The Annals of Probability
1995, Vol. 23, No. 2, 501-521

EXISTENCE OF QUASI-STATIONARY DISTRIBUTIONS.
A RENEWAL DYNAMICAL APPROACH

By P. A. FERRARI, H. KESTEN, S. MARTINEZ AND P. Picco

Universidade de Sdo Paulo, Cornell University, Universidad de Chile
and CNRS

We consider Markov processes on the positive integers for which the
origin is an absorbing state. Quasi-stationary distributions (qsd’s) are
described as fixed points of a transformation ® in the space of probability
measures. Under the assumption that the absorption time at the origin,
R, of the process starting from state x goes to infinity in probability as
x — o, we show that the existence of a gsd is equivalent to Exe"R < o for
some positive A and x. We also prove that a subsequence of ®"5, con-
verges to a minimal gsd. For a birth and death process we prove that "5,
converges along the full sequence to the minimal gsd. The method is based
on the study of the renewal process with interarrival times distributed as
the absorption time of the Markov process with a given initial measure wu.
The key tool is the fact that the residual time in that renewal process has
as stationary distribution the distribution of the absorption time of ®u.

1. Introduction. Let X(¢) be a continuous time Markov process in
N =1{0,1,2,...}. Let @ be the corresponding transition rate matrix: g(x, y) is
the rate of jumping from x to y # x. We assume throughout that the state 0
is absorbing [i.e., ¢g(0, x) = 0 for x € N] and that all states other than 0 form
an irreducible class, and finally that @ is conservative and regular, that is,

—q(x,x) = ) q(x,y) < », and the minimal process
(11) y#FxX
{x(t)};s0 corresponding to @ is an honest process.

In particular, (1.1) says that
P(X(t) eN) =1 forall ¢t > 0 and all initial distributions u on N,

and, consequently, any right continuous strong Markov process with transi-
tion rate matrix @ equals the minimal process with probability 1. In this
paper, X(t) always denotes the minimal process for . This process can then
be constructed explicitly as a nice jump process [see, for instance, Asmussen
(1987), Section 2.2 or Breiman (1968), Section 15.6].

We further define

R = inf{t > 0: X(¢) = 0},
the absorption time at 0. We shall only be interested in processes for which
E.R < forall x> 1.
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A quasi-stationary distribution (qsd) u is a probability measure on {1,2, ...}
with the property that, starting with u, the conditional distribution, given
the event that at time ¢ the process has not been absorbed, is still u. That is,
Ly m(9)P)(X(2) =2) _ ().

Ly 1m(y) Py (X(2) # 0)
Quasi-stationary distributions for Markov processes and chains have been
studied by several authors. Vere-Jones (1962), Seneta and Vere-Jones (1966)

and Kingman (1963) studied the case of a general denumerable state space.
Intimately related with the notion of gsd is the so-called Yaglom limit:

P,(X(t) =x)
P P,(X(t)+0)"

(1.2)

(1.3)

Indeed, if the Yaglom limit exists and it is a probability measure, then it is a
gsd [see Vere-Jones (1969), Theorems 1 and 2]. The existence of the limit in
(1.3) was established for branching processes in a pioneer work by Yaglom
(1947), for asymmetric random walks by Seneta (1966), for left continuous
random walks by Pakes (1973) and for birth and death processes by Good
(1968), Kijima and Seneta (1991), van Doorn (1991) and van Doorn and
Schrijner (1994b). In the case of a finite Markov chain there is only one gsd
" and it is the Yaglom limit; see Darroch and Seneta (1965).

In this paper we study gsd’s by means of the distribution of the absorption
time R. Our main result is as follows.

THEOREM 1.1. Assume that (1.1) holds and that Q restricted to {1,2,...}
is irreducible. Assume further that

(14) limP,(R<t)=0 foranyt=>0
x—®

and that P,(R < ) = 1 for some (and hence all) x. Then a necessary and
sufficient condition for the existence of a qsd is that

(1.5) ‘ E e’ <

for some A > 0 and for some x €{1,2,...} (and hence for all x).

One can see immediately that condition (1.5) is necessary. In fact, if there
exists a qsd u, then P(R >s +¢) = P(R > s)P(R > t). So F* is exponen-
tial. Since P,(R < «) = 1 for all x, also P (R < 00) = 1 and consequently the
exponentlally distributed R must have E R < . Then for A <1/E R, we
have E,Le < o, Since the irreducibility of @ implies that u charges every
point and E,e*® < (1/u(x))E,e*R, we deduce E,e*? < ». Sufficiency of (1.5)
will be proven in Section 4.

