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TOTAL VARIATION ASYMPTOTICS FOR POISSON PROCESS
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Assemblies are the decomposable combinatorial constructions charac-
terized by the exponential formula for generating functions:
Lp(n)s™/n!= exp(Lm;s'/i!). Here p(n) is the total number of construc-
tions that can be formed from a set of size n, and m, is the number of
these structures consisting of a single component. Examples of assemblies
include permutations, graphs, 2-regular graphs, forests of rooted or un-
rooted trees, set partitions and mappings of a set into itself. If an
assembly is chosen uniformly from all possibilities on a set of size n, the
counts C;(n) of components of size i are jointly distributed like indepen-
dent nonidentically distributed Poisson variables Z; conditioned on the
event Z; + 2Z, + -+ +nZ, = n. We consider assemblies for which the
process of component-size counts has a nontrivial limit distribution,
without renormalizing. These include permutations, mappings, forests of
labelled trees and 2-regular graphs, but not graphs and not set partitions.
For some of these assemblies, the distribution of the component sizes may
be viewed as a perturbation of the Ewens sampling formula with parame-
ter 6.

We consider d,(n), the total variation distance between (Z,..., Z;)
and (Cy(n),...,Cy(n)), counting components of size at most b. If the
generating function of an assembly satisfies a mild analytic condition, we
can determine the decay rate of d,(n). In particular, for b = b(n) =
o(n/log n) and n — =, dy(n) = o(b/n) if 6 =1 and dy(n) ~ c(b)b/n if
0 #+ 1. The constant c(b) is given explicitly in terms of the m;: c(b) =
1 — 8IEITy, — ET,1/(2), where Ty, = Z; + 2Z, + -+ +bZ,. Finally, we
show that for 6 # 1 there is a constant ¢, such that c(b) ~ c,b as b — .
Our results are proved using coupling, large deviation bounds and singu-
larity analysis of generating functions.

1. Introduction. We consider assemblies, which are combinatorial con-
structions on a finite set in which the set is partitioned into blocks (i.e.,
subsets) and each block is assigned additional structure to form a “compo-
nent.” The defining property of an assembly is that the number m; of possible
structures available to form a component from a given block of i elements
does not vary with either the choice of elements within the i-block or with the
remaining components.
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For a given assembly, for n > 1 and a = (a,,...,a,) € Z" we define
N(n,a) to be the number of constructions on n points that have a; compo-
nents of size {, i = 1,2,..., n. For any a satisfying a, + 2a, + - +na, = n,
we have

n 1\% 1 n
N(n,a) = [n!T] (—) — (nmf)
i=1 ! a i! i=1
The first factor is the number of ways to partition the n-set into blocks of the
specified sizes, and the second factor is the number of ways to assign the
additional structure to make blocks into components. It follows that for any

ae’Z®

n m.\%
(1) N(n,a) =1(a, + 2a, + +nan=n)n!l_[(i—'l) —.
1 .

The total number of constructions of size n is

(2) p(n) = Y N(n,a).

The characterizing relation for the class of assemblies is the exponential .
formula

(3) 1+ ) p(n)s"/n!= exp( Y misi/i!),

nx>1 i>1
which can be proved directly from (1) and (2). Assemblies are treated in Foata
(1974), where they are called “abelian partitional complexes,” and in Joyal
(1981), where they are called “assemblies of species.”

Examples include permutations, for which the components are cycles;
graphs, for which the components are connected components in the usual
sense; 2-regular graphs, (i.e., graphs in which each vertex has degree 2), for
which the components are undirected cycles of length 3 or more; forests,
whose components are trees; set partitions, whose components are simply
blocks, having no additional structure; and mappings of a finite set into itself,
for which the components may be thought of as cycles of rooted labelled trees.
Permutations have m; = (i — 1)!, p(n) = n!; graphs have p(n) = 2M»~V/2,
2-regular graphs have m; = 1( > 2)(i — 1)! /2; forests of unrooted trees have
m; = i'~2, while forests of rooted trees have m, = i‘~1; set partitions have
m; =1 for all i and p(n) = B,, the nth Bell number; finally, random map-
pings have p(n) = n" and m; = (i — DIZiZ§i/ /jL.

