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POINT PROCESS AND PARTIAL SUM CONVERGENCE
FOR WEAKLY DEPENDENT RANDOM VARIABLES
WITH INFINITE VARIANCE

BY RICHARD A. Davis! AND TAILEN HSsING?
Colorado State University and Texas A & M University

Let {£} be a strictly stationary sequence of random variables with
regularly varying tail probabilities. We consider, via point process meth-
ods, weak convergence of the partial sums, S, = & + --- +§,, suitably
normalized, when {£;} satisfies a mild mixing condition. We first give a
characterization of the limit point processes for the sequence of point
processes N, with mass at the points {¢;/a,, j = 1,...,n}, where a, is
the 1 — n~! quantile of the distribution of |£;]. Then for 0 < @ < 1 (-« is
the exponent of regular variation), S, is asymptotically stable if N,
converges weakly, and for 1 < a < 2, the same is true under a condition
that is slightly stronger than the weak convergence of N,. We also
consider large deviation results for S,,. In particular, we show that for any
sequence of constants {¢,} satisfying nP[ £, > ¢,] = 0, P[S, > t,1/(nPl &
> ¢,]) tends to a constant which can in general be different from 1.
Applications of our main results to self-norming sums, m-dependent
sequences and linear processes are also given.

1. Introduction. Let {{} be a strictly stationary sequence of random
variables with regularly varying tail probabilities, that is,

(1.1) P[l&] > x] =x7°L(x),
where a > 0, L(-) is a slowly varying function at « and

P[ & > x] P[ ¢ < —x]

e F ™ Plasa 0P

(1.2)

as x > o with 0 < p < 1and g = 1 — p. One of the objectives of this paper is
to investigate the asymptotic distributional behavior of S, :== L7_; § in the
case where a € (0,2) and the dependence between & becomes weaker as the
time separation increases.

In the iid case, it is well known that (1.1) with some « € (0,2) together
with (1.2) are necessary and sufficient for the existence of normalizing
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880 R. A. DAVIS AND T. HSING

constants a,, b, for which (S, — b,)/a, converges weakly to some stable law
with index a [cf. Feller (1971)]. Also, if {£} is iid, (1.1) with (1.2) imply that

L RIS, >t
(1.8) i T > 6]

for any constants ¢, satisfying nP[&; > t,] — 0 [cf. Heyde (1967a, b), (1968),
A. V. Nagaev (1969), S. V. Nagaev (1979) and Cline and Hsing (1994)]. Early
proofs of these results are based on analytic arguments. However, the proba-
bilistic reasoning behind them is that for heavy-tailed distributions, the
distributional behavior of S, is dominated by that of the extreme order
statistics of the summands. In the context of deriving the asymptotic distribu-
tion of S,, this was made clear for the first time in LePage, Woodroofe and
Zinn (1981) for the iid case, and subsequently in Davis (1983) for the
dependent case when the extremes of the process can be approximated by the
extremes of some iid sequence. This approach is particularly appealing in the
dependent case, since, although deriving the distribution of S, directly (e.g.,
by finding the characteristic function) is generally very difficult, handling the
behavior of the extreme order statistics is a typically less formidable problem.

A useful way to capture the information contained in the extreme order
statistics in a sample in this context is through a point process N, defined as
follows. Let a, be such that

" (14) nP[l¢>a,] - 1

(one can choose a, to be the 1 — 1/n quantile of the distribution function of
| €;D. Define the point process

n
(1.5) N, = Zlaj/an,
-

where 8, represents unit point measure at the point x. In order to achieve
distributional stability of N, as n — «, it is necessary to allow for a buildup
of infinite mass at 0. This is handled, for our problem, by defining the state
space for N, to be R — {0} so that compact sets in this space are closed sets
which are bounded away from 0 and + . With that, weak convergence of N,
is equivalent to (joint) weak convergence of the extreme order statistics. It is
easy to see that (1.1) together with (1.2) are equivalent to

(16) nP[ gl/an € ] _)v ”‘()’
where u is the measure

u(dx) = (pax™""Ug(x) + ga(—2) " I, 0(%)) dx

and -, denotes vague convergence on R — {O}: Moreover, in the case that
{¢} is iid, (1.6) is equivalent to convergence of N, to a Poisson point process
with intensity measure u [see Resnick (1987)], from which the asymptotic
distribution of S, is readily obtained. This was the essential idea of LePage,
Woodroofe and Zinn (1981) and Davis (1983). Our goal in this paper is then to
consider the extensions to where the sequence is weakly dependent and yet
has nonnegligible local dependence.
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A very general model is one where the point process N, converges weakly
to a point process which has the representation

E Z 8PiQij’
i=1j=-1

where X7_, 8p, is a Poisson process on (0,®) and ¥7_, 8, , I > 1, are iid point
processes on [ —1,1] — {0} also independent of the Poisson process. We show
in Theorem 2.3 that any weak limit of N, must have this form if { ¢} satisfies
(1.1) and a mixing condition similar in spirit to the condition D used in
extreme value theory. Mori (1977) characterized all weak limits of a point
process related to N, under the strong-mixing condition. However, he took
the state space to be (0, ) so that N, only effectively describes the joint
distributions of the upper extreme order statistics. Here, we are interested in
the joint distributions of the upper and lower extreme order statistics in a
dependent setting substantially weaker than strong mixing. Thus our charac-
terization can be considered an extension of the corresponding result in Mori
(1977). We also establish a new characterization in Theorem 2.5 for conver-
gence of N, which is useful for deriving the limit of N, and for statistical
applications. As an illustration, we consider in Theorem 2.7 the important
example where all finite-dimensional distributions of {£;} are jointly regularly
varying.

In Section 3, we establish the weak convergence of the normalized partial
sums S, = L7_; § from the weak convergence of N, for the case 0 < a < 2.
Some connected results can be found in Samur (1984), Leadbetter and
Rootzén (1988), Denker and Jakubowski (1989) and Jakubowski and Kobus
(1989). See also Durrett and Resnick (1978). However, our results in Section 3
are the most general up to now in this context. Theorem 3.1 shows that for
0 < a <1, 8, is asymptotically stable if N, converges weakly and for 1 < «
< 2, the same is true under a condition that is slightly more than the weak
convergence of N,. The parameters of the limiting stable distribution are
given in terms of the limiting point process in Theorem 3.2.

In Section 4, we consider large deviation results for S, under the general
model as in Section 3 in the 0 < @ < 2 case. The novelty of our approach is
using probability arguments to link the probabilities of large deviations of S,
and the asymptotic behavior of extremes. As far as we know this provides the
first nonanalytic proof of (1.3). The benefit of this approach becomes obvious
when {¢;} is weakly dependent. We show in Theorem 4.4 that for ¢, satisfying
nP[¢ >t¢t,] =0, P[S, > t,]/(nP[ £, > t,]) tends to a constant which can, in
general, be different from 1. This is an extension of (1.3).

Finally, in Section 5, we consider some examples of our main results.
These include self-norming sums, m-dependent sequences and linear pro-
cesses. -

2. Point process convergence. In this section, we first characterize in
Theorem 2.3 the weak convergence of the point process N, defined in Section
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1 under a weak dependence condition. We will also provide a useful device,
contained in Theorem 2.5, for the purpose of identifying the limit point
process. Point process convergence for the case where the finite-dimensional
distributions of {£;} are regularly varying will be presented as an application
in Theorem 2.7.

We will follow the point process theory in Kallenberg (1983). As mentioned
in Section 1, N, is a point process on R — {0}. Write & for the collection of
bounded Borel sets in R — {0}. (Bounded here means bounded away from 0
and +x.) Let ¥ be the collection of bounded nonnegative continuous func-
tions on R — {0} with bounded support and let Z, be the collection of step
functions on R — {0} with bounded support. Write M for the collection of
Radon counting measures on R — {0}. The null measure is denoted by 0. M is
assumed to be equipped with the vague topology and the corresponding Borel
o-field. When speaking of a subclass of M, we assume that it has the relative
topological and measure theoretic structures.

Suppose that {£;} is a strictly stationary sequence satisfying (1.1) and that
{a,} satisfies (1.4). The mixing condition appropriate for this section is defined
as follows. Say that the condition 2({a,}) holds for { §j} if there exists a set of
positive integers {r,} such that r, > ©, r,/n - 0 as n - © and

r [n/r,]
Eexp(— Yy f(fj/an))) -0
j=1

asn > oforall feZ,.