. For a birth and death process, Theorem 1.1 was proven by van Doorn
(1991), by Ferrari, Martinez and Picco ( 1992) and by van Doorn and Schrijner
(1994a).
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We notice that (1.5) is equivalent to exponential decay of the tail of the
distribution of F?:, that is,

(1.6) there exist positive constants C, y such that P,(R > t) < Ce™ "%,
It is worth noting that if one defines

(7 h = lim T log(P,(X(1) =3))

(this is independent of x,y > 1; see Lemma 5.2 for more details), then
processes satisfying (1.4) and (1.5) can be A;-recurrent or A;-transient. That
is, there are examples for which

(1.8) waeMth(X(t) —x)dt

diverges and other examples for which it converges. Thus, our results seem to
have little connection with A;-recurrence, which is the basis for much of the
previous work on gsd’s. For instance, Seneta (1966) proved that (1.8) con-
verges for the continuous time random walk on N which moves one step to
the right and left at rates p €(0,2) and g =1 — p, respectively (with
absorption at 0). An example for which (1.8) diverges is provided by a
continuous time subcritical Markov branching process. If one starts with one
particle, then

P,(R > t) = P(branching process survives until time ¢) ~ (—A(0))e#*

for some A(0) < 0 and B8 > 0, by Athreya and Ney [(1972), Theorem III.8.1
and Corollary II1.8.1]. Moreover, by Yaglom’s theorem [see Athreya and Ney
(1972), Theorem III.7.4] there exists some 5(1) > 0 such that

P(X(t) = 1) ~b(1)Py(R > t).

Of course, A; = B in this case.

Condition (1.4) is easy to check directly from the transition rates. It is
fulfilled in many examples. Pakes (1994) investigates what happens in a
number of examples when (1.4) fails.

Condition (1.6) can often be verified in examples by finding a suitable
supermartingale. The use of supermartingales for establishing ergodicity
properties of Markov processes with some kind of central drift is well known,;
see for instance Meyn and Tweedie (1993) (especially Theorem 7.1) for a very
general treatment of such methods. For our case, assume that there exist a
function f(-) on N and constants D,, D, Dy > 0, D,, D4, Dy < ®, Dg integer,
such that '

(1.9) f(x) >0 and f(x) > o asx — »,
(1.10) Y q(%,9)f(y) <f(x) =D, for x = D,
y#Fx

(1.11) If(x) —f(y)|<D, forx>Dg;andq(x,y) >0,
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(1.12) Y q(x,y) <DgeP" forl<x<Dg—1landn>1,
y*
f(y);n

and

(1.13) —q(x,x) =Dy for x > Dj.

We show in Lemma 4.3 below that (1.9)-(1.13) imply (1.5).

There is a large class of processes satisfying (1.9)-(1.13). In particular,
these conditions are satisfied by any Markov process on the integers with
bounded jumps and with a drift toward the origin bounded away from zero
[and irreducible on {1,2,...} and with jump rates bounded away from 0, i.e.,
satisfying (1.13)]. ,

We also remark that in the present setup, (1.6) is trivially equivalent to
geometric ergodicity of {X(¢)}, that is, to the exponential decay (as ¢t — ») at a
rate independent of x and y of

(1.14) IP(X(t) =) ~ lim P,(X(s) =)l

Indeed, when absorption is certain,

. 1, ify=0,
lmP(X(5) =9) = |7 3070

and, in addition, for y # 0,
P(X(t) =y) <P,(R > t).

Therefore, (1.6) is equivalent to the expression in (1.14) being < Ce™ ! for
all y.

In contrast to ergodic Markov processes, for which the stationary measure
is unique, there can be infinitely many gsd’s. This has been pointed out by
Cavender (1978) for the birth and death process. For this process, the set of
gsd’s is empty, a singleton or a continuum indexed by a real parameter; see
Theorem 3.2 in van Doorn (1991). Some qsd’s can be characterized as
“minimal”; those that have minimal expected absorption time at 0.

In Section 2, we sketch the proof of Theorem 1 and give an alternative
characterization of gsd’s. Under this characterization a qsd is a fixed point of
a certain transformation ® on the space of probability measures. In Section 3
we introduce a family of renewal processes associated with this transforma-
tion and study the dynamical system induced by ®. In Section 4, we prove
Theorem 1.1 by showing that the set of fixed points of ® is nonempty. Under
the hypotheses of Theorem 1.1 plus the additional hypothesis (5.1), we show
in Section 5 that ®"5, converges along some subsequences to a minimal gsd.
For the birth and death process we show in Theorem 6.1 that ®"5, converges
to the (unique) minimal qsd.
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2. Stationary Markov processes related to qsd. To motivate our
approach, assume that we can pass to the infinitesimal form of (1.2). So we
would have that if u is a gsd, then it satisfies

@1) T u(»)(a(3,%) +a(y,0)u(x)) =0 forall x> 1.

y=1

This equation can be interpreted by saying that u is the invariant measure
for the process on {1,2,...} with transition rate matrix @* given by

(2.2) g*(x,y) =q(x,y) +q(x,0)u(y), =x,y=21

Condition (2.1) can be read as u@* = 0. The equivalence between (1.2) and
(2.1) will be proven in Proposition 2.1. This implies that u is a gsd if and only
if u@* = 0 and suggests the introduction of the transformation ®: u — v,
where v is the unique solution of v@Q* = 0. In fact, a fixed point of ® is a gsd.
We link the transformation ® with a renewal process. Let F* be the
distribution of the absorption time of the process starting with u. We show
that F® is the stationary distribution of the residual time of the renewal
process with interarrival times distributed as F'*. This allows us to show that
if F* has exponentially bounded tails, then F®"* converges along subse-
quences to an exponential distribution. This together with tightness of ®"u
and the Schauder-Tychonov fixed point theorem are the key tools to prove
‘Theorem 1.1.