We denote the component structure of an assembly on n points by C =
C(n) = (C(n),Cy(n),...,C,(n)), where C;y(n) is the number of components of
size i. By fixing n with p(n) > 0 and choosing uniformly from the p(n)
possibilities, we get a stochastic process C(n) with values in 77, whose
distribution is specified by

N(n,a)

P(C(n) = a) = — s

, aeZ}.
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It is natural to define C,(n) =0 for i > n and to identify C(n) with the
infinite dimensional process (Cy(n),Cy(n),...) = (Cy(n),...,C,(n),0,0,...)
with values in Z%. This paper deals with assemblies where the sequence
my, m,...is such that a fixed process (Z, Z,, ...) can be used to approximate
C(n) for large n.

2. One moment suffices. For combinatorial assemblies, the joint distri-
bution of the component counts is so constrained that convergence of the
single first moment EC,(n) to a nonzero, finite limit implies distributional
convergence for the entire process. The precise statement of this is Theorem 1
below. There is a complementary result given by Corollary 1, that conver-
gence in distribution of C,(n) to any limit implies proper convergence of
EC(n), so the limit of C,(n) is Poisson, and furthermore the entire process
converges in distribution, to a prescribed Poisson process. The hypotheses of
Theorem 1 and Corollary 1 are given in terms of a simple case, involving just
Cy(n), and a more general case involving C,(n) for all i in a set with greatest
common divisor 1. Example 2 at the end of this section shows that these
hypotheses cannot be substantially weakened.

Given x € (0,), let Z,, Z,,...be independent Poisson random variables
with parameters

(4) N=EZ = —

LEMMA 1. Assume that x € (0,%) and that, as n — <,

xp(n)

—_— 1.
np(n — 1)

(5)
Then the combinatorial process converges in distribution in R” to the indepen-
dent Poisson process: (C(n),Cy(n),...) = (Z,,Z,,...). This is equivalent to
the condition: forall b =1,2,...,as n — o,

(6) (Ci(n),Cy(n),...,Co(n)) = (Z1,2Z,,..., Zy).

Furthermore, all moments of the combinatorial process converge to those of
the Poisson process.

ProOF. We use the method of moments to prove convergence of the
finite-dimensional distributions. The joint falling factorial moments of
(Cy(n),...,Cy(n)) are given by

nt p(n-—m) b o
— [T

p(n) (n—-m)! j1

for (ry,...,ry) € Z% with m =r; + 2r, + --- +br,, and where we use the
notation (y), to denote the falling factorial y(y — 1) (y —r+ 1) [cf.
Arratia and Tavaré (1994), (126)]. From this formula it can be seen that the

(7N E ﬁ (Ci(n)), =1(m <n)x™™
Jj=1 !
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joint moments of (Cy(n),...,C,(n)) converge to those of (Z,,...,Z,) if, and
only if, xp(n) ~ np(n — 1). Thus (5) implies that all moments converge, and
hence (C(n),...,Cy(n)) = (Z,,...,Z,). O

Lemma 1 can be useful when p(n) is known directly. It provides a unifying
perspective on the convergence of various assemblies for which the process
convergence is already well known. For example, permutations have p(n) =
nl, so that p(n)/(np(n — 1)) = 1 and Lemma 1 applies with x = 1; mappings
have p(n) =n", so that p(n + 1)/(n + Dp(rn)) =1 + 1/n)* - e and
Lemma 1 applies with x = 1/e; forests of labelled trees have asymptotics
given by Tannery’s formula p(n) ~ Ve n” 2 [see Moon (1970), page 29], so
that Lemma 1 applies with x = 1/e. For other examples, Flajolet and Soria
(1990) use analytic hypotheses on generating functions to derive asymptotics
for p(n), which imply (5); we discuss this further in Section 4.2. Examples of
assemblies to which Lemma 1 does not apply include all graphs, for which
p(n) = 2"*~V/2 g0 that p(n + 1)/(np(n)) =2"/n - ©, and set parti-
tions, for which p(n), the nth Bell number, satisfies p(n)/(np(n — 1))
~ 1/log(n) — 0.