(2.1) Eexp( ‘Elf( fj/an)) -

The convergence in (2.1) is not required to be uniform in f. This is indeed a
very weak condition and is implied by many known mixing conditions, in
particular the strong-mixing condition. Note that the condition is indepen-
dent of the specific a, sequence; if both a, and o, satisfy (1.4), then the
conditions 2({a,}) and #({a,}) are equivalent. A corresponding statement can
be made for the weak convergence of N,. Define &, = [n/r,] and

~ kn~
=ZN

with N, i» 1 <i <k, iid distributed as N = Lj%1 8,4, In view of (2.1),

the condition #({a,}) 1mp11es that N, converges weakly if and only if N, does
and they have the same limit. This is an important ingredient in the proof of
Lemma 2.1 below. Also, for any y > 0, define

M, = {1 e M: u([-5,91%) > 0 and u([ =, =]

. = 0forsome 0 < x(=x,) <00}.

K

 Lemma 2.1. Suppose that the condition «/({a,}) holds for {¢;}. Then N, —,
some N # o if and only if there exists some nonzero measure A on M — {o}
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with [(1 — e *®BYNdpu) < », B €F, such that
(22)  [(A-e*Na(dp) - [(1-e)Ndu), fe5,

where A, = k,P o N 1. In this case, N is an infinitely divisible point process
with Laplace transform exp{— [(1 — e *"Mdw)}, N has no fixed atoms and
the support of P o N~! and that of A are both contained in M,,.

Proor. As mentioned above, N, converges in distribution if and only if
N, converges to the same limit under #({a,)). Also it is clear that N,
1<i<k,, form a “null array.” It follows from Theorem 6.1 of Kallenberg
(1983), that N, -, N is equivalent to (2.2) with A satisfying the described
property. By Theorem 7.1 of Kallenberg (1983), N can have at most countably
many fixed atoms whose collection is denoted here by D. Thus for any x # 0
and ¢, > 0, there exists an ¢ € (0, ¢,) with x — £ and x + & both in D¢ and
having the same sign. It follows by Lemma 4.4 of Kallenberg (1983) that

P[N({x}) >0] <P[N(x —&,x+ &) > 0] = lim P[N,(x — &,x + &) > 0]
< lim nP[ & /a, € (x —&,x + €)],

which can be made arbitrarily small by choosing a small ¢,. We conclude that
N has no fixed atoms. One can similarly show that Wlth probability 1,
N(—x, x]°) > 0 as x — «. Therefore the support of P> N~! is contained in
M,. Finally, by Theorem 6.8 of Kallenberg (1983), the support of A is
contained in that of N and the proof is complete. O

In the proof of Lemma 2.1, we only used the assumption of asymptotic
independence of {¢;} and did not fully take into account the structure of N,,.
As a result the characterlzatlon is not yet complete. We next show that the

canonical measure A of N has to be of a very specific form.
For o > 0, define m,: p - u(o™'+), My, > M,.

LEMMA 2.2. Assume that the condition 5({a,}) holds for {£;} and that the
weak convergence in Lemma 2.1 takes place. Then A = o Aem,, o > 0.

ProOF. It is sufficient to show the result for o > 1. For a fixed o > 1 let
n’' =[o*n]. By (2.1) and the proof of Lemma 2.1,

Ee"p{‘ z f(fj/anf)} > (Bexp(-Nf)"",  fes.
j=1
Since a, /(ca,) - 1, we have -

Eexp{ - .éf(fj/wan))} - (Bexp(-N)”",  fes
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However, we also have
n
Boxp| - £ (8/(00,)| > Be(-m )1, ez
j=1
The result follows from equating the two limiting Laplace transforms. O

For u € M,, let n, = max(0, largest point of u), u_= min(0, smallest point
of u) and x, = max(u,, u_). Define a mapping on M, by

Q: m = (xp,, :u'(xp. ))
The mapping () is continuous with range (0,%) X M, where M ={p € M:
w(—1,1]°) = 0, w({—1} U {1}) > 0}. Denote by B(M) the Borel o-field of M.

THEOREM 2.3. Assume that the condition «({a,}) holds for {‘fj}, and
N, —, some N # o. Then N is infinitely divisible with canonical measure A
satisfying \XM§) = 0 and Ao Q™' = v X @, where @ is a probability measure
on (M, B (M)), y=Mu: p(—1,1]°) > 0} € (0,1] and

v(dy) = yay * Uyg .(y) dy.

In this case the Laplace transform of N is
@) en(-[ [ (- em(-ul(r e @), e
0’'M

PrOOF. For any fixed A € #(M), define a measure
@,(E) =1 Q7 1(E X A), E € 2(0,).
For any o > 0, E € %#(0, »), it follows from Lemma 2.2 that
- @(TE) = Ao QY (dE XA) = Ao, « Q7I(E X A)
=0 A Q" HE XA) =0 @(E).

It is straightforward to show now that @, = @(A) X v, where @(A) is a
constant depending on.A. Regarding & as a measure on (M, Z#(M)), one
obtains the desired decomposition

Ao Q l=pXxa@.
Note that y# 0, since the contrary and Lemma 2.2 imply that A{u:
wl{—0o,0])>0}=0 for all 0> 0 and hence that A is a null measure.
Further observe that

y=Mu w([-1,1]°) > 0} = —log P[N([~1,1]°) = 0]

is the extremal index of (| §;[}. Hence it follows from Leadbetter, Lindgren and
Rootzén (1983) that y € (0, 1]. Thus

o> Mu: u([-1,1]°) > 0} = 1o Q7}((1,%) X M) = y@(M),
showing that & is a probability measure by the choice of y. O
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The representation in (2.3) is not unique. Observe that the function u — x,
could be chosen in different ways, resulting in different representations. The
simplest modification of the x, used here is to multiply it by a positive
constant. However, it is possible to use an entirely different function for the
purpose of characterization. The particular function used here is bicontinu-
ous, making it possible to view the measures v and & as the limits of the
corresponding measures associated with N,, as will be demonstrated in
Theorem 2.5 below.

CoroLLARY 2.4 (Cluster representation). N =; X7_; X7_; &p @ where
Y7_10p, is a Poisson process with intensity measure v, L;_, 8Q ,i>1, are
point processes identically distributed according to & and all pomt processes
are mutually independent.

Proor. The conclusion follows from a comparison of the Laplace trans-
forms of the two point processes. O

REMARK 2.1. It is easy to see that the Poisson process X7_; 8p in the
above corollary has the representation Yi_; 8,1/ar-1/., where I} = Zk 1 Ey,
with E,, E,, ... denoting iid unit exponential random variables.

REMARK 2.2. In the iid case under (1.1), N, converges in distribution if
and only if the tail balancing condition (1.2) holds. In this case, y =1,
@({6,}) =p and @({5_,}) = q so that P[@,; =11 =p and P[Q;; = —1] =
Using the representation given in Remark 2.1, the limit point process takes
the form

N = Z aQilri—l/a’
i=1

which is in agreement with the representation given in LePage, Woodroofe
and Zinn (1981).

From the representation of the limit point process in the iid case, one
readily observes the well-known property that the upper extremes and lower
extremes of ¢,,..., &, are asymptotically independent. However, in the de-
pendent case an upper extreme can in general “trigger” lower extremes
through the dependence of the sequence and vice versa, so that the extremes
on the two ends are potentially dependent in the limit. This was observed by
Davis and Resnick (1985) for moving average processes. Under the condition
#(a,})) and N, -, N, the upper and lower extremes are asymptotically
1ndependent if and only if @{u € M: both p, and u_ are nonzero) = 0. In
general, by writing the Laplace transform of N as

exP{ _f:fm(l — exp(—uf(y ')))é’(du)u(dy)}
* e"p{‘fowfw(l ~ exp(—pf(y ')))cﬂdn)v(dy)},
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where MO ={peM: u,>p_}and M® = {u € M: p, < p_}, one can give
the interpretation that it is possible to classify the extremes into two asymp-
totically independent classes, where in one class the upper extremes are
typically larger in magnitude and in the other class the lower extremes are
more So.

Note that any probability measure @ on M makes the expression in (2.3) a
valid Laplace transform of an infinitely divisible point process on R — {0}. To
see this, take B = [ —x, x]° for some x > 0 and we have

[:fﬂ(l — exp(—u(B/y)))@(du)v(dy)

< [ (1= exp(=n( =1, ~2/5) U (3/5,1]))@(dm) ()

<v(x,%) < ox,

Other criteria could be used to establish the convergence of N,. For
example, the joint weak convergence of the extreme order statistics is obvi-
ously equivalent to the weak convergence of N,. The following result has the
advantage of explaining where the various components of N come from.

THEOREM 2.5. Under the condition /({a,}) for {fj}, the following are
. equivalent:

(1) N, converges in distribution to some N # o.

