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We study a class of (nonsymmetric) Dirichlet forms (£, D(&)) having
a space of measures as state space E and derive some general results
about them. We show that under certain conditions they “generate”
diffusion processes M. In particular, if M is ergodic and (&, D(&)) is
symmetric w.r.t. quasi-every starting point, the large deviations of the
empirical distribution of M are governed by &. We apply all of this to
construct Fleming-Viot processes with interactive selection and prove
some results on their behavior. Among other things, we show some
support properties for these processes using capacitary methods.

1. Introduction. The aims of this paper are the following: The first is
the construction and analysis of a certain class of measure-valued diffusions
using techniques from the theory of Dirichlet forms. The second is a thorough
study of the underlying class of Dirichlet forms that serve as a case study for
Dirichlet forms on infinite dimensional “nonflat manifolds” and also as a
basis of an infinite dimensional calculus for measure-valued processes.

The theory of Dirichlet forms became available for the measure-valued
diffusions studied in this paper due to recent developments in [1, 20] that
extend the classical theory of Fukushima [14, 15], Silverstein [27], Carrillo-
Menendez [5], Le Jan [18] and Boulean and Hirsch [4]. The classical theory
deals with regular Dirichlet forms on locally compact state spaces, whereas
the extension covers arbitrary state spaces and the regularity condition is
dropped. Regularity is replaced by another analytical condition called quasi-
regularity, which is the appropriate condition because it was shown [1, 20] to
be necessary and sufficient for the existence of an associated nice Markov
process. All this in turn has been extended to semi-Dirichlet forms [19]. (See
Section 2 for the terminology.)

The class of semi-Dirichlet forms analyzed in this paper is of the type
(closure of)

&(u,v) = fE[<Vu( 1), Vo( )

+<b( p), Vu(p)v(p) + au( p)v(p)]m(du),

where u, v are finitely based smooth functions on L?(E; m). Here E denotes
the set of all probability measures on a Polish space S, m is a probability

(1.1)
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2 L. OVERBECK, M. ROCKNER AND B. SCHMULAND

measure on the Borel o-algebra on E (generated by the weak topology), « is
a sufficiently large constant and for bounded measurable functions f, g on S
and u € E, we set

(f, &%= [fedn~ [fdufgdp.

In (1.1), 5:S XE —» R is a measurable map such that sup,(bC, w),
b(:, w)), < » and the gradient Vu of a finitely based smooth function u(u) =
o(fidu,..., [fodu), n€E, kEN, g€ CiRE), f,..., f, € Cy(S), is de-
fined by

3=0)xeS

(with &, equal to the Dirac measure at x); hence Vu( u) € L*(S; u). Geomet-
rically one can think of E as an infinite dimensional manifold that is the base
space of a (tangent) bundle with (Hilbert) fiber (L2(S; p), { , ).

The main results of Sections 2 and 3 of this paper state that provided the
form (1.1) is closable, its closure is indeed a semi-Dirichlet form. It is local
and quasi-regular; hence, it gives rise to an associated diffusion process with
state space E (cf. Theorems 2.4, and 3.5).

The class of measure-valued diffusions that we obtain, in particular,
contains a new type of Fleming-Viot process. A Fleming—Viot process is a
(probability) measure-valued process that describes the genetic evolution of a
population. It is known that the Fleming—Viot process with neutral mutation
has a unique reversible probability measure m"" (cf. [13]). As an application
of our general results, we adopt this measure as a starting point by taking m
in (1.1) to be equal to ¢2 - m*V for some “weakly differentiable” (not necessar-
ily bounded or continuous functions) ¢: E — R. If LV denotes the generator
of the Fleming—-Viot process with neutral mutation, the new diffusion process
associated with & in (1.1) will have a generator on L?(E; m) given by

Lu( ) = I™u( ) + o7 Vo( ) — b( 1), Vu( ) — au( )

for bounded smooth cylinder functions u: E — R. Therefore, we call these
new processes Fleming—Viot processes with neutral mutation and interactive
selection; they are perturbations of the classical Fleming—Viots. One of the
first to consider Fleming—Viot processes with interactive selection was Shiga
[28]. He constructed generalized Fleming—Viot processes with bounded selec-
tion, whereas we allow unbounded selection, but we have to assume neutral
mutation. For another recent work on generalized Fleming—Viot processes we
refer to [7], and for excellent recent survey papers on this subject to [6] and
[13]. The details on all this are contained in Section 5:

Sections 6 and 7 are devoted to a more detailed analysis of the processes
related to the form & in (1.1). There, we study support properties of these
measure-valued diffusions using the capacity of the associated Dirichlet form.
This is done both in the general case (Section 6) and in the special case of our
generalized Fleming-Viot processes (Section 7). For example, in the general

d
Vu(p) = (E“( p+ se,)
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case, we show that if m-a.e. u is purely atomic, then X, is purely atomic for
all ¢ and that the sample paths of (X,) are continuous in the variation norm.
This holds in particular in the Fleming-Viot case, where, in addition, we
prove necessary and sufficient conditions (in terms of the mutation measure
v, and mutation intensity ) that certain sets of measures in E are not hit by
(X,). The ideas in these sections are closely related to those in [25].

There are also a number of results on these measure-valued diffusions that
one obtains immediately from the general theory, once one knows that & in
(1.1) is closable and that its closure is a quasi-regular semi-Dirichlet form.
For example, one can write the martingale problems solved by the diffusions
[ef. Theorem 3.5(iv) and Section 5]. One can also give conditions for the
existence of a dual process [cf. Remark 2.6(iii), Theorem 3.5(iii) and Section
5.3]. Finally, if & in (1.1) is symmetric, general results about the large
deviations of the empirical distribution of the associated diffusions (cf. [8, 20])
apply (cf. Section 4).

2. A class of Dirichlet forms having a space of measures as state
space. If & denotes a bilinear form with domain D on a Hilbert space H
with scalar product (-, -), we define for a > 0,

(2.1) g =&+a(,).

We set £(u) = &(u, u), u € D. The symmetric part of & is given by
(2:2) £(u,v) = 2(&(u,v) +&(v,u)), u,veD,

and its antisymmetric part by

(2.3) £(u,v) = 2(&(u,v) —&(v,u)), u,veD.

Let E =.#,(S) be the space of probability measures on a Polish space S with
its Borel o-algebra #(S). We equip E with the weak topology and its Borel
o-algebra #(E). Note that E is then also a Polish space (cf. [3]. If f, g are
bounded #&(S)-measurable functions on S and u € E, we define

(24) w(f) = [fdn,

(25) (f g = [fedu — [fdu[gdn=cov(f, &)
and
(26) “f“p,= <f’ f>P',

The set FC; of finitely based smooth functions on E is defined by

u(p)=e(u(f1),---u(f)), kEN,
f,eCy(S), 1<i<k,qpecCyR").

Let m be a finite (positive) measure on (E, #(E)). We suppose that supp[m]

= E. Finally, let
(2.8) b(-,"):SXE-R

(2.7 uegCy
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be a measurable function such that

(2.9) su};llb( )l < oo,
where ’
(2.10) b(p)(x) = b(x, p).

Now we can define the bilinear form, which is the central object of this paper.

DEFINITION 2.1. For u, v € #C} let

£0(u, v) = f((Vu( ©), Vo( p)d

(2.11)
h +{b( p), Vu( p)o(p))m(dp),
(2.12) Vu(p) = (Vu(p))ies = g;eu—(/w)) )
and )
ke
V.u(p) = 7o = |, g a—(l-b(fl)» o (i) fi(x),

u( ) = o(u(fr), - n(fr)), &, = Dirac measure at x.
Here we consider the natural extension of u € #C; to all finite positive
measures on (S, &(S)). Set £(u, v) = &%u, v) (ie., the form with b = 0).

REMARK 2.2. (i) Definition 2.1 is motivated by the following geometrical
setup. One should consider E as “the manifold” and L?(S; u) as the tangent
space at u € E. The “Riemannian structure” is given by { , ),, u € E. In this
spirit Vu is then “the gradient vector field” of the smooth function u on E.

(i) In succeeding text, for two functions b,, b,: S X E — R, we denote the
function u — {(b,(w), by(w)), Gf this is defined) by {b,, b,).

We now briefly recall the terminology of semi-Dirichlet forms. Let (E, 2,
m) be a measure space. Let & be a positive definite bilinear form with
domain D(&) on the (real) Hilbert space L?(E; m) [with the natural inner
product ( , ).

DEFINITION 2.3. (&, D(&)) is called a coercive closed form if D(&) is dense
in L2(E; m) and the following conditions (i) and (ii) hold.

() (£, D(&)) is positive definite and closed on L2(E; m).
(ii) (Weak sector condition). There exists a constant K > 0 such that
& (u, V)| < K&(u, w)/2&(v, v)V/2 for all u, v € D(&).

(&, D(&)) is called a semi-Dirichlet form on L*(E; m) if in addition:

(iii) (Semi-Dirichlet property). For every ueD&), utAnleD(&) and
Euw+utAl,u—u*Al)=>0.
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(iv) If also the dual form &(u, v) = &(v, u) satisfies (iii), then (&, D(&)) is
called a Dirichlet form (cf. [20], 1.4).

In succeeding text, (£, D(&)) is always equipped with the norm &£}/2.

We recall that a positive definite bilinear form & with domain D C
L*(E; m) is called closable if every £/2-Cauchy sequence in D that con-
verges to 0 in L2(E; m) also converges to 0 with respect to £/2. We call the
smallest closed extension (&, D) of a closable form (&£, D) the closure of (£,
D) (cf. [19], 1.3.2).

Now let us return to the forms & and &° introduced in Definition 2.1.
For later use we define I': C; X C; —» LY(E; m) and B: FC; X FC; —
LYE; m) by

(2.13) I'(u,v) =<(Vu,Vv), u,vegCy,
(2.14) B(u,v) =<{b,Vuyv, u,vegCy.
Hence

&%(u,v) =f(F(u,v) + B(u,v))dm, u,veFCy.
We now formulate the main result of this section.

THEOREM 2.4. (i) If b satisfies (2.9) and m is such that (&, FC}) is
closable on L*(E; m), then there exists a > 0 such that (£2, #C3) is a densely
defined positive definite closable form and its closure (£, D(£?)) is a
semi-Dirichlet form on L*(E; m).

