P(YIF <eM®) >1-c7,
Jj=1

J
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where MF = E max; <j<n |YJ~|P and so, by Lemma 3.1,

n n P n
ZP<|YJ"P 22¢E|3 Y, ) < S P(YF 2 cMP) <log(—=).
J=1 i=1

Jj=1

ProoF. Let
min {j: 1 <j < n,[V;IP| > eMP),
Te =
¢ 00, if no such j exists.
Note that
2 P
M? > B|Y..["I(7, < 00) > E(eMPI(r, < 0)) = MPP( max |Y)|" > M),

s0 P(max; <<, |Yj|F < cMP) > 1 — c~1. Solving for X in the right-hand side of
Lemma 3.1, we have ¥7_; x; < —1og(I?_, (1 — x;)) and so it follows that

" 1
ZP(| Yj|P 2 CMP) <log (m)

j=1 :
c
< — .
_10g<c_1) O

LEMMA 3.3. LetY1,Ys,...,Y;, be independent mean-zero random variables
and put s = E|Y; + - -+ + Y|. Then for any ~ > 0 there exists q., < oo depending
only on v (and not on k or {Y;}) such that

b

EY Y I(IY] < vs) < (g48)%.
j=1

PrROOF. LetZ =¥} ,Y?I(|Y;| < vs)and t2 = EZ. By Marshall’s inequality,

P(Z > EZ — v/varZ) > 1. Note also that

k
<v’s* Y EY]I()Y) < 7s)
Jj=1

= 'yzsztz.

Furthermore, note that E, /Z;=1 sz < C*s for some C* < oo independent of &
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and {Y;}. Hence, if ¢ > (y + 2C*)s, then

1/2
> % (t (t- 73)) / (by Marshall’s inequality)
s o\ 12
> C*s,

which gives a contradiction. Hence ¢ < (y +2C*)s. O

4. Higher orders of convexity. We extend the results of Section 3 to
convex functions ® for which <I>(x2_k_l) is concave for some £ > 0. Suppose
both ®(x) and ¥(x) = &(,/]x[) are convex functions on [0, c0) with ®(0) = 0 and
®(2x) < 2P®(x) for all x > 0 and some 2 < 8 < co. Then, as shown in Section 2,

E<I>( > aij)g)g;)zﬂm( > a%j)g?ff,?>.
1<i,j<n 1<i,j<n

Let

4.1) Wa= > a}XIX}.

1<i,j<n
By Jensen’s inequality, E¥(W,) > ¥(EW,). Also,
EY(|W, — EW,|) < 3(E¥(2W,) + ¥(2EW,)) (by convexity)
< 28— 1(E\IJ(W,,) +U(EW,))
< 2P EW(W,).

Therefore,
max {E\II(IW,, — EW,)), V(EW,)}
EY(W,)
We find the following upper bound for E¥(W,,):
EY(W,) <EY (Wp — EW,, + EW,)
< 3 (EY(2|W, - EW,|) + W(2EW,)) (by convexity)
<28~ 1{E\Il(|W,, — EW,|) + V(EW,)}
< 2 max {EY (W, — EW,|), W(EW,)}.

< 28,
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Therefore,
EY(W,) ~p max {EV(|W, — EW,|), ¥(EW,)}.

The quantity EV(|W,, — EW,|) can be further simplified (i.e., transformed).
Let

War= Y. af(XF - EX})(X} - EX?),

1<ij<n 5
4.2) Woo= Y of(X}- EX})EX},
1<ij<n _ 5
Wos= > a}(X} - EX})EX}.
1<i,j<n
Notice that

W,— EW,= Y o(XX? - EX?EX?)
1<i,j<n

= nJ*;WZJ'Fﬂhﬁ

and L(W, 3) = L(W, 3).
Conditioning on { X;} and using Jensen’s inequality,

EY(|W, —EW,|) > EY(|W, ,|).
Moreover, by the convexity of ¥,
EY(|W,1|) = EY(|W, — EW, — W, 2 — W, 5|)

< %(E{\P(3|Wn — EW,|) + ¥(3[W, ) + ¥(3|W, 5)})

2ﬁ 2ﬁ+1
< GEY(|Wo — EW,|) + =—5—E (W, o)

(since W, 2 and W, 3 are identically distributed)
<2PEY(|W, — EW,|).