(ii) For some finite positive constant vy, k,P[V 1| &] > a,x] = yx~%, x > 0,
and for some probability measure & on M, P[L}~, O, /(v &) € AV i &l >
a,x] >, @, x>0.

In this case N is infinitely divisible with canonical measure A confined to M,
and satisfying

Ao Q l=vX@,
where v(dy) = yay *"1dy.

Proor. First assume that (i) holds and that the canonical measure A
admits the decomposition Ao Q™! = » X @. Since N has no fixed atoms,
N,(-x, x]°) »; N(—x, x]°), x > 0, or equivalently N,(—=x, x]°) —,
N({-x, x]°), x > 0. Thus,

knP[ Y; [&,] > a,,x] = A(M,)
1

= ~log P[N,([ -, x]°) = 0] + o(1)

- —log—P[N([ -x,x]°) = O]

= AM(M,)

=Aoﬂ'1((x,00) X\M)=v(x,oo) = yx~¢, x> 0.

(2.4)

o+
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Now fix an x > 0 and define the probability measures P, , and P, on M, by

’\n('m Mx) )\('ﬂ Mx)
P,=——— and P, =——r—
’ A (M) AM(M,)
We will show that P, , —, P,. Set By =[-x,x]° and for 1 <i <k, let
;= (x;,9) or (=, —x; ). Let (Xno, X,,) and (X,,..., X;) be nonnegatlve

mteger—valued random vectors, W1th dlstnbutlon functlons P, 1 and

P, o ® !, respectively, where ® is the mapping M, —» Z**! deﬁned by

®:p— ((By),..., u(By)).

By Theorem 4.2 in Kallenberg (1983), weak convergence of P, , will be
implied by
(Xnos---» Xup) =a(Xo,-.» Xi).

Observe that for s; > 0,
k k
E(l —exp( Z )) (1 —exp(— Zsiru’(Bi) Pn,x(d”‘)
i=0

andif A%, x; = f=1

A(d
o, (B) AEM’S

IIM;F

oot

which by (2.2), (2.4) and (i),

k Mdp)
- f(l exp( l;)s,[.L(B )) m
k
= E(l - exp( Y siXi)).
i=0
Consequently,
Tk k
(2.5) Eexp(— ZsiXm.) —>Eexp(— EsiXi)
i=0 i=0
and (X, ..., X,z) e (X, X,,) holds for A x; > x. On the other hand,

if A x; <x, then since exp( Zl 0 Six;)I(x, > 0) is a bounded continuous
function on Z**1, we have from (2.5) with P, , and P, replaced by P, , ,, and
P A x>

(A1)

fo - Ei]

i=0

v

(M/\x)

I(u(By) > 0)P, 5. (dn )—EM_)“

k
=f exp(— 2 5,u(B)
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MMy +,)

k
- feXP(—E 8 M(B))I(M(Bo) >0)P,,(du )W)_

k
—fexp( Zs n(B;) |P.(dr).

This establishes the weak convergence of (X,,q, ..., X,;) and hence the weak
convergence of P, . to P,.
Since () is a continuous mapping,

P, .o Q> PoQ!

on (0,) X M. Using the facts that bivariate convergence implies marginal
convergence, A(M,) = v(x,») and Q~'((x,») X M)) = M,, we conclude that

P, .o 07} ((5,%) X 1) =, Pyo Q7 ((5,%) X )
(2.6) Ao Q7 ((x,%) X )
- —

on M. This proves (ii) since the left-hand side of (2.6) is equal to

=a

Tn

2 8 v iman
J=1

rn
e VIgl> anx}.
1

Next assume that (ii) holds. Fix f € & and suppose that the support of f is
contained in [ —x, x]° for some x > 0. Then for any y > 0 and with P, , as
defined earlier,

P O 1 -1 o (Mx\/y)
ne ((3,2) X2) =P, oy, e Q7 ((x Vy,®) X )_n(M—)
v(x Vy,») -
-, @(*) (%) on M.
This implies that
v(‘N(x,x®)) X& -
anOQ_l(') _)w ( ( )) on (O’w) XM’
’ v(x,)
and since Q7! is continuous, we have
vX &) Q(-NM)).
Pn,x(') _)w ( ) ( x) n MO'

v(x,%)
Defining A = (¥ X @) Q, the last convergence can be rewritten as

P -~ AM-NM,)
n,x(') “w Px() = W on MO:
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which implies that
foe—uan’x(d,u) - foe‘Mfo(d/.L).
However, since the support of f is contained in [ x, x]° we have

J(=e A (dr) = [(1 - e *)Ndp),
and because this holds for all f € .7, (i) follows from Lemma 2.1. O

THEOREM 2.6. Suppose that N, =, N and N has the representation given
by Theorem 2.3. Then y¥i_, E|Q;|* <1, where ¥7_; 85 ~ @. The equality
holds if {N,([—1, 119}, _, is uniformly integrable.

PrOOF. Observe that N,([—1,1]°) = Xl I(amw)(l £D. By Fatou’s lemma,
(2.7) EN([-1,1]°) < lim EN,([-1,1]°) = 1.
n—-ow

Clearly N([—1,1]°) is compound Poisson and the Laplace transform of the
compounding distribution is

Efwexp(—s Y Igo(ul@l)|au*"tdu, s>0,
1 i=1

where the expectation is now taken with respect to . Thus the mean of the
compounding distribution is Xj_; E|Q;|* Since EN(—-1,1]°) = yX7_; E|Q,|",
the result follows from (2.7). O

REMARK 2.3. It is possible to extend the above results to the two-dimen-
sional point process

*
Ny = Zl O/ oty an):
j=

However, under the condition #({a,}), the weak convergence of N,} is equiva-
lent to that of N,. See Mori (1977).

We next apply Theorem 2.5 to the case where {£} is jointly regularly
varying. Let X = (X}, ..., X,) be a k-dimensional random vector. Then X is
said to be jointly regularly varying with index a > 0 if there exist a sequence
of constants x, and a random vector 0 = (6,,...,6,) with P[||0]| = 1] =1,
where || - || denotes a norm on R*, such that

nP[IX| > tx,,X/IXl € -] -, t °P[0 -], ¢>0.

For our application, it is natural to take || ‘|| to be the “sup” norm, that is,
ICxy, ..., )l = V%, lx,|, which we will do in the following theorem.
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THEOREM 2.7. Suppose that {£} is a stationary sequence of random vari-
ables for which all finite-dimensional distributions are jointly regularly vary-
ing with index a > 0. To be specific, let 8™ = (§{™, |i| < m) be the random
vector O that appears in the definition of joint regular variation of &, |i| < m.
Assume that the condition 5/({a,}) holds for {¢} and that

V &1 > ta,

m<lil<r,

where a, is defined by (1.4). Then the limit
E(l6§™|* — V™ o™«
y:= lim ( 9 J : 2 )+
m—o E6§™)]

exists. If y =0 then N, =, o; if y> 0, then N, converges in distribution to
some N, where, using the representation Ao Q™! = v X @ described in Theo-
rem 2.3, v(dy) = yay *"'dy and @ is the weak limit of

E(1§1% = V2a16f™1%)  I(Zyi<m ogm € °)
B(l6g™" - VT lof™1"),

(2.8) lim limsupP

m->® 5 5

[ &l > tan] =0, t>0,

as m — o, which exists.

REMARK 2.4. In many applications X2 | §,m is deterministic for every m.
If this condition is added to the assumptions of Theorem 2.7, then clearly the
measure & in the description of the limit of N, is a degenerate measure
confined to the vague limit of ¥; _ ,, Sym as m — .

The following lemmas supply the necessary preliminaries for proving the
theorem.