(i) If additionally,

(2.15) f((b,Vv)+av) dm >0 forvegCy,v=>0,
then the closure (&2, D(&})) of (&b, #C3) is a Dirichlet form on L*(E; m).
For the proof of Theorem 2.4 we need the following simple lemma.

LEMMA 2.5. Under the assumptions of Theorem 2.4() we have:
(@) Let ¢, = sup, c gllb(wll .. Then for all u, v € FC3,

| B(u, v)| < (AT(u, u) + 2¢3u?)* (3T (v, v) + 2c3v?)"".
(ii) There exist ¢, a €]0, o such that

1
-ggl(u, u) <&(u,u) <c&(u,u) forallucIC;.

Proor. (i) We have u, v € #C; and u € E that
|B(u, v)(w)l=Kb( p), Vu( p)dw(p)l ‘
<6 )l Ve )l lo( w)l
1/2
< (Ve w)lI% + 2¢u( w)") " (31Vo( I + 2¢50( 1)?)
(ii) An immediate consequence of (i). O

1/2
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PROOF OF THEOREM 2.4.

1. Because FCj, separates the points of E and contains the constant function
1, a monotone class argument implies that #Cj is dense in L2(E; m).

2. Choose a > 0 as in Lemma 2.5(ii). The positivity of &° is already con-
tained in Lemma 2.5(ii). Lemma 2.5(i) yields that there exists K > 0 such
that

&2 (u, v)|l < K& (u, w)/*&t(v,v)"? forall u,v € FC.

Hence & is coercive. Because we assume the closability of (£, FCY), the
closability of (£2, #C5) follows by Lemma 2.5(ii).

3. Semi-Dirichlet property. Let (¢,), 5 o be as in [20], I1.2.7, a smooth approxi-
mation of the unit contraction, that is ¢,: R - [—¢, 1 + €] such that
o(t)=t for t€[0,1],0< ¢ (t)+ ¢(s)<t—s forall s, tER, t>s,
e(t)=1+ ¢ for t €[1+ 2¢, o[ and ¢, (t) = —¢ for t €] — », —2¢]. By
(the proof of) [20], 1.4.7, it suffices to show that

liminf &(@,cu,u — ¢, °ou) > 0.
el0
However, by the chain rule,
gab((Psou’ u— ¢s°u)
= f{tp;ou(l — @iou)(Vu,Vu) + (b, Vudg.cu(u — ¢, °u)
+ag,cu(u — ¢, ou)}dm.

The first summand is positive because 0 < ¢, < 1; the second summand
converges to 0 because

Gou(u = 9,0u) < gy 0w = ¢,08) —2 0;
the third summand is positive because
o, ou(u —¢@,ou) >0.

4. Dirichlet property. Assume now that (2.15) holds. To prove the Dirichlet
property, by [20], 1.4.7, it is sufficient to show that

liminf &¥(u — ¢, o u, ¢, ou) > 0.
el0
By the product rule for V, we have that

f{(b,V(u —@eu)p,cu+a(u— @ ou)p,culdm
= f{(b,V((% cu)(u — <p£°u))> + a(u — ¢, °u)qos°u} dm

_f(p;ou(u - @, °u)<b_, Vu) dm.
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The first term is nonnegative by the assumption in (ii) and the positivity
of (u— ¢, u)gos o u; the second term converges to 0 as in part 3 of this
proof. O

REMARK 2.6. (i) Consider the situation of Theorem 2.4. Clearly I' extends
as a continuous bilinear map from D(&?) x D(&?) to L}(E; m) and so does B
by Lemma 2.5(i). Hence

2.16) &bu,v) = f(F(u, v) + B(u, v) + auv)dm, u, v € D(&Y).

Furthermore, Lemma 2.5(ii) shows that D(&;*) = D(&). Hence (e.g., by [20],
1.4.15),

(2.17) uv € D(&?)

for all bounded u, v € D(&, %) = D(&). Furthermore, because any element in
D(&;) can be approximated by elements in FCg with respect to (£2)Y/2, for
bounded u, v, w € D(&?) we have

I'(wu,v) =wl'(u,v) + ul'(w, v),
I'(u,wv) =wl'(u,v) +vl(u,w);

B(wu,v) =wp(u,v) +up(w,v),

B(u, wo) = wh(x, v).
Note also that for all u, v € D(&?), setting I'(u) = I'(u, u), we have that

IT(, v)l < T(u)Y?T(v)"?
and hence v, —= v in D(&?) implies that
I'(u,v,) —= ['(u,v) in L?2(E;m),

provided T'(u) is bounded. Furthermore, for a Lipschitz function ¢: R - R
and u, v € D(&?}),

(2.18)

(2.19)

n—ow

I(e(u),v) = ¢'(u)T'(u,v),
because this trivially holds for u, v € #Cj.
(i) If in Theorem 2.4 we replace £(u, v) for u, v € #C; by

(2.20) gt (u,v) + [(Vv,d)udm,
where d: S X E — R satisfies (2.9) and
J({d,Vv) + av)dm 20 forallv € 5C;,v >0,

then the assertions of Theorem 2.4 remain true. The proof is entirely analo-

gous.
(iii) Condition (2.15) obviously holds, for example, if & = Vw for w € D(L)

with

(2.21) Lw < a.

Here (L, D(L)) denotes the generator of (&, D(&)).
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There is an obvious relation between the generators (cf. [20], 1.2.9 and
1.2.16) of the (semi-) Dirichlet forms & and &? in Theorem 2.4.

PROPOSITION 2.7. Let (L, D(L)) be the generator of (£, D(£)) and (L%,
D(L2)) be the generator of (£, D(£?)). Then D(L) c D(L%) and

Lbu=Lu- B(u,1l) —au forallu € D(L).

ProoF. We have to show that for u € D(L),
2.22) &(u,v)=(—Lu,v) + f( B(u, Dv + auv)dm for all v € D(&?)

(cf, e.g.,[20], 1.2.16). If v € FC, then (2.22) is evident by the definition of &.
Let v, € #C;, n € N, such that £%(v, — v, v, — v) — 0. [The existence of the
sequence (v,), < y follows because D(&) is the closure of FCj with respect to
(£5)1/2]] Then

&b(u,v) = lim & (u,v,)
n—ow

lim f(—anu + B(u,v,) + auv,)dm

n—o

= f(—vLu + B(u,v) + auv) dm

because (£?)-convergence implies L?-convergence [and by definition Lu €
L*(E; m)]. O

3. Associated diffusionprocesses. We recall the following notions from
[20]. For the first three definitions in this section, we only need to assume
that E is a topological space, #(E) is its Borel o-algebra and m is a o-finite
positive measure on % (E). For simplicity, however, and because it is suffi-
cient for the purposes of this paper (i.e., for Theorem 3.5), we assume that E
is a Borel subset of a Polish space. For the same reason we shall also consider
diffusions in succeeding text. For the general case involving special stand-
ard processes, we refer to [20], [2] and [19]. We fix a semi-Dirichlet form
(&, D(&)) on L2(E; m) with generator (L, D(L)). Let T, =e'L, t > 0, be
the strongly continuous contraction semigroup generated by L (cf. [20], I,
Sections 1 and 2).

DEFINITION 3.1. (i) A sequence (F,),.y of closed sets in E is called an
&-nest if U, D(&); is &/*-dense in D(&), where for n € N,

D(&)r, = {ueD(&)|u=0m-ae.on E\F,}.

(i) NCE is called &-exceptional if NcE\ UF, for some &-nest
(F,), <n- A property of points in E is said to hold &-quasi-everywhere (ab-
breviated &-q.e.) if it holds outside an &-exceptional set.
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(iii) An &-q.e. defined function f: E — R is called &-quasi-continuous if
f € C{F,}) for some &-nest (F,), . n, where

C{F,}))={f:A->N|UF,cAcEand f|y iscontinuous forall n € N}

(and f|; denotes the restriction of f to F,).
(iv) (&, D(&)) is said to have the local property if &€(u, v) =0 for all
u, v € D(&) with suppl|u| - m] N suppllv|- m] = &.

By [20], II1.2.3, every &-exceptional set has m-measure zero.

DEFINITION 3.2. (&, D(&)) is called quasi-regular if:

(i) There exists an &-nest consisting of compact sets.
(ii) There exists an &]/2-dense subset of D(&) whose elements have
&-quasi-continuous m-versions.
(iii) There exist u, € D(&), n € N, having &-quasi-continuous m-versions
i,, n €N, such that {@#, | n € N} separates the points of E\ N for some

&-exceptional set N.

Note that if (&, D(&)) is quasi-regular, every u € D(&) has an &-quasi-
continuous m-version # (cf,, e.g., [20], IV.3.3(ii)).

DEFINITION 3.3. (i) A normal strong Markov process M := (Q, F, (%), o,
(X,); 50, (P,), c g) with state space E is called a diffusion process if its sample
paths are continuous (up to its lifetime ¢).

(ii) A diffusion process M = (Q, F, (%), 0, (X)), 0, (P,), c g) With state
space E is called properly associated with (&, D(&)) if z —» E,[@(X,)] is an
&-quasi-continuous version of T,u for all ¢ > 0 and all m-versions Z of any
u € L*(E; m).

Note that in Definition 3.3(ii), M is (essentially) unique (cf. [20], IV.6.4). We
need the following general result, which can be deduced from [20] and [19]
(see also [1, 2)).

THEOREM 3.4. The following are equivalent:

() (&, D(&)) is quasi-regular and has the local property.
(ii) There exists a diffusion process M properly associated with (&, D(&)).

In this case, if in addition 1 € D(&) and £(1, u) = 0 for all u € D(&), then
M is conservative, that is, P[{ = ©] = 1 for &q.e. z € E.

,  PRrOOF. Except for the last part, this follows from [19], Theorems 3.8 and
. 3.9, and [20], V.1.5 (see [19], Remark 3.10). The last part follows because in
this case (cf, e.g., [20], 1.2.16])) 1 € D(L) and e**1 =1, ¢ > 0. Hence M is
conservative (cf., e.g., [21], Lemma 9). O
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' Now we will apply these results to the Dirichlet forms of Section 2. So let
E =#(S) and m, b, & and &° be as in Section 2.

