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We present covariance identities and inequalities for functionals of
the Wiener and the Poisson processes. Using Malliavin calculus tech-
niques, an expansion with a remainder term is obtained for the covariance
of such functionals. Our results extend known identities and inequalities
for functions of multivariate random vectors.

1. Introduction. Let X be a normal random variable with mean u and
variance o2 and let G: R - C be 2n — 1 (respectively 2n) times differen-
tiable with E|G®(X)> <, £ =0,1,...,2n — 1 (respectively k =
0,1,...,2n), for some n > 1. Then, the following right (respectively left)
inequality holds:

2n 1\ kt+1
) (—?T‘—(ffz)’“ElG“’(X)l“’
k=1 :

(1.1)

2n—1 ( _ 1)k+ 1 Y
<VarG(X) < Y —k—'—(az) EIG®(X)?.
k=1 :

For n =1, the above right-hand side inequality was proved by Nash
(1958), rediscovered by Chernoff (1981)—both proofs involving series expan-
sions in Hermite polynomials—and it is also a special case of a general
Poincaré-type inequality obtained for log concave densities by Brascamp and
Lieb (1976). As given by (1.1), the inequalities are proved, using a character-
istic function method, in-Houdré and Kagan (1993).

Still for n = 1, multivariate extensions of the right-hand side of (1.1) as
well as similar inequalities for distributions other than Gaussian were ob-

. tained in Chen (1982, 1985), Cacoullos (1982), Klaassen (1985), Chen and Lou
(1987), Hwang and Sheu (1987) and Vitale (1989) as well as Karlin (1993).
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The main purpose of this paper is to study infinite-dimensional versions of
(1.1) for functionals of the Wiener and of the Poisson processes using Malli-
avin’s calculus techniques. As a key result, we express the covariance of such
functionals as a finite sum involving Malliavin derivatives and a remainder
term. As important consequences, we obtain covariance identities for func-
tions of multivariate Gaussian or Poisson random vectors, generalizing known
results, for example, (1.1).

The organization of the paper is the following. We begin in Section 2 by
recalling some elements of the so-called Malliavin calculus in the Wiener
space and an identity is obtained for the covariance of functionals of the
Wiener process. In Section 3 we obtain, as special cases, finite-dimensional
results, including identities for the covariance of functions of multivariate
Gaussian random vectors. A similar task is taken for the Poisson process in
Section 4, where we consider the two, known but different, approaches to the
construction of the Malliavin-type operator for this process.

2. Covariance identities for Wiener functionals. We start by recall-
ing some elements of the Malliavin calculus which are taken from Nualart
and Pardoux (1988) and Nualart and Zakai (1988).

Consider a complete probability space (2,7, P), where there is defined a
standard R¢-valued Brownian motion W, = (W,...,W2),0 < ¢ < 1. Let E(-)
denote expected value with respect to P and L?(T*) = L%([0, 1], B([0, 1]*),
u?), where u* denotes the Lebesgue measure in [0,1]%, £ > 1, and where
B(0, 1D* is the corresponding Borel o-algebra. Let L2(Q) = L2(Q,Z, P) be
the corresponding space of real-valued square-integrable random variables.
For m > 1 we denote by I,,(f,,) the mth multiple Wiener-It6 integral [Itd
(1951)] of the symmetric kernel f,, € L2(T™).

Let &;(R™) be the set of #“ functions from R™ to R which are bounded
and have bounded derivatives of all orders. A random variable F: ) — Ris a
smooth functional if there exists f € #;(R%") and some n > 1 such that

(2.1) F=f(W,,....W,).

The Malliavin derivative of the smooth functional F is defined as the L2(T'%)
random variable DF = (D'F, ..., DF), where

Ud J
(22) DIF=Y —f(Wyooo, W, )10 y(8),  i=1,...,d,t€[0,1].

J=1""ij

More generally, for a positive integer 2 > 1, indices j;,...,j;, 1 <j;, < d, and
a smooth functional F, we define

i n I*f k
(D)4, F = . Yy . (th,...,th) I1 1[0,ti,](tr)
Jrik r=1

@3
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When d = 1, Df.., F is short for (D®)} ", F and when % = 1, we simply
write D,F for (D®),, and D, , denotes the closure of the set of smooth
functionals with respect to the norm defined by

d A
(2.4) IF|;2=EIF?+ Y EI(D®) 7*Fliaqn.
Jigp=1

We finally recall three important facts on the derivation operator and on
the representation of Wiener functionals. First, for F €D, , and A €%,
E(F|#) €D, , and

(25)  Di(E(F\%,)) = E(DiFI%,)1, ae.[P®ul,i=1,...,d.

Second, the Clark—Ocone formula [see Karatzas, Ocone and Li (1991)] for
the representation of L?-functionals of the Wiener process: For F € D, ,

(2.6) F=E(F) + i [0 'E(DIF\%;) dW),
j=1

where the stochastic integral is in the sense of It and {#: 0 < ¢ < 1} is the
filtration of {(W,: 0 < ¢ < 1}.

