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REMARKS ON STRONG EXPONENTIAL INTEGRABILITY OF
VECTOR-VALUED RANDOM SERIES AND TRIANGULAR
ARRAYS!

By JAN ROSINSKI

University of Tennessee, Knoxville

Some optimal refinements of the results on strong exponential inte-
grability of sums of independent zero-mean uniformly bounded random
vectors are given.

1. Introduction and statement of main results. In this note we es-
tablish precise conditions for strong exponential integrability of sums of zero-
mean uniformly bounded triangular arrays of random vectors in a Banach
space. As corollaries we obtain some best possible refinements of the results on
integrability of series of uniformly bounded zero-mean random vectors (Corol-
lary 1) as well as on the integrability of infinitely divisible random vectors
with Lévy measures with bounded supports (Corollary 3). We will prove the
following theorem.

THEOREM 1. Let {X,;: 1 <i < k,,n > 1} be a triangular array of zero-
mean rowwise independent random variables in a separable Banach space B.
Assume that:

(i) There exists a constant C > 0 such that | X ;| < C a.s., for every n,i > 1;
Gi) {.£ (Zf;l X,i): n > 1} is relatively compact.
(iii) For every ¢ > 0, lim,_,,, max; P{|| X ;|| > €} =0.

Define

ky

0 < po < o0, and let W, = sup; <, | Z{=1 X,ill. Then
sup E exp{C~1W,log" («C™1W,)} < oo,
n

for every a > 0 such that apy < e~ 1.

As a consequence of this result we obtain the following corollary.
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STRONG EXPONENTIAL INTEGRABILITY 465

COROLLARY 1. Let {X;} be a sequence of independent zero-mean random
variables in B such that y_; X; converges a.s. and let C := sup; ess sup|| X;|| <
oo. Put W =sup,, || X1 ;1 X;|l. Then

Eexp{C 1Wlog*(aW)} < oo,

for every a > 0.

The following are a few comments on Corollary 1. De Acosta [3] has shown
that for (not necessarily centered) random series in a cotype 2 Banach space,

(1) Eexp(yWlogt W) <oo  for every y < C1.

He also showed that the expectation in (1) can be infinite when y > C~1.
Talagrand [6], using isoperimetric inequalities, established that for symmetric
random vectors in a general Banach space,

(2) Eexp{C 'W[log™ W — Bloglog(e + W)]} < o for any B > 2.

Kwapienn and Szulga [4] proved (1) for general Banach spaces using hyper-
contractivity methods. Our Corollary 1 removes the iterated logarithm term
from (2), thus giving the best possible refinement of (1) and (2) in the case of
mean-zero random vectors.

The conclusion of Corollary 1 can also be stated in terms of the tail behavior

of W:

COROLLARY 2. Under the assumptions of Corollary 1,
tlim[t‘llog P{W >t} +Cllogt] = —cc.
—00

REMARK. Theorem 1 holds true if the zero-mean assumption is replaced
by the following: for each nonrandom triangular array {8,;: 1 <i < k,,n > 1}
of zeros and ones the sequence {.£ (Zf;l 81i X ni) Yn>1 is relatively compact. The
corresponding change of the zero-mean assumption in Corollary 1 is that the
series Y X; converges unconditionally a.s. These generalizations of Theorem 1
and Corollary 1 can be easily obtained from our proofs in Section 2.

The next corollary characterizes integrability of infinitely divisible random
vectors whose Lévy measures have bounded supports. This result refines the
corresponding results in de Acosta [3] and Talagrand [6].

COROLLARY 3. Let X be an infinitely divisible random vector in B with the
Lévy measure v with bounded support. Assume that v # 0 and let

C=inf{r>0:v({x:|x|| >r}) =0}
and ‘

po=v({a: [zl = C}).
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Then
Eexp{C7!| X||log" (aC~}| X|I)} < oo,

for every a > 0 such that apy < e L.

Notice that the above bound for « is optimal. Indeed, if X is a Poisson
random variable with parameter 1, then Eexp{Xlog" (e 1X)} = 0o (C =1,
po = 1 and apy = e71). If the Lévy measure v of the sphere of radius C is
zero (po = 0), then the expectation in Corollary 3 is finite for every a > 0. We
do not know the exact asymptotic behavior of t~1log P{||X| > ¢} (an analog
of Corollary 2), particularly when py > 0 and » is atomless on {||x|| = C}. A
somewhat weaker result in this direction, which is the complete analog of the
well-known fact on the real line, can be obtained for Banach spaces [as it was
conjectured by de Acosta (private communication)]:

COROLLARY 4. Under the assumptions of Corollary 3,

i log PUIXI >} _

=-Cc1
t—>o00 tlogt

If v has unbounded support, then the above limit equals zero.