THEOREM 3.5. Suppose that b satisfies (2.9) and that (£, FC) is closable
on L*(E; m). Let @ > 0 and (&2, D(£?)) be as in Theorem 2.4(i). Then:

() (&2, D(&?)) is quasi-regular and has the local property. '

(i) There exists a diffusion process M == (Q, %, (%), 0, (X));+ 0, (P),cr)
properly associated with (€2, D(&?)). If « = 0, M} is conservative.

(ili) If, in addition, condition (2.15) holds, there exist diffusion proces-
ses M. (M2) associated with (£b, D(&2)) [resp. (£b, D(&D))], where,
&E(u, v) =&, u), u, v € D(&Y). M¢ is in duality with M® w.r.t. m.

(iv) The diffusion process M? in (ii) solves the martingale problem for
(L%, D(LY)) in the sense that for every u € D(LY),

(8.1) i(X,) — a(X,) — jo”L{;u(Xs) ds, t>0,

is an (%), ,-martingale under P, for &q.e. w<€ E. Here @ denotes an
&-quasi-continuous m-version of u.

REMARK 3.6. (i) Theorem 3.5 immediately extends to the more general
semi-Dirichlet form described in Remark 2.6.

(ii) As we shall see, Theorem 8.5(iv) follows easily from Theorem 3.5(i)
and (ii). It is clear that M? is the unique solution of this martingale problem.
However, this information is useless because, in general, we do not know
D(LY) explicitly. The interesting question is whether M’ is the unique
solution with #Cj replacing D(L?). This is, in general, a very difficult
problem. A solution is only known in very special cases (cf. following text and
also [22, 23]) for the solution in the “flat case”).

(iii) If @ = 0 and & = 0, then m is the invariant measure of MJY.

Proor or THEOREM 3.5. (i) We first note that to show quasi-regularity,
because of Lemma 2.5(ii) it suffices to consider the case b = 0, that is, to show
that (&, D(&)) is quasi-regular. Because $C; is £}/2-dense in D(&) and
separates the points of E, properties Definition 3.2(ii) and (iii) are clear. Let
{n;1j € N} be a dense subset of E and let p be a bounded, complete metric
on E compatible with its topology. Condition 3.2(i) follows from [22], Theorem
3.4 if we can find f;; € #Cj, i, j € N, such that

(3.2) supllVf;;ll, € L*(E; m)
i.j
and
(33) supfiy( 1) = p( s i) forall j € N.
13

Let us now show that this is possible. Recall (see [9]) that if (S, d) is a
complete, separable metric space, then E =.#,(S) equipped with the weak
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topology can be metrized by

(34) p(p,v) = sup{ffd( w—v)lfllsL < 1}.

where

(3.5) | Fllar = suplf(x) — f(¥)l/d(x, y) + suplf(x)l,
xXFYy x

and that (E, p) is a complete, separable metric space with p bounded. For
every j, k € N, select a sequence (g/*), . with llg/*lp < 1 so that

(3.6) p(Kjs my) = Sl}Pfgijk A — ).

Now rewrite the whole collection (g/*); ; , .y With a single index (g;); < and
for u, v in E, define

(8.7) B, v) = sup [g,d(n— ).

Then clearly p(u, ») < p(u, v) on all of E, whereas for the members of the
dense set {u; | j € N} we have 5(u;, wy) = p(p;j, py). We claim that, in fact,
p = p. To see this, let pu, v in E and choose w;, u; so that p(u, u;) <8
and p(v, w,) < 8. Therefore, also p(u, u) <8, p(v, w,) <8 and thus
A, my) < p(p, v) + 28, but p(u;, my) = p(p;, ) and so

p(p, v) <p( e, ) + p( w5 y) + p( 1y, v)
<&+p(pm,v)+26+6
=p(u, v) + 48.

Letting 8 —> 0 shows that p = p. Finally, setting f;(n) = [g;d(pn — ©;)
gives us a collection satisfying (3.2) and (3.3), which concludes the proof of the
quasi-regularity of (£2, D(&£?)).

Now we show that (£2, D(£?)) has the local property. Let u, v € D(&?)
with supp[|u|- m] N suppl|v|- m] = &. We may assume that u, v are bounded.
Because (£2, D(&?)) is quasi-regular, by [19], Remark 3.10, and [20], V.1.7,
there exists y € D(&?) such that 0 < x < 1g\ supppurm) @0d x>0 on EN\
suppl|u| - m]. Hence, by (2.18),

0=T(xu,v) =xIT'(u,v) +ul'(x,v),

which implies that supp[|['(z, v)|-m] c suppllu|- m]. Similarly,
suppl|T'(u, v)|- m] € suppl|v|- m]; hence, I'(x, v) = 0. By the same argument
using (2.19) we obtain that B(u, v) = 0. Hence by (2.16), £2(u, v) = 0.

(i) This follows from (i) and Theorem 3.4. 3

(iii) Because (2.15) implies that (£,?, D(&?)) is a Dirichlet form, so are (&2,
D(&2) and (£2, D(&P)) (cf. [20], 1.4.6). They obviously also have the local
property. The quasi-regularities of (&2, D(£})), (€2, D(£})) and (€2, D(£}))
are equivalent and consequently the assertion follows by (i) and Theorem 3.4.
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(iv) Let u € D(L). First note that #(X,) — @(X,) does not depend on the
#-quasi-continuous m-version of u that we take. Second, also [¢ L5 u(X,)ds,
t > 0, does not depend on the m-version of Lizﬁ [e L*(E; m)] we choose,
because for all f € L2(E; m) and any m-version f of f we have that

ffOTIfI(Xs) dsdP, < e‘f:e‘sEM[IfAI(Xs)] ds

and by Definition 3.3(ii) and [20], IV.2.8, the right-hand side is an &-quasi-
continuous version of

e[ “e T, fds.

Hence if f= 0, then [{|fI(X,)ds = 0 for all ¢ > 0 P,-as. for &-q.e. u € E (cf.
[19], IV.3.3(iii)). The rest of the proof is now standard by the Markov property
(and Fubini’s theorem). O

4. A result on large deviations for Fleming-Viot processes. A cen-
tral question in the theory of large deviations for an ergodic Markov process
X =(X,),., is the deviation of the empirical distribution L = (L,),, , from
its ergodic behavior (cf. [8]). If E is the state space of X, the process L has
state space .#;(E) and is defined by

(4.1) L(A) = ; fo “1,(X,) ds forall A € Z(E).

Let the space .#,(E) be equipped with the 7-topology, which is generated by
open sets of the form

U(M; &, F) = {L e.#,(E) |‘deL -~ deM' < s},

where £ > 0, M €.#(E) and F bounded, #(E)-measurable.

We now return to the situation of Section 2. So let E =.#,(S) and m be as
in Section 1. We only consider our basic bilinear form (£, #C3) on L*(E; m)
(i.e., b = 0; cf. Definition 2.1).

THEOREM 4.1. Suppose that (£, FC}) is closable on L*(E; m) with closure
(&, D(&)). Let M = (Q, F, (%), 5 0, (X)) 0, (P,), « ) be the diffusion process
associated with (£, D(&)). Assume that the following condition holds:

(4.2) Ifu € D(&) satisfies &(u, u) = 0, then u is constant m-a.e.
Let U be a open and K a t-compact subset of #,(E). Then for &-q.e. un € E

we have that

1
liminf—log P[L, € U] = —inf(&(y, ¥)Iy € D(&), ¥?m € U}

tow 1
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and

1
inf { sup limsup —log P,[L, € K] |N CE, N &-exceptional }
WEENN tow 1

< —inf(&(y, ¥) | y € D(&), ¥*m € K}.

REMARK 4.2. It is well-known that (4.2) is equivalent with the ergodicity
of P, that is, all shift invariant events have P,-measure 0 or 1 (cf. [16] or
[21], Lemma 12).

ProOF OF THEOREM 4.1. The assertion follows a special case from [21],
Theorems 1 and 2. O

REMARK 4.3. (i) (4.2) or equivalently the ergodicity of P, holds if m =
m¥Y, where m¥V is the reversible measure of the Fleming-Viot process with
neutral mutation and without selection (cf. Section 5.1 and [13], Chapters 5,
and 8). This is more generally true if m = ¢*mtY, where ¢ € L*%(E; m™),
¢ > 0 m-a.e., because trivially,

f(Vu, Vu)p?2dm =0 = (Vu,Vu) =0 m-a.e.

= f(Vu, Vu)dm =0 = u = constant m-a.e.

(i) Theorems 1 and 2 in [21] are valid for m-symmetric right processes M
that are ergodic and properly associated with symmetric quasi-regular
Dirichlet forms (£, D(&)) on L*(E; m), where m €.#(E) and the state space
E is a topological Hausdorff space on which Baire and Borel o-algebras
coincide. It extends results of [17] and [8]. In [17] it is assumed that E is
locally compact and that the Dirichlet form is regular, which is not the case
for E =.#,(S) [resp. (£, D(&))] in our situation. In the special case m = m*"
considered in Section 5.1, the lower bound in Theorem 4.1 also follows from
[8], Theorem 5.3.10. The assumption made there that “¢, p, is not singular to
m for some ¢ > 0” is (unlike in the examples in [21]) fulfilled in this case. This
can be easily seen from the specific form of m*¥ and (p,),. , (cf. Section 5.1
and [11], Theorem 1.1). Here (p,), . , denotes the transition semigroup of M.

(iii) We emphasize that by exactly the same arguments Theorem 4.1
remains true in the case b # 0 [b satisfying (2.9)] if (2.15) holds and
(&, D(&)) and M are replaced by (£°, D(&£?)) and M?, respectively (cf.
Theorems 2.4 and 3.5).

