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A SOLUTION OF THE COMPUTER TOMOGRAPHY PARADOX AND
ESTIMATING THE DISTANCES BETWEEN THE DENSITIES
OF MEASURES WITH THE SAME MARGINALS !

By L. A. KuaLriN2 AND L. B. KLEBANOV
Russian Academy of Sciences

We give estimates of the distances between the densities of measures
having the same finite number of the same marginals. These estimates give
a solution of the computer tomography paradox of Gutman, Kemperman,
Reeds and Shepp, and open the possibility for construction of a new method
of inversion of the Radon transformation.

1. Introduction. The traditional methods of computer tomography (CT;
see, for example, the excellent survey [4] and recent report [5]) are useful in
many branches of science, medicine and technology. CT is based on the inversion
of the Radon transformation, which allows one to reconstruct (in a unique way)
the density of a measure. However, such unique reconstruction is possible only
if one knows all (an infinite number) of the marginals. In practice one can
have only a finite number of marginals; unique reconstruction of the density is
impossible in this case.

Let f(x) be a probability density function on the Euclidean plane R? with a
compact support D C R2, Let 64, ...,0y be N directions (N unit vectors) in the
plane R2. It was proved in [3] that for any density f: 0 < f(x) < 1, x € D, and for
any finite number of directions 61,..., 0y (N < co) there exists another density
fox), x € D, such that f; has the same marginals in the directions 6y, ...,0y as
f and such that f; has only two values: 0 or 1. This result gives the following
CT paradox (see [3]): It implies that for any human object and corresponding
projection data there exist many different reconstructions, in particular, a re-
construction consisting only of bone and air (density 0 or 1), but still having
the same projection data as the original object. Related nonuniqueness results
are familiar [6-8] in tomography and are usually ignored because CT machinres
seem to produce useful images. It is likely that the explanation of this apparent
paradox is that point reconstruction in tomography is impossible. CT machines
produce useful images because all functions 0 < f(x) < 1 with the same line in-
tegrals have (essentially) the same integrals over “nice” sets. In other words, it
is likely that all functions f(x) with 0 < f(x) < 1 and with the same line integrals
have nearly identical integrals over pixels that are not too small. However, we
have neither a proof nor a precise statement of this heuristic idea.
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In the present work we given a full quantitative and qualitative solution
of this CT paradox. The solution is based on new estimates of the distances
between corresponding functionals of the densities with a finite number (V) of
the same marginals (Section 1). In Section 2 we give corresponding estimates of
the distances between densities having e-identical marginals in a finite number
of directions. In Section 3 we sketch the proofs of the main theorems of this work.
In Section 4 we discuss possible applications of derived mathematical results
to CT problems.

2. On estimation of a distance between the densities with a finite
number of identical marginals. Let Fp be the set of all probabilistic den-
sities with compact support in the square

D = {x = (x1,%9): |x1| < 1, |xo| < 1}.
Let ¢, be the Gaussian density
o) = (27ra2) -1 exp(— (x3 + x%)/(ZoQ)), x € R?,
and let f* p,(x) and g* p,(x) (f,g € Fp) be the convolutions of p, with f,g € Fp.

THEOREM 1. Let n > 2 be a natural number. There exist N = 2n directions
61,...,0x on the Euclidean R? plane such that if the densities f,g € Fp have the
same marginals in the directions 61,...,0y, then

(1) sup |f * p,(x) — g * ps(x)| < 1 (\/770“22(3"‘4)/21“((n + 1)/2)),

x€R?
where I'(z) is the gamma function. The vectors 01, . . ., Oy can be chosen as follows:
6 = (vj, ~1)/ (v2 + 1) /%, j=1,...,n,
6= (Lu_ )/ (2, + 1% j=n+l,..2n,
where

v = cos(m(2k — 1)/(2n)), k=1,...,n.

Applying this theorem to the densities f and fy, mentioned in the Introduction
(see Theorem 2 in [3]), we get full quantitative and qualitative solutions of the
CT paradox. Although the sup norm distance between f and f; is equal to 1,
the distance between the smoothed densities f * ¢, and fy * ¢, is small for
sufficiently large N. ‘

Theorem 1 gives an estimate of the closeness of g * ¢, and f * ¢, in terms
of homogeneous weak metrics. Without any a priori restrictions posed on the
set of admissible densities, this estimate looks quite sufficient. For concrete a
priori restrictions on the set of admissible densities f (such restrictions would
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be defined by concrete problems for which CT will be used) some other metrics
might be more useful. For such metrics, the estimate of the closeness between
f*p, and g* @, can be obtained by the method used for the proof of the Theorem
1 (see Section 3). We will discuss the corresponding results in a separate work.

If in addition to the hypotheses of Theorem 1 we assume that f(x) is differ-
entiable, then it is possible to get an estimator for f(x) from g * ¢, (x).

THEOREM 2. Let f € Fp be a differentiable density function. Under the
hypotheses of Theorem 1 we have

@ sup [f@ g o) < Cp(2/m)*o+1/((25~4m) 20 ((n+ 1)/2) ),
x€R?

where

Cr = sup |lgrad £,
z€R?

For o = o(n) = (n)~1/2 we get from (2) the inequality

2" sup |f(x) — g * p,(x)] < Cn~1/2,
x €R?

where C depends only on Cy.

3. An estimate of a distance between the densities with c-identical
marginals. Let us suppose that 64,...,6y are the same directions as in
Theorem 1.