THEOREM 1. Assume that p(n) > 0 for all sufficiently large n. If m; > 0
and

(8) ECy(n) — 1, € (0,),

then with x defined by the requirement that l; = m,x, Lemma 1 applies, all
moments converge, and the combinatorial process converges in distribution to
the independent Poisson process with parameters given by (4). More generally,
if I is a finite set of positive integers with greatest common divisor 1 and

forallielI, EC;(n) —1;€(0,°),

then there is a unique choice of x € (0,) such that for alli € I, 1, = A,. Using
this x, Lemma 1 applies, all moments converge and the combinatorial process
converges in distribution to the independent Poisson process.

PRrROOF. For any n such that p(n) > 0,

n! n—i
(9) EC(n) =1(i < m)x™ — o ’(’i_i)!) N

which is the special case of (7) with b =m =1, (ry,...,r,) =(0,...,0,1).
Writing A(n) = p(n)x" /n!, the hypothesis (8) implies that A(n — 1)/h(n) —
1, so that Lemma 1 applies, proving the first part of this theorem.

For the second part, let a(i) be integers such that ¥, ;ia(i) = 1. Fix one
particular j € I and define x by the requirement that [; = A; =m jxj /Jj!. For
i€l let r(i) =1,/A,;, so that r(j) = 1, and the hypothesis EC;(n) — [; im-
plies that A(n — i)/h(n) — r(i), for each i € I. We can write A(n — 1)/h(n)
as a telescoping product to see that A(n — 1)/h(n) = r = I1,. ;7(0)*®. In
more detail, the product has Y|a(i)| factors. These factors are of the form
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h(n+k —i)/h(n + k) - r@@) if a(i) >0, and of the form hA(n + %k +1i)/
hn + k) - r@i) ! if a(i) < 0. We exploit a telescoping product again to see
h(n —j) . h(n—-1) h(n—-2) h(n —j) )
= ¥ im ‘ = pJ

h(n) h(n)y h(n—-1) h(n—-j+1)
so that » = 1 and hence (5) holds. O

1 =1Iim

COROLLARY 1. Assume that an assembly is such that m,; > 0 and C(n)
converges in distribution to some nonzero random variable or, more generally,
that for some set I c{1,2,...} with ged(I) =1, for each i €I, m; > 0 and
C.,(n) converges in distribution to some nonzero random variable. Then the
hypotheses of Theorem 1 are satisfied, so that all moments converge and the
entire combinatorial process converges in joint distribution to the appropriate
Poisson limit.

ProoF. We will show that, if C;(n) converges in distribution, then EC,(n)
— [, € (0,). Applying this, either for i = 1 or else for all i in a set with
greatest common divisor 1, shows that the hypotheses of Theorem 1 are
satisfied.

Fix i with m; > 0 and assume that C,(n) = U with density f(a) = P(U =
a). Let p(n) be the number of assemblies on r points having no components
of size i. Note that

_ (n)ia(mi)a p(n —ai)

(10) P(Ci(n) = a)

(iY“a! p(n)
fora =0,1,2,....
Thus, if f(a) > 0, then as n — o,
. . m;\* 1
(11) p(n) ~n p(n—za)(j) —a!f(a)'

If we also have f(a + 1) > 0, then

; ) N S 1
(12) p(n) ~n""+1)ﬁ(n—la—l)(7) i D)f@+])’

and (11) with n replaced by n — i gives

. Nia A . . mi . 1
(13) p(n—i)~(n—i) p(n—z—za)(j-) m.
Now (12) divided by (13) yields ‘
p(n) U f(a)

a9 EDRERCEDCED)