For any probability measure u on {1,2,...}, let Y*(¢) on {1,2,...} be the
Markov process with transition rate matrix @* given by (2.2). It is conve-
nient to have a construction of Y*(¢) related to the absorbing process X(#)
with initial distribution u. Let {X,(¢): & = 1,2,...} be a sequence of indepen-
dent copies of X(¢) with initial distribution u and absorption times ¢, = inf{¢:
X,(t) = 0}. Define s, = 0, s, = X*_;¢, for £ > 1 and

(2.3) : YH(t) = kg:le(t -5, )1t e [sk_l,sk)}.

In words, each time that a copy of the process X(¢) is absorbed, it is replaced
immediately by a new copy. Such “resurrection processes” have been consid-
ered in the literature before, for example, in Pakes (1993) and some of its
references. It is easy to see that the process constructed by means of (2.3) has
transitions rates given by (2.2) and initial distribution u. Observe that the s,
are the occurrence times of a renewal process with interarrival intervals
distributed as F*, the absorption time of the process with initial measure wu.
To have a similar construction of Y*(¢) for another initial distribution p, it
suffices to take p as the initial distribution of the first copy X,(¢).

Since all states {1,2,...} connect, the assumption E,R < « implies that
Y*¢) is positive recurrent, so-there exists a unique invariant measure, that
is, a unique probability measure » on {1,2,...} satisfying v@Q* = 0 [see
Asmussen (1987), Theorem 2.4.2]. Let ® be the transformation ®: u — v.
Thus ® is a map from the probability distributions on {1,2,...} into itself.
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The stationary distribution ®* of Y* is given by [see Asmussen (1987),
Theorem 2.4.2]

1 o
(2.4) Pu(y) = 55 J, BAX(®) =) dt.

We show now that the fixed points of ® are gsd’s.

PROPOSITION 2.1. Let u be a probability measure on {1,2,...} such that
E,R < . Then ®u = u implies p@" = 0. Also u@* =0 is equivalent to p
being a gsd.

ProOF. Since ®u is defined as the unique probability measure v satisfy-
ing vQ* =0, u = ®u implies uQ* = 0.

Now u@* = 0 is simply condition (2.1). The equivalence between (2.1) and
u being a qsd, under the condition (1.1), is just Theorems 3.4, 4.1 and the
succeeding Remark (1) in Nair and Pollett (1993) [earlier discussions of the
equivalence between (2.1) and (1.2) can be found in Vere-Jones (1969) and
Pollett (1986)]. O

3. The associated renewal processes and the dynamics of the resid-
ual map. Let 7; be the interarrival times of a renewal process. That is, the
7; are independent and identically distributed as a random time 7 with
distribution F. Let N(¢) be the number of renewals up to time ¢ and let
o; = L _,7, be the time of the ith renewal. We assume that E7 < » and that
F is not a lattice distribution. We introduce the residual map ¥: F —» VF
acting on the set of time distributions where W¥F is the limit distribution of
the residual time given by

1 .=
(3.1) 1 —“I'F(s) = lim P(oyyey =t >5) = 'E_»rf (1 - F(w)) dw.

LEmMA 8.1. IfE R < «, then F® = YF~,

PROOF. The distribution of R under ®u is given by
1 - F®(s) = Py, (R >s)

1 ©
E.R ygl‘/;) P#(X(t) =y)Py(R > ) dt
1
R

(3.2) - f:P“(R >t+s)dt -

— .:Fi

= E#Rj.; P(R >t)dt.

=1-VYF¥(s). . i
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We now analyze the residual map ¥ in the context of renewal processes.
Let F be the interarrival distribution and write m,(F) for the 2th moment of
F. Assume that m,(F) < « for all k. Set F, = W*F. These iterates of ¥ were
investigated in Harkness and Shantaram (1969). They already derived the
following relations (3.3)-(3.5):

1

(3.3) L= Foar(s) = o

/:(1 ~ Fy(w)) dw.

Integration by parts and induction show that

my,.1(F)

(34) my(F,) = G+ Dm(F)

By induction on % this implies that

m, ( Fn) k+n—1
k‘ = I_.[ m I(F‘i)'
: i=n
Harkness and Shantaram looked at limits (after normalization) of F, along
the full sequence of integers. Here we need conditions for subsequential

convergence.