THEOREM 3. If the integrals of the densities f and g (f,g € Fp) over all
straight lines with directions 6;(j = 1,...,N) e-coincide, that is, for some fixed
€ €(0,1),

o0 o0
l/ f(x+t9j)dt—/ g(x+t0j)dtl§s, j=1,...,N,xeR2,
—00 —00
then

sup [f * po(x) — g * ¢y (x)|
x €R?

3 < mg=+2) [e (8+ (4/m) logn )2 *2/2D ((n + 2)/2)

+ 1/(7r2(3n—4)/2]_"((n + 1)/2))] .
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4. Proofs of main theorems. The proofs of all the preceding theorems
are based on the following main lemma.

LEMMA 1. Under the hypotheses of Theorem 1 we have, for every positive A,

4 sup 'f(7'177'2) g(7'1,7'2)|<A"/(2""2 )

[Imlloo <
where f and g are the Fourier transforms of f and g, respectively, and 17|00
= max(|ry[, |ra)).

PROOF. Let us fix arbitrary a € [0,A] and consider the difference

ha(ry) = f(r1,0) — §(r1,a)
as afunction of 7; € (—a,a). Because the densities f and g have the same margin-
als in the directions 6y,..., 0y, we have h,(r1) = 0,7; € {avy,... ,av, }. Here
6=, -/ +1)"%  j=1,..n
j=(1,vj_n)/(vj_n+1)1/2, j=n+1,...,2n=N,
vs = cos (m(2s — 1)/(2n)), s=1,...,n,

It is easy to see that the points avy, ..., av, are the Tchebyshev points of inter-
polation for the interval (—a,a). Because the densities f and g have compact

support in the unit square D, then f (11, 72) and g(r1, 79) are infinitely differen-
tiable functions and

®) |(8+¢ /05 o) flr, m)| < 1,
|(8°**/ 07} or8)g(r1,m)| < 1
for any natural numbers s, ¢.

By using (4) and (5) we get from an error estimate for Tchebyshev interpo-
lation (see [9], pages 81 and 82) that

(6) ha(1)| = [f(r1,0) —g(n,a)| <a"/(2" ?n!)

for |71| < a. By the same arguments we derive

¢ Fn, —a) —gn —a) <a™/(2" "),  |n|<a,

8) F£a,m) —g(xa,m)| <a”/(2*~%n)),  |n|<a.
From (6)~(8) it follows that ‘

N o [F(r1,m2) —8(ri,m)| <™/ (27~ 2nl),  ac(0,Al

The inequality (4) in Lemma 1 is an immediate consequence of the inequal-
ity (9). O
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Proor or THEOREM 1. Now, as a typical example, we give the main idea
of the proof of Theorem 1 on the basis of Lemma 1. The other theorems in this
paper have similar proofs with some additional arguments.

By using Lemma 1, we get

If * 0o(x) — g % s (x)|
= (277)_2 / / exp(—i(t1x1 + t2x2)) (?(tl, to)

—8(t1,89)) exp(—a2 (2 +13) /2) dt, dt,

(10) < (2m)~2 / i dy / ” f(r cos o, r sin ¢) — E(r cos ¢, rsin )|
' 0 x exp(—o?r?/2)rdr
< (2m)! /0 " (Pexp(~o%r2/2) /(22 nl) ) rar
=T((n+2)/2) /(2" ~%n0"*?n).
However,
(11) n!=T@+1)=T(2(n+1)/2) = (2"~ /7)) ((n +1)/2)T((n + 2)/2)

and after putting expression (11) into (10), we get the main inequality (1) in
Theorem 1. O

PrROOF OF THEOREM 2. Itis easy to see that

sup |f() — f * 0, (@)] < / () — Fe+ wlpo () du
]RZ

x €R?

<G /2 ]| 00 w) du = oCp(2/7) 2.
R
Inequality (2) follows now from the estimate in Theorem 1. O

PrROOF OoF THEOREM 3. We use here the same notation as in Lemma 1.
Because the densities f and g have e-identical marginals in the directions
917 ey 9N )

(12) |ho(m1)| <€, m € {avy,...,av,}.

Let Pf(n) and P;(r1) be Tchebyshev polynomials of interpolation of degree n+1,
that is,

(13) Pyry) = Y IP(r)f(avy),
. . k=1
(14) Py(r) = > EP(r)E(avy).

k=1
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It follows from (14) that

(15) sup |Px(r1) — f(ry,a)| < a"2'~"/nl,
71 € [—a,a]

(16) sup |P(r1) — ?(Tl,a)l <a"2l="/nl,
71 € [—a,al

Put

n
A =sup Y [1(ry).
™ p=1

It is known (see [9]) that
amn An < 8+ (4/m) logn.
Therefore, we get from (12), (13), (14) and (17) that

(18) sup |Py(ry) — Py(ry)| < &(8+ (4/r) logn).

|m1|<ea

From (15), (16) and (18) we obtain

sup [f(r1,a) — g(r,a)| <22~ "/n!+ 5(8 +(4/m) logn). -

|m1l<e

5. Discussion. It is possible to use mathematical results that we derived,
for CT problems. As was discussed in [1, 2] (and in more detail in recent reports
[10-12]), on the basis of the main inequality (1) it is possible to give a new defi-
nition of the space resolution power and the sensitivity (the resolution power in
density) of CT. Moreover, on the basis of these results [1, 2, 10~12] we proposed
a new method of reconstruction in CT which unlike commonly used methods,
yields no mathematical artifacts. On the basis of stabilization properties (see
Section 2) it was proved [10-12] that this new method is well posed. Different
concrete problems for which CT is used correspond to choosing different kernels
of a convolution (not only the Gaussian and the Valle—Poissin [10-12]).
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research [3] before publication.
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