By formula (9), this implies that as n — «, ECi(n) = (a + Df(a + 1)/
f(a) € (0, ©). In order to show that for some a, both f(a) > 0 and f(a + 1) > 0,
we assume that @ > 0, f(a) > 0 and f(a + 1) = 0, and derive a contradiction.
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From (10) with a + 1 in place of a, we get

n'®*Yp(n —ai — i
(15) A( ) Lo,
p(n)
Combining (13) with (15) yields p(n — i)n’/p(n) — 0, and applying this with
n replaced by n —i,n —2i,...,n —ai +i and multiplying, shows that
p(n —ia)n'/p(n) — 0; this uses a > 0. Since p(n — ia) < p(n — ia), we
have

p(n —ia)n'e
p(n)

which combined with (10) implies P(C,(n) = @) — 0, contradicting f(a) > 0.
O

-0,

REMARK (Periodicity). The hypothesis in Theorem 1, that p(n) > 0 for all
sufficiently large n, is equivalent to the assumption that

d = ged{i: m; > 0}

satisfies d = 1. By analogy with Markov chains, we refer to assemblies which
satisfy this as aperiodic. The general case can be reduced to this one by
reindexing to create a new “assembly” which is aperiodic, and translating
results back to the original assembly. This can be done for the results of all
the theorems in this paper. In detail, given a sequence m,, m,, ..., for which
d > 1, and an appropriate choice x, for which A, = m;x'/i! might satisfy
EC;(n) = A;, we cook up a new “assembly,” indicated by primes, such that
X; = A;4. This means

m(x')" VN m,,xtd 4 . i!
———— =X =y ——, T
(id)! (id)!

; hence x'=x?, m; =

We refer to the new system as an “assembly” in quotation marks because the
m’; need not be integers, so there need not be a combinatorial interpretation
in terms of labelled structures. The generating function relation in (3) serves
to define the p(n) for this more general “assembly.” Equivalently, we may use
(26) below as a more general description of “assemblies,” requiring only that
for all i, A; > 0. Our old assembly, with period d, has p(n) = 0 unless
n =md for an integer m, and C;(n) =0 unless dl|i, so that the entire
distribution of our old assembly is described via

(Cd(md)’ C2d(md)’ ] Cmd(md)) =d (Cll(m)’ C'z(m), L] C;n(m))
whenever p(n) > 0 or, equivalently, p'(m) > 0.

i!

EMPLE 1 (Permutations with only even cycles). This is the assembly
with m; = (i — D!1(2]i) and period d = 2. With x = 1, we have A, = i~ 11(2]7)
and we cook up the artificial assembly with X; = A,; = 1/(27), x’ = 1 and
m; =@2i — D! /2i)!= (G — 1! /2. This new assembly is the Ewens sam-
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pling formula, described in Section 4, with parameter 6 = 1/2. Note that m/;
fails to be an integer for i = 1,2. Theorem 2 below, or the Feller coupling as
used in Arratia, Barbour and Tavaré (1992), establishes an independent
Poisson process limit, and translating back to the original assembly, this
result may be written

(Cy(2m),Cy(2m),...) = (Z5,Zy,.-.),
where the Z, are independent, Poisson distributed, with EZ,;, = 1/(2i).

ExampLE 2 (Permutations with only even cycles and fixed points). This is
the assembly with m; = (i — D!1(2|i or i = 1): it is aperiodic and does not
satisfy the conclusion of Theorem 1. It does satisfy EC;(n) — A; for all even i,
but for odd integers i, the limit of EC,(n) does not exist. In terms of the proof
of Theorem 1, we have A(n — 2)/h(n) — 1, but the asymptotic decay of A(n)
has different constant coefficients along the odd and even integers. In fact, for
any 6 > 0 and for any assembly with A, = 6/i for i evenand 0 < A = A; + Ag
+ «+ < o, it can be shown that A(2m + 1)/h(2m) — tanh(A) < 1. An easy
way to do this is to compute in terms of independent Poisson random
variables; start with the weighted sum 7T, defined by (27) and the identity

(16) P(Ty, = n) = h(n)exp(—(A; + Ay + - +1,))

and end up looking at P(K odd)/P(K even) = tanh(A), where K = Z; +
Zg + - is Poisson with EK = A. This example also is such that C,(n) does
not converge in distribution, but (Cy(n),Cy(n),...) = (Z,,Z,,...), with the
same limit as the previous example.