Third, the differentiation rule for the Skorohod integral: Let u € L2(Q X
[0, 1]) be such that, for almost all ¢, the process {D,u,: s € [0, 1]} belongs to
the domain of this integral. Then, the Skorohod integral of u, denoted by
J¢u,dW,, belongs to D; , and

(2.7) Dt(folus dWs) —u, + fol(Dtus) dw,.

We are now ready to prove the main result of this section. For simplicity of
notation, only the case d = 1 is proved. The general statement for d > 1 has
a similar proof and is stated in Remark 2.3.

THEOREM 2.1. Let F and G be such that F,G €D, , fork=1,...,n + 1,
for some integer n > 0. Then

n (_1)k+1 1 1
Cov(F,G) = El — E[O --~fo(D,"1~th)(Dt’§,,kG) dt, - dt,
(28) D™ )
+ n' E'/;) '/;) fmax(tl,...,t,,)E(Dtlt}"SFLz)

XE(Dpt},GIF,) dsdt, -+ dt,.

o

.PROOF. We prove (2.8) by induction by taking successive derivatives in
the Clark—Ocone formula (2.6). First, taking the derivative of order zero, that
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is, the Clark—Ocone formula itself, we get
1 1
Cov(F,Q) = E{ [ E(D,F|%,) dW, [ E(D,GI%) dWs}
0 0
- E['E(D,F\%,)E(D,F\5;) ds,
0

which is the given expression. We now claim that for any n > 1,

DtnDtn-—l o DtlF = E(DtnDtn—l o DtlFl;?nlax(tl ???? tn))
2.9
(29) + [ E(D, - D,D,F\%,)dW,

We prove the claim (2.9) by iaduction. First, using the differentiation rule
for the Skorohod integral (2.7) as well as (2.5), we obtain

(2.10) D,F = E(D,F\%,) + ['E(D,D,F\%;) dW,.
121

Next, assuming that D, D, - D, F is asin (2.9) and proceeding similarly,
we have

D, D, - DF= Dt,.nE(DtnDtn_l 0 Dy FlF oy, t,.))

the
1
E(D D, D .F|Z,
t"”'[max(tl ..... t,} ( n )
= E(Dt ‘1 t =+ D, FIZnax(tl ,,,,, t,,))l[o,max(t1 ,,,,, t,,)](tn+1)
(211) +E(Dtn+1Dt : D Fl‘g +1) max{ty,..., t,,),l](tn+1)
1
+ E(D,,, - D,,D,FIF )1 (ty+1) AW,
max{tq,..., t,}
= E(Dt +1D o DtlFIZHax(tl ~~~~~ tn+1))
+ ! E(D, . - D,D,F|%;)dW,
max{ty,..., thi1} i !

which proves (2.9).

A property worth noting in the above derivation is the fact that the two
terms on the right-hand side of (2.9) are mutually orthogonal in L?(Q). Let us
now go back to our main induction. First, by this orthogonality and (2.11),

E/ [ Dy} F)(Drtl,.G)dty - dt, ds
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(212) E(Dt'it% +1(;|'91.'nax(t1 ,,,,, tn+1)) dtl dtn+1}
1 1 1 n
+/0 ...[OE{[M“I ..... tm)[E(Dtlt% o FIF) aw,]
) .
X max(tl,...,tm)[E(D"it% GLz)dWs]} dt, - dt, .
Hence from (2.12),

1 1
eoe n+1
E-/(; L { Dtl t +1F|‘Znax(t1 ..... znﬂ))

XE(DIY | Glats,...tyn) ) @t = dbnis

ty=tpyr ' max{ty,...,

~ B[ (D2, PR, ) dt - dty.

e, L)

max{ty,..., toe1)

(2.13)

XE(DZ-\L% GL%) ds} dtl b dtn+1.

Now, if (2.8) holds for some integer n, we get from (2.13),

k+

n 1
Cov(F,G)=¥1 E[ j k_ F)(D:.,G)dt, - dt,

( 1)n+2 1 1 n+1 n+1

(n + 1)|Ej(; f D, F (Dtl_t G) dt, - dt, .,
(2.14)

( 1)n+3 I
(n * 1)' f f fmax{tl ..... the1) ( ty1=tp418 s)

ti -t

E(D"+2 Glz) ds} dt, - dt,. .,

that is, (2.8) holds for n replaced by n + 1. O
The following results are trivial consequences of Theorem 2.1.

COROLLARY 2.2. (a) Let FeD,,, k=1,..., 2n — 1 (respectively k =
1,...,2n) for some n > 1. Then

i

) 2n _1)k+1 R 2n—-1 _1)k+1 .
(215) Z TE”DkF”L‘A’(T‘E) < VarF S Z TEIIDkFllL2(T"),
k=1 : k=1 :
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where
2
EuDanLz(T»)-E[ f (D} . F) dt, - dt,.