We will deduce the main theorem directly from (1) using a technique similar
to découpage de Lévy combined with certain methods developed in [3].

2. Proofs.

PROOF OF THEOREM 1. Define for every a > 0,
¥, (t) = exp(tlogt(at)), t>0.

It is easy to verify that ¥, is convex, nondecreasing and

3) %(Zt,—) < [T¥a(to),
i=1 i=1

for all ¢; > 0 and 0 < A; < 1 with }_7 ; A; = 1. To prove Theorem 1, we need
to show that

4) sup E¥,(C~'W,) < oo,

for every a > 0 such that apy < e™1.

Choose such an a and let p > pg be such that ap < e‘l Choose 0 < 6 < C
such that

“r

kn
(5) SUp ) " Pri < P,
nog=1 .
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where p,; := P{|| X,:|| > C — 8}. For every n, i let &,; be Bernoulli random
variables with

P{¢ni =1} =1 - P{£n =0} = pai,

and let U,; (V,;, resp.) be B-valued random variables having the distribution
of X,; conditioned to the set {|| X ;|| < C — 6} (to {|| X ;|| > C — 8}, resp.). If
Pni =1 (pni =0, resp.), then we take U,; = 0 (V,; = 0, resp.). Assume that
for every n, &,;, Uy and Vi, 1 < i < k,, are independent. It is easy to see
that

(6) Xni —i‘(l_gni)Uni‘i'gniVni-

We may also assume that all ¢,,; are defined on a probability space (Q4, P1),
while U,; and V,; are defined on ({3, P3), and also that the underlying proba-
bility space ({2, P) is the product of these spaces. Denote by E}, the expectation
with respect to Py, k = 1,2. Using (3) we get, for a fixed realization of {£,;},

J
Z(l - fni)Uni

E ¥, (C7W,) < Ex¥, (C‘1 sup
i=1

i<k,
N J=

kn
+ Zgni)

i=1
kn
)\I,)Fla ( Z fnt) ’
i=1

where A € (0,1) is such that A~lap < e~1. Using (8) again we obtain

)

S (1 = £0)(Uni — EUy)

i=1

J
D (1= éni)Uni

i=1

< E¥ (1)) 1 (C‘:l sup
J<kn

J
Z(l - fni)Uni

i=1

Ez'\l’(l_,\)—la (C_l sup

J<kn

)

< EsV¥si-a)ta (C_l sup

J<kn

kn
X ¥a(1-2)-1a (C*l D IEUy, II)
i=1

S (Ui — EUn)

i=1

< Es¥yi1-r)1a (C_l sup

J<kn

)

kn
X ¥a1-a)-1a (C'l > IEUy, II) ,
i=1

where the last inequality follows by a conditional Jensen’s inequality as {1 —
fni}ﬁl is a fixed sequence of zeros and ones. Combining this bound with (7)
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and integrating with respect to P; we get

XJ:(Uni - EUni)

i=1

)

kn kn
X W31 -ia (C-1 5 nEUnin)Em-la ( 5 gni),
i=1 i=1

We will show that each of these three terms on the right-hand side of (8) is
bounded uniformly in n. This will complete the proof of the theorem. We begin
with the third term.

EVo(C1W,) < E¥agpya( €7 sup

J<kn

(8)

CLAIM 1. sup, BV, 1,(X, £,;) < co.

PrOOF. Using an inequality due to de Acosta ([3], proof of Lemma 3.1) we
get

kn
P{Z Eni > t} < exp(—tlog(i) - dn),
= dpe

where d, = Zf;l Pni. Since d, < p, the right-hand side is bounded by
exp(—tlog(¢/pe)). Hence

kn [o.¢] kn
sup E\PA—la(Z f,,i) =1+ sup/O ‘I”/\_la(t)P{Z Eni > t] dt
n i n i=1

i=1

oo
<1 +/ 1(/\':lape)"‘log()t‘laet) dt < oo,
Aa—
because A"lape < 1 by the choice of A. O
CLAIM 2. sup, Y% |EU,|| < oo.

PROOF. By (iii) there exists ng > 1 such that SUp,,>,, MaX1<i<k, Pni < 1/2.
Using (i) we get for n > ng

© | EU | = “—(1 o) [ Xu dP” < 2C pu.
{1 X nil|>C—6}
Hence
En kn
D IEUI <2C ) pni <2Cp,
i=1 i=1

for n > ny, which proves Claim 2. O

CLAIM 3. For every 8> 0,

'

i(Um - EUni)

i=1

sup E¥g (C‘1 sup
n

J<kn

) <o
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PROOF. We shall show first that {.Z (Zf;l U,;): n > 1} is relatively com-
pact. Indeed, by (6) and the independence, we get for every Borel set A C B
and n > ng (ng is specified above)

kn kn
P{;Xm € A} > P{X;((l - §ni)Uni +§niVni) € A, gnl == f"kn = 0}

kn kn .

