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THE RATE FUNCTION FOR SOME MEASURE-VALUED
JUMP PROCESSES

BY BOUALEM DJEHICHE AND INGEMAR KaJ!
KTH, Stockholm and Uppsala University

A principle of large deviations from the McKean—Vlasov limit is de-
rived for a class of measure-valued jump processes. It is shown that the
associated rate function admits several representations, including the one
obtained by entropy methods and the one derived by a pathwise approach.

Introduction. In this study we consider the behavior of some Markovian
systems of weakly interacting jump processes as the number of component
processes grows to infinity. Our interest focuses on systems which in the limit
satisfy a McKean—Vlasov equation. This means that the sequence of empiri-
cal distribution functions, representing the states of the finite systems, has
a deterministic limit of a specific form. The limit, which in the case under
consideration is given by the solution of a nonlinear integrodifferential equa-
tion, in a sense represents the law of a typical trajectory in the underlying
collection of jump processes, subject to the interaction mechanism.

The purpose of this study is to derive the large deviation principle in the
McKean—Vlasov limit and to obtain several representations of the associated
large deviation rate function.

The finite systems are of the form x = (x!,...,x") € E", where to each
component corresponds a jump process ¢ — x%, with values in the state space
E C R4. A typical example is that E = Z_, the nonnegative integers, and the
x* represent the number of particles present at each of n reaction sites. Schlogl
type models with mean-field interaction, which provide interesting examples
of this form, have been studied in depth. Dawson and Zheng (1991) and Feng
and Zheng (1992) obtained existence results and studied various properties
of the McKean—Vlasov limit, and Feng (1994) considered the large deviation
problem.

For another application, think of the x: as some health status indicators, for
example, the number of individuals subject to a certain disease, in n possible
locations. Léonard (1989, 1990), in this vein, studied epidemic systems with
emphasis on limit behavior and large deviations.

Besides the sources already mentioned, our main references are the works
by Dawson and Géartner (1987) and Gértner (1988) on weakly interacting dif-
fusions. In fact, a motivation for the present work was to unify some results
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MEASURE-VALUED JUMP PROCESSES 1415

obtained by Feng (1994) and Léonard (1989) and possibly extend them in the
direction to which the results of Dawson and Gértner (1987) point.

In Section 1, we present the model. The main results are stated in Section
2. The identification of the rate function is given in Section 3. Then we derive,
in Section 4, the large deviation principle for the interaction-free case and,
finally, in Section 5 we extend the result to the general case.

1. The jump process.

1.1. Model. Let & denote the-Borel sets in R? and fix a set E € #. Let
%g denote the o-algebra on E generated by the subset topology from #.
We consider a system of n components, each a Markovian jump process ¢ —
xi, t € I :=[0,T], piecewise constant and with right-continuous trajectories
and taking values in E. The component processes ¢ > x! are given by their
characteristics, consisting of a pair (y!, 7'). Here the jump intensity measure
yi(x)dt gives the rate of a jump at site i when the system is in state x.
The jump size distribution 7(x,dy), y € E, is such that if a jump occurs at
site i, then it is of the form x! — y € B with probability [z 7i(x,dy), for
all B € #g. Put ni(x,dy) = vyi(x)wi(x,dy), x € E", y € E. We are going
to assume throughout that 7i(x, y) = w(x?, y) does not depend on the state
of the system other than as a function of x’. Consequently, all interaction is
guided into the system through the jump rates yi(x). Of course this will be
done in a way such that the process ¢ — x; is still Markov; see below.

It is convenient to identify the point process system with its empirical dis-
tribution and represent a realization of the state at time ¢ with the point
measure

n
n _
Kt = Zax;’"'
i=1

Let .# denote the set of probability measures on E equipped with the topology
of weak convergence. We denote the natural duality between .# and the set
€ (E) of bounded continuous functions on E by

()= [FDu(dy),  feE), pe.

Occasionally we consider the subset €o(E) of compactly supported functions.
Let 9(I, .#) denote the path space of cadlag functions from I into .# fur-
nished with the usual Skorokhod topology. The approach to measure-valued
jump processes which we adopt here is to study stochastic equations for the
empirical distribution process
. 1.2
t> Xj==)8nc.#, tel.
n i=1 ¢

The trajectories are realized in the canonical probability space [2(I,.#),
(F2)ter], where F;, t € I, denotes the filtration of o-algebras generated by
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the process t > x;. The limit of X" = (X7):c; as n — oo will be an element
in the subset €(I,.#) of uniformly continuous paths.

We want to construct next a probability measure £" which governs the
evolution of the measure-valued interacting jump process X™".

1.2. Interaction. In this section we state the restrictions and assumptions
we are going to impose on the jump structure. Of course the independent case,
when yi(x) = yi(x') only depends on x’ and not on x/, j # i, is always
included. The interaction mechanism is specified as follows.

ASSUMPTION 1. Assume that the system is weakly interacting in the sense
that, for each n,

(A1) yi(x) = yi(x'; u}), l<i<n,tel,

where yi(-,-) is a nonnegative function on E x .# such that p > yi(-,p) is
uniformly continuous. Moreover, assume there is a constant C such that, for
eachnand 1 <i <n,

(A2) sup sup i ni(x, dy) <C.

xeE" tel
In the sequel we choose whichever is the most convenient notation of
ni(x,dy) = ni(z',dy; p*) = vi(x'; u") w(a', dy).

Note that since the functions y* may include an application of (u}, f) with
f(y) = y, the identity function, the assumption covers mean field interaction
models of the form

i Y O et 2 ).
yt(x) 'Yt(x ' i§=1 )

We remark that assumption (A2) requiring bounded jump rates is rela-
tively strong. For example, it rules out the Schlégl type models studied by
Feng (1994). However, in order not to burden the presentation with a more
complicated technical framework, we have chosen to work first under assump-
tion (A2). Certainly our program works also in other, more general, situations
after making the appropriate modifications. The basic line of argument, how-
ever, will be the same. See Section 5.4.