(b) Equalzty for the right- (resp. left-) hand side in (2.15) holds, lf and only
if F lives in finite chaos, that is, for some n > 1,

2n-1 2n
F= E Im(fm) resp.F= E Im(fm))’ fm ELz(Tm)‘
m=0 m=0

() Let F,GED, 5, k=1,...,n + 1. Then

k+1
Cov(F,G) — ¥ ¢ ) E[ th’i JF) (DL G) dt; - dtl
k=1

1 1/2
= (n + 1)! fl"'fO{E(Dtnfi +1F)zE(D,'i’limG)z} dt, - dt,, ;.

() Let F,GeD,,= N5 IID,,ZThen
© ( k+1
(2.16) Cov(F,G)— E[ [ k_ F)(DE.,G)dt, - dt,
=1

if and only if

5 o, HOEEA)
X E(D,"lt}nsGlFs) dsdt1 o dt, = 0.

REMARKS 2.3. (a) As already noticed in Houdré and Kagan (1993),

2n—-1 ( _ 1) k+1
(2.17) > TE“DkF“%"(T”)

k=1 :
is not decreasing in n and the left-hand side of (2.15) might not be nonnega-
tive. Furthermore, the asymptotic expression obtained for Var F' in Corollary
2.2(d) does not seem to follow from the fact that f, = E(D*F)/k!, F € D, ,.
Indeed, for an L?-functional F € D, ,, we have

<] (o] 1

(2.18) VarF = Y kllfliaen = ¥ FIIED”FII%z(Tk)
k=1 k=117

and
|

(2.19) VarF > Y, 7@—‘||ED’¢F||%W) n > 1.
k=17

Hdwever the right-hand sides of (2.19) and (2.17) are only comparable
asymptotically [under the condition of Corollary 2.2(d)], that is, they have the
same limit.
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(b) Although Theorem 2.1 and its proof seem original, Corollary 2.2(a) has
at least two antecedents, both for n = 1 and only for the right-hand side
inequality. It is indicated in Remark (ii) in Hwang and Sheu [(1987), page
151] that the finite-dimensional case considered there could be generalized to
infinite dimensions and that the right inequality in (2.15) is valid for n = 1.
On the other hand, the right inequality with n = 1 is proved using the
Clark—Ocone formula in Nualart and Pardoux (1988). In fact, the result there
is valid for higher moments.

(¢) As indicated to us by Nualart, there is a connection between (2.8) and
the expectation of the Wick product F:G of the functionals F and G [see
Nualart and Zakai (1993)]. In fact, Corollary 2.2(d) provides a necessary and
sufficient condition to have E(F:G) = EFEG.

(d) Let L denote the infinitesimal generator of the Ornstein—-Uhlenbeck
semigroup [Nualart and Zakai (1988)] and P*L = L(L — IXL — 2I)---(L —
(kB — 1)I). Then (2.15) can be expressed as

(_1)k+1 2n—1 1)k+1

Zn E((P*L)’F ) <VarF < Z — E((P*L)°F )

(e) It is known that multiple Wiener—Ité integrals play for the Wiener
space the same role that Hermite polynomials do for the Gaussian measure
in R. Using chaos expansions and proceeding as in Remark 2.2 in Houdré and
Kagan (1993), the variance inequalities (2.15) also follow. In fact, (2.15) is the
infinite-dimensional version on Wiener space of the variance inequalities
(L.D).

(f) For a d-dimensional Brownian motion, the covariance identity is

n(—1)k d o
Cov(F,G) = Z f Z ((D(k)):;:::;:F)
- 0 - Jk_l ipeip=1

((D(ln){1 hF)dty - dt,
( 1)n+2 d d
~— . E )» )»
f j(‘) fmax(tl, st i gier=1 i ipe=1

XE(<D<"“>)“ ORI E((D D) Gl
X dsdt, - dt

ne

3. Covariance of functions of the multivariate normal distribution.
. We now deduce finite- dimensional versions of Theorem 2.1 for functions of
multlvarlate normal dlstnbutlons Let m > 1 be fixed and let X; = I,(f)),

=1I(g;) for f,,g, € LX(T), i = ,m, where I(h) denotes the Wiener
integral of h. Then, X = (Xl,...,Xm) and Y =(Y,,...,Y,) are zero mean
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multivariate normal random with cross covariance matrix 3, = (o;;), where