(3.5)

- LEMMA 3.2. Assume there exists a subsequence /"= {n,, n,,...} such that
forallk > 1

. mk+nj(F)
lim ——————

=6>0.
Jooe njmk+nj-1(F)

Then Fn, converges to an exponential distribution with mean 6.

ProoF.

mk(F) =k' mk+n(F)
" ' (n+1)--(n+k) m(F)
ml+n(F)

k
= k! — Lklo*
N e Dmy @

as n » ©, n €4. Since

k6% = ftke—‘/"dt

0

|~

and since

1 1/2k
: El((zk)w“) -

the result follows from the standard method of moments [cf. Chung (1974),
Theorem 4.5.5]. O )
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PROPOSITION 3.3. If for some C < », A > 0, it holds that 1 — F(¢t) < Ce™**
for all t > O, then there exists a 6 < 1/\ and a sequence #'={n; <n, < -}
such that

F, converges to an exponential distribution with mean 0

as n - «, n €4 (an exponential distribution with mean 0 is §,).

Proor. If1 — F(¢) < Ce *! for all ¢ > 0, then
my(F) = [[t4dF(2) = [—2*(1 = F(e))]; + k[ t+3(1 - F(2)) dt
0 0

=ka t*=1(1 - F(t)) dtkafo th-le™M gy

= CRIN7F,
Thus
k 'mj(F) _ my,(F) <CAt
j=1Jm;_(F) k!
so that
m;(F) 1
0 == liminf——— < —.
ij—l(F) A
Let .# = {ji, Js,...} be a subsequence for which
3.6 — 59 forl > .
(3.6) szj,—1(F)
If 6 = 0, then
m;(F)
m(F,_)=—2"— 5¢=0,
1( » 1) Jlmjl—l(F)

so that F; _, converges to the Dirac distribution concentrated on {¢ = 0} and
we are done. If § > 0, then we use the fact that m;, ;(F)/m(F) is increasing
in j as a consequence of Schwarz’s inequality

(myF))’ < m;_y(Fym;,(F).

Therefore, for any £ > 0,

m; _,(F) ‘ m;_(F)
0 < liminf — It < lim sup — L
s (Jl—k)mj,—‘k—l(F) I-o (Jl_k)mj,—k—l(F)
m; _,(F m.(F
= lim sup —% +(F) < limsup - i F) 0.

I Jlmj,—k—l(F) oo Jlmjl—l(F)
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It follows that for each fixed &,
mj,—k(F)
T -
(Jr = k)m;__1(F)
and we can take n; = j, — r;, with r, - © so slowly that for each fixed 2 > 0,

lim mn,+k(F) _
12 (n + k)my, o o(F)

0

0.

The proposition now follows from Lemma 3.2. O
4. Existence of gsd.

THEOREM 4.1. Assume that (1.1), (1.4) and (1.5) hold. Define

(4.1) Ap = sup{A: E, e < ).

Then A, is independent of the choice of x and for each x,
(4.2) F,(t) = F®"%(t) = Pyos (R <t) > 1 —e'h
with

(4.3) 0< A= (’}iix:oE¢n5xR)_ < oo,

Finally, for fixed x > 1, there exists a subsequence /' and a probability
measure p, on {1,2,...} such that ®"8, converges weakly to u,, along .#"' and
such that

(4.4) P(R>t) =e

REMARKS. (i) Condition (1.4) is unpleasant, but can probably not be dis-
pensed with entirely. It is crucially used to prove tightness of the family (4.7)
below and also at the end of the proof of Proposition 4.2.

(i1) Assume that the hypotheses of Theorem 4.1 hold, so that F, converges
to an exponential distribution with mean 6 > 0. Then is it true that

(4.5) im DX =9 a5y ()2
) t—>o Px(X(t) 9&0) n—-o x ’
In other words, does the Yaglom limit exist and does the limit in the
right-hand side of (4.5) exist and are they equal? In the next section we shall
prove that the limit in the right-hand side indeed exists under the additional
assumption (5.1) and that it is a so-called minimal gsd. That (4.5) holds for a
finite Markov chain was proven by Darroch and Seneta (1965). The relation
(4.5) for the random walk follows from Section 3 of Seneta (1966) and Section
.5 of Cavender (1978). van Doorn (1991) and van Doorn and Schrijner (1992)
give conditions for the existence of the Yaglom limit for birth and death
processes. Under these conditions, Theorem 4.1 of van Doorn (1991) and
Theorem 6.1 in this paper imply that (4.5) holds for the birth and death case.
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Kesten (1995) shows the Yaglom limit exists for a discrete time Markov chain
on {0,1,...} with 0 as absorbing state, if the chain can only make jumps of
bounded size and satisfies some further uniform irreducibility condition. He
also gives a counterexample of a chain for which there exists a qsd but the
Yaglom limit does not exist.