Therefore,
max { E¥(|W, 1|), E¥Y(|W,2|))} < 2P EY(|W, — EW,|).
Upper-bounding E¥(|W,, — EW,]),
EY(|W,— EW,|) = EY(|W, 1+ W, 2+ W, 3|)

1
< 3{EY(3|Wa,1]) + EY(3[W,, o) + E¥(3]Wa,5]) }

28 2p+1
< ?;I;T(“VEID'+ 3 IEW(HVEZD

< 2°max {E¥(|W,,1|), EX(|W, o).
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Combining our results,
(4.3) EY(|W,|) ~g max {¥(EW,), E¥(W, ), E¥(W,5)}.

The right-hand side of (4.3) represents a simplification (!) in the approxima-
tion of EW(W,). The result is threefold: (1) The term ¥(EW,) is (presumably)
computable, and (2) so is E¥(|W, 3|). The reason E¥(|W, 2|) can be regarded
as straightforward is that it is but a linear combination of independent mean
zero-variables. (3) E¥(|W, 1|) involves a decoupled quadratic form of mean-zero
variates for which ¥ is more nearly concave than ¢ was.

By iterating this process we obtain the following extension of Theorem 3.2.

THEOREM 4.1. Let ® be a nonnegative, symmetric function with ®0) = 0
such that, for some k > 0, ®(x2") is convex on [0, 00) and (2" ") is concave on
[0,00). Take any n > 2 and any reals a;j such that a;; = a;; and a;; = 0. Define
Y; 0 = Xi, and, by induction,

Y, ;= i,j_l—Eij_l fori=1,...n,j>1
and similarly for

?i,O’ Yi,l’ e ’?i,k starting from Xi-
We then have (with 3 = 2¥*1)

E<I>< Z ainin)
1<i,j<n
9—m
2m
~p max linn?)éké(< Z (azj) m lE 1) ))

1<i,j<n

Z (ay)z"' (E i,m — 1)

1<i,j<n
¢<

Of the 2k +1 quantities whose maximum is required, the first % are constants
directly computable from the X;, the second % involve expectations of functions
of sums of independent variables, and so they too are computable from the
one-dimensional X;-distributions. The quantity

2—k
k ~
E® ( 3 (ay)? Yi,kYi,k>
1<i,j<n

(4.4)
max E<I><
1<m<k

> (@) Yir i

1<ij<n
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remains. It is approximated by the two quantities described in Theorem 3.2.

Finally, to see that 3 = 2¥*! will do, note that since 32" is concave,
3(2x)2 7Y < 282" "). Equivalently, &(22 " 'x) < 2®(x). Hence, by induc-
tion, we have

2k+1
B(2x) = <I><x I1 22"'“>
j=1

2Iz+l
<o) [[2=2""2w).
j=1

5. Application of decoupling: order of magnitude for a nontrivial
martingale. This section presents a special case of the quadratic form
for which a more elegant solution is possible.

THEOREM 5.1. Let X1, X5, . .. be independent mean-zero random variables.
Let {X;} be an independent copy of {X;}. For P > 1 assume E IX1/P < E|XpF <
.- < E|X,|P. Then

n P

-1
X

Jj=1

P P
E <E

T xx,

1<i#i<n
> xx

1<ifj<k
n
PR G
Jj=1

(96)FE

X
j=1

5.1) <E max
2<k<n

P

n—1 P

X

i=1

P
<25(16)PE E

The corresponding qualitative result for i.i.d. random variables was obtained
by de la Pefia (1988). A seemingly more general version of the next theorem can
be found in the introduction. However, it is easy to see by reordering the variates
that both versions are the same. We state the theorem in this way since the proof
becomes more transparent.

ProOF. LetS; = X; + -+ +X;. We obtain the lower bound first. By using
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Theorem 2.1, one gets

P P
1
E| > XX| =g5E Y XX
1<i<isn 1<i#j<n
1 P
> ppf| 2. XX
1<i#j<n
1| & ?
= 1o7E| D (S — XX,
j=1

By conditioning on (Xj,...,X3,), ()?an, e ,X’,,) and using Jensen’s inequality,
the preceding quantity is not less than

Y SuX

J=kn+1

1 N
(52) = 12—PE| (Sk,.)(sn - Skn) | F

_ L
T 12P

P

1
1P f

E|S:,|"E|S, - S.|".

We can obtain the lower bound by considering two cases.

Case 1. Assume

Elsn—l|P

(5.3) E|X,|? > 537

Letting k£, = n — 1 above, we get

> xx

1<i<j<n

P

1 P P
E > 5 EISu 1 PEX I

We need to bound E|X,|P below in terms of E|S,|P:
E|Sa|F < 2P~ Y(E|Xu|P + E|S,_1|F)
<2P-1(1+2°ME| X, P
< 8PE| X, |F
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and hence

P

E > (96)"PE|S,_1|PE|S,|P.