LEMMA 2.8. Under the assumptions of Theorem 2.7, we have

P[Viril&l > a,] ‘7
2.9) lim limsu -P 1 <a, >a,l|=0.
(29) lim limsup| =51 —P| Vlél<a, /&l
If, in addition,
m
(2.10) liminflimian[ V&l < a,| &l > an] >0,
m— o n—o i=1

then for every set A C M of the form A = {u € M: (-1, —b,) U (b;,1]) > ¢;,
l1<i<k)forsomek>1,¢t>10<b,<1,1<ic<k,
rn

V |§J| > an}

j=1

lim limsup

m — ®©

rn
P[ ~E1 O,/ vinye €A
= ,

n-— o

(2.11) N

VIEjISanslfol]
Jj=1

—P| X 8,v, .1 €A

ljlsm
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PROOF. Write

P \7I§j|>an] = anl:lgjl>an, \7 Igilsan]
=1

j=1 i=j+1

which, for each fixed m, can be written as

r, ( Jjtm
ZP |§j|>an, V |§ilsan +Rn,m,1
Jj=1 i=j+1

=r,P[l&1>a,]P| Vgl <a,

i=1

F a,| + Rn,m,l’

where

r r,

IR, nal < Z P[Ifjl >a,, V &> a,,] +2mP|[|&] > a,]

j=1 i=j+m+1

<r,P[l&]> a,] |§o|>an] +2m/"n)-

P[ V o Igl>a,

j=m+1

Applying (2.8) and the fact r, — », we obtain (2.9). Now let A have the form
described in the lemma and let £ = A% | b,. As before, write

rn rn
P[.Zl By viniied € As ,V1|fj| > an]
J= j=

Tn

rn
o/ vimie S 45 161> ay, v |fi|5‘1n]~
=

i=j+1

. rll
j=1

The right-hand side is equal to

Tn

r,—m I'n
Y PlY &, v €Algl>a,, V lél<a,

j=m+1 |j=1 i=j+1

V Ile < £a, +Rn,m,2’

l<i<r,
li—jl=m+1

where

¥

| &l > an] + 2m/r,,).

|Rn,m,2| < rnP[lfol > an]

m+1<lilsr,

P[ V &> ea,
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By the choice of &,

r

n n
Z P Zaf/V'nl|§i;€A,|§j|>an’ V |§i|5am V |§i|58¢1n
J=m-1 |j=1 i=j+1 1<i<r,
li—jlzm+1
r,—m I'n
= L P )» afz/vlz—nmlé, |§|>an’ \Y% &1 < a,,
Jj=m+1 li—jlm i=j+1
V &l < ea,
l<i<r,
li—jl=m+1
m
=Pl B vy e €A 16l > an, VIgl<a,| +R, .,
lil<m i=1

where |R, ,, 5| is bounded the same way as |R, ,, ,|. As before, using (2.8) and
(2.10), we obtain (2.11). O

LEMMA 2.9.  Assume that the conditions of Theorem 2.7 hold. Then for any
" fixed m,

v B(16§m1* — VLalg™I7),
(2.12) P[i\=/l|§,.| < a,| &l > an] N NS
and
' m
P[ 2 vyt € 1§l <a, < |§o|]
lil<m i=
(2.13)

. E(16§™1" = V7 10f™1*) , I(Ty< m Spym € )
Y E(l6§™1* — V™ lom|*),

ProOF. We first consider (2.13). Let f be a bounded real-valued continu-
ous function on M. Since P[V i1<m! 08 = 1] = 1, it suffices to show that

Ef(zlilsm 85.-/ Vmsmléjl)I V Ifil <a,< |§0‘|
P[vr 1I§l<a <1&]

- Ef(E”lSm 0§™ / V|j|5m|0}m)l)(|0(()m)|a - v;'n=1|0j(’n)|a)+
B(05 1 — v J,1o)
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Now write
Ef():|i|5m 55 / v,,,s,,,|g,|)I(an &l <a, < |§0|)
P[VIil&l <a, <|&l]
(2.14) f(2|i|5m 6fi/ V|j|5m|§j|) (V i=0|§i| > an)

= _Ef(zlllsm a‘fz/ Viismléjl )I(v‘m 1|§| > an)
PV &l >a,] - P[VE &l >a,]

We first consider the expression A, = nEf(L; <, &,/ Viienl gj|)I(V ™ol &l >
a,). Since || - || is the sup norm, we can write

F3
A, = nEf( )» ‘Sfi/ugu)I( v ||§”“§” > an)’

lilsm

where & = (£, |i| < m). Since the mapping

CRIPEORY D

lilsm
is continuous at each nonzero (x;, |i| < m), joint regular variation implies

that for each v > 0,

nEf( Y 8§/"§")I(|I§II > va,) - CEv"’f(hEm 80(m>),

lSm

where C is a constant depending only on m. Using a straightforward argu-

ment, we obtain

An‘—>CE(i\=’70|0,~(’”)I)af( ¥ aagm,).

lil<m

The other terms in (2.14) can be handled in a similar fashion whereupon

(2.13) follows.
As for (2.12), we have

nP[|§0| >a,] = nP[ el lEl > a ]

- CE|0((,m)|a
=1

and hence C = 1/E|6§™|°. O
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ProoF OF THEOREM 2.7. Combining (2.9) of Lemma 2.8 and (2.12) of
Lemma 2.9, it is easy to see that
E(10§™1" — V 1l6f™1%),
Elo{™]|*

is Cauchy in m, and by the same token we obtain

rﬂ

lim &, P| V |&| > an] =1,
noe i=1

where &k, =[n/r,] and vy is as defined by the theorem. If y = 0, then it is

straightforward to conclude that N, —,; o. So assume that y > 0 from now

on. In this case, (2.10) and the first assumption of (ii) of Theorem 2.5 hold.

Now write

r, ra
@) =Pl L &, vuye €1V 141> an],
Jj=1 j=1

grsm)(') =P Z 65,‘/ Vi< mléil €

lilsm

v |§J| <a, <|§0|]

j=1

and

E(|0(()m)|a _ ;'n=1|0j(m)|a)+I(Z]i|sm 605"" = )
E(log™1* - V™ ,1/™|*) '

Using Kallenberg (1983), Lemma 4.5, it is easy to show that &, is tight.

Hence for each subsequence of the set of integers there exists a further

subsequence {r'} along which @,  —», @’ for some probability measure &'.

Thus for each set A of the form specified in Lemma 5.2 such that ©%_; @'({ u:
u(8B;)D) = 0, it follows from Kallenberg (1983), Theorem 4.2, that

(2.15) lim @, (A) =&'(A).

g(M)(.) =

+

On the other hand, it follows from (2.13) of Lemma 2.9 that
am(-) -, @™(-)

and together with (2.11) of Lemma 2.8,

(2.16) lim lim sup |@,(A) —@™(A)|=o.

Thus @(™(A) is Cauchy and it converges to some number £(A) and it follows
from (2.16) that

(2.17) lim @,(A) =@(A).
Cémbining (2.15) and (2.17) gives the conclusion that €(A) = €'(A) for all A

in the form specified above. However, the collection of such A is measure
determining, which shows that @(-) is a probability measure. Thus @, -, @
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by (2.17), from which the second assumption of (ii) of Theorem 2.5 follows.
This completes the proof. O

3. Partial sum convergence. In this section, we establish convergence
of the partial sums for a class of weakly dependent sequences. Throughout
this section, we assume that {£} is a strictly stationary sequence whose
marginal distribution function satisfies (1.6). In addition, we assume that the
conclusion of Theorem 2.3 holds, namely (see Corollary 2.4),

n 0 o
(31) N, = Z 64§j/a,, ~d N = Z Z 6P.’Qij’
j=1 i=1j-1

where {a,} is chosen as in (1.4). Note that from Remark 2.1 that the points P,
may be written as P, = y'/°I;1/% where I, = i_, E, with E,, E,,... iid
unit exponentials. Now denote the partial sums of the {¢;} sequence by

S,=XL§
j=1
and for any Borel set B in R define
n
S,B=a,' ¥ &lz(a;gl),

Jj=1
and

SB = Z Z PiQijIB(l‘PiQijl)'
i=1j=1

Essentially under condition (3.1), the partial sums, suitably normalized,
converge in distribution. This is the content of the following theorem.

THEOREM 3.1. Let {&} be a strictly stationary sequence satisfying (1.6)
and (3.1).

G) If 0< a<1,then
. a;lsn —d S’
where S = ¥7_; ¥5_; P;Q;; has a stable distribution.
(i) If1<a<2andforall §>0,
(3.2) 21_1)1(1) limsup P[|S,(0, ¢] — ES, (0, £]| > 8] =0,

n—o
then
a,'S, —ES,(0,1] -, S,

where S is the distributional limit of

fo2] =]

. (8.3) > IPiQijI(\é,w)(IPiQijl) _fs

i=1j=

xu(dx))
1

as € = 0 [ u is the measure in (1.6)], which exists and has a stable distribu-
tion. )

<|x|<
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REMARK 3.1. For the case a > 1, S, may be centered by its mean rather
than the truncated mean E¢,1, , (1£,). Since

n n a
;;(Egl - E§1I(0,a,,](|§|)) = ZEfll(an,w)Ufll) - (p - Q);T,
it follows by convergence of types that

a
a, (S, —nE¢) =4 S —(p - N——7
PRrOOF OF THEOREM 3.1. (i) For every £ > 0, the mapping from M into R
defined by

T: Z 6, — > in(s,w)(lxil)
i=1 i=1

is a.s. continuous wrt the limit point process N. Thus, by the continuous
mapping theorem,
S,(&,2) = T(N,)
=4 T(N) = S8(¢,®).