1.3. Martingale problem. For each set B € %, let N ¢«(xt, B) denote the
number of jumps of component i during [0, ¢] which are of the form x> ye
B. Wé will denote by 2" a distribution of the process which is such that, given
any state x of the system and B, B’ € 4,

~ . . t ,
N;(x,B)th(x‘,B)—/o an;(x,dy)ds, i=1,...,n,
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is a family of orthogonal (interacting) (#", #;)-martingales compensating the
counting processes N(x*, B), with predictable quadratic variation

. . t .
(! (x,B), Ni(x, BY). = [ [ mix,dy)ds.

A consequence is that under such a measure £", the empirical distribu-
tions X7 obey the following representation. Here the common superindex n
in x = («1",...,x™") is suppressed. For f € €19(I x E), the set of bounded
continuous functions with one continuous time derivative, we have

(XY, F0 = (X0 Fa) = o S (Fuld) = fol)
i=1

n

1 t 9 i
;. (s ;fr(xr)dr

i=1

+ / t /E (fr(y) - ﬂ(xi))dNr(xi,dy))

t P t
= [(xn2par+ [{xn [ (£ £ N )
s r s E
The generator &7 f(x%,x) = o f(x?; u") of ¢ = xi under " is defined by

ALif (2, x) = / (F(y) = flal)) ni(a, dy).

Then the previous representation of X" can be rewritten in the form
(L.1) (XY, fe) = (Xg,fo)+/Ot<X'r’,%fr)dr+/ot(X?,Mrfr(-;X;‘))dr+Mf,
where

- [ t(X;‘_, [t~ f,(~>>d1\”rr(-,dy;X;‘))

is a purely discontinuous martingale. For f and g in €1°(I x E) the predictable
quadratic variation is given by

(M7, Méey,

(1.2) 1 ¢ .
=[x [0 = £ ) = Oy X ar
We are interested in processes X™ which obéy (1.1) and (1.2) and which

have a McKean—Vlasov limit, as n — oo.

| PROPOSITION 1. Suppose ni(x,dy), i > 1, is a collection of weakly interact-
ing jump measures which satisfies Assumption 1. For each n and each v € /4,
there exists a measure P! with P X} = v) = 1 which is the unique solution
of the nonlinear martingale problem (1.1)—(1.2).
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Suppose X§ converges weakly to some no € .#. Then X" converges weakly
in 2(1,.#) to a deterministic path n € €(1, .#) such that

t 9 t
(13)  ofa = (o, fol+ [ (nr,;fr)dw [ st me

For a proof, see, for example, Oelschlager (1984).

1.4. Infinitesimal measure generator. Consider functionals F(u)=F(u, f)),
where F € €(R), pn € # and f € €°(I x E). Then

t
(1.4) F(X}) =F(X})+ [ I F(X3)ds+ MY,

where MT is a (2", %;)-local martingale and the infinitesimal generator £
of the measure-valued jump process acts on probability measures u € .# by

1 1
2P0 = n (o [ (F(+ 28, 20) = P JouCodyi).
In particular, for F(u) = e,
ftn elml) — <,u,,/n(e(f(y)'f('))/” _ l)nt(~,dy;p,)> el
The Hamiltonian associated to #£”" is defined as

(1.5)  HM(u,f)=e WD 2 el — <p,]n(e(f(y)'f(‘))/” — l)nt(-,dy;,u)>.

2. Large deviations and main results.

2.1. Absolutely continuous paths. It is a well-known feature in the theory
of large deviations on path space that the deviations from a deterministic limit
occur with exponentially small probabilities and are concentrated on highly
regular paths.

The regularity notion relevant in our situation is that of absolutely contin-
uous paths, as developed in Dawson and Gértner (1987).

Consider the Schwartz space 2 of test functions ¢ with compact support
supp ¢ in R? and continuous derivatives of all orders. Via the subspaces 9x =
{¢ € 2: suppe € K}, K C R? compact subsets, 2 is furnished with the usual
inductive topology. Let 2’ denote the dual space of real distributions on R?.
By embedding E into R%, we may consider .# as a subset of 2’. Hence we
extend the notation ¢ — (%, ¢) used for ¢ = u € # and ¢ = f € € to any
Ve and o € 2. Amap t — ; € 2’ defined on I is said to be absolutely
continuous if for each compact set K C R? there exists a neighborhood U of
the zero function 0 in 9k and an absolutely continuous real-valued function
kx on I such that

|('l9t,(P)—(‘l9's,QD>|Sle(t)—kK(S)l, S’tGI’ ¢€UK'
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For such absolutely continuous maps ¢ — 9, the time derivative (d/dt)d; = &,
exists in the distribution sense:

19: = }llin(l) h‘l(z‘}t+h - 1‘}t) for almost all ¢ € I.

If E is discrete, we make the identification of €y(E) with test functions of
the form ¢ = 3", ;85 , where x1,...,x, are points in E, 8; is an approx-
imation to the Dirac function at x as &£ — 0 and the a;’s are constants. By
taking limits as ¢ — 0, we obtain the distributions 2’(E) on E in duality
with €9(E). Thus we can take u € .# and form, for example, i € 2'(E). In
particular, (u;, @) is absolutely continuous for all ¢ € €y(E) with derivative

(Kigs @).
The defining equation (1.3) for the limit process n; can now be written

t, t J
/0 (s £r) dr = (16, F2) = (o, Fo) — /0 (nr, 5ﬂ>dr

t
- /0 s o fr(imedr, € €o(I x E).

Writing &/;(n) for the formal adjoint of the generator ./; corresponding to
the jump measure n = {n}(x,dy)}1<i<n, this relation takes the weak form

M, = &;(n)n, for almost all ¢ € I.

