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ON CHUNG’S LAW OF THE ITERATED LOGARITHM FOR SOME
STOCHASTIC INTEGRALS!

By BRUNO REMILLARD
Université du Québec a Trois-Riviéres

We prove that there exists a constant a(A) € (0, co) such that lim inf; ,
(loglogt/t)supy < s < | fos (AW,,dW,)| = a(A) with probability 1, where A is
a skew-symmetric d x d matrix, A # 0, and {W:},;>¢ is a d-dimensional
Wiener process.

1. Introduction. Let {B;};>(be aone-dimensional Wiener process. Chung
(1948) proved that with probability 1,

(1.1) litmirgf(loglogt/t)l sup |Bs| = 7/V/8.

<s<t

Motivated by recent results concerning processes of the form

t
L, =/ (AW,,dW,),
0

we prove that the analog of (1.1) also holds for these processes. More precisely
we will prove the following theorem.

THEOREM 1. Suppose that {W;};> ¢ is a d-dimensional Wiener process and
suppose that A is a skew-symmetric d x d matrix [i.e., A* = —A, where the as-
terisk (x) stands for the transpose] and A # 0. Let L; = fo AWu,dW ), £ > 0.
Then

1.2) t@r&)%logP( sup |Ls| < 1) = —a(A),

0<s<t

where a(A) € (0,00) and
(1.3) P(lim inf (loglogt/t) sup |L(s)| = a(A)) =
t—oo 0<s<t

The rest of the paper is organized as follows: in Section 2 we prove (1.2) and we
prove (1.3) in Section 3.
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2. Existence of a(A). Suppose that (Q,F,P) is a complete probability
space and let {W;, F;}, > o be a d-dimensional Wiener process on (2, F, P), when
F; is its standard filtration and P(W, = 0) = 1. From now on, A is a fixed d x d
matrix such that A # 0 and A* = —A.

Let L; be a continuous version of the stochastic integral fo (AW,,dW,), where
(-, -) stands for the Euclidean scalar product. Since for everyc > 0, {Wc/v/c}: >0
is also a Wiener process, we see that {L.;/c};>( has the same laW as {L¢}>o.
Moreover, if we define P, ,) as the probability measure induced by the process

(Wi, LY) = (x+ Wy, (Ax, W) +y + Ly), (x,y) e R x R,

then P, ,) is the solution of the martingale problem starting at (x,y) with gener-
ator L = (1/2)x¢_ _ X2, where the vector fields X; are given by X; = 0x; + (Ax); 9y,
1<:i<d. Smce X; ,,X 1=—-2A;; 0y and A # 0, the diffusion is hypoelliptic and
the grocess has a C*® density P(t; (x,y), w,1)); that is, for every Borel subset C
of R¢+1

Pee,((W,, L) € C) = /C P(t; (x,5), @w, D)) dwdL.

ForanopensetD C R**!, set Tp = inf{t > 0; (W;,L;) € D°}. Using this notation,
(1.2) can be written as

tll}lc}o % log P, 0)(Tg > t) = —a(A),
where G =R? x (—1,1) and 0 < a(A) < .

(2.1)

We will now prove (2.1). Let C3°(D) be the set of all infinitely differentiable
functions with compact support contained in D.

Further let | |5 be the L? norm on L%(R?*1). Next define Ly to be the unique
self-adjoint operator on Hp = L?(D) whose quadratic form is the closure of
the form

1 d
U= (L) =53 [&pxiads  f.gecr)

Then it is easy to see that for every f € C3°(D), Lpf = Lf. Since the process
(W, L,) is continuous and D is open, we have P,(T = 0) = 0, for any x € D. More-

over, f(Wiarp, Lint,) — fotATD Lf(Wu,Lu)du is a martmgale for f € C3°(D). It
follows that

tim + (B (Ve LOLry ) — F5,9)) = LF6,9) = Lof )

for (x,y) € D. Therefore, the semigroup 7%, defined on all Hp = L%(D) by
Tif @) = B, (FWs, L)Lz, . )



1796 B. REMILLARD

has Lp as its generator. Since C3°(D) is a core for Lp, it follows that T}, = Lo,
Combining results of Azencott (1981) and Léandre [(1987), e.g., Théoréme
11.3], we can prove that for every convex open set D with compact closure,
infl, ) e k Pp(to; (x,y), w,1)) > 0 for every compact K C D and for some ¢, >
0 [¢o = to(K)].
Recall that G = R% x (-1, 1).