Now let W, = X%7_, @,;, so that by Theorem 2.6, {W;} is an iid sequence of
random variables with E|W;|® < «. This implies that P;|W;|, i = 1,..., are

the points of a Poisson process with intensity measure yE|W,|ax™ %! dx [see
Resnick (1986)] and since a < 1, these points are summable [see Theorem 2
of Davis (1983)]. It follows that

(35) S(e,) - 8(0,%) = ). P,W,

i=1
a.s. as ¢ — 0. Moreover, by Markov’s inequality and Karamata’s theorem, we
have for any 6 > 0,

n
P[50, 8)| > 8] < 5 —El &l o0 0(16)

a,

(3.4)

an
~ mP[Ifll >a,cla,e
@ l-a
i mé‘ asn —>®
-0 ase—0,
whence
(3.6) 113% lim sup P[|S,(0, ]| > 8] = 0.

Applying Theorem 4.2 of Billihgsley (1968), the convergence
8,(0,) =a,'S, =, XL PW,
i=1

is immediate.
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(i) The limit in (3.4) also holds in the a > 1 case and from (1.6) we have

(3.7) ES,(&,1] = na; E& I, y(I€1]a;t) = b(e,1] = [ xu(dx).

e<|x|<1
Consequently,
(3.8) S,(&,°) — ES,(&,1] =4 S(&,») — b(e,1].
Next we show that
(3.9) S(&) =S(&,%) — b(e,1] >, some S

as ¢ > 0.~To prove this, it suffices to show that the characteristic functions,
¢,(¢), of S(&) converge to a function which is continuous at 0. We first show
that ¢,(¢) is Cauchy as ¢ — 0. Write

,(¢) — $,(t) = Eexp(itS(v))(1 — exp(it(S(x) — S(v))))
— E[exp(itS(v))(1 — exp(it(S(x) - $(v))))
xI(|8(u) - 8(v)| > 8)|
+E[exp(itS(v))(1 — exp(it(S(x) - $(v))))
ﬁ xI(|S(u) - §(v)| < 8)].
Since ¢ is fixed, we can pick a § > 0, such that
|E[ exp(itS(v))(1 — exp(it(S(u) — S(v))))
xI(|S(x) - §(v)| < 8) ”sn/z,
0O<u<v<l

(3.10)

Also for anyO <e<l,
sup P[Ig(u) —g(v)l > 8]

O<u<v<e
= sup lim P[|S,(u,v] — ES,(u,v]l> 8]

O<u<v<en™

< sup limsup(P[|S,(0,u] — ES,(0,u]l > /2]

O<u<v<e n-o®
+P[18,(0,v] — ES,(0,v]| > 8/2]).
By the above relation and (3.2), it is possible to pick an £ > 0 small such that

E[exp(itg(v))(l - eXP(it(g(u) - g("))))

sup
O<u<v<e

(3.11) E xI(|$() - $(v)| > 5)]’

<2 sup P[Ig(u)—S(v)|>8)]sn/2.

O<u<v<e
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This combined with (3.10) shows that ¢,(¢) is Cauchy for each fixed ¢ and
hence converges to a function, say ¢(¢). Finally, to see that ¢(¢) is continuous
at 0 it is enough to show that ¢,(-) converges to ¢(-) uniformly on a
neighborhood of 0 or, equivalently, that ¢,(¢) is Cauchy in the uniform metric
on the compact set [¢| < ¢,. A slight modification of the foregoing argument
establishes this fact. [First, choose § small enough so that (3.10) holds
uniformly on |¢| < ¢, and then take & small enough so that (3.11) is valid.]
From (3.2), (8.8) and (3.9), it follows, by applying Theorem 4.2 of Billingsley
(1968) once again, that
Sn(o’oo) - Esn(o’ 1] 4 S

where S has characteristic function ¢. It remains to show that S has a stable
distribution. Notice that S(g,~) — b(e, 1] is infinitely divisible with charac-
teristic function given by exp[ ¢,(¢)], where

U(t) = f:E(exp{it Y lejI(E,w)(Ilejl)} - 1) yax~*"tdx — ith(e,1]
j=1

« exp(itx) — 1 —itsinx .
=/ > M, (dx) +i6,¢,

o SIN X
= [~ M,(dx) ~ b(s,1]

and
M (dx) = xzj; P[ > lejI(e,oo)(leljl) € dx]'yay—a_l dy
Jj=1

is the canonical measure in Feller’s representation of an infinitely divisible
characteristic function [see Feller (1971), XVIL.2]. By Theorem 2 of Feller
[(1971), page 564], S must also be infinitely divisible, M_(I) — M(I) for all
bounded intervals I and 6, —» 6, where M is the canonical measure and 6 is
the constant in the canonical representation of the characteristic function of
S. It is straightforward to show that for any p > 0,

M,(0, px) = p*~°M,,,(0,x), M, (—px,0)=p*"°M,,  (-x,0), x>0.
By letting £ — 0 in these expressions, we find that there exist constants c_
and c, > 0 such that

M(-x,0) =c_x?"%, M(0,x) =c,x®>"*,  x>0.

Consequently S has the characteristic function of a stable random variable.
O

REMARK 3.2. Since the limit random variable S in Theorem 3.1 is stable,
it has characteristic function -

EoitS _ exp{imt — d|t|*[1 — iB sgn(¢) tan(wa/2)]}, if a # 1,
“ 7 | exp{imt — ditl[1 + iB(2/7)sgn(t)Inlel]},  ifa=1.
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The scale and symmetry parameters d and B are given by

(c++c)r((3_a; (m), ifa#l,

(c + c~)5, ifa=1,

d=

c,—c_

B =

c,tc_

where

c,= 2_aj x"2M(dx)

5 yay *~ldy
— a e-0Y

lim [ P| ) yQuI(s,oo)(y'Qljl) >1
j=1

and

o= 2faj =2 M(dx)

1{yay = 'dy.

hmf l Z yQIJI(s ) lel.ll) <-

2 — a0

The location parameter m is determined by
0, ifa<l1,

o Sin x
lim, o [ ——M,(dx)=b(s,1], ifa=1,

lim, o [ x"lME(dx) —b(e,1], ifa>1,

m=

where b(e,1] is defined by (3.7). See Feller [(1971), pages 568-570] for
details. As seen in the following theorem, one can often compute more explicit
values for the parameters ¢, c_ and m.

THEOREM 3.2. Assume that the conditions of Theorem 3.1 hold and use
the notation introduced in the proof of Theorem 3.1 and Remark 3.2.

(@) If E(Z;_,1Q, ;D™ < = (which by virtue of Theorem 2.6 is always satzsﬁed
if a <1), then

c.=

+ a
5= o YE(W")

and

ot

a —\
_ YE(W™)",
—

C=2

where W = L5_, Q.
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() If a>1,thenm =(p — @la/(a — 1).
©) If a = 1, then

= (e )

-1

+ vE

E Qlj
j=1

)]

‘21 Qljl(l,m)(y|Q1j|)
j=

I(O,l)(

Y Q;;log| Y Q;
Jj=1 Jj=1
. t - -
+ thm 'yEfly 1[( Y Qlea,m)(leljl))
- j=1

Jj=1

XI(o,t)(y

where each summand is well defined and finite.

REMARK 3.3. While the location parameter m is the same as in the iid
case if a # 1, it is not so if a = 1. We have not been able to simplify the
expression for m when a = 1. In this case, observe that if the limit point
process N is Poisson, then the second and third terms on the rhs of m are
zero and m reduces to the familiar expression

j.oo ( sin x — xlg 1)(1x[)
P)

X

M(dx).

— 0

Proor oF THEOREM 3.2(a). Since I7_; yQ;;1, (@, D —yW as and W
is bounded by ¥7_,1@Q,,l, it follows by the dominated convergence theorem
that

¢,= =—— [P[yW*> 1]yay~*~tdy = ——E(W*)"
Y2 —aly 2 —a )
The argument for c_ is exactly the same. O

PrOOF OF THEOREM 3.2(b). It is straightforward to calculate

el ) EQ{Y
j=1

" M, (d) =

— a—l
and

b(s,1] = — 1-a g

(&, = —1(P-a)(e )

, where x¢*) = x|x|*"". It is enough to show

sin x

312)

— 0

oo(sinx

= —x‘l)Ms(dx) - f:( —x-l)M(dx),
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since this and the property 6, — 6 imply

" 2 M (dx) +b(e,1] =

l-a (a)y _ —
) T nglEQl, (p—-q)

-+

o
- t
——(p - q) ~ cons |
as & — 0. However, in order for the left-hand side of this equation to have a
finite limit, we must have

(3.13) YL EQ{¥’ =p—q
j=1
from which the conclusion of (b) is immediate.