= P{Z Unie A} = pni)
i=1 i=1
kn kn

> P{Z UncA exp(— > (i + P?.i))
i=1 i=1
kn

> P[ U,; € A} exp(—3/2p).
i=1

The assumption (ii) and Prokhorov’s theorem imply now that the se-
quence {.7 (Zf;l U,i): n > 1} is relatively compact. By Theorem 5.7 in
1], {.Z (Zf;l(U ni — EUp;)): n > 1} is also relatively compact. Choose now
ny > no such that sup,., max; |EU,;| < 8/2; this is always possible by (9)
and (iii). Put

Y.=U,, — EU,; ifn>ny,i=1,...,k,,
and Y ,; = 0 otherwise. Since P{||U,;| > ¢} < 2P{|| X.i|l > ¢}, we have by (9)
and (iii) that lim, max; P{||Y ;|| > €} = 0, for every £ > 0. Thus the triangular
array {Y,;: 1 <i < k,,n > 1} satisfies all assumptions of Theorem 1 and
1Y nill < C—8/2.
To finish ‘the proof of Claim 3 it is enough to show that

J
Z Yni

i=1

(10) sup E¥, ('y sup ) <00 for every y < (C — 6/2)7L.

J<ky

However, (10) follows directly from (1) by routine arguments and a method
of de Acosta [3]. We will give a proof of this fact in Claim 4 for the sake of

completeness. O

CramM 4. Let {X,;: 1 <i < k,,n > 1} be a triangular array of random
vectors satisfying assumptions of Theorem 1. Then

sup EV1(yW,) < o0 for all y < C7L.
n ’

PRrROOF. First we will show that (1) implies that there exists a constant
K € (0,00) such that for every £ > 0 and a finite sequence (X;) of independent
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zero-mean B-valued random vectors with

(a1 (Xl + E”z X, ” <K,
one has
(12) EV,(s'W) < 2.

Here ||(X;)lloo = sup; ess sup|| X;|| and W = sup; || 3/_; X;].

To this end consider a standard probability space ([0,1TN, £([0, 1]V), A®N)
(A is the Lebesque measure on [0,1]) and a linear space 2" of sequences
(X;)2, such that X;: [0,1]N — B is a Borel map and X;(w) depends only
on the ith coordinate of @ € [0,1]N. We identify sequences which are equal
A®N.as. Let

Lo = {(Xi) e X )loo < 00, EX; =0 and ZXi converges a.s.}.

2o is a Banach space with respect to the following norms:

|

[I(X)[]2 = I(X)lleo +inf{B > 0: E¥1(B7IW) < 2}.

The last term in the above expression is the Orlicz norm of W corresponding
to a function ®(¢) = ¥1(¢) — 1; statement (1) implies that this Orlicz norm
is finite. Using the open map theorem, we infer that there exists K € (0,00)
such that K[]-[]zs <[]-[]i. This inequality yields (12).

Now we proceed similarly as in de Acosta [3]. Put

Xnir = Xni1(| Xnill < 7) and X;,‘:Xni_'Xni*r'

Fix y < C~! and let @ € (0,1) be such that (1—a) !y < C~1. Let ¢ = 2-1ay!
and let 7 € (0, K&/3) be such that

(XD = Nl + B[ X,

and

sup E"Z(Xni, — EX,;;)| <3 'Ke.

By (12),
(13) sup E‘Pl(g—lwnf) <2,

where Wy, = supj.;. | 27, (Xnir — EXnir)|l. Let W7 = supj, | S, X7,
Applying an inequality from [3] (proof of Lemma 3.1), we get

st i kn ~ t
(14) P{W; >t} < P[C;I(IIXMII >7)> t} < exp(—C ltlog(@)),
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where d = sup,, Zf;l P{|| X,i|| > 7} < 0o. By the same argument as in Claim 2
we have

kn

(15) sup Y E|| Xpill < oc.
no=1

Since V¥, is convex and nondecreasing, we obtain

EVi(yW,) < 27'aEV1(2a7 yWy,) + (1 - ) E¥1((1 - ) 1y W)
kn
+27 eV, (Za—‘y > E| Xm-Tu)
i=1
and all terms on the right-hand side are bounded uniformly in n by (13)—~(15).
This proves Claim 4 and completes the proof of the theorem. O

PROOF OF COROLLARY 1. Put C = ||(X;)|lco- Assume to the contrary that
for some a > 0,

EV ., (C7W) = .