2.2. Orlicz space, admissible paths. Consider the pair of Young functions
T(t)=e —t -1, ™(s) =(s+1)log(s+1) —s, s> —1.

Fix a jump measure n;(x,dy) and a path uw € 2(I, .#). For any measurable
function A,(-,-) on the measurable space (I x E?; ds us(dx) ng(x,dy)), define

Ihllp = inf{a > 0: /I</w/ o(hr(~,y)/a)n(-,dy)>dr < 1},

where 6 equals 7 or 7*. This defines a norm and correspondingly we obtain
two Orlicz spaces (L7, || -||.) and (L™, || - ||,+) of functions on I x E2. These are
Banach spaces in topological duality. For more details, see Krasnoselskii and
Rutickii (1961).

We also introduce the Orlicz space & (u,n) = &(IxE?; ds us(dx) ns(x, dy))
of strictly positive functions g of the form g = A+ 1, A € L™. This is the set
of functions for which

”g” — inf{a - 0L<Mr,/(gr(a’ y) lOg gr(é’ y)__gr(t'z’ y)+1) nr(', dy)>dr < 1}

is finite.

. Wenow define a subset H of regular paths in € (I, .#) which will constitute
.all the trajectories possibly deviating from the McKean—Vlasov limit. It is an
analog to the “Cameron—Martin” space defined in Fleischmann, Gértner and
Kaj (1993), for regular paths of small perturbations of super-Brownian motion
away from the heat flow.
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DEFINITION 1. Fix no € .#. Let Hy denote the set of all paths u € £(I,.#)
with:

- (1) po = mo-
(ii) The map ¢ +— u; defined on I is absolutely continuous.
(iii) g, = &F(m)u, for some m such that m,(-,dy) is absolutely continuous
with respect to n(-,dy) for almost all ¢ € I.
(iv) The Radon—Nikodym derivative ¢t — g;(-, y) := m(-,dy)/n:(-,dy) > 0
belongs to the Orlicz space & (u,n).

2.3. Main result. Define the scaled Hamiltonian # by
1
#(p, f) = lim — 7 (p,nf) = <u, / (OO — yny(., dy; M)).

For 9 € 9'(E) and u € .#, define the Legendre transform of # by

/t(/-","?) = sup {(ﬁ’ GD) - %(l-"’ ‘P)}
peto(E)

THEOREM 1. Consider a fixed (interacting) jump measure n(-,dy) which
satisfies Assumption 1. Let #; be the associated Hamiltonian and 7 the
Legendre transform. Fix ng # 0 and let ) be the solution of (1.3) for the gener-
ator &/ (n). For any measurable set A in 9(1, .4 ), put

P(A)=2P"(X" e A| X3).

Then:
(i) For each open subset G of 2(I,.#), liminf, ,.(1/n)log ™"(G) >
—inf,cq S(w).
(ii) For each closed subset F of 2(I,.#), limsup,_ . (1/n)log 2"(F) <
—inf uer S(). |
(iii) The level sets {u € 2(I,#): S(u) < N}, N > 0, are compact,
where
T
S(w) f ZLi(we, o) dt,  if t > wy is absolutely continuous and o = no,
=1Jo

00, otherwise.

To obtain alternative representations for S, we introduce, for 0 <s <¢ < T,
the functionals

t ‘ t
@) Torlits ) = s £ (i ) = [ <Mr,%fr>dr— [ #ur, .

"

' THEOREM 2. Let 7 be the solution of (1.3) and Hy the corresponding set of
paths which are admissible for n according to Definition 1. The representation

(2.2) S(p) = sup{Jor(u, f): f e €I x E)}
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holds. Moreover,
S(u) < oo ifand only if u € Hy,
and in the case S(u) < oo, then

T
S = [ (ur, / (g,(-,ynoggr(‘,y)—gr(‘,y)+1>nr(-,dy))dr
2.3)

T
= /(; (ur ®nr,(grlog gr — gr +1))dr.

2.4. Example: Epidemic SIR model. We give an example of a multitype
model with ¢ype interaction. Let the state space E, informally described as
E = {susc,inf,rem} x position, consist of pointers to one of three possible
types, S = susceptible, I = infective and R = removed, and in addition of a
position variable r; € R, say, if component number i is of type S or I and a
cemetery position T if of type R. Then

12 1/ 18I 1] |R|
1y s, = _(Zag$> LIS aT).
nia n\iz j=1 k=1
Suppose A(r,r’) is a nonnegative function on R? which satisfies, for example,

sup | A(r,r')dr’ < oo.
reR JR

Define jump rates by
11|

n'(susc,inf ;x) = y'(susc;x) = 1 Ari,r;)
ni3
for a jump S — I of particle i at r; and
n‘(inf,rem;x) = y'(inf ;x) = p

for I — R of particle i. Write, for ¢ = (¢1, ¢2),

(X7, 0) = (S, 01) + (I}, @2).
Then

(X2,0) = (X5, )+ [ (S1@ T2, Als — @) s+ [ (11,0 = g s+ MT,

where the (#", %;)-martingale M7, ¢t € I, has quédratic variation
1 t . t
oy =2 ([ (7@ 1M — s o [ (12, #)ds).

Hence’ with (/’%‘P) = (/J'l’ ‘Pl) + (l-"z, (PZ),
H (@) = (u* ® u?, (e~ — 1)) + o (u?, (7 — 1)).
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Along the extremals of the corresponding variational problem for .# there are
functions g! and g2, such that the rate function can be written as

T
S(p) = fo (ul® u? A(gtlog gl — g + 1) +e(ul, (gilog &7 — g7 + 1)) dr,
which is in agreement with (2.3).

3. Representations of the rate function. Frequently we will use in the
sequel a simpler notation which we illustrate with the example

i, f) = (u, [ (et - 1)nt(~,dy;u>>
_ (u, [ 1) dnt>, AF(o9) = F(3) = £,

PROOF OF THEOREM 2. We show first that the rate function S(u) in Theo-
rem 1, given by

T
S(p) = ] sup {(i,, @) — #olpr @)} dr,
0 ¢eéo(E)

has the representation (2.2).
For all f € €°(I x E),

S(p) > /1 Uty Fr) — Hoptrs 1)) dr = Jo.r (s ).