Proor oF THEOREM 4.1. First we note that the independence of A, from x
follows easily from the irreducibility of @. For the remainder of the proof we
fix x > 1 and write F for F, = F% that is, F(¢) = P(R < t).

We next prove that

(4.6) liminf el 1
' n—oow (n + l)mn(F) - )\0.

Indeed, if (4.6) fails, then as in the argument following (3.6) we can find a
subsequence .#" such that along .#, F, converges to an exponential distribu-
tion with mean 6 < 1/A,. We claim that this contradicts the maximality of
A¢. To see this, we set u, = ®"6,. Then we note that the family

(4.7) {u,: ner}
is tight. Indeed, for each & > 0 we can find #(¢) such that for all n €.7,
6> P, (R>t(s)) =1-F(t(s)) = L m.(3)P(R > t(e))
y=1

and consequently
pafy: P(R <t(e)) <1/2} < 2¢.

Thus, the family (4.7) is tight under (1.4). By going over to a further
subsequence, if necessary, we may assume that

My = WU asSn—>© ing
for some probability distribution w, on {1,2,...}. Furthermore,
B(R>t)= Y u(y)P(R>t) = lim ¥ p,(y)P(R > 1)

y=>1 ney ¥z1
= lim (1 - F(¢)) =e™/".
net
Then p,, charges some point y and
- (4.8) vwA{y)P,(R>1t) <P, (R >t).

Thus

y) ’
which indeed contradicts our choice of A,. So (4.6) must hold.

This same argument can be used to find a u, which satisfies (4.4). Indeed,
by (4.1) there exists for any £ > 0 a constant C = C(&) > 0 such that

P (R >t) <Cexp(=(A, — &)t)

1
P(R>¢t) < e t/0 -
»( ) Tu
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for all ¢ > 0. By Proposition 3.3 there exists a subsequence .#” such that F,
converges along .#’ to an exponential distribution with mean less than or
equal to 1/(A, — &). By doing this for different & one can choose.?” such that
F, converges along .#” to an exponential distribution of mean at most 1/A,.
Then the preceding argument with .#" replaced by .7" yields the desired wu,.
Note also that the existence of this u,, implies

P.(R >t) < Ce o,
Next we prove a converse of (4.6), namely,

m F 1
(4.9) limsup———nj—l—(—-—z— < —.
n—o (n + l)mn(F) AO

Suppose that (4.9) does not hold. Then there exists an n > 0 and a subse-
quence .#” such that

m,, l(F) 1
— S —>— 49
(n+1)m,(F) — A
for any n €#”. Since m,, (F)/m,(F) is increasing in &,

. (F 1
_ ) 1w
(J+1my(F) A 2
forn <j<j+1<nl+Cy),ner, and C satisfying
1 1 1 n
T+Cn\n "M =% "2
For n €.#”, take i(n) = integer part of n(1 + Cn). Then

M (F) _ m,(F) im-1 m;,(F)

(4.10)

(4.11)

i(n)!  n! o (J+ Dmy(F)
m F 1 lC‘ﬂ’l],
(F) 1.
n! Ay 2

by (4.11). Hence

mi(n)(F) 1/i(n) mn(F) 1/ 1 n Ccq |/
liminf| —¢2"2 | > liminf — .2
n— i(n)! n— o n! Ay 2

nes”

nes”
11 7\ 1/(1+Cn)
>|—|—+ =
A’O AO 2 *
However, this is impossible, since P, (R >t) < Ce ' implies m(F) <
’ CL'(l /o) as in the proof of Proposition 3 3. We have therefore proved

lim n+1(F) — i
now (n+ Dm (F) Ay’
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which, by Lemma 3.2, implies that F, converges to an exponential distribu-

tion with mean 1/1,. Moreover, by (3.4),

F 1
Eyns R = __m_’fil_(__z__ - —,
T (ntmy(F) X

so that the equality in (4.3) holds.
Last, we observe that for any distribution u on {1,2,...} and any x in the
support of u,

E,R> u(x)E.R > 0.

In addition, E,R — » as x — «, by (1.4). Thus the second inequality in (4.3)
follows, while the first inequality in (4.3) is obtained from (1.5). O

Let
My = { W p a probability distribution on {1,2,...}
such that P,(R > t) =e™'/°%}.
Then, from the last theorem, for § = 1/,
" (4.12) My + D.

We provide .#, with the topology of pointwise convergence [i.e., u, — w if and
only if u,(x) - u(x) for all x > 1]. Notice that

(4.13) b: 4y > A,
In fact, if u €.4,, then by (3.2),

1

77, P(R>t)dt

Py (R > s)

I

1 .»
— -t/6 — ,—S/6
0[3 e dt=e .

PROPOSITION 4.2. Under the hypotheses of Theorem 4.1, if #,+ &, then
the transformation ® has a fixed point in #,.