Y XX

1<i<j<n

Case 2. Now assume E| X, |F < E|S,_;|7 /2% and let

3E|S,_1|P }

k, = min {k:E|Sk|P > 2Pl

Then we have

E|Sy, [P <2P1(E|S;,-1|F + E|X,, )

3 1
(5.4) <2p-t (W + 55>E|Sn_l|P
5 P
< 'z'mE|Sn| .
We also have that

21-PE|S, P < E|S, — S, |F + E|S, |P
5

<E|S, -S|+ 57 EISn P

Therefore,
3E|S, P
E|S, -S| > 2|P+2| .

Then, from (5.2),

P

E| Y XX| >127ES;, PEIS, -5,
1<i<j<n

> (12

_p3E|S,_1|F (3E|S,|F
) 22P+1 QP+2

> (96)PE|S,_1|PE|S,F.

PrOOF OF THE UPPER BOUND. What follows is an alternative proof of the
upper bound from the one we had in mind. It gives better constants as P — oco.
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The approach was suggested by P. Hitczenko:

P
Emer|, 2 5%
1<i#j<k
P P
P—1 X, X
<roleme | 5 xx|mm| 5 )
1<i<j<k 1<j<i<k
P
—oP . X
T 2
1<i<j<k
& P
< P .
8°E max z;SJ_IXJ
Jj=
(by the upper-bound in (2.2) of Theorem 2.1)
n P .
<5(8E|> _S;_1X;| (by conditioning on {Sj_1}2<;<n,
j=2

using Lemma 6.3 and unconditioning)

n~P
YX

< 5(16’E max |S;_1/°E
2<j<n v

(by Lemma 6.4, the contraction principle)

< 25(16)’E|S,,_1|PE|S,|¥ (in part by Lemma 6.3). =

6. Supplementary lemmas. Our first lemma is a decoupling result due
to Hitczenko (1988).

LEMMA 6.1. Let U = {U;}, V = {V;} be adapted to Aj, where U;, V; > 0.
Then U and V are said to be tangent if

(6.1) PU;>t|Aj-) EP(V;>t|Aj_1) ViE>0.

If U and V are tangent, then

(6.2) E3( Y U;) ~a Bo( Y V)

for all ® such that ®:R, — R,, ® increasing, continuous and ®(2x) < ad(x),
x > 0, for some a < 0.

In (7.83) of Remark 7.1 of Klass (1980), a method of obtaining the order of mag-
nitude of expectations of functions of sums of independent random variables is
presented in the form we need. The result is as follows.



1076 V. H. DE LA PENA AND M. J. KLASS

LEMMA 6.2. Let Z, = (Z1,Z,,...,Zy) be a vector-valued random variable,
where Z; are independent mean-zero random variables. Let ® be in Fg. Define

Ks(Z,) as the unique nonnegative real number K such that

K?

2 _ - 2 .
(6.3) K= EZ}1(Zi| <K) + 50

n
> EX(Z)I(Z| > K).
i=1 i=1
Then
(6.4) E@(E;Zi) ~p Elén"?:énq><z;zi> ~p ®(Ko(Zy)).
1= 1=

From this it is easily seen that (Z,Zs,...,Z,) has the same K function as
(Z1€1,Z9¢3, . .. ,Znen), where {¢;} is a sequence of i.i.d. rv.’s such that P(e; =
1) = P(¢; = —1) = } and {&;} is independent of {Z;}. This gives us the result

(6.5) E® < izi) ~p E® < ZZisi) :

i=1 i=1

In the next lemma we restate Theorem 1 of Klass (1993).

LEMMA 6.3. LetX;,Xo,...,X, be a sequence of mean-zero random variables
andlet S, = X1+ +X,. Also let ® be any nonnegative convex function on [0, 00).
Then

6.6) E@(@% |s,-|> < 5E®(|S,]).

Moreover, the 5 can be replaced by 3 if the X;’s are i.i.d.

The final lemma, known as the contraction principle, is Lemma 4.1 of
Hoffman-Jgrgensen (1974).

LEMMA 6.4 (Hoffman-Jgrgensen). Let X1,Xy,...,X, be independent mean-
zero Banach space valued random variables. Then for all real numbers ay, . .. ,a,
and P > 1 such that max; < j <, E|X;||P < oo,

n
> aX;
Jj=1

P P

n

>X

Jj=1

6.7 E

< 2P max |aj|PE
1<j<n
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