1

(3.1) a0, = E(X,Y}) =j;fi(t)gj(t) dt.
Let ¢, ¢: R™ — R be functions with partial derivatives of order n and let
oX) = ¢(X,,...,X,,) and $(Y) = ¢(Y,,...,Y,). By the chain rule formula

for the derlvatlon operator [Proposition 2. 9 of Nualart and Pardoux (1988)],
we have that for & > 1,

n o k(X X,
32 D@m= % N )

filt1) = fi(th)

i ip=1 &xil ‘9xik
and
mo M (Y., )
D} Y) = ¢ (t,).
tyt,}/’( ) i1~~§=1 0y, - 9y, ;1( 1) g;k( x)
We shall use the notation
Ip(Xq,..., X))
(3.3) Vi (X) = ,
dx; v 9%,

and also let the notation vec be taken with the hierarchy i,(i,( - (i,))) [see
Rogers (1980)]. Then we have that

Ejol [ (Dh...oF)(Dh...,G) dty - dy

a & (X1, X,) 3"(Yy,...,Y,)
(3.4) - Y Y E P — S
rip=1 =1 X iy Yiy Yip
Xo-hh T iy

E vec(V*(X) )* 32k vee(VAy(Y)),

where 3.°* is the £th Kronecker product of 3 with itself. For some » > 1 and
t =(ty,...,t,), [fg(t)] will denote the matrix {f(¢)g(¢); i,j=1,...,n}.
The following identity is the finite-dimensional version of Theorem 2.1:

Cov($(X), ¥(Y))

n _ kE+1
-y (—2-)’—E vec(Vip(X) )" 3°* vee(Viy(Y))
(3.5) k_l( 1),,+2 .
L PO IR

x [fg(t)] ®("+1)E(Vec(V”+]¢(Y)IFs)) dsdt, - dt,.

Furthermore, if ¢, ¢ have partial derivatives of all orders and the last
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term in (8.5) goes to zero, then by Corollary 2.2(d),

o (_1)k*1 i
(3.6) Cov(p(X),y(Y)) = X %—E vec(VE®(X))* 32 vec( Vi (Y)).

For the case ¢(xy,...,x,,)=2x; + - +x,, we have that 9*p/dx; =0 for
k > 2 and :

m m m Y
(8.7 COV(._ZIXi,l//(Yl,.. ) Y EE( 31{;( )) 0.

i=1j=1 i

In particular, if (X,..., X,,) is a multivariate random vector of independent
components, we recover the identity of Stein (1981), that is,
m oy (Y) o2
(3.8) Cov| Y X,, v (Xy,..., ZE P a?,
i=1

where 0,2 = Var(X,) = [}f2(t) dt.

i

REMARKS 3.1. (a) Explicit expressions for the remainder in (3.5) can be
obtained using orthonormal Hermite polynomials {H,(x); p > 0} and the
following relation between these polynomials and multiple Wiener-It6 inte-
grals: Let 2 € L3(T) be such that [|Al|32;, = 1. Then for p > 1,

(3.9) H,(I(k)) = (p!) "/*L(h®P),

where h®? is the pth tensor product of 2 with itself.

For example, for m =1, using the facts that H,(x) = ( p)YiH - 1(%),
&(X) =X, oa,H,(X)and ¢(Y) = X7 _,b,H,(Y), where X= Il(fl) and Y=
I(g,) are Jomtly normal random variables with I fill32cry = llg1llZ2ery = 1 and
p=EXY = [}f(t)g(t) d¢t, we have

E(H,(X)H,(Y)) = (p)) " E(L(f°")1,(£°7))

1 1
=f0 ---j(;f®p(t1,...,tp)g®p(t1,...,tp)dt1 e dt, = pP.

Therefore,
Cov((X), 0(¥)) = ¥ ay,
and a
(3.10) PE($D(X)P(Y)) = ¥ aybyp(p - 1) (p — b + 1)p?,

p=tk
On the other hand, using (3.1), (3.2), (3.9) and (3.10), we obtain

Ef th W $(X)DE_ w(Y) dt, - dt,

= 2 a,b,p(p—1)(p—k+1)p
p=Fk :
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Then, proceeding as in Remark 2.2 in Houdré and Kagan (1993), we obtain
the following expression for the finite-dimensional version of the covariance
identity:

Cov($(X), ¢(Y))

(- 1) E+1
P E($®(X) ™
. -1
+(-D" X apbp(l’ N )pp.
p=n+1
(b) From (3.6) we also obtain the following variance inequalities (3.12) for
functions of a jointly multivariate normal vector X = (X,,..., X,,). These

generalize the variance inequality obtained for the case n = 1 in Chen (1982).
For a 2n — 1 (respectively 2n) differentiable function ¢: R™ — R, we have
2n _ 1 kE+1 . i
k k
k§1 —k—’—-E vec( V(X)) 2% vee( V(X))
(3.12) < Var ¢(X)
2n—-1 ( _ 1) kE+1 \ . \
k
< kgl TE vec( V(X)) 3% vec(V*p(X)).