LEMMA 2.1. Suppose f € C3*(G) and |f|z = 1. Then

(2.2) litmg)lf% log P(Tg > t) > —I(f).

PRrooF. Let support (f) = K C G. Then we can find a convex open set D
with compact closure such that K ¢ D C D C G. Moreover there exists £, > 0
such that

(w,lll)ng PD(tO; (0,0), (w,l)) =c>0.

Now P, 0)(Tg > t) > Po,0)(Tp > t)= [, Pp(to;(0,0), (x,y))P, 5 (Tp >t —to)dx dy
by the Markov property if ¢ > ¢y. Therefore,

Po,o(Tg>t)>¢ / Py, (Tp >t — to)dxdy.
K
Next if | f| = sup,, ) | f(x,y)|, then
LP(x,y)(TD >t)dxdy > /f((x,y))E(x,y) fWe, L), > 1y)dxdy /| f1%

- / Fox,)etofe,y) dxdy/ | FI2, = (20F, ) /| F12.

Since |f|s = 1, Ef(d)) is a probability measure. Therefore, using Jensen’s in-
equality and the spectral theorem, we get

0 0
(exp(tLp)f,f) H= / exp(\)Ef(d)) > exp(t / )\Ef(d)\)).

However, ffoo AEf(d)) = (Lpf,f) = —I(f). Hence (e!Lof,f) > e~#P and we can
conclude that

P,0(Tg > t) > cexp(-t — t)l(f)) /If |2
Therefore, lim inf; _, .(1/¢)log P(o,0)(Tq > t) > —I(f). O

‘Since (2.2) holds for every f e C§°(G) such that |f|; = 1, we obtain

o1 .
. - > — .
2.3) lim inf - log P, 0(T6 > ) > nt 1)

[flz=1
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We now set

ald) = felclg(a) 5.

[fla=1

REMARK. We can see that a(A) is the infimum of the spectrum of the self-
adjoint operator —Lg.

LEMMA 2.2.

(2.4) lim sup % logP(o’ 0T > t) < —a(A).
t— o0

ProoF. Let D; = Bz x (—1,1), when B,. is the open ball centered at 0 with
radius ¢2, ¢ > 0. Clearly,

P(o, 0)(TG >, TD‘ < t) < P( sup |W| > tz) < ke_6t2
0<s<¢

for some positive constants £ and 6. It follows that
(2.5) lim sup l IOgP(o’ 0(Tg > ¢t) <lim sup l IOgP(o’ 0) (TDt > t) .
t— 00 t t— oo t
By the Markov property,
Po,o)(Tp, > £) = /D Pp,(1;(0,0), (6,9) P (T, > ¢ — 1)dxdy
t
< 01/ P(x,y)(TDt >t — l)dxdy,
D,

where ¢; = sup, ,,p(1;(0,0); (x,y)) = p(1;(0,0),(0,0)) since the characteristic
function of (Wy, L, ) is real and positive [see Helmes and Schwane ( 1983), Corol-
lary 2]. The last inequality holds since

Pp,(1,(0,0);(x,) < p(1;(0,0),(x,y) < ec;.

Next set V; = [, dxdy and ¢; = 1p,/V,;”%. Then ¢, € L%D,) = Hp,, |¢¢|z = 1 and
/ P,y (Tp, >t —1)dxdy =V, (exp((t — DLp,) ¢, ¢t) < Viexp((t — 1),
D,

where

A = su Lp,¢,¢)=— i In),
! ¢EDomaI:i)n(LDt)( 0.$,9) . feCEmy f

1 25, =1 flz=1



1798 B. REMILLARD

which follows from the construction of Lp,. Since

N> i =
A > fegg(a) I(f) =a(l),
Iflz=1

we obtain Py o(Tp, > t) < ¢1Viexp(—(t — 1)a(4)), ¢t > 1. Combining the last

inequality with (2.5) we getlim sup, _, ., (1/¢)log Pg, 0)(Tg > t) < —a(A), proving
the lemma. O

Using (2.3) and (2.4) we have
.1
lim = IOgP(o 0)(TG > t) = —a(A).
t—oo t ’
We will now find a representation for a(A).