To prove (3.12), the vague convergence of M, to M on (—,») implies that
for any 6 > 0,

f (sinx —x"l)M(dx)—+f (sinx —x“l)M(dx)
lxl<o| %7 ° lxl<s\ %2 '
So it is enough to establish

(3.14) lim limsupf lx|"*M,(dx) = 0

. il PN |x|>8

and

lim |x|"*M(dx) = 0.

o J|x|>6

Note that the latter follows easily from the former so we concentrate on
(3.14). Write

[ a7 M (dx) = [ f.p(y)vay e dy,
x> 8 y=0

where
fos(9) = [ 12IP| ¥ 3QuT o ¥1Qu)) € de|.
|x]>6 j=1
Now write
fos(y) =FR(y) + FA(),
where
fR(y) = 5P[ .ZllejI(g,m)(leljl) > 5]
j=
apd
3 = P 2 Y@ Lo(71Qul) | > x| dx.
x= j=1 i
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Changing variables, we have

[_ f(y)yaytdy
-

~oef P [

- 81—:1

> 1lcay * ldy

Z yQI]I(s/8 m)(leljl)

j=1

(c++ c_)
as ¢ — 0. Similarly,

| SR () yay™Ndy

y=0

Since the inner mtegral converges to (2 — a)/a(c,+ c¢_) uniformly in x > §,
the above expression converges to, as £ = 0,

2 —
a(a - )
This proves (3.14) and hence (3.12). O

> 1|yay "1 dy) X" %dx.

Z lejI(e/x,w)(leljl)
=1

(c,+c_)dl =

PrOOF OF THEOREM 3.2(c). First we show that the relation in (3.13) is also
valid in the a = 1 case. To see this, recall that the location parameter 6 is
given by the limit of

» gin x
| 6,= [ —5M(dx) - b(s,1].
Since b(e,1] = —(p — q)log &, we have by the Cauchy criterion that
© gin x
| M (dx) - /- ——M .(dx) - (q — p)log2.

The left-hand side of this expression is

Efoo vy“"{sin(y r Qle(2s,cw)(y|Q1j|)) - Sin(y ZlQle(s,w)(lel,-l))} dy
- j=1 Jj=
= Ej‘w 7y-28'1{sin(sy Z Qle(2’w)(y|Qijl))
- j=1 )
_sin('sy Y QijI(l’w)(y|Qij|))} dy
j=1

~Ef f(5)d.
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Now, using the inequality |sin(x + y) — sin(x)| < |y|,

[f(¥) <vyy! Zl|Qij|I(1,2](y|Qij|) =8(y),
where ’

E/_:g( y)dy = 7j§llElQ1j|10g2 <o

by Theorem 2.6. Since

f(¥) = —yy™! _;lQl,-I(l,z](leljl) = f(y)
and ’

Ef f(y)dy = —y ¥ EQ,;log2,
o =

we obtain by dominated convergence,

(3.15) YL EQ;=p—-q,
j=1
_as asserted.
Next write

» sin x
[ Mu(dx) = b(s,1] = Ay(s) + Ay(e) +As(e),

2
where
1 [ sin x 1
ae) = [* (55 - 5 e,
in x
Aye) = [ —rM.(dx)
and

1
Ay(e) = [ —M,(dx) ~b(s,1].

By vague convergence and the fact that (sin x)/x%2 — 1/x is bounded, we
obtain
sinx 1

. - n _ -
ll_l)%Al(s) —f_l( 22 x

Jarcas).

We next consider A,(¢). Note that by the same argument as above, we obtain
for every 6 > 0, ’

(3.16) f Sin—zst(dx) - 0% L (d).

2
<l|xl<é X <lx|<é X




904 R. A. DAVIS AND T. HSING

On the other hand,

sin x o >
fl ——M,(dx) =f0 ) sin(y ZlQle(e,m)(leljl))
i

x|>8 X

XI(s,w)( y Z Qle(s,oo)(yIQljl)
Jj=1

)} dy,
which is bounded in absolute value by
yI L ElQy|

©11) 98 oy B0y - T 0w
Jj=1

Also

sin xM g
(3.18) '[6<|x| -z (dx) -0 as é—> .

By (3.16)—(3.18) we have shown that

sin x
lim A,( <) = —M(dx).
i |

x[>1 X

Finally we consider

)

—(p— Q)y‘lf(o,l)(y)] dy

)

- Z Qle(o,n(y)] dy.
j=1

Ag(e) = Ejm['yy_z (y Zl Q1jI(s,w)(y|Q1j|))I(o,l)(y Zl Q1jI(s,oo)(y|Q1j|)
: € J= Jj=

which, by making use of (3.15), can be written as

vEf:

y ! ( .Zl Qle(s,w)(yIQle)) I(0,1)( y
j=

'21 Q11 (71Q1,)
j=

. Write this expression as

B,(&) +By(¢),
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E

where

By(¢e) = YEflmy_z(y ,Zl Q1j1<s,w>(y|Q1j|))I(o,l)(y
P

L Q1L w(51Qu,)
j=1
and

By(e) = YE]:y_l[( i:lQle(s,w)(ﬂQlﬂ))

XIo |y

) - g:lQlJ] dy.

Zl Qle(e,w)(leljl)
j=

By dominated convergence, we have

<) oo -1 )
lim By(¢) = vE Z Qlleg Z Qlj I(o,l)( Z Qlj )]
-0 | j=1 j=1 j=1
and, after changing variables,
et _ s
By(¢) = ‘YEfl y ll( Z Qle(l,oo)(leljl))
j=1
XI(o,s-l)(y > Q1jI(1,oo)(y|Q1j|) ) - X Qlj:l dy.
j=1 j=1

Part (c) of the theorem now follows. O

4. Large deviations. We consider in this section the probabilities of
large deviations of S, = X7_; §& under the assumption that N, has the
distributional limit described in Corollary 2.4 [or (3.1)]. Our approach is based
on probability arguments and the main result, Theorem 4.4, generalizes
existing results in a number of ways.

Define

S,(B) = ¥ &I5(l¢l), i=1,BcR.
j=1
We begin with two technical lemmas.

LEMMA 4.1. Fori>1, BCR,t>0and 0<6<1,
|P[S; > t] - P[S,(B) > 8t]| < P[|S,(B°)| > (1 - 8)¢].
PrOOF. The proof is based on the following inclusions:
(S;>1t) c(Sy(B) > 8t) U (S;(B°) > (1-98)t)

and
(S;(B) > 8t) c(8;>1t) U(S;(B°) < —(1-8)t). O



906 R. A. DAVIS AND T. HSING

LEMMA 4.2. Suppose N, —»,; N, where N has the representation in Corol-
lary 2.4. Then for any € > 0, { > 0 and any sequence r, such that r, — o,

r,/n = 0, and satisfying (2.1), we have

. P[S,n(san,oo) > {an] w [ @
r}l_{rolo r.P[l&]> a,] = L P[ngliUI(g,m)(|Qu|u) > ¢ |v(du).