5. Examples. The motivation of the analysis of the forms defined in
Sections 2 and 3 is the construction and investigation of Fleming-Viot
processes with an interactive selection. Let us therefore first consider the
basic model without selection. We use [13] and [6] as the main references for
Fleming—-Viot processes. .
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5.1. Fleming—Viot process with neutral mutation and without selection.
The neutral mutation is described by a probability measure v, on S and a
mutation intensity 6 > 0. The effect of a mutation on an allele x € S is
always distributed according to v,; in other words, the mutation operator has
the form

0
Af(x) = 5 [ (F(£) = F(x))no(dE).

The Fleming—-Viot process is the unique solution of the martingale problem
for (LY, Cy), where LFV is defined on #C; by

1
Lu(u) = 5 [ [ m(dx)(e(dy) = w(dy))Vu(%u)( )
(5.1) o
+5 () [ (Vu(n) = Vou(w))vo(dy)
[cf. [13], (3.13), (3.14) and (8.1)].

Then there is a unique reversible stationary measure m*" associated with
L*V, that is, V u, v € C%,

(5.2) fuLFVv dm*V = vaFVu dm™V;
hence (because LFV1 = 0),
(5.3) [V udm™ = 0.

The measure m™ is the distribution of the random measure X7_, p, &
where (py, py,...) €10,1[N has the Poisson-Dirichlet distribution with pa-
rameter 0 and (&, &,,...) € SN is »@N-distributed (cf. [13], Theorem 8.1). In
particular, m* is a probability measure and its (closed) support equals
#(supp v,). Hence, if supp v, # S, we replace S by the support of v,. It is
easy to see that the square field operator I'*V of LFV is just 2(V-, V- ); that
is, for all u, v € #C}, n € E,

LY (uv)(p) = v( ) L™u(p)
+u( W) LV( ) + (Vu( ), Vo( 1)
This implies (cf., e.g., [20], 1.3.3) that

(5.4)

(5.5) &(u,v) = %[(Vu,Vv) dm® = —fLFVu-vdeV

is closable, where the second equality follows by (5.3) and (5.4). Hence,
(&, FC3) can be taken as a starting point for our Theorem 2.4 (and also
Theorem 3.5; cf. Section 5.2.3). We denote its closure by (£, D(&)). Note that
by Remark 2.6, I'FV(-, -) = (V-,.V- ) extends to all of D(&).

'REMARKS. (i) So far the reversibility of the Fleming—Viot process w.r.t.
I, ,, was only proved iff S is locally compact [13, 28]. If S is only Polish we
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consider its Stone-Cech compactification S. Every function f € C,(S) has an
extension fe& C(S). The measure 7,(-) = yo(- N S) is a measure on (S,
#(S)). We consider the Fleming—Viot process on .#,(S) with reversible
measure I, ; and generator L. Then we have

[FLGdn,; = [GLFdI,,,
and
[LFdn,; =0, VF,GeFC;.
This implies for F, G € #C; that
[FLGdN,, = [GLFdT, .

(ii) According to Theorem 3.1 in [13], the martingale problem with FCj
and the martingale problem with polynomials are equivalent.

5.2. Perturbation by densities. Let & and m™ be as in Section 5.1. We
consider (£¢, #C3) on L2(E; ¢?m*V), where ¢ € L%(E; m"") and

(5.6) &°(u,v) = %fE(Vu, Vode?dm®Y, u,veJCy.

5.2.1. Closability.

1. If ¢% > &> 0 m-ae., then (£¢, FC}) is closable on L*(E; ¢?m*V): Let
(u,), cn in FC; be an early &¢-Cauchy sequence such that u, ——= 0 in

n p—oo
L%(E; ¢2mTV). The strict positivity of ¢? implies that (u,), <y is also an
&-Cauchy sequence and converges to 0 in L2(E; m™"); hence, the closabil-
ity of (£, #C3) yields [(Vu,, Vu,) dm*™ — 0 as n - «, and also ||Vu, ||(p
— 0 m-a.e.as k > » for a subsequence (@, ) en of(u wnen: Therefore

&9y, up) = 3 [ i (V(w, = w,,), V(u, = up,))¢? dm™

IA

liininf%.ﬂV(un —u,,), V(u, —u,)e® dm™.

The last integral can be made arbitrarily small by choosing n large
enough.

2. If ¢ € D(&) and ¢ > 0 m-a.e., then the form (&* 90;) is also closable on
L*(E; ¢2>m"™). This can be deduced from a result in [10] by using the
stochastic analysis of Dirichlet processes (cf. also [29]). We sketch the
argument of [10] as follows: Let M = (Q, &, (%), ¢, (X}); 5, (P), <) be
the Markov process associated with (&, D(&)). Up to the stopping time
7, == inf{¢t > 0| (X,) < 8}, where ¢ is an &-quasi-continuous version of
¢, In (X,) = In(p vV 8XX,). Clearly, In(p vV 8) € D(&). For 7:=lim; 47
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we define on {¢ < 7},
Mlln ¢l = M[ln(fp V&)

Here for € D(&) we let M["] denote the continuous martingale additive
functional of the Fukushima decompos1t10n of (l,ll(X ) — Y(Xy)), o (cf. [15],
Section 5.1 and [20], VI.2.5). We now consider the process M?, which is the
Girsanov transform of M with the multiplicative functional

L[t‘P] = exp(Mtlln el _ %(M[ln ‘p]>t)I(t<'r}

({+) denotes the quadratic variation of a martmgale) Then M* is associ-
ated with a Dirichlet form on L?*(E; ¢?>m®') that extends (£¢, FCY).
Hence, (¢, #C}) is closable. [Note that the closure of (£, #C5) may not
necessarily be equal to the Dirichlet form of the process M“’] Hence we can
also take the forms (&%, #C}) on L*(E; ¢2m®V) as a starting point for our
Theorem 2.4 (and also Theorem 3.5, cf. Section 5.2.3) and we can consider
their perturbation in Section 5.3. Let us first consider their generator.

5.2.2. Generator of (£¢, D(£°%)). Let ¢ € D(&) with ¢ > 0 m™-a.e. Set
@, =@ A n n € N. Then ¢, € D(&) and each ¢, is bounded. Let u, v € C5.
Because ¢2 € D(£), we have by (2.18),

& (u,v) = %[FFV(u, v) @2 dm™
= %[I‘Fv(u, vqof) dmFV — %[I‘FV(u, (p,f)vdeV

= —fLFVu ‘vp2dm™V — fI‘FV(u, ®,) @,vdm*Y
Clearly, &¢(u, v) » &“(u, v) as n - © and
—fLFVu-vq:,f dm™ —=o - [LFVu~vqo2 dm,

because L*Vu - v is bounded. Because T'*V(u, u) = 1(Vu, Vu) is bounded, the
last part of Remark 2.6(ii) implies that

[FFV(u,cpn)qonvdeV —= fI‘ (u, @) pvdm®V.
Consequently, for all u, v € #Cj,
&°(u,v) = —'/‘qu-vqo2 dm¥V — [rp'll"FV(u, o)ve? dmFv

Therefore, we obtain for the generator (L¢, D(L¥®)) of (£¢, D(&¥?)),
(5.7) $C; cD(L®) and Leu=IL"u + ¢ 'T™(p,u), ueICE,

5 2.3. The process associated with (£°¢, D(&¢)). Let ¢ € D(&) with ¢ > 0
m™'-a.e. According to Theorem 3.5 there exists a diffusion process M¢ = (Q,
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F, (Fis 00 (X150, (P), ) that is properly associated with (&%, D(&?))
and that solves the martingale problem for (L¢, #C}) [cf. Theorem 3.5(iv)]
and can be viewed as a Fleming—Viot process with interactive selection (cf.
Section 5.3 for the definition of a Fleming—Viot process with selection). By
Remark 3.6(iii), ¢%m is the invariant measure of M¥. We recall that Theorem
4.1 about large deviations also applies to (£, D(&¢)) and M? [cf. Remark
4.3(D)].

5.3. Nonsymmetric perturbation. So far we have only considered forms
that we obtained as a kind of symmetric perturbation of the form associated
with LFV; more precisely, we only changed m%¥ into ¢?mf’. Our starting
point in this section is a form (£ %, D(& ¢)) of this type, that is, in the notation
of Section 2, m = ¢*’mf¥ and (&, D(&)) = (£¢, D(£*¥)) (which includes the
case ¢ = 1). Then we obtain for every b satisfying (2.9) by Theorem 2.4 that
(&#°, D(&#?)) is a quasi-regular semi-Dirichlet form for a sufficiently big.
According to Theorem 3.5 there exists an associated diffusion M? which by
Proposition 2.7 solves the martingale problem for (LFV + (1/0)T™V(gp, )
—B(, 1) — a, C3). Hence M¢ is a Fleming—Viot process with “interactive
selection” in the following sense:

1. A Fleming—Viot process with selection, as defined in [6], 10.1.1 and [13],
Chapter 3, is a solution of the martingale problem for (L*, #C3) with

(58)  Lu(w) =L"u(u) +(Vu(p), V(1) ueIC;,

where V(u, x) = [5v(y, x)u(dy). In [6], 10.1.1 (resp. [13], Chapter 3) the
function v(y, x) is called the fitness function (resp. selection intensity) and
is assumed to be bounded. It describes the relative fitness of allele
y compared with allele x. It is therefore reasonable to assume v(y, x) =
v(x, y).

2. We call a solution of the martingale problem (L*°, #Cj;) with L° defined in
(5.8) and with an arbitrary measurable function V(u, x) on E X S a
Fleming—Viot process with interactive selection. The function V(u, x) now
quantifies the fitness of allele x compared with the fitness of all possible
alleles in the support of u. Hence our process M? (up to the killing ) has
the fitness function

_ Veo(w)
(5.9) V(w, x) = -———qo( 0 +b(p, x).
If
V.o( 1)
) sw:lbpsg.p W+b( , X)| < oo,

this process can be constructed by Dawson’s Girsanov transformation [6],
10.1.1, which gives also that the corresponding martingale problem is well-
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posed (hence unique). This implies that our process M¢ is (up to the killing
@) equivalent with Dawson’s in this case. Finally, we emphasize that for the
existence of M? we only need to assume that ¢ € D(&), that ¢ > 0 m™-a.e.
and that sup,||6(u)ll, < . However, the price we have to pay is that, in
contrast to [6], we have to assume neutral mutation (cf. Section 5.1).