LEMMA 2.3. Suppose that the set of nonnull ezgenvalues of A is given by
{£ia1,...,+iaq,}, where 2dy < d. Then a(A) = (7r/2)2k 1lal.

Proor. SinceA is skew-symmetric, there exists an orthogonal d x d matrix
O such that OTAO = A, where A = diag{(az)1 <k <4, }, thatis, Aisthed xd ma-

trix with 2 x 2 matrices azJ = ( _?lk ¢) along its diagonal and with zero entries

elsewhere. It is easy to see that the process (Wt,L( ))t> o has the same law as
the process (OW;, L), where L4 = j;)(AWs, dW,), and L® = fo (AW, dW).

Therefore, a(A) = a(A). Moreover L™ is independent of the (d — 2d) compo-
nents of W;; hence a(A) = a(Ay), where Ay is the 2dy x 2dy matrix defined by
A= (%" 2). Our goal is to show that a(Ao) is the largest eigenvalue of Lg,,

where Gy = R% x (—1,1) and

2dy 2dy
L f(x,y) =} Z B2 f(x,y) + 4| Aox|? B2f (x,y) + E(on)k 0y 0, f,
k=1 k=1

f € CP(Gy), (x,y) € Go. Using a limiting argument, it can be shown that
the last formula also holds for infinitely differentiable functions f that are
continuous on Gy and such that f|sg, = 0. It is the case for the following
function f; defined by

do 1/2 d
1 0
folx,y) = ( H —2k—) ( 3 (-g) Z |ak|(x§k_ 1 +x§k)) cos gy,

k=1

xeR¥ yc[-1,1].

Then it is easy to see that fo > 0-on Gy, fG f2(z)dz = 1 and Lg,fo = —Xofo on

Gy, where Ao = (7r/2)2 ? 1lax|. Therefore, a(Ag) < Ag. We will now prove that
a(Ag) > Xo. So suppose that f € C3°(Go) and |f|2 = 1. Since the support of f is
compact and contained in Gy, we see that K; = sup, ¢ g, If(x)|/fo(x) is finite.
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Therefore, if Z; = (Wt,LEA")), we have

(exp(eLa,)f f) = /G F@E. (fel iz, > n)dz
<K} [ F@E.(foeolins, >0)de = K expl-hat), £,

On the other hand, using Jensen’s inequality, we get

éxp(tLGo)f,f) > exp(t(LGof,f)) = exp(—tl(f)), t>0.

Hence —\g > —I(f), that is, A\ < I(f). Since a(Ay) is the infimum of I(f) over
all f € C(Gy), |fl2 = 1, we obtain a(Ag) > A, completing the proof. O

REMARK. For Lévy’s area process L; = L, we obtain a(J) = /2.

3. Chung’s LIL. Set ¢(¢) = loglogt/t, ¢t > 3. The proof of (1.3) is based on
the following lemmas.

LEMMA 3.1.

p(utlggqu(t) sup |L(s)| > a(A)) -1

0<s<t

ProoFr. Let r be such that 0 < r < a(A). Then we can find ¢ > 1 such that
rc < a(A). Then

P(litgg}fqb(t) sup |L(s)| <r) §P< inf ~ ¢(@) sup |L(s)| <r i.o.)

0<s<t cr <ttt 0<s<t

gP(‘W) sup |L(s)| < 1 i.o.).
rc

0<s<cm

Using the scaling property of L,

rc

P(%} sup |L(8)| < 1) =P(0,0) (TG >

0<s<c

cn¢(cn))

Using (2.4), we see that for any r; satisfying re < r; < a(A),

rc

n n N
if ng is large enough. Therefore, ﬁsing the Borel-Cantelli lemma we obtain

P(liminfqb(t) sup |L(s)| <r) =0 VO0<r<al).
t—oo 0<s<t
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Hence P(liminf; _, o, ¢(t)supy <, <, | L(s)| > a(A))=1. O

LEMMA 3.2. Set ¢, =n". Then for every € > 0,

3.1) P(qb(t,,) sup |L(s)|>e¢ i.o.) =0
0<s<t,_:
and
(3.2) P(q&(t,,) sup |(AW,,_, W, —-W; _)|>e¢ i.o.) =0.
th—1<8<t,