Since || X;| are uniformly bounded, for every n there exists &, such that

n+j
(16) E\Ifa(C‘l sup | Y X; ”) > n.
1<j<knllj=pn

Choose no > 1such that ,,.,, P{l X;i|| > C/2} < (ae)~1. The triangular array
Xni = Xni, 1 <i < k,, n > ng, satisfies all the assumptions of Theorem 1
and poa < e~1. The conclusion of that theorem contradicts (16). O

PROOF OF COROLLARY 2. Obvious consequence of Corollary 1. O

PROOF OF COROLLARY 3. We can write
Xib+G+X0+X1,

where b is a constant vector, G, X and X; are independent random variables
in B such that G is centered Gaussian, .# (X)) = c1-Pois(v¢) and .Z(X1) =
Pois(v1), where v is the restriction of » to the open ball {x: ||x| < C} and
v1 = v—y. In view of the exponential square integrability of Gaussian random
variables (see, e.g., Theorem 6.5 in [1]), E¥,(C~1|G||) < oo, for every a > 0.
Now we consider X. Let Z be a symmetrization of X, that is, Z = X¢ — X,
where X}, is an independent copy of Xo. Then .#(Z) = c;-Pois(u), where

u(A) =vo(A) +vo(—-A) for every Borel set A C B.

Since u({x: ||lx|| > C}) = 0, C is a continuity radius of x. Using the same
- argument as in the proof of Corollary 3.3 of [2] we can construct a triangular
array of rowwise independent identically distributed symmetric random vari-
ables Z,;,i =1,...,n,n > 1, such that .Z(}"; Z,;) converges weakly to .~ (Z)
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and || Z,;|| < C. Since lim, nP{||Z,1|| > C -8} = u({x: ||x| > C — 8}, provided
C — & is a continuity radius of u ([1], Theorem 5.9), we get that po (corre-
sponding to the array {Z,;}) is equal to zero. Using Theorem 1 and the Fatou
lemma, we get E¥,(C~1||Z|) < oo, for every a > 0. By Fubini’s theorem and
(3) we obtain

EV¥,(C7YXol) < 00 for every a > 0.

Now we consider X ;. Since the distribution of X is compound Poisson, we
have

00 k
E¥,(CYX,]) < ;}wm%e-m <0,

provided apo < e~L. This can be easily verified by applying Stirling’s formula.
Combining the above observations we get, by (3),

EV(CTHX|) < EVo(CTH[1bI + Gl + I Xoll + 1 X11T)
< W1 (CTYBNEY -1,(CTHGI) EY y-1,(C [ Xoll)
x EW 1 _3r-1a(CHIX1),

and all the quantities above are finite, provided (1 — 8A)~lapo < !, that is,
A > 0 should be sufficiently small. O
PROOF OF COROLLARY 4. Let apy < e~!. We get by, Markov’s inequality,

Ev.(CIX])

P{|X|| > ¢} < V.(C1)
hence

]_imsup M_”__X”—Z'tl S _Cﬂl_
=00 tlogt

To obtain a lower bound, ¢hoose xo € B — {0} such that x, belongs to the
support of » and let & € (0, |xo]]) be arbitrary. Put S, = {x € B: ||xol < ¢},
0 < v(S,) < 00. Let v, be the restriction of » to S,. We have

x<Xx,+Xx°,

where X, and X? are independent infinitely divisible random vectors such
that .Z{X,} = Pois(v,). Choose a > 0 such that

P{IX°| <a}>27".
‘Then '
P{|X|| >t} > P{IIX°ll < a, Xl > ¢t +a} > 27 P{| X,|| = t +a},
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which implies that

00 tlogt

an lim inf 28 PUX] = ¢}
t—>00 tlogt

Let Y; be i.i.d. B-valued random vectors with .Z{Y;} = v./v»(S;) and let N

be a Poisson random variable with parameter 6 = v(S,). Assume that N and

{Y;} are independent. Then

N
/{Z Y,-} = /Z{X,}
i=1
and
N
] 3, ” > N(lzoll - ).
i=1
Hence

-1 Y,
P{l| Xl = ¢t} = P{N = t(llxoll — &)~} = n(t)!e ,
where n(t) = [¢(||xo]| — £)~1] + 1. Using Stirling’s formula we get

liminf log P{|| X, | > t}
t—o00 tlogt

> —(l|xoll — &)7".

By (17) and the choice of x¢ and &, the proof is complete. O
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