Finally, we consider covariance identities of RP-valued functions of the
jointly multivariate normal vectors X = (X,..., X)) and Y = (Y3,...,Y,).
Let ®,¥: R™ - R” be functions such that ®X) = (¢,(X),..., ¢,(X)) and
v(Y) = (y(Y),..., ¥,(Y)), where ¢, : R™ > R, i,j=1,..., p. From (3.5) we
have that for each i,j = 1,..., p,

Cov($:(X), ¥(Y))

(_1)k+1 .
E(Vec(V’%i)i(X)) Sk VeC(thlfj(Y)))

M:

=1
(1) SaE L B @)

X [fg(t)] ®(”+1)E(vec(V”“1//j(Y) %)) dsdt, - dt,.
Then, with the matrix notation
(3.13) Cov(®(X), ¥(Y)) = (Cov(4;(X), ¥;(Y))),;»
(3.14) [D*®(X)3°*D*¥(Y)] = (vec(Vigi(X))" 32 vec(Viyy(Y))),;
and .
’(3'1‘"5) E(D"®(X)|7,)[fg(¢)] °" E(D"¥(Y)|¥)
= (E(vec(V'(X)155))" [£e(£)] °" E(vee(Vy(Y)I5))),,»
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we obtain the covariance matrix identity

C _ n ( )k+1
ov(®(X),¥(Y)) = ¥
k=1

(3.16) —E[ [

maxf{t,,..., t,}

——E[D*®(X)3®*D*¥(Y)]

X [E(D”*IQ(X)IK)[fg(t)] poed
XE(D" "W (Y)|%;)| dsdt, - dt

ne

In particular, in the case ¢,(x4,...,x,) =x, + - +x,,i=1,..., p, we ob-
tain a matrix version of Stein’s identity:

(3.17) Cov((X, +  +X,,,..., X; + - +X,,),¥(Y)) = E[3°D¥(Y)].
Furthermore, using the usual order for matrices, we have the following

variance matrix inequality, since for ® = ¥ and X =Y, the last matrix
integral in (3.16) is clearly positive semidefinite:

2n __1 k+1
Y ——E)’——E[DkCIJ(X)EQkad)(X)]
k=1 :

on—1 _1)k+1
< Cov(®(X),®(X)) < ¥ ~——

E[D*®(X)3°*D*9(X)].

4. Covariance identities for Poisson functionals. In this section we
extend the results of the previous ones to functionals on the Poisson space
and to functions of multivariate Poisson random vectors. We consider the two
different approaches to the construction of Malliavin-type operators for the
Poisson process considered, respectively, in Nualart and Vives (1991) and
Carlen and Pardoux (1990).

Let T = [0,1], {N,; t € T}, be a Poisson process with intensity A(¢) and let
M={M, teT}, M,=N,- Nt), be the compensated Poisson process.
Throughout this section we work on the Poisson space (Q,%,, P), that is,
Now=X 8,,nENU{°°}tET}%—G{QA—w(A)AEB(T)}Plsthe
probablhty measure defined on ({2, &) in such a way that: () P(#, = k) =
exp(—A(A)[A(A)]*/k! for & > 0 and A € B(T); (ii) for A and B disjoint in
B(T), 2, and &5 are independent and & is the P-completion of .

4.1. Covariance identities with the difference transformation. We recall
some facts from Nualart and Vives (1991) about the chaos approach to the
Malliavin calculus for the Poisson process. Any L?Poisson functional, that is,
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F € L2(Q) = L*(Q, %, P), has an L? orthogonal series expansion
(4'1) F = Z Im( fm)’
m=0

where I(f,) = f, = E(F) and for m > 1, I,,(f,,) denotes the multiple Poisson
integral [It6 (1956); Ogura (1972)] with respect to M of the symmetric
function f,, € LA(T™) = LA(T™,B(T™), \™). It is known that E(I(f,)) =0
for m >1 and E(L,(f,)L(f,) = 8,,m ful}2xm). Let D, ,, k=1,2,...,
denote the set of F € L?*(Q) such that

(4.2) Y mim(m — 1) (m -k + DIf,130m < =.
m=k

D* is then defined as the closed linear operator from D, , to L*(Q X T, ®
B(T*), P ® A*) such that

o)

(43) Df ., F= )Y m(m—1)-(m—k+ 1)1, ,(fu(ty,---,t,")) as.

ty =ty
m=k

Furthermore, E|D*F Il%z(Tk) and the left-hand side of (4.2) are equal. It

follows as in Theorem 6.2 of Nualart and Vives (1991) that for F € D, ,,

(4.4) D}  F=A _,(F) as.forallt,... ¢t ae,

where Alil*tk is the kth iteration of the difference transformation A F =
F(w + 8,) — F(w). Finally, it can be shown along the lines of Nualart and
Pardoux (1988), that the Clark—Ocone formula holds for L?-functionals of the
Poisson process. That is, for F € L*(Q),

(4.5) F=E(F) + fo 'E(D,F\%,-) aM,,

where {Z; 0 <s < 1} is the natural filtration of {N,; 0 <s < 1} and the
integral in (4.5) is an Itd stochastic integral with respect to the martingale
M,. Furthermore, Lemma 3.2 in Nualart and Vives (1991) is the analog of
(2.5) for the Poisson process and from Theorem 4.2 there, we have the
integration by parts formula for a Skorohod integrable process u, such that
D,u is also in the domain of this integral, namely,

(4.6) Dt(j;)lus dMs) —u, + /;l(Dtus) dM,.