Hence

(3.1 S(u)= sup Jor(m, ).
fe€1O(IXE)

Therefore, if the right side of (2.2) is infinite, then the rate function is infinite.
Next suppose that supsc10(7xz) Jo,r(1, f) < o0. Define, for 0 <s <t < T,

¢ J
buil )= s )t £ = [ (s ot ot )
Since

Hes F) = ey o40f) + (ut, / T(Af>dnt>,

1

we have

Torl, F) = Leu(F) — /(u / T(Amdnr)drs sup  Jor(u, f) < oo.

fe€O(IxE)
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Hence, following Léonard (1989),
1
_es,t(f) = zs,t( f )

1afll- NAafll-
< sup Jor(u,f) +<Mr,f7'( Afr )dnr>dr
fe€ W (IxE) 1Afl-

< sup Jor(u,f)+1<oo.

fe€¢LO(IXE)

Therefore, Af — £;,:(f) can be extended to a continuous linear functional on
L". By the Riesz representation theorem there exists a unique h € L™ (h =
£ — 1) such that

t
e )= [ (rs | 472 1rdn)ar.
Then choosing f:(y) = ¢(y) € €o(E), forall0 <s <t <T,
t
(/J't’ ¢) = (M’s’ QD) +L <I-‘fr, Mrﬂo +/A(P hr dn,)dr,

which shows that w is absolutely continuous.
Moreover, for almost all ¢,

(3.2) (g, @) = (Mt, Lo + f A hy dnr>,
SO

T
S(p) =/ sup <Mn/(hr Ap — T(Aqo))dnr>dr
0 peco(E)

=< /OT<,ur,/'r*(hr)dnr>dr.

If f € €7%(I x E), then Af € L". Hence

T
Jor(n, )= [ (ur, / r*(h,)dnr>dr

(3.3)

T
= [ o [ o)+ 2(at0 by af)an,
By Young’s inequality and an approximation in L7,

T
sup  Jor(n,f)= [ (ur, / T*(h»dnr)dr.
fe€O(IXE) 0
Hence, by (3.3) and the last equality,
T
sw= [ (m, / r*(hr)dnr)dr = swp Jor(uf) <o,
0 fe€LO(IXE)

Together with (3.1) this completes the proof of (2.2).
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Furthermore, we have shown that whenever S(u) is finite, then

T T
Sw = [ (ur, / T*(hr>dnr>dr= [ lwr @, (grloger - g+ 1)dr,

whence (2.3).

Summing up the above, if S(u) < oo, then u € Ho. It remains to show
the converse. Therefore, assume that u € Ho. Then there exists a function
g € &(u,n) such that (3.2) holds with h =g —-1¢€ L™. We even have

/(;T<Mr,/ T*(h,)dnr>dr < 00,

since 7* satisfies the condition sup, 7*(at)/7*(¢) < oo for some a > 0 [see, e.g.,
Neveu (1975), Appendix.] Therefore, as in (3.3), S(u) < co. O

4. Large deviation principle for the independent case. In this sec-
tion we prove Theorem 1 in the case when the interaction is locally “frozen,”
and hence the processes ¢ > x! are independent. According to Theorems 5.2
and 5.3 in Dawson and Girtner (1987), it suffices to derive local lower and
upper bounds and check the exponential tightness property. This is done be-
low in Propositions 2, 3 and 4. Sections 4.1-4.4 are similar in approach to
Djehiche (1993), adapted to the case of measure-valued processes. Section
4.5, in which we prove compactness of the level sets, is close to Dawson and
Gértner [(1987), Lemma 5.6] and Feng [(1992), Lemma 3.9].

Throughout we let i denote a fixed path in 2(I, .#) and study the empirical
process X" with jump measure

Al(xl,dy) = y(«, ) m(xt,dy), 1<i<n.
4.1. Change of measure. For pe 9(I,.#) and f € € LO(J x E), define

(1) K £) = (s )~ o fo) = [ (e 7).

Consider the signed measure paths defined by
fr K= K(X"f)

4.2) t
= A(X:-L_’/(fr(y)—fr(‘))dNr(‘ady)>dr, tel,

where the second equality is from (1.1).

' LEMMA 4.1. Fix f € €¢I x E). For each %;-predictable and #"-a.s.
‘bounded function a;,

t t
£ (a) :=exp{nf a,dK;"f—n/ ;f,(X';,a,f,)dr}, tel,
0 0
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is a (2", F:)-martingale. In particular,
A expinK?’f -n /O t K (X7, fr) dr} =exp ndo (X", f), tel,
is a (2", #)-martingale.

ProOF. Put

t
Up = exp| K1 - [, foarl.
0

Since n [; a, dKM = K?""‘f and #](u,nf) = nHi(p, ), we have
&' (a) =T,

Therefore, it is enough to show that U ;"f ,t>0,1s a (2", ;)-martingale. By
(1.4) and (1.5) there is a martingale M**P, such that

exp((X7, f+)) — exp({(X§, fo))
_ fo " exp((X, £1)) (%,”(X;’, fr)+ (X':, % f>) dr = M>®.
It is then easy to check that
dUpT = exp((X}, f)) AM;™,
and we are done. O
Define a new probability measure &2 which is equivalent to " by setting

dor

n,f —
gt (a) - dgn ._7[ .