PROOF. We prove the proposition by showing that ® is continuous on .#,
and that .#, is convex and compact. The result then follows from an applica-
tion of the Schauder—Tychonov fixed point theorem [see Dunford and Schwartz
(1958), Theorem V.10.5]. ]

" Now we show the continuity of ®. If w,(2) - u(z) for all z > 1 and
" Mg, b EA,, then

EMR = E}‘LR = 0.
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Therefore, by (2.4) and Fatou’s lemma, for any subset A of {1,2,...},
liminf Y ®u,(y)

- yeA
1 o
= liminf Y om(2) Y P(X(¢) =y)dt
(4.14) m it EMR/;) Lm(2) o (X(t) =v)

v

1 .=
70 T w(z) L P(X(2) =y)dt = L Pu(y).

z>1 yeA

Since this holds for A as well as A°, we must have equality in (4.14).
However, then also

1= ]}im Y ®u,(2) = limsup Pu,(y) + liminf ) Ou,(2)
-® 2 koo z#y

2> limsup Py (y) + L Pu(2)

koo 2%y
and it follows that
lim sup®u,(y) = Pu(y),

k—oox

which is the required continuity.

The convexity of .#, is trivial. For compactness it suffices to prove sequen-
tial compactness, since the topology on .#, is a metric one [e.g., d(u, p') =
L, o1l u(y) — w'(y)l/27 is a metric on 4 whose induced topology is the
topology of .#,]. However, the sequential compactness of .#; can be proven in
the same way as in Theorem 4.1. We merely have to show that any sequence
{ w,} c.#, is tight, and this is done exactly as for the family 4.n. o

PROOF OF THEOREM 1.1. The theorem follows from Propositions 2.1 and
4.2 and (4.12). O

We finish this section by proving the following lemma announced in the
Introduction. )

LEMMA 4.3. Statements (1.9)~(1.13) imply (1.5).

PROOF. Define oy, 0y, ... as the successive jump times of X(). Then, for
x > D; we have by Neveu (1972), Lemma VII.2.8, or by Stout (1974), Lemma
5.4.1, that for A > 0,

E,exp(A[ f(X(0y)) — f(x) + D)) =< exp(@()t)[D1 + D2]2),
. with '

@(A) = [D, + D;] *[exp(A(D, + Dy)) — 1 = A(D; + D)],
because a.e. on {X(0) = x} it holds that |f(X(0,)) — f(X(0)) + D,| < D, + D,.
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However, then, for 0 < ¢ < Dy,
E, exp()t[f(X(crl)) - f(x)] + 80'1)

= E, exp(A[ f(X(0y)) = f(x)])E, exp(s0,)

_ _q(x’ x)

=E, exp(M f(X(0y)) - f(x)])‘_m)*_—;

D

< exp(—AD; + O(A)[ D, + DZ]"’)I)—f—s.
Because @(A) = O(A?) as A |0, we can fix A > 0 such that
AD,

—AD; + ®(A\)[D, + D,]* < — >

and then ¢ > 0 such that

D5
<1
D5"8

exp(—AD; + ©(A)[ D, + D,]*)

With these choices,
g(t) = exp(A[ f(X(2)) - f(X(0))] + &2)
" satisfies
(4.15) E g(o;) <1=g(0) when x > Ds.
If we now define
T = inf{t > o,: X(t) < Dg}
and
v =inf{k: 0, > T},

then g(X(oy,,), B = 0, is a positive supermartingale, by virtue of (4.15).
Moreover, on the event {T' > ¢} we have o, > ¢ [note that o, = © as k& — » by
virtue of (1.1)] and hence

g(X(a)) = exp(ALF(X()) = F(X(0))] + 60;) > exp(~A(X(0)) + st).
Thus, for x > Dy,
(4.16) P{T =t} <exp(Af(x) — ct)E . g(X(q,)) < exp(Af(x) — &t).

(4.16) shows that T has an exponentially bounded tail, when X(0) > Dq.
However, then, even for X(0) = x < Dy, one has

P{T >t} < E,(exp(Af(X(01)) + 80, )exp(—&t); X(y) = Dg) + P,(ay = £)
< D,exp(—et)

i

. for some constant D, which is finite when A and & are taken sufficiently
small, by virtue of (1.12) and (1.1). From this it is not hard to obtain that R
also has an exponentially bounded tail, that is, that (1.6) holds. O
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5. Minimal gsd. Define
M p) = sup{A: E e** < o).
Then, by (4.8), for any probability measure u on {1,2,...},

A( /'L) = AO’

with A, as in (4.1). If u is a qsd, then F* is exponential with mean
E R = 1/M w). This implies that A(u) = 1/E, R < A,. When there is equality
we call u a minimal qsd because the mean time of absorption is minimal.