The proofs of the following results follow the lines of the corresponding
proofs in Section 2 and 3.

THEOREM 4.1. Let F,GED, ,, for k=1,...,n+ 1, for some integer
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n > 0. Then
o (=DM
Cov(F,G) = E,l o E[O f (&% F)(A% ., G)dt, - di,
(4 7) (_ 1)n+2 1 L )
" n! EfO 'l(.) fmax{tl ..... t,,)E(At:—}t"sFLgs’)

ne

xE(A3Y, (GIF;) dsdty -+ dt

COROLLARY 4.2. Let FED, ,, k=1,...,2n — 1 (respectively k = 1,.
2n) for some n > 1. Then

2n _1)k+1 ) 2n—1 _1)k+1 )
(4.8) Z A E”AkF”U(T") <VarF < Z T E”AkFHLz(Tk),
. k=1 .

k=1

We now obtain finite-dimensional consequences of (4.7) for functions of
jointly multivariate generalized Poisson distributions which include the usual
Poisson distribution as well as the Poisson distribution on lattices. Let m > 1
be fixed and let X; =I(f) + [of,(t)d¢t, Y, = I,(g)) + [jg,(¢)dt for f;, g;
LAT), j=1,..., m Then X; (similarly Y;) has the generalized Poisson
distribution Whose characteristic function is given by [see Neveu (1968), page
163)]

. 1 .
E exp(isIy(f;)) = exp];J (exp(isf;(t)) — 1) de.
Let ¢, y: R™ - R, X =(X,,..., X)), Y=(Y,,...,Y,) and
(49) AodX)=d(Xy,..., X, +£i(2),..., X)) — &(Xy,..., X,,).
Similarly to (3.5) and (3.7), the following identities for functions of jointly

multivariate generalized Poisson random vectors with dependent components
hold (of course under appropriate hypotheses).

COROLLARY 4.3. Let
Cov(¢6(X), ¥(Y))
( 1)k+1 m

- 1
Z IS M
= iyeip=1j;jp=1"0
[]'E[Aitll e A G(X)AJ - A{:.p(Y)] dt, - dt,
(4.10) ) 0
+—7!—-—f0 [()f 5 5

max{ty, .. taradiy iy =1 i peg =1

XE{E(Ay - A1 ¢(X)I5,)

tns1

XE(AJ - A;;;;¢(Y)|9;l)}dtl edt, .
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The following inequalities are extensions of the variance inequality ob-
tained for functions of a multivariate Poisson vector by Chen and Lou (1987).
We cover the situation n > 1 as well as the case of dependent generalized
Poisson components.

COROLLARY 4.4. Let

2n _1)k+1 m m 1
ye2— r [t
k=1 . Qpip=1 o jp=1 0

1 . . , .
/;)E[Altll Altkk(t’(X)A{} A{:,’,(Y)] dtl dtk

4.11
( ) 2n-1 _1)k+1 m m 1

<Var¢(X) < Y i > >

k=1 igrip=1jy o jp=1"0

1., _ ‘ '
[()E[Attll At;;(b(X)AJti A{:lp(Y)] dt, - dt,

As a special case, we consider functions of multivariate Poisson distribu-
tions on lattices. Let f; = v;1,,, & = m;1p,, i = 1,..., m, where the v, and 7,
could be positive or negative and A,,..., A, By,..., B,, are B(T)-measura-
ble partitions of 7. Then X = (X;,..., X,,)and Y = (Y3,...,Y,,) are vectors of
Poisson random variables with values on the lattices {(y,%,...,v,k): k =
0,1,2,...} and {(nk,...,m,k): £=0,1,2,...}. Let A =(A;;) where A; =
#(A; N B)) and where again u denotes the Lebesgue measure on T'. Observe
that X, and Y; have the distribution of I,(y;1,) + v; p(4;) and I,(n,1p) +
n, (B, ) respectlvely In this case we have that

Np(Xq,...,X,) = No(Xy,..., Xn)1a(8),
where
Aip(Xy,...,X,) = d(Xy,...,. X, + v,,..., X)) — d(Xy,..., X,,).
The following results are special cases of Corollaries 4.3 and 4.4.