Introduce the notation
! d 4 d2
%(,u"af) = %%(l-‘/,af)’ % (f’l”af) = a‘cﬁ%(ﬂaaf)

LEMMA 4.2. Let b, t € I, denote a F;-predictable and $"-a.s. bounded
function. The process

t t
;= [(o,akr — [(b, #/(Xrarf,) dr
0 0
t
- / b, dK™
Q

- fot br<X£‘,/(fr(y) — fr(-)) explar(f+(y) = f+(-)) ﬁr(~,dy)> dr

isa (21, F1)-martingale on I with predictable quadratic variation given by

¥

1 t
(M™) = = / b2 (X, a0 f,) dr.
nJo
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ProOF. This follows from the property of Radon—-Nikodym derivatives that
quotients of the form

ela+eb) /e (a),

are (£}, #;)-martingales on I. Differentiate twice at ¢ = 0 to get the stated
properties of M}. O

4.2. Avariational problem. Asusual we write fT=fv0and f~=(—f)VvO0
for the positive and negative parts of a real-valued function f on R¢. The
notation f* refers to either of the two functions.

LEMMA 4.3. Let v be a Borel measure on R® and f € L'(v). Define
g()t)=/fe)‘fdv, AeR.
Suppose
vt = f(fi)2 dv > 0.

Then for every real {, there exists a unique A such that { = g(A). The map
v > A is continuous. Moreover,

Al =

(- [ fav

/Oyt Ay

PROOF. If A > 0, then [ f2e* dv > [(f*)2dv. If A < 0, then [ f2e*/ dv >
[(f)?dv. The existence of a unique solution to the equation { = g(A) now
follows from the facts that A — g(A) is continuous and

A g'(x\):/fze)‘fdvz ytAyT >0,

so that the map A — g(A) is bijective. It follows also that the inverse is
continuous, which we can interpret as the continuity of A in ».

The last part of the lemma is proved as follows. Fix ¢ and A such that
C=g(A).If A >0,

- g0)= [ fle¥ - v = A (2 ay =2y > 0.

{—g(O):/f(e)‘f—l)dvs A/(f‘)2dv=)w‘ <0.

Hence |A| < ¢ — g(0)l/(y* Ay7). O
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COROLLARY 4.4. Let wm€ Hyand [ € f(}’o(l x E). Assume
¥t = itn{<m, / (Af,*)zdﬁt) >0,
€
where Af(x,y) = fi(y) — f«(x). Then there exists a unique function A; =
Aty oy, fes t), such that, for almost all t € 1,
(4.3) (B fe) = H{ (e, Aefe)-
Assume
yff = itnf<X;‘,/(Aff)2dﬁt> >0, n > no.
€
Then there exists a unique progressively measurable process t + A} =
MXZT, fuys e, t) on I such that, for n > ny and almost all ¢ € 1,
(4.4) (s fo) = H{ (X7, AL fe).
Moreover,
IAel < (e, X+ 2C1 e/ (vE Ay7),
IAZL < (hag, £+ 2CIFell)/Cvib Avy)-

and A" is continuous in X™.

(4.5)

PROOF. Apply the lemma to the measure dv = u;(dx) ® ny(x,dy) defined
on E? (fixed t) and with ¢ = Af;, to obtain A and A". In addition, we have to
show that A} is #; progressive. However, for o real,

{({, t’ V): An(/-"t’ {’ ft’ t) A> Cl}
={({,t,v): { > H' (e, af 1)} € Br x P(2(1, 4)),

where £(9(1,.#)) denotes the progressively measurable paths from I
into 2. '
Also by the lemma,

(v Ava) I < [{ier £)] + <Xt/E Af dﬁt> < 1ia, 1 + 2CIfl,
where the constant C is from assumption (A2). Similarly for A;. O

4.3. Lower bound. The purpose of this section is to prove the following
proposition.

. 'PROPOSITION 2. Fix e 2, #)and let V be an open neighborhood of .
Then

lim inf % log 2™(V) > —S().
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First note that if S(u) = oo, there is nothing to prove. Therefore, throughout

this section we assume S(u) < oco.

As a further preliminary for the proof, we will choose a test function f,
which will then be fixed throughout this subsection. The quantities y* = y*(f)
and y¥ = y*(f) were defined in the previous section.

Take f € €3°(I x E) and no, such that
YEF)AYE(f) =c1>0, n>ny,

(4.6)
[{fss [2)] < cg for almost all ¢ € 1.

Now, by Corollary 4.4 there exists unique solutions A; = A;(f) and A} = AZ(f)
of the variational problems (4.3) and (4.4), and by (4.5) and (4.6) we can find
a constant K such that almost surely

Al VIAYI <K, tel, nxno.
LEMMA 4.5. Put
t
my" = [ x (KD - (X3 027 dr)
and
T
= fo U (rs M) — (X2, X F ) + s £l 1A = Arl} dr.
Then
T n n,f T n \n Ln n
fo A dK™ —/0 K (X2, N ) dr| < S(p) + [ME| + 32,

PrROOF. We have

T
S(p) = / sup {(i,, @) — #o(pirr @)} dr
oety(E)

T.
= sup sup{A(i,, ) — #r(pur, A@)}dr.
0 ¢e&o(E) AeR

Hence
T
00> S(W) = [ (Arlfiys Fr) = (r, Aef ) dr
Therefore,

/ AR — / Hr(XAEF ) dr 4+ S(p) = S()

i

<S(M)+f N (dan Mr,fr))dr+/ (A" = Ap) iy fr)

n /0 (Ao Arfr) — H( X", APF,)) dr
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However, according to (4.4),

t
M = [0 A (dR™ — (a,, fr)dr). 0
For 6 > 0, set
Vs={veV: supllv, — wl < 8},
tel
where || - || denotes the total variation norm on .#.

LEMMA 4.6. For any & > O there is a 89 > 0 such that if 6 < 8¢ and
X" € Vs, then 37 < &.

PrOOF. We have
|#r(:u'r - X;La /\:Lfr)l
< Cllpr— X2l lexp(AFAf) = 1| < Cllwr — X7 (exp(2K [If-]I) + 1).