REMARKS. (i) Note that in item 1, because v is symmetric, we have that

V(u, %) = 3V.4(p) where y(pn) = [ [v(x, y)u(dx)u(dy).
Hence, if ¢2 = e’ € D(&), then
V(n, x) = 7'V, 0(n)

and (&%, D(&*)) yields a Fleming—Viot process with selection and invariant
measure ¢2m®", which is moreover the reversing measure.
(ii) We know that if » additionally satisfies

[, Vv) + av)e? dm™ 2 0 forallv € #C5, v > 0,

then (&2, D(&?)) is a Dirichlet form [cf. Remark 2.6(ii)]. Hence if b = Vw for
some function w € D C L satisfying L*w < a Ge., ['w <a if =1,
which is, e.g., fulfilled for a w € FCj, if « is sufficiently big), then M® has a
dual process M? [cf. Remark 2.6(iii) and Theorem 3.5(iii)].

6. Support properties in the general case. Consider the form &?°
given in Definition 2.1, and assume that the conditions of Theorem 2.4(i) hold
so that (&2, D(£?)) is a semi-Dirichlet form. Then by Theorem 3.5, (£2,
D(&?)) is quasi-regular and there exists an E-valued diffusion process M :=
(Q, & (%50, (X150, (P), e ) properly associated with (£°, D(£?)). An
important consequence of this association is the following lemma. This is [20],
Chapter IV, Proposition 5.30, but modified to exploit the fact that (X,), , has
. continuous sample paths.

LEMMA 6.1. A set B € B(E) is &’-exceptional, if and only if
P(wl130<t<{(w)sothatX,(w) €B)=0 for&? q.e.p.

This says that the process (X,),,, will only hit &?’-nonexceptional sets.
Therefore, we can study the same path properties of (X,),  , by determining
which sets are &%-exceptional. ‘

Lemma 2.5(ii) compares the two forms &, and &/ and shows that the
closed domains D(&;) and D(&/)-coincide and that the norms (£2)'/2 and
&}/? are equivalent there. It follows that the notions of a nest, and hence of
an exceptional set, are also the same for these two forms. In other words, it is
without loss of generality that we take b = 0-and look only at the symmetric
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Dirichlet form (&, D(&)), which is the closure of

&(u,v) = f(Vu( w), Vo(u)d.m(dp) = fI‘(u, v)dm, u,ve€ZFCy.

LEMMA 6.2. Suppose (u,), <y is a bounded sequence in D(&), (@,), . are
&-quasi-continuous m-versions of (u,),cn and @, > u &-qg.e. on E. Then
u € D(%) and u is &-quasi-continuous.

() If, in addition, there is h € L'(E; m) so that-for some v € D(&), we
have I'(u,, v) < h, then I'(u, v) < h.
(ii) Alternatively, if T'(u,, u,) < h, then I'(u, u) < h.

ProoF. Because (u,),.n is bounded in D(&), there is a subsequence
(2,,)y cn Whose averages wy = (1/N )N u,, converge strongly to some
limit w € D(&), and so that &-quasi-continuous m-versions Wy of wy con-
verge £-q.e. to an &-quasi-continuous m-version @ of w. Because the func-
tions &, are already &-quasi-continuous, and because they converge &-q.e. to
u, it follows that u itself is an &-quasi-continuous m-version of w.

In addition, in case (i) we have that, in L(E; m),

1 X 1 XN
I'(u,v) = lerlfiﬁk;r(u"k’ v) < Z\ITIRONk§1h =h,
whereas in case (ii) we get
1 N 1 N
[(u,u) = 1%_13101“ nglunh, Nk§lunh
1 N
< am e, &, D tn)
i,j=1
1 XN 9
< lim — rvz I2(u,) <h. m|
Nl_I)I}w N2 i,jZ=1 (un,) ( nj)

The following lemma shows that we can replace the bounded continuous
functions f; in (2.7) by bounded measurable functions, and the function u is
still an &-quasi-continuous member of D(&).

LEMMA 6.3. For any ¢ € C*(R*) and f, € #,(S), i = 1,..., k, the function
(6.1) u(p) = e(u(f1),-- w(f))

is an &-quasi-continuous member.of D(&) and for m-a.e. u € E we have
a

D) (B) = £ (i) os F)) o (W £ D o
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ProoF. Let #Z={g € %,(S)| u— u(w) = u(g) is an &-quasi-continuous
member of D(&) and I'(v) = (g, g).). Then #Z is a linear space containing
C,(S). Suppose g, €E#and g, 1 g € %,(S). Then u(g,)t u(g)atevery u € E
and so u,(u) = u( ) boundedly pointwise and so in L*(E; m). Also, we have

F(un - um)( #‘) = <gn _gm>l—l'
< [(&n — 8n)"(x) (%)
< 4(ligl + llg,lI2).

Letting n, m — », we see that I'(,, — u,,) = 0 pointwise boundedly, and so
also in L'(E; m), so that (u,),cy is &;-Cauchy. By Lemma 6.2, u(u) is an
&-quasi-continuous member of D(&) and because I'(z,) — I'(u) in L'(E; m)
as n — », we find that I'(x) = lim,{g,, g, = (&, &u. Therefore, g €.# and
so the monotone class theorem says that #=%,(S). The rest of the proof
follows from general results on the calculus of square field operator Dirichlet
forms; see, for example, [4] or [26]. O

REMARK. By Lemma 6.3, the definition of (£, D(&)) does not depend on
the topology of S, but only on &(S).

Interpreted in terms of the process (X,),.,, Theorem 6.4 (in connection
with Lemma 6.1) shows that if X, does not charge a set F at fixed times, then
the measure X, will never charge F.

THEOREM 6.4. Let F € B(S). If W(F) = 0 for m-a.e. u € E, then u(F) =0
for &-q.e. u € E.

PrOOF. The result follows immediately from the fact that w(F) is &-
quasi-continuous (cf. [20], IV.3.3(iii)). O

THEOREM 6.5. If m-a.e. u is purely atomic (i.e., L,.g p({x}) = 1), then
&-q.e. u is purely atomic.

COMMENT. Applied to the symmetric Fleming—Viot process with bounded
mutation operator, Theorem 6.5 shows that for &-q.e. u, X, is purely atomic
P, a.s. In this special case, this was first proved by Ethier and Kurtz (cf. [12],
Chapter 10, Theorem 4.5 and [13], Theorem 7.2).

Before we can prove Theorem 6.5, we need some preparations.

DEFINITION 6.6. Let & = (A})7,_, be a collection of Borel subsets of S so
that:
() For every n, (A})7_; is a partition of S, that is, S = U7_; A} and
Al NA} = fori+j. '
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(ii) diam(A?}) < 1/n for all j > 1.
(i) (A}* 1);‘;1 is a refinement of (A})7_,, that is, for each n, j > 1 there
exists i > 1so A}*! C A7,

LEMMA 6.7. With & defined as above and p any finite Borel measure on S,
we have

inf sup (A7) = sup u({z}).

xS

PROOF. Because (A;‘)"f’= 1 covers the whole space for each n, it is clear that
sup; u(A}) > sup, g /.L({Ix}) for every n > 1.

Now suppose inf, sup; w(A?) > ¢ > 0. For each n > 1, choose j(n) so that
u(A},)) = c, and define n* = sup{m | A}, N A%, # O} If n* < for all n,
then let n; = 1 and n,,; = n} + 1. However, the sets (A%, ,); <\ are disjoint
and /.L(A}l(‘nh)) > ¢ for every k € N. This is a contradiction, so n* must be
infinite for some n. In other words, there exists an increasing sequence
(n;);cn so that A%, 2 A%, for all i > 1. By Definition 6.6(ii), the intersec-
tion contains at most one point, and because M(A;?(‘,,i)) >c for all i > 1, we
conclude that there exists x € S so that {x} = N; A}‘("n,.) and w({x}) = c.
Taking the supremum over such ¢, now shows that inf, sup; u( AY) <

Sup,e s I‘l‘({x}) O

PROOF OF THEOREM 6.5. From Lemma 6.3 we recall that for any Borel set
B c S, the function u — u(B) is an &-quasi-continuous member of D(&) and
I'(u(A), w(B)) = w(A N B) — W(A)u(B) < u(A N B).

Now let & be the collection in Definition 6.6 and for any Borel set B define
op(p) =sup?_; (BN AT?), p € E. Then ¢'p is an &-quasi-continuous
member of D(&) and for every n,, ny, m,;, my, € N and A, B € B(S) we
have, by [23], the proof of Lemma 3.2, that

T(enia> ems) < supT(p(A NAT), w(B NAJ?)) < u(A N B).
i

In particular, taking A = B, the sequence (¢]'3),.n satisfies &(¢'p) =
JT(eg)dm < [u(B)dm < 1, and because ¢'p are uniformly bounded
pointwise by 1, we conclude that (¢,"z), <y is bounded in D(&).

Also ¢’ = @g = supj_; u(B N AT) pointwise everywhere, so we may
apply Lemma 6.2 and conclude that the function ¢g is an &-quasi-continu-
ous member of D(&) and I'(¢g", ¢"?X ) < u(A N B) for any my, my, € N
and A, B € #(S). Now applying Lemma 6.2 to the decreasing sequence
(¢f),, <y shows us that all of the functions ¢z = lim,, ¢g' are also &-quasi-
continuous members of D(&) and that I'(¢g, ¢, )(n) < u(A N B). We note, by
Lemma 6.7, that ¢g( u) measures the mass of the largest atom in B of u, for
small enough B.

Now define uy’ = X7, Pam- Then u]' is an &-quasi-continuous member of
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D(&) and because (AT"); .y is a partition,

() (8) = L T(er)(8) + L T(exrr oa7)

j=1 i*j

X

< (A7) +0
j=1
<1
Applying Lemma 6.2 twice more, first letting n — « and then m — «, we
conclude that the limit function u is an &-quasi-continuous member of D(&).
It is easy to check that

]

u(p) = X2 n({x}).
xS
However, because we assumed that « = 1 m-a.e, it follows that u = 1 &-q.e.,
which gives us the required result. O

We now have enough information about the process (X,),., to conclude
that its sample paths are continuous in variation norm. In the special case of
the Fleming-Viot process with bounded mutation operator this was proved
by Shiga [28]. Before we can prove the result, we first require the following
technical lemma.

