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SHARP CONDITIONS FOR NONEXPLOSIONS AND EXPLOSIONS
IN MARKOV JUMP PROCESSES

BY G. KERSTING AND F. C. KLEBANER!

Universitit Frankfurt am Main and University of Melbourne

We give sharp sufficient conditions for nonexplosions and explosions -
in Markov pure jump processes in terms of the holding time parameters
and moments of the jump distributions.

Introduction. We consider a time homogeneous Markov jump process
{Z;} in continuous time with the state space S, a subset of nonnegative reals.
For general description and construction of such processes, see, for example,
Breiman [(1968), pages 328-338] and Chung (1967). If the process is in state
z, then it stays there for an exponential length of time with parameter A(z2),
after which it jumps from z. Let T, be the time of the nth jump of the process,
T, =inf{t > Ty_1:Z; # Z;.}, To = 0. It is said that the process does not
explode if there are only finitely many jumps on finite time intervals, in other
words, T, — oo as n — o0o. The question of explosion is an important one,
since when there are no explosions the forward and backward equations are
satisfied and the solutions are unique. To shorten notations, denote by Z,, the
embedded jump chain, Z, = Z(T},). The well-known necessary and sufficient
condition for nonexplosion is

D 51
1 =00 a.s.;

,{2 MZy)
see, for example, Chung [(1967), pages 259-260] and Breiman [(1968),
page 337]. However, this condition is hard to check, in general, because it
involves the embedded chain. Sufficient conditions for nonexplosion and ex-
plosion given below are formulated in terms of the parameters of the process:
A(z) and moments of jumps from 2. Let &; be the natural filtration of the
process Z; and &, = Fr,.

Results.

THEOREM 1. Let A(2), z > 0, be bounded on bounded intervals. Let m(z) =
E(Zyi1—Z, | Z, = z) be the mean of jumps from z. Suppose there exists a
positive, increasing function f(z) such that for all z2>0,

@) m(z)Mz) < f(2) and [ f(z)
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Then

= 1
,f‘;a MZn)

=00 a.s.

The sufficient condition (2) is sharp in the sense that it is the best possible
condition in terms of A(z) and m(z) for a class of processes, as the following
example shows.

EXAMPLE 1. Let A(2) and m(z), z > 0, be positive. Define 0 = 89 < 8; <
Sg < -+ by Sp+1 = 8, + m(s,). Let Z; be the jump process that jumps from
sn to 8,41 after exponential waiting time with parameter A(s,), n =0,1,2....
Then

& 1 & 1 ™ Sn+l = Sn
3 = =y T L
® 2 X(Zy) = 2 3w ~ 2 Nomm(en)

n=0 n=0 n=0

If m(2) is continuous, then s, — oo. If, moreover, it satisfies the growth éon-
dition s,.1 — 8, < C(s, — sp-1) for some constant C > 0, then divergence of
the series in (3) is equivalent to [;° dz/(m(z)A(z)) = oo; for example, Knopp
(1956).

As an application we now give an example of processes for which our theo-
rems are directly applicable, whereas it is not easy, if at all possible, to verify
explosions directly.

EXAMPLE 2. Consider population dependent Markov branching processes,
where an individual in a population of size 2 lives for an exponentially dis-
tributed length of time with parameter a(z) and has a random number of
offspring X (z) with distribution on nonnegative integers p.(-). Then the pa-
rameters of the process are A(z) = za(z) and m(z) = Y ; ip.(i). Essentially
divergence of the integral /i° dz/(zm(z)a(z)) is necessary and sufficient for
nonexplosions of such population processes.

Theorem 1 can be generalized in such a way that symmetric sufficient con-

ditions can be also given for explosions. To do so, note that the embedded chain
{Z,} is time homogeneous and denote for « > 0,

ne(z) = E((—i—l)a -11Zo= z),

n_.(z) =‘—E(1 - (22_1) | Zo = z).

* THEOREM 2. Let A(2), z = 0, be bounded on bounded intervals. Suppose
there exists a positive function f(z) such that for some a > 0 f(2)z*! is
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increasing and

(4) 2na(2)M2) < f(2) and / f()
Then

ke 1

'g———-—/\(zn) =00 a.s.