Hence, if X" € Vg, then
T
sh< /O {1 ey A Fr) = 2 (s N2 £2)| + €2 AT = A1} dr

T
+Cs /0 (exp(2K |If,1) + 1) dr,

where the second part of (4.6) is used. Since, by the continuity statement in
Corollary 4.4, the bounded function A" converges to A as X" goes to u, we can
choose 6 so small that 37 < &. O

LEMMA 4.7. For every 6 > 0,
'}erolo P (X g V,s) =0.

PROOF. Let 6 > 0. Fix ¢ € €(E). Define
o =inf {t < T: sup (X7} — us, )| > 8}.
s<t

Then
{o < T} C{sup (X} — s, @)| = 6}

On the other hand,
{sup IX} — el > 8}
t<T

c {fup IX}? — pell > 8}n{oc=T}u {iup|<X? — e, 0) = 8},
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Hence,

P (sup X7 — puell > 8) < P (sup | X7 — pell > 8)
t< =0
+ P (sup (X — s, )| = 8).
s<o

Therefore,

Qﬁ(sug 1X7F — well > 8) <22% (sup (X7 — s, @)| = 8).
t<

s<o
By Lemma 4.2, taking b; = 1 and f; = ¢, the process
M= K - /0 KUK, A@) dr = (X2, 0) — (1 @)
is a martingale under £}, with
(M>m), = f K (X7, Ae)dr.
Here
H] (X}, \re) < 2C|glle® 19! =: K.
For any a > 0, using the inequality of Lenglart and Rebolledo, we get

Pl (sup (X7 — s, @)] = 8) < = + P ((MP>™) o > a).

s<o - 52
Thus
52 an

T
P (sup | X} — mll>5)<2(a Ky )
t<T

The statement follows by letting first n — oo and then a — 0. O
PROOF OF PROPOSITION 2. Apply Lemma 4.1 to the case a = A". We obtain

the exponential #"-martingale £*/(A") and a new probability measure ..
By Lemma 4.5,

T T
g';fw)=expn{/o /\;‘dK;"f—f Jf,(X;‘,)t;’fr)dr}
< exp(n S(u)) expn{|My"| + 3% }
Therefore,
Fr V)= [ ehan AP = expl-n S(u)} A,
ne
where

A”=f exp[—n|M | —n3t}d#)..
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In the definition of A", restrict the domain of integration to Vs and further
to the set of paths for which |M ;’”l < 6. This gives

A" > exp(—n d) exp(—n 37) d 2.
X"eVa,IM;"|58 -

Let £ > 0 and choose 8, according to Lemma 4.6. For all § < &,
(4.7) A" > e+ gn (XM e Vs, |M3"| < 9).
Now,
PL(X" € Vs, IMF" <8) =1 - Ph(X" ¢ Vs) — Ph(IM" > 9).

Lemma 4.2, with b; = A?_ and f the function chosen in (4.6), shows that M tl"
is a (2}, %;)-martingale on I with predictable quadratic variation

1 t
(= = [ (X, ) dr
Thus, by Doob’s inequality,
1 5—2 T 5_2 2
Hence, summing up,
5—2

Pr(XM e Vs, IME"<8)>1-PL(X"¢Vs)——K?K 1 T.
A T A n

By Lemma 4.8, we can now choose ng and a sequence 5, — 0, such that
PL(X" e Vs, IM7"|<8)>L, n=no
Then by (4.7),
1 1.,
;logA”z—(6n+8)—;log2—>—s, n — oo.
Finally,
. .01 . 1
liminf = log 2™"(V) > —S(u) + limsup = log A" = —S(u) — &.
n—-oo n n—ooco N
Let £ go to zero to complete the proof. O

4.4. Upper bound.

. PROPOSITION 3. Fix u € 2(I,.#). For every 8 > 0, there exists an open
.neighborhood V of w such that

—8S(w)+8, provided that S(u) < oo,

n—>00 -8, otherwise.

lim sup % log 2™(V) < {
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PROOF. Fix § > 0. For any fixed f € €%9(I x E), by the continuity of the
mapping
91, 4) > pn> Jor(w, f),
there exists an open neighborhood V = V (4, f) of u such that
lJor (X", ) — Jor(m, f)l < 8/2, whenever X" e V.
Recall the #"-martingale Z™/ in Lemma 4.1. We have
1>E"Zpf > EMZ7 ;X" e V]
= E"[expn{dor(X",f) = Jor(u, )+ Jor(n,f)}; X" e V]
Hence,
4.8) exp(—ndor(u, ) = E*[exp(—n|dor(X", f) — Jor(m, f)); X" € V]
> exp(—n é§/2)P™"(V).
If S(n) < oo, then, by (2.2), we can find fo € €1°(I x E) such that
Jo,r(w, fo) > S(u) — 8/2.
Apply (4.8) with fo and V = V (8, fo) to obtain
" log #"(V) = ~Joz(m fo) +5/2 = —S(w) +8.
If, instead, S(u) = oo, then in view of (2.2) we can find a sequence /(¥ in
£0(1 x E) such that Jor(u, f®) — oco. In particular, Jor(u, f*®) > 36/2
for & > ko. By (4.8) applied to the open set V = V (8, f(k)),

T log #"(V) < ~Tor(s, ) +8/2 < 5. o

4.5. Exponential tightness. This section is devoted to the proof of the fol-
lowing proposition.

PROPOSITION 4. For each m > 1 there is a compact set E,, in 9(1, .#) such
that
P (X" ¢ E,,) <exp—nm.