LeEMMA 6.8. Let (S, d) be a Polish space and let t = u, be a map from R
into .#,(S) satisfying the following conditions:

1. ¢t = p, is continuous into (A#(S), weak).

2. u, is purely atomic for all ¢.

3. There exist sequences, (x,);y dense in S and (r;);y dense in (0, ), such
that () p,(U; jeny 1d(x;, y) =r}) =0 for all t; (b) for every i, j €N,
the map t — sup, . B, w,({x}) is continuous, where B;; = {y | d(x;, y) <r}.

Then t — p, is continuous into (A(S), || - llvar)-

ProoF. We first note that for any y € S and &> 0, we can find B;; so
that y € B;; c{x|d(y, x) < g}. We also note that the boundary of B, is
contained in {y | d(x;, y) =r;} and so has u,-measure zero. Therefore, by
weak continuity, the map ¢ — u,(B;;) is continuous for all i, j € N.

Fix ¢ and suppose that u, has the representation u, = I}_, p,¢,,. Select
k with p, > 0 and choose B;; so that y, € B;; and w,(B{)) =1 — (7p,/6).
Therefore, y, is the unique largest atom of u, in B;;.

Now take & > 0 so small that if s € (¢ — §, ¢ + 8), then

(6.2) |Mt(Bij) - Ms(Bij)l < Ppp/6

and

(6.3) | sup p,({x}) — sup p,({x})

x€B xE€B;;

Py — sup p({x})| <p,/6.

i xE€B;;
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It follows that u, has an atom of mass greater than or equal to 5pk /6 in
B,;, and because u,(B;;) < 8p, /6, it is the unique largest atom of ug in B,;;.
Let us denote it by y(s) and we note that u (B;;\ {y(s)}) < p,/2 for all
se(t—8,t+8).

We claim that s — y(s) is continuous from (¢ — 8, ¢ + 8) into S. To show
this, choose s € (¢ — §, ¢ + 8) and & > 0. Pick B;; C B,;; so that y(s) €Bj; c
{x | d(x, y(s)) < £} and take &’ so small that (s — 6’ s + 8)Yc(t-6,t+ 8)
and if s’ € (s — 8’, s + &'), then | u(B;;) — u,(B;)| < p;/6. Then u.(B};) >
4p,/6, and because u (Bj;\ {y(s)}) < pk/2 we conclude that y(s) € ng S0
d(y(s), y(s")) < &.

Now from the continuity and Lemma 6.8, condition 3(a), we see that
d(x;, y(s)) =d(x;, y(¢)) for all i € N and s € (¢ — §, t + 8), so by taking a
subsequence of (x;);. converging to y(¢), we conclude that y(s) = y(¢). In
other words, the continuous map s — y(s) must be constant. Therefore,
sup, g, #s({x}) = p{y,)) for all s € (t—-6,t+96).

Choose N so that u,({yi,.. ,yN}) =YY  p.=>1- ¢ and choose 6* so
that if s € (t — 8*, ¢ + 8%), then L}_,| u({y,D) — n{y:D| < &. For any Borel
set B, we write

N
(6.4) B = kL=Jl(B N {y:}) U (B\{y15--->n))>

and so
| ns(B) — p(B)I
< |;LS(B\ {yl,"-’yN})l + |p“t(B\{y1"~~’yN})|

N
+ k§1|p~‘t({yk}) = ps({3:})l

< 4e.

Taking the supremum over B € %(S) gives |lu, — p;llvar < 4, which
proves the continuity of the map ¢ — u, at the point ¢. Because ¢ was
arbitrary, this gives the result. O

THEOREM 6.9. If m-a.e. u € E is purely atomic, then

P (t - X, is continuous in variation norm) =1

for &q.e. pn € E.

PrOOF. From Theorem 3.5(ii), we already know that the process has
continuous sample paths when .#,(S) is equipped with the weak topology.
From Theorem 6.5, we know that

. (6.5) P(X,is purely atomic for all ¢ > 0) = 1

for &-q.e. u € E. Now let (x,), .y be any countable dense set in S and choose
(r})jen dense in (0, «) so that vo(F) = 0, where F = U, {y | d(x;, y) =r}
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Here v, is the mean measure of m; that is, v, :== fum(du). By Theorem 6.4,
we conclude that P (X,(F) =0 for all ¢ > 0) = 1, for &-q.e. u € E. Also, in
the proof of Theorem 6.5, we have proved the &-quasi-continuity of the map
= sup, . g u({x}) for any Borel set B, and so for every i, y € N (by [19],
1V.5.30),

(6.6) PM(t ~ sup X,({x}) is continuous) =1
x€B;;
for &-q.e. u € E, where B;; is defined as in part 3(b) of the statement of
Lemma 6.8.
Finding a common set of P,-probability 1 for &-q.e. u € E on which all of
these (countably many) conditions hold and applying Lemma 6.8 gives the
result. O

7. Support properties in the perturbed Fleming-Viot case. We
continue to explore the sample path properties of (X,),., by looking for
&P-exceptional sets, but specialize to the case where m = ¢2m™ (ie., the
Fleming—Viot process with interactive selection; cf. Section 5.2). We make the
additional assumption that c; < ¢? < ¢, for constants c, > ¢, > 0. This
means that a set B is &’-exceptional if and only if it is £-exceptional, where
& is the form associated with the unperturbed Fleming—Viot process. That is
(&, D(&)) is the closure of

&(u,v) = [(Vu(p), Vo(p)um(du) = [T(u,v)dm, u,ve€FC,

where m = m" is the symmetrizing probability measure for the
Fleming-Viot process. When we want to emphasize the dependence on 6 and
vg [cf. (5.1)] we will use the notation II, , = m. Our ability to judge whether
or not sets are &-exceptional depends to a great extent on our understanding
of the measure m. So let us begin with a few observations about the measure
m. It is immediate that if vy(F) = 0, then w(F) = 0 for m-ae. u € E, and
also that m-a.e. u is purely atomic. The quasi-everywhere versions of these
statements now follow from Lemmas 6.4 and 6.5. In fact, because m only
charges the set of purely atomic measures on S, all results from Section 6
apply here.

From Lemma 7.2 it follows that if v,(#) > 0, then w(F) > 0 for m-a.e.
w € E. In addition, from the fact that P(p;, > 0) = 1 for all i € N, we see that
if v, is nonatomic, then m-a.e. u has infinitely many atoms. In Proposition
7.6 and Corollary 7.10, we see that the corresponding quasi-everywhere
statements are not true in general, but depend on the mutation intensity 6. If
there is a lot of mutation (6 is large), then the measure X, tends to be more
spread out, whereas if there is very little mutation (6 is'small), the support of
the measure X, occasionally collapses, in extreme cases even to a single
point. .

Thé following family of Dirichlet distributions, which are multidimensional
analogs of the Beta distribution, will appear throughout our calculations in
this section. -
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DEFINITION 7.1. If 6,,...,6, > 0, then the Dirichlet(6,,..., §,) distribu-
tion is the measure on

n
S, = {xeR”IxiZOVi, in=1}
i=1
given by
ree, + +0)
r(e,) - l“(‘9)

LEMMA 7.2, If (A))}, is a measurable partition of S, then under 11, , the
random vector ( p,(Al) ., w(A,)) has a Dirichlet(6vy(A,), ..., 0v(A, )’ dis-
tribution on S,. In addttwn if vo(A) = 0, then u(A) = 0 m-ae. n €E.

v(dx) = oo xfnmlday e dx, g

ProoF. For 1<i <n, choose x; €A; and define 7, =X} ;v,(A)e,.
From the formula for the invariant measure, it is clear that (u(A,), ..., u(A ))
has the same distribution under I, , and II, ; . The result now follows from
Lemma 2.2 of Ethier and Griffiths [11] where the lemma is proved to hold
under II,; .

For any Borel set A in S, we have

[1(A)ym(dp) = B( L nee( 4)] = LE(p)E(s(4)
= ZE( pi) P( f; €A) = ZE( pi)vo(A) = vo(A).

Therefore, if vo(A) = 0, then u(A) = 0 m-a.e. O

LEMMA 7.3. Suppose U= (U,,...,U,) €S, has a Dirichlet(6,,...,6,)
distribution, that V = (V,,...,V,_,) € S, _, has a Dirichlet(6,, , ..., 6,) dis-
tribution, R has a Beta(8, + --- +0,, 6,,, + --- +86,) distribution on (0, 1)
and that U, V and R are independent. Then W :=(RU,;, RU,,...,RU,,
(1-R)V,,...,A-R)V,_,) €8, has a Dirichlet(d,,..., 6,) distribution.

PROOF. Let 6, = 6, + - +6, and 8, = 0., + +-- +6,. Define two proba-
bility measures on S = {1 .,n} by v,(i) = 6,/6, for 1 < i < k (zero other-
wise) and v,(i) = 6,/6, for k + 1 < i < n (zero otherwise). Let u; and u, be
random measures with distributions IIj L and II; , , respectively, and
independently of those let R have a Beta(d,, 6,) distribution. By Lemma 2.1
of Ethier and Griffiths [11], the random measure u = Ry, + (1 — R)u, has a
l'Io , distribution, where 6 == 6, + 0, and »(i) == 6,/6 for 1 < i < n. Apply-
ing Lemma 1, we have

(1a({1})s--, ma({k})) ~ Dirichlet(6,...., 6,),
(me({k +1}),..., uy({n})) ~ Dirichlet(6;.,,..-,6,),

(m({1}),..., u({n})) ~ Dirichlet(6,...,6,),
which gives the requires result. O
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LEMMA 7.4. Suppose that 1 <k < n, and let v be the Dirichlet(6,,..., 8,)
measure on S, and ¥ be the Dirichlet(6,,..., 6,) measure on S,. Then, for
every w € C*(R").

1({1-6,)T(6,+6,
2\ 2% |Tr(6,)T(8,

< [ ((w), a(w) W (w))ar + ¢*(w))7(dw).