Proposition 4.2, together with Proposition 2.1, shows that for any 6 for
which .#, is nonempty, .#, actually contains a gsd. We shall now show that
minimal gsd’s corresponding to 6 = 1/, can be obtained as subsequential
limits of ®"5,, when (1.1) is strengthened to

—q(x,x)= ), q(x,y) <C, <
(5.1) y#a
for some constant C; and all x € N.

Specifically, we prove the following result.

PROPOSITION 5.1.  Assume that (5.1) and (1.5) hold.

@ If #={n, <n, < -} is a sequence of integers such that for some
x > 1, ®™§, converges weakly to a probability measure p, on {1,2,...} (as
k —> ), then u, is a minimal gsd.

(b) Similarly, if 7 = {t,} is a sequence of real numbers with t, — © and u,
is a probability measure on {1,2,...} such that for some x > 1,

Px(X(tk) =y) _

(5.2) lim =u(y), y=1,

then u,, is a minimal gsd.

Note that the last statement of Theorem 4.1 shows that (1.1), (1.4) and (1.5)
together imply the existence of subsequences .#" for which Proposition 5.1(a)
applies.

The proof of Proposition 5.1 rests on a simple lemma.

LEMMA 5.2. If (5.1) holds, then for some A, € [A,,©) we have for all
%y =1,
(5.3) lim (P,(X(¢) = y))/" =eM.
t—> o :
Moreover, forall x,y > 1 and all s > 0,
co, P (X(t+s) =
(5.4) lim H(X( )=3) _ e M,
i Px(X(t)=y)

(A, is independent of x and y.)
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PrOOF. For A > 0 and kh <t < (k + 1)A it holds that
P,(X(kh) = y)P,(X(t - kh) = y)
< P.(X(¢) =y)
< P(X((k+ 1)h) =y)(P,(X((k + )h —t) =y)) .
Furthermore, for all 0 < u < A,
(55) 1=2P(X(u)=x)=2P/(X(v) =x,for0<v<h)>e ‘it

[by (5.1)].

From this one easily sees that it suffices to prove
(5.6) lim (P,(X(hk) = y))* = e
and

P(X(h(k+1)) =
) CR(X(hk D) =y)
ke P(X(AR) =)

for all x,y>1, />1 and h > 0. However, (5.6) is a well known easy
consequence of subadditivity [see Vere-Jones (1967), Theorem A)], whereas
the ratio theorem (5.7) for the discrete time Markov chain {X(kh)}, , , is just
. Lemma 4 of Kesten (1995) [it is for this lemma that (5.1) is needed; the
uniformity in x in the last inequality of (5.5) is not really needed].

The fact that A; > A, follows immediately from the definition (4.1), which
shows that P(R >t)=%,, P(X(¢) =y) <e %) for £ > 0 and ¢ suffi-
ciently large. O

PROOF OF PROPOSITION 5.1. (a) By (2.4), for any probability measure v on
{1,2,...}and y > 1,

- E,,Rfo x§1 v(x)P,(X(t) =y)dt.

Induction on 7 then shows

n—1 0 0 ©
_1 _
kl:[O(Eq,kvR) fo dtlfo dt, - fo dt, B(X(t, + ty + - +2,) = )

D" (y)

= -1 1 e n—-1 —
= kl:.l(:)(E‘IkaR) (n——l)'j; t P,,(X(t) —y) dt.

In particular, if we fix x > 1 and write

1
C, = (ﬂ_l)' H(E(I)kSR)
then

(5.8) (©78,)(9) =, [ 1" P(X(2) =) dt.
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Assume now that along some subsequence ., "5, = u,, for some probability
measure u, on {1,2,...}. Thenfor s >0, y > 1,

P(X(s) =y) = X nf2)P,(X(s) =)

z>1

= lim Y ®",(2)P,(X(s) =y)
nE/szl

(6.9) = lim ), anwt”_lPx(X(t) =2z)P,(X(s) =y)dt

n—w
>
nE/Vz‘l

= lim cnfwt”‘lPx(X(t +s) =y)dt.
n—oo 0

nes

If we can show that for each fixed T the contribution of the integral over
[0,T] to the right-hand side of (5.9) is negligible, then it follows from (5.4)
that the right-hand side of (5.9) equals

lim e M, [ 7P, (X(t) = y) dt = e Miu().
n—o 0

nes

However, then
(5.10) P (X(s)=y)= e M y)
and, by summing over y,

(5.11) P(R>s)= } P (X(s)=y)=e"

y=1

Hence

z:le :u'w(x)Px(X(s) =y) _
Lot 2) P (X(s) #0)

and u, is a gsd. Moreover, (5.11) shows that for any x with u(x) > 0 and
>0,

B )

pel %) E {7} < B, {eM™)F} <,

so that A, > A,;. Since we also have A; > A, (by Lemma 5.2), A, = A, and u,, is
a minimal gsd. . )

It remains to show that the integral over [0,T'] can be neglected in (5.9).
. However, on the one hand, '

(5 12) foTt"‘lPx(X(t) = y)dt <T"/n,
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while on the other hand, by (5.3), for 0 < & < A, /2 [recall that A; > A, > 0 by
(1.5)] and n large,

[:tn-lpx(X(t) —y)dt > [n/ t"~Lexp(— (A, + &)t) dt [by (5.3)]

(2er)™
5.13 > [(gn-1 A+ &)t) dt "1
619 - [ tent-t a7
(n-1) n"1 (n—1)!