PROOF. In this proof we let {f;, j > 1} denote a dense subset of €(E) such
that || f;|l < j. Define, for u € 2(1, .#),

;vwk(l-"’ 6’1) = SuP{Z‘l‘_JKI-"t, f]) - (l-"S’ fj)l S,t € I’ 0 =< t—s< 8}’
. =1

w’k(M,S,I)=i{£1{max sup Z4J|(Mt’fj (s, £5)1,

i ti_ 1<8<t<tlj 1
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where the infimum ranges over all partitions 0 =) < t;j < -+ - <tp_1 < T <
tn of I such that ¢; —¢t;_; > 8 for 1 < i < m. For arbitrary null sequences 5,
and oy, put

Fk = {/J’ € Q(I’V/) wfk(l""akal) < Qk}
The set defined by

=N Fx

k>m

is relatively compact in 9(I,.#) [see Ethier and Kurtz (1986), Lemma 6.1].
We will prove that g, and §; can be chosen such that, for each m,

P (E) <exp—nm,

where E¢, denotes the complement set of E,,.
Since

w/k(l-"’ 6’ T) =< wk(ﬂ" 26, T)’

we have
PU(FS) = P (wi(X", 85, T) > ox) < 2" (wi(X", 26, T) > o)

=9”( sup 24 xe fj)—(XZ,fj)|>Qk)-

s,tel i=1
O<t— s<3k‘]

Continue with

[T/8,]-1 k .
P"(F5) < 9»( sup S ATIUXD £ — XDy ) > —)
=0 18, <t<((I+2)8,)AT j=1

T ( L]
< —2"| su ATUXP ) — (X8, F ) .

Sk t<2cI‘5);l Jz::l J 0 J 2
The next step is to prove the inequality

o ((sup 3470 £ = X5, | > )

t<28y, j=1

<2 exp{—2n8kCT*<4gkak - 1) },

where C is the constant in Assumption A2.
To this end, we use again the exponential %"-martingale Z”f in
Lemma 4.1. Introduce

(4.9)

DO =

k ) k .
gr= 24‘% with gl <> 477If0 <Y 477 <
J=1 j=1 j=1
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For B8 > 0,
k
D ATUX ) — (XS, ) = (X7, gr) — (X, &h)
J=1
%logZ”’g”+ / H,(X", g)dr
—_ n’ﬁgk - n
- 5 L +B/o H(X", Bgy) dr.
We have

H,(u, Bgr) < C(e?PIerl — 1) < C(ef - 1),
for any u,t and k. Hence,

9”( sup (X7, gr) — (X0, gz) > sz)

t<26;

< gz( sup log ZP = 2n5kc{;3< i ) _ 7(13)}),

t<28;

for any 8 > 0. Apply Doob’s inequality, use E”Z;"Bg” < 1 and minimize the
right-hand side over 8 > 0. Then repeat the same steps for the function — gy.
This gives the same bound for the probability & (sup,_e5, (X7, g) — (X(, &&) <
—o01/2). By adding the two estimates we obtain (4.9).

Now take 8 = T/2k2. We can find a sequence g, — 0 with g; > 4C 8, and
such that TC7*(0r/4C 85, — 1) > 4k3. With these choices the right-hand side
in (4.9) is less than 2exp —4n k and hence

T
n( e n _
& (Em)sk;m.@ (F, )<k§>m—8k2exp 4n k

< Z 4Fk% exp—4nk < Z exp—2nk

k>m k>m
<exp—nm(e" —1)"! <exp—nm. m|

5. Large deviations for the dependent case. In the previous section
we proved Theorem 1 for jump measures of the form 7A(x,dy) := n(x!,dy; ii),
where i was a fixed measure. The purpose of this section is to lift this restric-
tion and obtain the result for a general jump measure with interaction which
satisfies Assumption 1. To distinguish the two cases, we let %" denote the
probability law corresponding to 7, for which we have shown that the large
deviation principle is true, and we let £ denote now the probability law in
the general case.

'5.1. A Girsanov transformat‘ion. Let N, denote the point process defined
in Section 1.3 corresponding to the jump measure 7 and put

NE@) = [ N, (al, dy.
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For any n and state x = (x},..., x7):c1 of the finite collection of jump processes,
define

2t ye(ail XP) em
H x) = { [ 1og TR 2 A )
! z=Z1 0 yr(xr_; fr_)

t . .
[t X = (ks ) dr}.

LEMMA 5.1. The change of measure from P to P" is absolutely continuous
and the Radon—Nikodym derivative is given by

do"
don |\ %

= exp H}

PROOF. Same as in Shiga and Tanaka (1985). O

We introduce a separate notation for the first term in H} as
nopet . . A
Ki(x)= Y [ (log (e} s X1) ~logys(x; fr)) dNE ().
i=1

Moreover, for any real number «, let

(5.1) Le(x) _Z/ [(ﬂx—xn)) - 1] dr.

yr(xi, fir)

LEmMMA 5.2. For any a € R,
Y;:=exp{aK} — L}}, tel,

is a (P", F;)-local martingale and thus a supermartingale.

PRrROOF. Apply the exponential formula to get

- [f y,(xi,X;‘))"‘ ] TE (i (i h
= o ro) - - . O
Y, 1+§1f0 Y,_[( (e snl) 1] @NEGED v ) )

5.2. Proof of lower bound. We shall prove that, for any g € 2(I,.#) with
S(f1) < co and open neighborhood V of i,

hmsup—log PM(V) > -8S(a).

n—oo

Set

n t ) '
Gi = Zfo (vr(xls X7) = yr(xls fr)) dr.
i=1
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By the uniform continuity of y we can find for all 8 > 0 a neighborhood W of
i with W C V such that

(5.2) |G| < né uniformly on W.
Then, since H} = K} — G7%,
P"(V) = (W)
= E"[expH}; X" e W]
(5.3) > exp(—nd) En[exp K%, X" e W]

= exp(—nd) E" l:exp{K"} - gL;q/P + -§L;q/”} s X" e W].