))[Sk¢2(u1,...,uk,0,...,0)1/(du)

Here 6, =0, + - +6,, 6,=0,.,++6, and for weS,, a(w) is the
n X n matrix wzth entries a(w);; (wl 8” w;w;). Also B:={w eS8, |
TE L w, > 1/2)

ProorF. Without loss of generality we assume that (;2 <1 Fix u=
(uy,...,u,) €S, and v = (vy,...,v,_,) €8S,_,. For r €[0, 1] define w =
w(r) = (ur,...,u,r, v(1 —r),...,v,_,(1 —r) €8, (cf. the statement of
Lemma 7.3) and ¢: [0, 1] » R by ¢(r) = 2r — 1)*¢(w(r)). Because ¢ is
absolutely continuous and vanishes for r < 3 we have ¢(1) = — [, ¢'(r)dr
and so

¢*(1) < (f11/2¢'(r) dr)

Q:t

(7.1) )
X[rw )r()

6
(6, + 6,)

/-\
v
A

D

fll/zr_él(l — }')_62 dr]
r(6,)T(6,) 2% }

T(3,+ 6,) 10

< [f ' (e'(r)*r( - 1) F(r) d][
1/2 )
where f is the density function for a Beta(6,, 6,) distribution. Now ¢(1) =
Y(uy,...,u,,0,...,0) and
@'(r) = (2r — 1) (VW (w(r)), (Ugser Uy, —V1reer, Uy 3) g
+ 21,5 4(r)d(w(r)),

so that .
(@' (1)) < 2V (W(F)), (U1yerer g, Visenrs Uy_y)Vin

+ 8151 (r) ¥ (w(r)).

Letting e, denote the vector in R” whose first £ entries are 1, and the

(7.2)"
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remaining entries are 0, it is easy to check that
r(L—r)(%y,... Uy, —Uq5..0s —U,_p) =a(w(r))e,,
and so
(VW (w(r)), r(1 —r)(uy,...,uy, —Ug,..., —vn_k))%p
= (W (w(r)), a(w(r))e i
< (Vi (w(r)), a(w(r)) W (w(r))dar(es, a(w(r))eyas
= (VW (w(r)), a(w(r))Vy(w(r)))r-r(l-r).
Dividing by r(1 — r) gives
r(1 = r){Vg(w(r)), (&g, 84, —Vq,.eey —Up_p)R"
<AV (w(r)), a(w(r))Vi(w(r)))r-.
Also, because r(1 — )81, 5 ;(r) < 2, using (7.2) and (7.3) we get
r(1=r)(¢'(r)" < 2Vp(w(r)), a(w(r)) Ve (w(r)) e + 2¢*(w(r)).

Now use the fact that ¢(1) = ¢(uy,...,u,, 0,...,0) and plug back into (7.1) to
obtain

1(1-6,) (6, + 6,)
2\ 2% |r(6,)r(6,)

< fll/z«Vt/f(w(r)), a(w(r))V(w(r))er + ¥*(w(r)))f(r) dr.

(7.3)

U2 (U, uy,0,...,0)

Now integrating both sides over u € S, with respect to » and over v € S, _,
with respect to Dirichlet(6,, ,,..., 6,) measure, and using Lemma 7.3 gives
the result. O

LEMMA 7.5. Let D be a dense subspace of D(&) that is closed under
composition with smooth functions that vanish at the origin. Let D = {@i | u €
D} be a collection of &-quasi-continuous m-versions of u € D, such that if
u=>0 m-ae., then i(u) >0 for all w € E. If v is a finite positive Borel
measure on E so that

(7.4) e [a(p)v(dp)

is continuous from (D, é;ll/ %) to R, then there exists a itnique Borel measure v*
on E, which charges no &-exceptional set, so that

(75) [a(wyv(du) = [ w)r*(dm)

for @ € D.
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ProOF. The map (7.4) extends by continuity to a continuous linear func-
tional on (D(&), £1/2), which is represented by an element v € D(&); that is,

&i(u,v) = [@(p)v(du) foru €D,

We want to show that v is 1-excessive. Let ¢, be a sequence of positive
smooth functions on R, such that ¢,(0) = 0, ¢,(x) — |x| and |¢,(x)| < 1. For
u €D let u, = ¢(u) so that u, - |u|in &, and thus

&((lul,v) = lim &(u,, v) = J#(2)v(dz) = 0.

Now for an arbitrary u € D(&), let u, € D so that u, > u in &}/?norm,
which implies that |u,| — |u| in D(&), so

&(lul, v) = lim &(lu,l, v) > 0.
n—o

Therefore, v is 1-excessive. Let D(&) denote the set of all &-quasi-continuous

m-versions of all elements in D(&). Now by [20], VI.2.1, there is a unique
o-finite positive measure v* on (E, #(E)), such that »* does not charge any
&-exceptional sets, D(&) c LNE, v*) and

&(u,v) = [a(p)v*(du)

for all u € D(&). In the preceding integral, the choice of the £-quasi-continu-
ous version of u does not matter, so, in particular, for « € D we may choose
the &-quasi-continuous version @ € D as in the statement of the lemma.
Therefore, (7.5) holds for & € D. O

PROPOSITION 7.6. Let F be a Borel set in S so that vy(F) < 1. Then
w(F) > 0 for &-q.e. u € E if and only if Ovy(F) > 1.

PROOF. <:The random variable u — u(F) on (E; m) has a Beta distribu-
tion with parameters 6v(F) and 0vy(S \ F) (cf. Lemma 7.2). For n > 1 define
u, € D(&) by u,(n) = ¢,(u(F)), where ¢,: [0, ®) - R satisfies ¢ (x) =1 —
nx for 0 <x < 1/n and ¢,(x) = 0 otherwise. Hence by Lemma 6.3,

[ (s u,) = en( w(F))*(w(F) = w(F)?),
and so

E(uy) = [T(uy, u,)(w)m(dp)

= fn2(M(F) - Mz(F))l(OS,u.(F)gl/n)m(dl-L)
(7.6) . |
= cn2j;)1/ (y f’yz)ero(F)—l(l _y)OVO(S\F)—l dy

< c’n2(1/n) Ovo(F)+1

— plypl—0vo(F
=c'n vo( )’
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where c, ¢’ are positive constants that are independent of n. The functions u,
are uniformly bounded by 1, and because we have assumed v (F) > 1, (7. 6)
shows us that (u,),cy is bounded in &£2norm. The functions u, are also
&-quasi-continuous (cf. Lemma 6.3) and u,(u) — u(p) = 1,0 p01ntW1$e
on E, as n — «, By Lemma 6.2, u is an &-quasi-continuous member of D(&).
However, u = 0 m-a.e., so u = 0 &-q.e., which gives the result.

= : We assume 0v,(F) < 1 and apply Lemma 7.5 to prove that the set
{w | u(F) = 0} is not &-exceptional. We first need a few definitions. Define a
probability measure on S by 7y(A) = vo(A N F°)/vy(F°), and then define a
related measure on E by v:=1Il,, pe ;. Let & ={(A)/_;1(A)}_, is a
measurable partition of S for some n ‘with’ VO(A )> 0V, Fe = AU UA,
for some 1 < k < n} and define

D= {ueD(®) lu(p) = #(u(A),.., u(4,));
(Aj);;l e, ¢ € C*(R") for some n € N}.

By Lemma 6.2, it is easy to see that D is dense in D(&,). We let D be the
obvious set of &-quasi-continuous m-versions of D by putting a(uw) =
Y(u(Ay),..., u(A,)) (cf. Lemma 6.3). By Lemma 7.2, under m if (A))}_; €+,
the random vector (u(A,),..., u(A,)) has a Dirichlet(0v,(A,),.. 0V0(A )
distribution, which has full support on S,, so that if u > 0 m-a.e,, then =0
everywhere on E. Under v, the random vector (u(A,),...,u(A,)) has
a Dirichlet(6vy(A)),..., 6v,(A,)) distribution, whereas w(A;) =0 »-a.e. for
k + 1 <j <n. In particular, v only charges the set { x| u(F) = 0}. Apply-
ing Lemma 7.4 (and Lemma 6.3) shows that for « € D we have

1(1- 6vy(F) INE)) o
2T Ty /T S Ei )

Because 0v,(F) < 1, this shows that the map u — [#dv is continuous in
&}/%-norm and so we can apply Lemma 7.5 to find a measure »* on E, which
does not charge g-exceptlonal sets, and so [ddv = [iidv* for & € D. Be-
cause 1 € D, we find that »* is a probability measure on E. Now let ¢ be a
smooth function on R with ¢(0)=1 and ¢(x) <1 for x # 0. Then 1=
[ w(F)v(dp) = [e( u(F))v*(dw), which implies that the probability mea-
sure v* has all its mass on the set { u | w(F) = 0}. Because v* does not charge
&-exceptional sets, we conclude that { u | w(F) = 0} is not &-exceptional. O

COROLLARY 7.7. For fixed x,...,x;, in S, if vo({x4,..., x,}) > 0, then
k k
plp= Y pe,,p;=0, Y p= 1}
i=1 i=1

is &-exceptional if and only if

Ovo(S\{x1,..., x,}) = 1.
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PrOOF. Apply Proposition 7.6 to set F = S\ {x,..., x;}. O

The next main result. Theorem 7.10, tells us when the entire collection

k k
plp= Y pe,,x%€8,p;=20, Y p= 1}
i=1 i=1

is &-exceptional. Here the points x,..., x, are allowed to range over all of S.
Before we can prove Theorem 7.9 we need an additional lemma.

LEMMA 7.8. Suppose that (X;,...,X,) has a Dirichle(6,,..., 6,) distri-
bution. Define 6 =0, + - +6, and for 1<k <n, 6, =inf; ,; 60—
(Oil + .- +0ik).

(i) There exists a constant c(0), depending on 0 but not on n, so that when
& < 1/2, we have

(1.7) P(maxX,> 1+ ¢) <c(6)ed.