THEOREM 3. Suppose there exists a positive function f(z) such that for some
a >0, f(2)z=*! is decreasing and for all z sufﬁciently large,

(5) n_o(2)M(2) = f(2) and j pal
Then
X 1
— .S. Z, .
’;A(Zn)<oo a.s. on {Z, — oo}
REMARKS.

1. Theorem 1 is a particular case of Theorem 2 with a = 1.

2. Conditions (4) and (5) get weaker with decrease in a. To see this use an
elementary inequality x” — 1 > y(x — 1) for ¥ > 1 and all x, obtained from
convexity. Letting y = /8, x = (Z,/2)#, we obtain

Bny(z) > ang(z) for0< B <a,
and with x = (2/Z)#?, we obtain
Bn_q(2) > an_g(z) for0<pB<a.

3. Condition (5) implies that A(z) is unbounded. This follows from the bound
n_q(2) < 1, which implies 1/f(z) > 1/(2A(2)). Thus f;°dz/f(z) < oo im-
plies that A(z) is unbounded.

4. A relation between conditions (4) and (5) is provided by the inequality

an,g‘(z) > Bn_y(z) for any a,8 > 0,

which follows from an elementary inequality 1 — x~¥ < y(x — 1), ¥ > 0, by
taking x = (Z1/2)? and y = a/B.

5. To see how well conditions of Theorems 2 and 3 fit together, notice that
if Z1/z = 1 in distribution as Zy = z — oo and Z; has no particularly
long tails, then the following approximations (from a second order Taylor
expansion) are valid for z — oo:

znq(z)/a~ m(z) — 1/2(1 — a)v(z)/z,
; en_a(2)/ax m(z) - 1/2(1+ @)u(2)/2,
where v(z) = E(Z1—2)? | Zy = 2).
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Proofs.

PROOF OF THEOREM 2. Let F(z) = [51/(f(x))dx. By monotonicity of
x*~1f(x), for any y > x,

1 1 y"‘
f(y) f(x) xa1

Hence we obtain for any x,z > 0,

PP = [ i dy = it E2E0 - 2 ((2) 1),

Let now U, = F(Z,) and use the above inequality to obtain

Znno(Zy,)

E(Un1| Fn) <Un+

Assumption (4) now gives, with C = a1,
E(Un+1 ' t9~n) < Un + C/)‘(Zn)
Thus

=Un Z A(Zk)

is a supermartingale. Now let D > 0 and define a stopping time

n

C
=inf{n: Y —— > D}.
7p = inf{n kg(:))l(zk)z }

Then V,.,, is also a supermartingale. Moreover, it is bounded from be-
low by —D; thus it converges almost surely to a finite limit. On the event
{X0oC/(MZ1)) < D}: 7p = o0 and AM(Z,) — oo, implyirig Z,, — oo and
F(Z,) - F(oc0) = o0. Thus V, > F(Z,) — D — oo and V.., — oco. Hence
P(X%01/(AM(Z1)) < D) = 0. Because D was arbitrary, the result follows. O

PROOF OF THEOREM 3. Because f(x)x~1~¢ is decreasing, we have the in-

equality for y > x,
—-1-a
L)
f(y) ™ flx)\x

from which we obtain for any x,z > 0,

F&) = Fx) 2 e [Ty oy = (1 (E))

We obtain from this inequality with U, = F(Z,),

Zun_o(Zy)
af(Z,)

E(Uni1| Fn)=2Un+
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Assumption (5) gives

(6) E(Un+1|9-n)ZUn+C/A(Zn)

for sufficiently large Z,,, Z,, > C;, say. Consider the martingale
n—1

(7) Wo=-Un+ ) (E(Uks1| Fr)—Ur).
k=0

Let 7n be the Nth time that sequence Z,, falls below C;,
vy =inf{n > ry_1: Z, < C1},

and as usual 7y = oo if {Z,} falls below C; less than N times. Then as
U, > —F(00), it follows from (6) and (7) and condition (5) that

Wonry = (N + 1)F(00) > —o0.

Thus Wy, converges a.s. Thus W, converges a.s. on the event {7y = c0}.
Hence Y 52 (E(Ug41 | F1)—Up) converges a.s. on this event. Letting N — oo,
we obtain that Y32 ((E(Ug41 | 1) — Uy) converges a.s. on {Z, — oo}. Using
the bound in (6), the result follows.
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