COROLLARY 4.5.
(a) Cov(¢(X), w(Y))

n 1k+1 m m
-E— B R e

Pyig=1jy o jp=1

E[Azl e Ak (X) A1 - Ajkl//(Y)]

lka

(__l)n+2

1 1,1
n! 0 0

max{ty,..., tni1)

« % {nl nB(t,,)}

i1 ipe1=1J1 " Jn+1=1
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« E{E(Ail Ainnd,(X)Lzl)
XE(Ajl cee Ajn+1¢(Y)|zl)> dtl vee dtn+l;

(b) Cov( ._lei,.p(yl,...,Ym)) = ¥ ¥ AmE(AY(Y,...,Y,));

i=1j=1
2n (_1 kE+1 m m 1
() z —k_)'— Lo X { )‘ipjp}
k=1 . iprip=1j,jp=1 \p=1
XE[Ail e Alrp(X) AT oo Aj"¢(X)]
< Var ¢(X)

2n-1 (-1 k+1 m m k
< ¥ S__kl'___ Y Y { A, }
k=1 : 1

.- . e pp
iyrrip=1jy =1

XE[A"I e Alr(X) AT - Ajk(b(x)].

p=

REMARKS 4.6. (a) The case n =1 of the right-hand side inequality of
Corollary 4.5(c) is presented in Karlin (1993).

(b) In the case of Poisson random variables on the usual lattice Z, the
variance inequalities in Corollary 4.5(c) can also be obtained using
Poisson—Charlier polynomials.

Finally let ®, ¥: R™ — R? be functions such that ®(X) = (¢,X),..., $,X))
and ¥(Y) = (4,(Y), ..., ¢,(Y)), where ¢, ¥: R™ - R, i,j=1,..., p. Using
the notation V*®(X) = (At --- A P(X)), together with (3.12) and (3.14), re-
sults similar to (3.15) and (3.16) also follow.

4.2. Covariance identities with the derivation operator. We now consider
a second approach to Malliavin calculus for the Poisson process. This is due to
Carlen and Pardoux (1990) [see also Bouleau and Hirsch (1991)], who ob-
tained a Malliavin derivative (indeed a real derivation operator) different
from the one given by chaos expansions. We recall some facts from these
works.

Let 7, be the time of the ith jump of the process N,, that is,
inf{t; N,(») > i}, ifsucha ¢ exists,
P, if Ny(w) <i.
Let .# be the subspace of L?*(T') orthogonal to the constants. Let .% be the
class of random variables F which can be written as
(4.12) F=f(r,...,m)

for some C! function f on &, = {(¢;,...,¢,); 0 <t; <t, < -+ <¢, <1} such
that' f has a continuous extension together with its first derivative to the
closure of &,, for some n > 1. The class .% is'dense in L?((Q)).
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For F €., the gradient operator 2: L*(T) —» # ® L*(T) is defined as
7

(4.13) oF-% —f(n, -+ 7) Dy,

=
where D,7; = 7; — 1, ,](t) It is shown that Theorem 2.1 of Carlen and
Pardoux (1990) that 2 is an unbounded closable densely defined operator
from L*(T) into #® L*(T). 9 is identified with its closed extension, its
domain being denoted by D, ,. Now, if F €5, ,,=0(N; t; <t <t,)), 9,F
is a.s. constant on (0, £,) and (¢,, 1). Then it can 'be shown (see the Appendlx)
that for F € D, ,, E(F|#) € D, , and

(4.14) 9 E(FI%;)) = E(2,FI%) 10, o(1).

The divergence operator 8: # ® L*(T'") — L*(T) is the adjoint of D, whose
domain, Dom($8), is the set of u € #® L*(T') such that there exists C > 0
with

(4.15) |E['9,Fu, dt| < C|IFll; forall F €D, ,.
0
For u € Dom(8), 8(u) is the unique element in L2() such that
(4.16) E(8(u)F) = E['9,Fu, dt forall FED,,.
0

The integral 8 generalizes the Ito integral of predictable processes with
respect to the compensated Poisson martingale M,. Using Theorem 3.3 in
Carlen and Pardoux (1990), the differentiation rule for & is obtained in the
Appendix, that is, for u € Dom($) such that for almost all ¢, {D,u,: s € [0, 1]}
is in Dom($§),

(4.17) 2,(8(u)) =u, + 8(Z,u)).
Finally, and also in the Appendix, we prove the Clark—Ocone formula for

L?-functionals of the Poisson process in terms of the gradient operator 2,
that is, for F' € D, ,,

(4.18) F=E(F) + [OIE(DsFurs-) dM,.