Here L3 is defined as in (5.2) with a = p/q > 0, for a pair of conjugate
exponents p,q > 1.
Now the uniform continuity of y yields that

|IL7%| < C(a) 6n  uniformly on W,

where C(a) is a constant depending on a only. Hence
P (V) > exp(—n8)exp<—_—w) En exp{K’qﬁ + gL;.q/p} ; X' e W],
a -

and thus, by Holder’s inequality,

PV > exp(—nSl———i_g) En[exp —%K'; - L;‘”P” Fr(W)P

However, according to Lemma 5.2,
exp{—gK?—L;q/p}, tel,
p
is a (9")-supermartingale. Hence
E”[exp{ - %K'} - L;.q/p}:l <1
and so

1+ C(a)
a

1 N
%logQ”(V) > —8( ) + p;logg’”(W).

From Section 4 we know that Theorem 1 holds for &". Hence
1 1+C N
lim sup — log 2"(V) > —6<+—(i)) — pS(Q).
n—soo N o

To complete the proof, take 8 — 0 and then p — 1.
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5.3. Proof of upper bound.

LEMMA 5.3. For each & > 0 there is an open neighborhood V = V(8) of f,
such that

lim sup — log P (V) <-S(a)+ 6,

n—>oo

whenever S(fi) < oo. If S(1) = oo, the assertion holds with —& on the right
side in the inequality.

PROOF. Let p,q > 1be a pair of conjugate exponents and let L7, be defined
as in (5.1). Choose V small enough such that

IL7| < ndC(p)/2,  |GYl <nd/2,

uniformly in V. Then, similarly as in (4.3),
PM(V) < exp( )E”[exp{K" - —L? + LP} X" e W].
Again by Holder’s inequality,
PM(V) < exp( 5 )E"[exp{p K% — L;}]l/p E’”[exp{%L‘T’.}; X" e W]l/q.
By (5.2) and the supermartingale property in Lemma 5.2,
P (V) < eno/2 enSC(p)q/Zp g}n(v)l/q,
and hence

%log (V) < a(ﬁ—qf(—’i))/z + —log P™(V).

Finally, by Proposition 4.9,

1+ qC( p)) 1 ( R 6)
lims —10 PV ——)/24+=(-S(W)+ =),
im sup - log (V) =< ( > / 7 (A)+3
with an obvious modification in the case S(i) = oco. Take p — oo, that is,
g — 1, to complete the proof of the lemma. O

5.4, Further extensions. As mentioned in the Introduction, our assump-
tions on the jump measure are somewhat strong. However, it is not difficult
to modify our program to include the case of unbounded jump rates. Then
it is natural to consider so-called inductive topologies on .#. More exactly,
{t > X:} € Up>1 Dm, where 2, is the subspace of 2(I,.#"V°2*) for which
*SUPyges (s @0) < ‘m, where ¢q is some Lyapunov function. For example, ana-
lyzing the Schlégl models, Feng (1994) uses ¢o(y) = 1+ yloglog(3 + y).

It is likely that one can also apply our methods for other technical setups.
We mention the case when .# is equipped with the “Lipschitz-norm” |u—v| =
sup{(n — v, f): If(y) — f(2)| < |y — 2|} and {¢t » X} € 2(I,.#) has the
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Skorokhod topology. Compare, for example, Oelschliger (1984) and Graham
(1992).

For another example, let (&, - ||) be the set of continuous functions on
E and ¢ the set of continuous maps ¢ — ¢; € € with sup,.; ||| < oo.
Equip 2(1, .#) C @} with the relative weak* topology. This yields the coars-
est topology on 9(I,.#) such that all maps v — [;(v, ¢;)dt, ¢ € &1, are
continuous. Compare Fleischmann and Kaj (1994) and Fleischmann, Gértner
and Kaj (1993).

REFERENCES

DAwsON, D. A. and GARTNER, J. (1987). Large deviations from the McKean—Vlasov limit for
weakly interacting diffusions. Stochastics 20 247-308.

DAWSON, D. A and ZHENG, X. (1991). Law of large number and a central limit theorem for un-
bounded jump mean field model. Adv. in Appl. Math. 12 293-326.

DJEHICHE, B. (1993). A large deviation estimate for ruin probabilities. Scand. Actuarial J. 1 42—
59.

ETHIER, S. and KURTZ, T. (1986). Markov Processes, Characterization and Convergence. Wiley,
New York.

FENG, S. (1994). Large deviations for empirical process of mean field interaction particle system
with unbounded jump. Ann. Probab. 22 2122-2151.

FENG, S. and ZHENG, X. (1992). Solutions of a class of nonlinear master equations. Stochastic
Process Appl. 42 65-84.

FLEISCHMANN, K. and KaJ, I. (1994). Large deviation probabilities for some rescaled superpro-
cesses. Ann. Inst. H. Poincaré 30 607—645.

FLEISCHMANN, K., GARTNER, J. and KaJ, I. (1993). A Schilder type theorem for super-Brownian
motion. Canad. J. Math. To appear.

GRAHAM, C. (1992). McKean-Vlasov It6—Skorohod equations, and nonlinear diffusions with dis-
crete jump sets. Stochastic Process. Appl. 40 69-82.

GARTNER, J. (1988). On the McKean—Vlasov limit for interacting diffusions. Math. Nachr 137
197-248.

KRASNOSELSKII, M. and RUTICKII, Y. (1961). Convex Functions and Orlicz Spaces. Noordhoff,
Groningen.

LEONARD, C. (1989). Grandes déviation pour des systémes de processus de Markov avec interac-
tion a longue portée. C. R. Acad. Sci. Paris Sér. 1 308 425-428.

LEONARD, C. (1990). Some epidemic systems are long range interacting particle systems. Stochas-
tic Processes in Epidemic Systems. Lecture Notes in Biomath. 86. Springer, New York.

NEVEU, J. (1975). Discrete-Parameter Martingales. North-Holland, Amsterdam.

OELSCHLAGER, K. (1984). A martingale approach to the law of large numbers for weakly inter-
acting stochastic processes. Ann. Probab. 12 458—479.

SHIGA, T. and TANAKA, H. (1985). Central limit theorem for a system of Markovian particles with
mean field interaction. Z. Wahrsch. Verw. Gebiete 69 439-459.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
KTH Box 480
S-100 44 STOCKHOLM +S-751 06 UPPSALA

SWEDEN SWEDEN