Proor. For f € £, we have

k,E(1- exp(— Zn: f(%)f(wm(lfjl)))
j=1 \@n

=knP[ Vlgkl > ea,
1

ol - £ et 10|

X|1-E

n | &, > ca ))

1-F

~ g_a'y

exp( Zf( n)I(mnoo(lf I))

by (ii) of Theorem 2.5. On the other hand, by Theorems 2.1 and 2.3 and the
fact that V?=1|Q1i| = 1

k,‘LE(l - exp( Z f(a—’)l(wm(lfj')))

- ];)ME(I - eXp( - -;ilf(Qliu)I(e,w)(lQlilu))) v(du)

o °° du
= a_ay(l - '/; Eexp(_ _Z f(leu)I(s °°)(lQll,lu’)) ( ) )
Thus
exp( Z f( )I(samw)(lgil)) \17 ngl > 8an)
) w [ v(du
- - fa Eexp( - ig.l f(Qliu)I(s,w)OQn'u)) :—a,y)
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and hence the point process i, 8 ,, I, M)(If D converges in distribution
conditional on V [*| | > €a, . Clearly the mapping u — fxu(dx), My, - R is
almost surely contlnuous w1th respect to the limit, so that

P[Srn(aan’oo) €a,- V |§k| > 8an]
1

o [ 2 d
-, [ P[ Y @l (1Qulu) € ] )
€ i=1

Since the limiting distribution is continuous,

P[S,n( £a,,») > {an]

=P| V&> ¢a, P[S,n(aan,oo) > ta,| V&> aan]
1 1

_P[vE |fk| > sa,]

f [ h Quiul, .)(1Qy;lu) > §]V(du)
~ P&l a,] f ”P[ . Qulo1Qu) > ¢ [»(c)
s li=1
which completes the proof. O

THEOREM 4.3. Suppose N, —,; N, where N has the representation in
Corollary 2.4 and r, is any sequence such that r, = o, r,/n — 0 and
satisfying (2.1). Also assume that one of the following sets of conditions holds:

@o<a<l

G) 1<a<2and
4.1 lim li P[ 0

. >
(4.1) o0 linfllp r,P[l&]> a,] €
Then

P[S, >a,]

(4.2) lim = 11m Z uQy; I, .y (ulQy;l) > 1{v(duw),

i npoo I P[I§1|>a ] e-0

where the limit on the right of (4.2) necessarzly exists in [0, ).
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ProoF. First note that (4.1) holds for 0 < @ < 1, since by Chebyshev’s
inequality and Theorem 2 of Feller [(1971), VIII1.9],
. P[|S, (0,2a,]| > {a,] i r.ElEI(1 & < ea,)
n—ow I‘nP[|§1| > an] T onow {anrnP[Igll > an]
sa,P[l&] > ea,]

= lim
e (1— a){a,P[I&]> a,]
al—a 0 O
=——— >0 ase—0.
(1-a)¢

The result will be proved the same way for both (i) and (ii). By Lemma 4.2
and a variant of the argument in Theorem 3.1, it follows from (4.1) that

[:P[ Y Quiul, . (1Qy;lu) > l]v(du)
i=1

is Cauchy as & — 0. Thus the limit on the right of (4.2) exists and is finite.
For £ > 0,0 < 6 < 1, we have

PS>l v 8] ¥ Quat, o (1Qulu) > 1w
rPTlEr> 0]~ 2y | Z, Quieo(1Qubu) > 1]v(c)

P[S, >a,] P[S,(£a,,®) > da,]
r,P[l&]> a,] r.P[l&]> a,]

‘P[S,n( €a,,®) > da,
' r, P& > a,]

v(du)

] - fomp[ )y Qqul, .(1Q;lu) > &
i=1

+ v(du)

i=1

v(du)|.

- ].imf P Z QliuI(E,w)(lQlﬂu) > 1
0 ]i=1

-0
By Lemma 4.1 and (4.1),
P[S,, > a,] P[S,(za,,®) > 8a,|
rnP[|§1|>an] T, rnP[|§1|>an]

i P[lS,n(O,aa,,” > (1- S)an]
= P& > a,]

-0 ase—0.
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Also by Lemma 4.2,

P[S,n(aan,oo) > Ban] o [ @
S ET AR PLZ

lim

n—o

T 1Qul) > 8 v(a)| =

Finally it is clear that

lim lim “P[ Y Quul, .(1Qylu) > B]V(du)
i=1

6-16-07

lim 6™ ( lim mP[ i Qqul, . (1Q;;lu) > l]v(du))
i=1

-1 e—-079

lim [ P| ¥ Qul, .(1Qlu) > l]v(du).
i=1

=079
This concludes the proof. O
Theorem 4.3 can be reformulated as follows.

THEOREM 4.4. Let {t, > 0} be such that rP[|¢,| > t.] = 0. Define

1
n(r) = [m], r>1.

Assume that N, —>; N, where N has the representation described by Corollary
2.4, and that (2 1) holds with n — « along {n(r)};_,, where r,,,=r. Also
assume that one of the following sets of conditions holds.

@Do<a<l
G)1<a<?2and

P[|S.(0, et,]| > ¢, ]

4.3 lim lim su, =0, > 0.
(43) en0 raml T rP[I&]> 1] ¢
Then
P[S, >t,] o
i PlET> 6] rP[l&,] > ¢,] ll_l,nf [ ;uQuI(m(“'Qli') > 1{v(du),

where the limit on the right necessarily exists in [0, ).

. ProOF. Without loss of generality, modify a, so that a, nery =ty Since

n(r)P[l | > a,] = 1, the modification has no effect on (2.1) or the hm1t1ng
distribution of N,. Thus taking limits along the subsequence {n(r)};_;, the
result follows from Theorem 4.3. O
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REMARK 4.1. Even though we considered probabilities of large positive

deviations, the corresponding result for probabilities of large negative devia-
tions,

P[S, < —a,]
’}%m ?_{%fo P Z uQuilo m(ulQul) < —1|v(du),

is proved in exactly the same way.

REMARK 4.2. Under the assumption of Theorem 3.2(a),

tim [P z 4@ Lo o (4IQu) > 1 v(du) = vE(W")"

and

lim [ P[ZuQuI@,w)(ulQul) < —1|v(du) = yE(W)",
Fohd i ]
where W = ¥7_; Qy;.

REMARK 4.3. For 1 < a < 2, centering is typically required for (4.3) to
_hold. See Theorem 4.5 below.

We now specialize to the iid case.

THEOREM 4.5. Suppose that {£} is iid and (1.1) and (1.2) hold. With t,
denoting a sequence satisfying rP[|£,| > t,] = 0, also assume that one of the
following sets of conditions holds.

@Ho0<a<l
Gi) 1 < a <2 and lim, _, (r/t, )E§1I(I§1| <t)=
Then
(44) lim —M =p.
r— o rP[|§1| > t,]

Proor. By Remark 2.2, N, »; N = Y7, SQ ATV where P[Q;, = 1] =
and P[Q;; = —1] = q. Thus it is clear that

lim [P Z quLI(S w)(uIlel) >1 V(dU) =

-0

We now verify (4.3) for the case 1 < a < 2. Since E£,1(|§,] < x) is regularly
‘varying at «, condition (ii) implies that

ES,(0, st,] = rE&I(1&,| < et,] =o(t,), &>0.
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Thus by Chebyshev inequality and Theorem 2 of Feller [(1971), VIIL.9],
lim lim sup PIIS,(0,5t,11 > ¢, {]
>0 e rP[l&] > t,]
. P[IS,(0,et,] ~ ES,(0,8t,11 > t,£/2]
< lim limsup
iy tim st Pl > 1]
< lim lim sup 4 Var(S,(0,t,])
eo0  re tEErP[l&]> t,]
lim lim sup ArEEII(6 < ety)
=0 e EFErP[1E]> 2]
. 4o
The result follows from Theorem 4.4. O

IA

2-a =, > 0.

Heyde (1968) shows that if {{;} is iid a-stable for « € (0, 2), where E¢; = 0
if @ > 1, then
i PS> 2]
im ———= =
n—o nP[|§1| > tn]

This result is extended by Theorem 4.5, which has a weaker assumption and
a stronger conclusion. Nagaev (1969) derives (4.4) under independence and
the assumption P[¢, > x] € RV_,, where 2 < a < «. See Cline and Hsing
(1994) for a unified approach concerning results in this regard in the setting
where the ¢ are iid with dominated varying tail probabilities.

While it is conjectured that the conclusion of Theorem 4.4 holds for a > 2
under dependence, the approach in this section is not directly applicable since
(4.3) does not hold for o > 2 even in the iid case.

5. Examples and further results. Many of the existing limit results
for partial sums of stationary processes with heavy tails are a special case of
Theorem 3.1. We consider some of these cases in this section. While we
concentrate solely on applications to the point process and partial sum
convergences, the corresponding applications to the large deviation results of
Section 4 are also easily obtained. As in Section 3, we assume that {fj} is a
strictly stationary sequence satisfying (1.1) and (1.2).

ExAMPLE 5.1. Suppose {{;} satisfies the dependence conditions D and D’
of Davis (1983). Then

n 0
(5,1) N, = Z 85}/:1,, —g N= Z 6Fz_l/"Qil’
j=1 i=1

where P[Q;; =1] =p, P[Q;; = —1] =1 —p, 0 < p < 1. Convergence of the
normalized partial sums a,'(S, — b,) contained in Theorems 2 and 3 of



912 R. A. DAVIS AND T. HSING

Davis (1983) are now immediate consequences of Theorem 3.1. Note that for
1 < a < 2, condition D" of Davis (1983) implies (3.2).

For 1 < a < 2, the point process convergence in (3.1) by itself is not enough
to ensure convergence of the normalized partial sums to stable limits. This is
demonstrated in the following example.