Proor. It follows from Baldi (1986), that there exists ¢ € (0, c0) such that
with probability 1, sup0<s<t IL(s)| < ct2 _ ¢t - 1) eventually. Hence ¢(t,)
SUPg<s<t, _ L) < c _ 19, — 1)¢(t,) < € eventually for any € > 0. Thus (3.1)

holds true.
Next it is easy to see that

M2t|h|?
P( sup |[(h,Ws)|>a ) <2exp| -da+—— |, A>0.
0<s<t 2

Therefore,

P( sup  |[(AW,,_,, W, — W, )| > e/¢(t,,))
th_1<s<t,

< 2exp (—Ae/¢<tn))E@xp((A2/2)<tn —tn- 1>IAWt,,_1|2))

< 2exp(—Ae/d(tn)) (1 — N2c2t, _ 1(tn — tn_1)) a2,

where c; is such that |Ah|?2 < ¢2|h|?, V h € R?, and ) is small enough. In partic-
ular, if A = (¢, _ 1(tn — t, —1)/2)"Y?r/c1, where 0 < r < 1, we get

P(¢(tn) Sup |<Ath—1’Ws - th—l>| > 6)

tp_1<s<t,
< 21— 2 exp{- (er/e1)ot) (a3 ~tn1/2) "}
= kexp(—a,), say.

Now #2/(t, _1(tn — ¢, —1)) ~ ne [here b, ~ ¢, means lim, _, (b, /c,) = 1]. There-
fore, a,, ~ (ere'/?n1/2)/(c;loglogn™)) and %, > 2 exp(—ay) < oo.

By the Borel-Cantelli lemma, we can conclude that (3.2) holds true for any
e>0. 0

We have already proved that

P(hm inf¢(¢) sup |L(s)| > a(A))

0<s<t
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To prove our theorem, we only need to prove the following lemma.

LEMMA 3.3.

P( litrgil.}fcﬁ(t) sup |L(s)| < a(A)) =1

0<s<t

Proor. To prove the lemma, it is sufficient to show that for any r > a(A),

(3.3) P<¢(tn) sup |L(s)| <r i.o.) =1.
0

<s<t,

Fix r > a(A) and choose r; such that r > r; > a(A).
Define the event B,, as

B,,:{z sup |L(s)|+ sup t |(AW;, W —W,,_ )| <(r—r1)/¢(tn)}.

0<s<tp_1 th—1<s<t,

By Lemma 3.2, P(B¢, i.0.) = 0. Hence,

P(gb(tn) sup |L(s)| <r i.o.)

0<s<t,

2P<Bnﬂ {¢(tn) sup |L(s) —L(t,_1)

th—1<s<t,

— (AW, _,, Wy~ W, _,)| <r1} i.o.)

= P<Bn N {q&(tn) sup | Ln(s)| < rl} i.o.) ,

0<s<tp—ty_1
where
Ly(s)=L(s+t,_1) — Lty —1) — (AW, _ , West,_, — Wy, _ ), §>0

and it is easy to see that {L,(s)}s> ¢ is independent of F;, , and has the same
law as {L(s)}s>o. Next if A, and B, are two sequences of events, then

P((Anio0) = P((A,, io0)n ({Bg i.o.})c) <P(A,NB,i0) if P(B:io.)=0.

Taking A, = {#(t)SUPg <5<y, s, _ JILn(8)| < r1} we get P(¢(¢,) supg < s <, | L(s)|
< rio.) > P(A, i.0.). Since A, € F; and A, is independent of F; _,, then
P(A, i.0.) =1, if 3,P(A,) = +co. Now from (2.3) we know that if ry is chosen so
that r; > ro > a(A), then P(Tg > t) > e~'2 if t is large enough.
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Hence

PA,) = P<¢(t,,) sup | L,(s)| < r1>

0<s<tn—tn_1

_ P(TG S B n)) Zexp<—(t——tt—)(loglogtn)< ))
—tn-1

> (nlogn)™®

if n is large, where p > 0 is chosen so that r;/r; < p < 1. Now the series
(nlogn)~? diverges, proving that ¥, > oP(A,) = +oo. Therefore, P(A, i.0) = 1,
which completes the proof of the theorem. O
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