Then, using (4.14), (4.17) and (4.18) covariance identities and variance
inequalities analogous to those of Section 2 and for functionals of the Poisson
process follow, that is,

n (_ 1)k+ 1 L L
Cou(F,G) = & =B [[(9h-oF)(2h08) dty - diy
(4.19) (—1)n+2 111 -
’ ! M n! E'/(; j; max{zy,..., tn)E(g + |.7)

XE(2/1), GIF,) dsdt, -+ dt,.
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Finally some finite-dimensional consequences of (4.19) are indicated. Let
X, X,,..., be a sequence of independent random variables having exponen-
tial dlstrlbutlon with parameter A and let 7; = X; + -+ +X. The 7; have the
distribution of the jumps of a Poisson process (gamma dlstnbutlon with
parameter jA). Let ¢,¢: R™ — R be twice differentiable functions. Then using
(4.13), and for each m > 1,

Cov(d(71,-ves 1) Y(T15ens Ty ))

(420) ~ i i Bl 5 (s ) (71’ s T) [min(r;, ;) = 7]

1,1
_Ej(‘) j; E(9t23¢(71,.. » Ty )I?)E( l[l(Tl, q-m)|5§) dsdt.
Moreover, if ¢ and ¢ have derivatives of order n + 1,

Cov(¢(1'1, Tn)s Y(T15- 0 Ty))
( 1)k+1

= Ef f t1 tkd)(Tl’ Tm))

k 1

( - tk‘//(Tl’ Tm)) dty - dt,

( 1) E'/;lf /‘ E(gt':ftlns(b(fl,...,Tm)LZ)

max{¢y,..., t,}
XE(Qt’l‘ftlnstp(Tl Tm)LZ) dsdt; -+ dt,.

In particular, for ¢(x,,..., x,,) = x; + -+ +x,,, the following identity for the
first m jumps of a Poisson process holds:

Cov( i Ty Y( 715 o) Tm))
(4.21) -

g g"l ( (71, Tm)[min(Tl,Tj) —TiTj] .

Outside the Poisson and Gaussian cases, identities and inequalities hold
for functions of infinitely divisible random variables or functionals of inde-
pendent increment processes. This is presented via a general interpolation
scheme in Houdré, Pérez-Abreu and Surgailis (1994).

APPENDIX

For the sake of completeness we now indicate how to prove the Clark-—
‘Ocone formula (4.18). This follows the proof given by Ocone (1988) in the
Wiener case, using the duality relation as in (4.17) [see also Bouleau and
Hirsch (1991)].
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From Proposition 7.13 in Neveu (1968) [see also Pérez-Abreu (1988)] and if

N,
(A1) @ = T1 (1+7()) exp|~ ['A(s)\(as)).

then {Q[; f € L*(T)} generates L2(Q). Moreover, it is well known that the
exponential function

N,
z[= ¥ (1+f(s))

O<s<t
is the solution of the stochastic differential equation
t
(A2) zf - 1= [Z[f(s) aM,.
0
Since Z[ f(t) is predictable, the stochastic integral in the last expression is
equal to the integral 6(Zf) [Theorem 3.1 of Carlen and Pardoux (1990)].

Next, to prove (4.18) for F € D, ,, with E(F) = 0, say, it is enough to
prove that for all f € L2(T) the following duality relation is valid:

(A3) E['E(2,F\%,-)2,Z{ ds = E(5(E(2,FI%,-))Z{).
0
Using (4.16),

E(FZ{) = E(F5(2f)) = E/OIQSFZsff(s) ds
(A4)
-E fo 'E(2,F\7,-)Z!f(s) ds.

On the other hand, from (4.17) and (A2),
gsZs( = Zf-f(s) + 8(9ssz( ')l[s,l])'
Furthermore, since &, and 7 ;; are independent with also
E(8(2,2f(")1,,1)) =,
we have that for all f € L3(T),
1 1
E[ E(9,F\%,-)Z[f(s) ds = E [ B(2,F\5,-) 2,2 ds.

0 0

Hence, using again the duality relation (4.16), (A3) is obtained.

PROOF OF (4.14). It is also enough to prove that for all f e L3(T),

(A5) E fo 'E(9,F\%, )1, ZIf(t) dt = E(E(F\%,-)Z{).
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Since Z! is F,-predictable and using the duality relation (4.16),
1 1
E fo E(2,F\%;- )1, ,,Z{f(t) dt =E [0 E(Z[f(2)2,F\F;- )1y, ; dt

1
-E fo ZIf(t)2,F1, , dt

= E(F8(Zf(*)10,4))-
Finally using (A2) and again since Z! is a martingale,
E(Fs(2'f(-)1y,,))) = E(FZ[) = E(FE(2{\%,-)) = E(E(F\%,-)Z{),
which proves (A5). O

PROOF OF (4.17). From Theorem 3.3 in Carlen and Pardoux (1990) and for
a smooth process u,

(A6) 5(u) = ['u,dM, - ['Du, dt.
0 0
Using the fact [see Carlen and Pardoux (1990)] that
1 ot T; &uk
(A7) -~ fogtu,dt = ;[Q 0—Ti—dt,
it is straightforward to see that
(A8) 2, lgsus ds = flgt,@sus ds.
0 0

On the other hand, for a smooth process u
(A9) [lu,aM, = T u, AN, - [(u,ds,

0 j=1 ' ’ 0
from which it can be shown that
(A10) 2, u,dM, = u, + [ Du, dM,.

0 0

Thus, (A6), (A8) and (A10) prove (4.17) for smooth processes u and an
approximation argument extend this to the larger class of processes we study.
O
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