ExaMPLE 5.2. Let {X } be a sequence of iid random variables which have
mean zero and are in the domain of attraction of a stable distribution with
index 1 < a < 2. Set

where Z is a random variable which has mean zero, finite variance and is
independent of {X J-}. A routine calculation shows that

P[§1>x]_)1 d P[§1<_3‘]_>
P[X, > ] e PIX, < —«]

as x — o, that is, the distribution of ¢, satisfies (1.1) and (1.2). Let {a,} be
the (1 — n~!) quantile of the distribution of £,. Since the &, given o (2), are
iid and the limit point process of Y7_; 8x,+.)/q, 18 the same for each fixed
value of z, it follows that (5.1) holds for both sequences {X;} and {¢;} with the
same scaling. Moreover,

n
-1
a, Z XJ -; S
Jj=1

and since na,! — «, we conclude that

n n
a;' Lg=a;' XX +na,'Z

j=1 j=1
does not converge in distribution. In this case, condition (3.2) fails to hold for
the {£} sequence. Note, however, that S, does converge in distribution with a
dlfferent scaling to a nonstable limit, namely,

n1 Zf—n‘IZX +Z -, Z.
Jj=1 j=1

ExAMPLE 5.3 (Self-norming sums). The results of LePage, Woodroofe and
Zinn (1981) and Davis (1983) for self-norming sums can easily be extended to
the setting of Section 3. Assume that the conditions of Theorem 3.1 are met
and define

ni/r . )
+ _ {E;=1|§j|}/, ifl<r<o,
i n,r V;=1|§j|: ifr = 00,

A straightforward adaptation of the proof of Theorem 3.1 yields the following
corollary.
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COROLLARY. Assume that either 0 < a < lorthatl < a < 2 and E¢, =
Define (S7, S) to be the distributional limit, as £ — 0, of

({,i i ((Yl“;l)l/alQijl),}l/r,

i=1j=1

LI

||[\13

( 1)1/O¢QU (e w)(('yri—l)l/alQijl) —f | xu(dx)

e<|x|<1

ifa<r<wand

(77", £ £ (1) @t 00 0 - [,

i=1j=1 |

xu(dx))

ifr=o.ThenT,, -, T, for all a <r < », where

S,
e = ST
S .
S_f, ifo<ax<l,
T=)s-(p-)a/(a-1)
fl<a<2.

# b
S"

ExaMPLE 5.4 (k-dependent sequences). Now let {£} be a k-dependent
sequence such that & = (¢,,..., &, ) is jointly regularly varying in the sense
of Section 2. That is, there exist constants x, and a random vector 0 =
(64,...,0,.1) such that P[||0] = 1] =1 and

£ e
w218 e g < ]—nt PO <]

for all ¢ > 0. While Theorem 2.7 is directly applicable in this case, we pursue
a different route here. First observe that

nP[l&] > a,] = n ['”f;l:ngu ]
- CE|6,|*
=1

, so that C = 1/E|6,| It follows that

nP[||§|| >a € ] =, CcpP[o e ].

£
» gl



914 R. A. DAVIS AND T. HSING

Next, it is a simple matter to show [see, for example, Theorem 2.1 of Davis
and Resnick (1988)] that

_ [n/(k+1)]
Nn = Z 6(§jl¢—l¢+j ,,,,, Eir+j)/ an
Jj=1
2_: Pi(0;,1,--+50i,541)°
where Y7_, 8p, is a Poisson process with 1ntens1ty measure ay *"! /((k +
1)E|6,|*) dy and {6;,,...,0,,,1), i =1,2,...} is a sequence of iid copies of
(64,...,0,.,), which are also independent of the Poisson process. Conse-
quently,
E+1

n oo
N,= Y 5§j/a,, = 2 X 8P,0”’
j=1 i=1j=1

which has the representation given in Corollary 2.4 with 7_; Q E'” 1 »
Applying Theorem 3.1 [condition (8.2) is always valid for k-dependent se-
quences; see Davis (1983)], the normalized partial sums converge in distribu-
tion to S given by

+
Y P :0; 55 ifa<l,
1 j=

Ms

i

o k+1
S = lims—»o Z Z i z] (e°°)(|P oljl)

i

-/ x,u(dx)}, ifl<a<2.
e<|z|<1

Convergence of partial sums in the k-dependent case was also dealt with by
Jakubowski and Kobus (1989). Under the assumptions of this example, the
limit characteristic function is described in terms of the Lévy measure of the
vector (§4,..., &, 1) [see Theorem 5.3 of Jakubowski and Kobus (1989)]. One
can easily check that the characteristic function of S has this form.

ExamMpPLE 5.5 (Linear processes). We now consider the linear process
defined by

<]
& = )> c;Z;_;,
i=0

where {Z} is an iid sequence of random variables with marginal distribution
satisfying (1.1) and (1.2) and {c} is a sequence of constants satisfying the
summablllty condition

Z ch|8<°0 for some 6 < 2,0 <6< 1.
Jj=0 ~
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Assume without loss of generality that
Ylel*=1
j=0
If @, is the 1 — 1/n quantile of the distribution of |Z,| and hence (1.4) holds

[see (4.71) of Resnick (1987)], then by Theorem 2.4(i) of Davis and Resnick
(1985),

Ms

n 0
Z %i/a, d E6P,~Q,-j’

where Y7 ;8p is a P01sson process on (0,x) w1th intensity measure
Ve_oleslay™®"1dy Gee,, y = VZ_,lc,l® ) and Q;; = g;¢;/V 5-olcyl, Wlth{a}
being an iid sequence, independent of the P01sson process with P[ g =1]=
Ple, = —1] = q. Applying Theorem 3.1 with 0 < a < 1, we obtain -

(o] oo
-1
a,’S, _’d( > ck) E & P;.
k=0 /Ji=1

In order to apply Theorem 3.1(ii) for the case a > 1, one must check
condition (3.2). Due to the complicated dependence structure of the truncated
random variables &I, ¢1<a,e)» @ direct verification of condition (3.2) is not the
simplest approach. Instead, we first apply Theorem 38.1(ii) to finite order
linear processes and then show how the partial sum convergence of the finite
order processes can be extended to infinite order models. For ease of presen-
tation, we confine this discussion to the case a > 1 (the case a = 1 requires a
special argument) and assume, without loss of generality, that EZ, = 0.
Writing

i=1j

a,'S,=U,+V,+W,
where

ClN

.
~.
10

Ms T0Ms

(52) U,=a ck(Zj—kI[Zj_,,sa,,] - EZII[lea,,])’

(5.3) V,=a;?

TP

Ck‘Zj—k I[zj_,, >a,]

J=1k=0
and
(5.4) Wn = na;l( Z ck)EZII[ZISa"] = _na;l( Z ck)EZII[Zl>a,,]’
k=0 k=0
we have, by Karamata’s theorem,
o] a o)
(5.5) ElV|<na;! ), |ck|E|Z1|I[|Z1|>a,,] - po—) Y le,l
k=0 a k=0
‘and-
i 2] a <]
(5.6) |Wn| S na,:l E |ck|E|Z1|I[IZﬂ>a,,] d T Z |ck|.
k=0 : a—1,5
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Also,
Var(U,) =a,? Y (n - |kl E i€t Var(Zidyz s q,))
\kl<n
® 2
(5.7 < na;2(EZ12I[|Zl|>an])2( Y |cj|)
Jj=0

2
2a hd
-al| /5

Now if S{M) denotes the partial sum of the finite order linear process
& u = Li~0 ¢4 Z;_,, then by applying Theorem 3.1(ii), we have

a;1SP0 -, S0,

where S™) has a stable distribution with characteristic function given in
Remark 3.2 (see also Theorem 3.2) with parameter values

')'(M) lzk 0 kl

d(M)—I‘(l—a)cos(T; ) -————OW( Y le kla)

M
Z

=TI - a)cos( )

k=
M
B =(p - q)sgn( Ye )
k=0
and
m=0.
Clearly, S(M )=, (T ¢)S =, (E3_,c) S, where S is stable. Also note that
a, 'S, — SM| <|U,| + [V, | + IW,],

where the U,, V, and W, are as defined in (5.2)-(5.4) with ¢, = 0 for
k =0,..., M. By Markov’s inequality and (5.5)-(5.7), we then have for any
> 0 and M large,

limsupP[a; IS, — S| > &]& < (Var(U,))"* + EIV,| + |W,|

n—-ow
2a 2a \Y? ©
< (a + ( ) ) Y el

-1 2-a E=M+1

-0
as M — . This implies, by Theorem 4.2 in Billingsley (1968) that

a,'S, _>d( ) ck)s
E=0
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