(ii) For 1 < k < n there exists a constant c(0, 8, k), not depending on n, so
that if 0 < ¢ < 8 < %, we have

P max (X, +- X, )<1-23,
i1

[1yeves i1

(7.8) _max (X. + - +X ) >1- s)
<c(0, 8, k),

ProoF. (i) First note that P(max; X;>1-¢)< X! P(X;>1- &)
Now X; has a Beta(§,, 6 — 6,) distribution and so, using the fact that
exI'(x) > 1 for all x > 0, we get

(9
P(Xiz1-e)= [ er(e)r((o) )
- 2T(8) &%
= T(6,)T(0—06,) 0— 0
< 2T(0)06,e%0 %
< 2I'(6)6,e%%,

Adding up over i gives P(max; X; > 1 —¢) < 2I‘(0)0e i, which proves (i).
(ii) To prove (ii) we first note that :

xoi_l(l _ x)(O—Oi)—l dx

P( max (X, +-+X, ) <1-28, max (X, + +X,) 21— s
i1

L1yeees 127 N 2PN
)

< Y P(X,z28,1<j<k; X+ +X, >21-¢).
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Let iy,...,i, be any set of k£ distinct indices between 1 and n, and set
(Yy,...,Y,) =(X,,..., X;). This random vector has a density on {y R* |
y;,20,1<i<k; Xk y <1} given by

é‘y{’il_l ylgik_l(l — (yl 4 oo _yk))[o_(9i1+ "'+9u)]_1’
where
3 r'(9)
¢ = .
r(6;,) T(6;,)T(60— (6, + +6,,))

Therefore, bounding each y;6% by 6 ' and integrating, we find that
P(X,>28,1<j<k; X, + +X, 21-¢)
J k

£ (Biy+ = +65)

(0— (0, + - +6, )

—k

<¢d

<T(9)67*e**1(g, - 6, )e%.
Adding over all k-tuples (i,,..., ;) of distinct indices gives
Y P(X,28,1<j<k;X, + - +X, 21-¢&) <T(0)67 9te** e,
iyeeerip

which gives the result. O

THEOREM 7.9. For every k > 1, the set

k k
plp= Y pe,;x€8,p;20, Y p=1
i=1 i=1
is &-exceptional if and only if

0 inf po(S\{xy,...,x,}) = 1.

Kyyouns Xp

PrOOF. = : First we consider the case when 6 < 1, and we show that the
set {¢, | x € S} is not &-exceptional. The case when v,, itself is a point mass is
trivial, so we assume v, & {¢, | x € S}. Define a nontrivial measure v on
{e, | x € S} C E by letting v be the image measure of v, under the mapping
from S to E, which sends x to &,. Similarly as in the proof of Proposition 7.6,
let o = {(A); | (A), is a measurable partition of S with 0 < v,(4;) <d
for 1 <j < n}, where sup, v,({x}) <d < 1, and define

D= {ueD(&)1u(p) = ¥(#(AL), .., 1(A,)),
(4))j-1 €, ¥ € Ci(R"), n €N},
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For u € D, we have
n

(7.9) Ja(w)*v(dn) = L vo(A) ¥ (),
im
where e; is the point in S, whose ith entry is equal to 1.

Under m, the random vector (u(A,),...,u(A,)) has the Dirichlet
(6vy(A)), ..., 0v,(A))) distribution on S,; let us denote this measure by 7.
Then, letting ¢ = sup, . , .y x['(x) and using the definition of the constant d,
along with Lemma 7.4 (with 2 = 1 and » the point mass at e;), we get for
each i,

1(1-90)
2 0

vo(A;)e*(1 - d)T(0)y*(e;)

11— 6vy(S\4,) T(0)

=3 9070(4) T(6vy(A))T(6vo(S\A4,)) vi(e:)

IA

'[9 n(w|w~>1/2}(<v¢(w)’ a(w)V(w)dre + ¥2(w))v(dw).

Because the sets {w | w; > 1/2} are disjoint, we may add these inequalities to
obtain

1(1- 5
2 (7@ - ) L wcanuice
< fs (Vg (w), a(w) Vg (w)dre + ¢*(w))7(dw).

Because 6 < 1, this means that there is a constant c¢(0, d) > 0 so that for
u € D we have

(7.10) [@(w)v(du) < (8, d)&,(u, u).
The rest of the proof of this case now follows as in Proposition 7.6.

Now suppose that §inf;  ,; vo(S\{x,,...,x; }) <1 and 6> 1. Then
there exist %,,...,%, € S"50" that vo( Zi5..5 %D >0 and 6ry(S\
{#,,....,%5,D <L By Corollary 7.7 we find that the set

k k
{M|M= Y pies;pi 20, Xp; = 1}
i=1 i=1

is not &-exceptional, and so the bigger set

k k
{,ulu= Y pie;%€8,p, 20, Zpi=1}
i=1 i=1 )

is also not &-exceptional.
«<: Let & = (A}); ,cn be a sequence of partitions as in Definition 6.6, and
forn,mENandlsk<n,deﬁr'1e

u’rel,m( /~") = . sup M(A;‘l) + .. +/-L(A:“k)~
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As m — «, up . converges pointwise boundedly to
uf(m) = sup p(AR)-+ - w(AL),
Tyyeeesily
and as n — «, u} converges pointwise boundedly to
up(p) = sup p({x;,...,%;,})
T1yeeesiy

This can be seen in Lemma 6.7. As in the proof of Lemma 6.2, one can show
that u, is an &-quasi-continuous member of D(&), with I'(z,) < 1 m-a.e.

Next we need to know how likely the function u, is to be close to 1, under
m. We begin with the case £ = 1 and get a bound on m(u; > 1 — ¢). P1ck N
so large that inf; v,(S \ A¥) > 0. For n > N, choose m so large that

m
Vo( ‘U1A;‘) > iIilfvo(S \A?).
Jj=

Defining (X,..., X, 1) = (u(A}),..., u(A2), u(S \ U7, A7) and applying

Lemma 7.8(1) to the nontrivial subvector of (Xl, m+1), that is, taking
only those i with m(X; = 0) = 0, we get, for & < 3,
(7.11) m(ut, =1—¢&) <c(0)s?PlivoS\AD,

As m = e, m(ut, 21— ¢) > m(ul 21— ¢) for all but countably many
&< 3,and so

(7.12) m(u;21—¢) <m(uf 21— ¢) <c(0)efnlivoS\AD,
As n - =, 9 inf; v,(S\ A?) - 0 inf, vo(S \ {«,}), so we conclude that
(7.13) m(u, > 1— &) <c(0)e®nfivoS\E=D,
Similarly, using Lemma 7.8(ii) we can prove for & > 1.
m(u,_,<1-268,u,>1-c¢)

<c(9,8, k)goinf,«l ,,,,, iy VoS\{Fiy, 2D |

Because our square field operator I' satisfies the chain rule, it is not hard to
show that for any w,,...,w, € D(&) we have
n

1-‘(wl VoV wn) = Z F(wi)l(wi>supj*,~wj)’
i=1

(7.14)

where I'(w, V - V w,) = 0 m-a.e. wherever there is a “tie” that is, on the
set of u € E so that w,(n) = w;(u) for some i # j. Also, we note that

j2 o &
U A} — U Al <e
on the set {pl u(U k_ 1 A") > 1 — &£}. Now let ¢ be an absolutely continuous

function on [0, 1] that vanishes for x < 1 — g,and d = sup,_, .1l@'(x)] < .
Then ¢(u} ,) is an &-quasi-continuous member of D(&) with I'(¢(u} ,,)) <

F(u(AL) + - +u(AL)) = »
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d’%. Applying Lemma 6.2, first to the sequence (@(u} ,)),, <y and then to
(p(up)), cn> we find that ¢(u,) is an &-quasi-continuous member of D(&)
and

(7'15) F(‘P(uk)) =< d281(u,,21—s);

because by calculus for square field operator Dirichlet forms, we know that
I'(p(uy)) = 0 m-a.e. on the set {u, < 1 — ¢}. We define the following abso-
lutely continuous functions on [0, 1]; for 0 < § < 1/2, let yy(x) == (1 —
x/(1 — 8)* and ¢,(x) = (nx + (1 — n))*.

We are now ready to prove the result. We will use induction on &, so let us
begin with the case 2 =1 and assume that 6inf; »o(S\{x;) > 1. Now
consider the sequence v, = ¢,(u,) of &-quasi-continuous members of D(&).
As n > », v,(u) converges pointwise boundedly to v(w) =1, (,y_;- From
(7.15) we get

I'(v,) < n2(1/n)1(u121—1/n)’

and by integrating over E with respect to m and using (7.13) we obtain
1 .
&(v,) < nm(u1 >1- ———) < c(e)nl—omt‘,- vo(S\{=:)
n

Hence (v,),, <y is bounded in D(&) and so by Lemma 6.2 we conclude that v
is &-quasi-continuous. Because v = 0 m-a.e., it follows that v = 0 &-q.e. and
so{umlu(uw) =1 ={ulp=e¢.:xc8S}is &-exceptional.

Now let 2> 1 and assume the result is true for %2 — 1. Suppose
0 inf; ., vo(S\{x;,...,x,}) =1 Then also 0 inf; vo(S \
{x;,...,%;, D =1,s0that {u|u, (u)=1}is &-exceptional.

To prove that {u | u,(n) = 1} is &-exceptional, it suffices for every fixed
8> 0 to prove that {ulu,_(w) <1—-28, u,(u) =1} is &-exceptional
because

{wlup(p) =1} c{plup_o(r) =1}

O U {wlun(w) <1- 2, uy(w) -1}
" on=1 n

»ik—l

Now let v, == ¥y 5(u;_1)p,(w;). As n - o, v, (u) converges pointwise bound-
edly to v(w) = 1y, (- y¥25(¥s_1). As in the case k = 1, calculating I'(v,)
shows that for some ¢ > 0,

I(v,) <énly, <1-2su>1-1/n
Integrating on E with respect to m and using (7.14), we obtain
&(v,) <énm(u,_,<1-28,u,>21-1/n)
. < éc(0, 8, k)t~ 0, o\ D),

Because we have assumed that 6inf;  ; »o(S\{x;,...,x;}) > 1, we see
that (v,), < is bounded in D(&) and so we conclude that v 1s &-quasi-con-
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tinuous. Because v = 0 m-a.e., it follows that v = 0 &-q.e. and so

{wlupy(n) <1-28,u,(p) =1}

is &-exceptional. This gives the result. O

COROLLARY 7.10. If v, is atomless, then &-q.e. u € E has infinitely many
atoms if and only if 6 > 1.
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