= n T = [
(A + ) (2er) 2(A + &)
Clearly (5.12) is small with respect to (5.18) as n — ». This proves the
desired negligibility of the integral over [0, T'], and hence proves Proposition
6.1(a).
(b) The proof that w, is a minimal qsd when (5.2) holds is even more
direct. This time,
P (X(s) =y) = X ml(2)P,(X(s) =)
(5.14) =1
= lim ¥ o, P(X(t) = 2)P(X(5) =),
2® 221
where

v o= (Pu(R> 1)) = L RUX() =2))

Note that we can take the limit outside the sum in the right-hand side of
(5.14) by Scheffe’s theorem [see Scheffé (1947)]. Continuing (5.14) we have

P (X(s)=y) = I}i_{folockpx(x(tk +5) =y)
=e_hsl}i_{gckpx(x(tk)=y) [by (5.4)]

=e Mu(y).
This is (5.10) again, and proves u,, is a minimal gsd as before. O

COROLLARY 5.3. If (5.1), (1.4) and (1.5) hold, then A, = A,.

ProOF. This is immediate because, with u, as in the last statement of
Theorem 4.1, (4.4) as well as (5.11) must hold. O

REMARK. Other conditions for the equality A, = A, are given in Section 3.3
of Jacka and Roberts (1993).

6. The birth and death case. In this section we treat the birth and
death process. The transition matrix has elements q(0, y) = 0, for all y, and
g(x,y) = 0if |x — y| > 1. We assume that the rates are uniformly bounded:
there exists C < « such that

(6.1) -q(x,x) <C, =xeN.
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Notice that (6.1) implies (1.1) and (1.4). We further assume that all nonzero
states connect:

(62) forallx>0, gq(x,x+1)>0 and gq(x,x—1)>0.
The process evolves according to the (backward) equation

d oo
(63) —P(x,9) = L a(x,2)p(2,),
z=0
where p,(x, y) is the probability that the process starting at x be at y at

time ¢.
We assume that E,e*? < « for some A > 0. Then by Theorem 1.1 there

exist gsd’s. The main result of this section is the following:

THEOREM 6.1. For a birth and death process satisfying (6.1), (6.2) and
1.5), lim, ., ®"5, exists and is the unique minimal gsd.

First we prove in the next lemma that the distribution of the absorption
time determines the initial measure.

LEMMA 6.2. The function v — F* (defined for v a probability measure on
{1,2,...)) is one to one: if v # p, then F* + F*.

Proor. We have
n <]

Eﬁpz(x, y) = Z q(”)(x,z)pt(z,y),

z=0
where ¢(™(x, 2) is the (x, z)-term of the matrix @”". So
n

C_i_n'pt(x"o) =q™(x,0)

t=0
= Z q(x,21)q(21,2;5) - 9(2,-2,1)q(1,0).

21,0003 2n-2

Then

n

Et_"pt(n’o)‘ =q(n,n—-1)q(n—-1,n-2)- q(1,0)
t=0

and
n

-_— = i >n.
dt"p‘(z’o) o 0 ifz>n
The facts that the g(x, y) are uniformly bounded and that for any x only a
finite number of 2z’s satisfy ¢(z,x) > 0 imply that the nth derivative
, (d@"/dt™)F*(t) exists and is given by

dt,,FV(t) = z§0 v(z)\a—ﬁpt(z,O).




3

520 FERRARI, KESTEN, MARTINEZ AND PICCO

Since (d"/dt")p,(z,0)l;—o = 0 if z > n, the above sum evaluated at ¢ =0
only contains contributions for z =1,...,n. From (d*/dt*)p,(k,0)|;—¢ =
gk, k —1)--- g(1,0) > 0 we deduce that »(n) is a linear function of
@/t )F*(t)y=0, B =1,...,n. O

COROLLARY 6.3. A probability measure u is a gsd if and only if the
absorption time distribution F* is exponential. For any 0 there is at most one
qsd p with E R = 6.

Proor. We already proved in Section 1 that F'* is exponential when u is
a gsd. Conversely, if F* is exponential, let 6 = E,R. By the last lemma, .#;
must be the singleton { u}. By Proposition 4.2, u is a gsd. O

PrOOF OF THEOREM 6.1. As in (4.7), {®"5,} is right. From Proposition
5.1(a) we see that any limit point lim, _, ®™§, = w, is a minimal gsd.
Lemma 6.2 implies that all the limit points are the same. O
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