8. Total variation convergence. The restriction of C(n) to its first b
coordinates, which specify the counts of components of sizes up to b, is
denoted by C,(n) = (C(n),Cy(n),...,Cy(n)). We want to measure how well
the process C,(n) is approximated by a process of independent Poisson
random variables Z, = (Z,, Z,, ..., Z,) with appropriate parameters A;. A
natural metric for measuring how well Z, approximates C,(n) is total
variation distance. For two random elements X and Y on a finite or count-
able space S, the total variation distance between X and Y is defined to be

dry(X,Y) = supP(X € A) — P(Y € A)l.
AcS

It is well known that
dy =3 L IP(X=3s) - P(Y=s)l

- s€8

, ) Furthermore, if we define

T,

mn

n
= )Y JZ, 0<m<n,

Jj=m+1
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then it may be shown [Arratia and Tavaré (1994)] that
dy(n) =d, =dpy(Cy(n),Z,;)
satisfies

1= P(T,,=n—r
(17) dy(n) = 5 ¥ P(Toy =r)|1 - (P(”TO 0 )

For each fixed n, d,(n) is increasing as a function of b. This is not immediate
from (17), but is clear from the observation that the functional z: R®*! — R®
which “forgets” the (b + 1)st coordinate can be used to express C, = A(C,, ,),
Zy = h(Zy. ).

Since C,(n) and Z, are discrete, (6) is equivalent to d,(n) — 0 as n — «,
for any fixed b. However, the convergence in (6) is too weak for many
purposes, and it is necessary to show that (Cy(n),...,Cy(n)) is close to
(Z,,...,Z,) even when b grows with n. The main results in the paper,
described in Theorem 3 in Section 6, imply that d,(n) — 0 for any b = b(n)
satisfying b = o(n/log n).

To illustrate the power of such estimates, we discuss functional central
limit theorems, such as those proved for permutations by DeLaurentis and
Pittel (1985), for the Ewens sampling formula by Hansen (1990) and for
random mappings by Hansen (1989). These results involve the asymptotic
behavior of the process B,(-) with values in D[0, 1] defined by

(18) B,(t) = (6 log n)_l/z( Y C,(n) — 6t log n)

i<n!

for 0 <t < 1. In order for the centering by 6¢ log n to be appropriate, one
must have

(19) Y A =0logb +o(ylogd),

i<bdb

as b — «. Now suppose, for some fixed a €(0,1), one knew only that
dy(n) - 0 for b = |n*[; this is the situation using (49), for any a < &/(1 + &).
By comparing B,(t) with the same renormalized sum of the independent
Poisson random variables Z;, it follows easily that B,(-), restricted to [0, a],
converges to standard Brownian motion restricted to [0, «]. To get conver-
gence to Brownian motion on [0, 1] requires only slightly more work, the key
ingredient being provided in Lemma 2. On the other hand, convergence to
Brownian motion carries substantially less information than is carried by
results of the form d,(n) — 0 with b = b(n) growing. Roughly speaking, the
Brownian motion result is sensitive to (Cy(n), Cy(n),...) only through sums
over blocks of the form i € (n®, n®) for fixed 0 < a < B < 1.

LEMMA 2. Assume that an assembly satisfies

(20) 6= supi); <, §=liminfiA, > 0

i>1 i
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and that d,(n) - 0 for some choice of b = b(n) with b = o(n), log(n/b) =
o(ylog n ). Then there is a coupling that satisfies

(21) R,=(logn)™"? L IC)(n) —Z] —p 0
Jj<n

asn — x,

ProOF. For any coupling, for any 1 < b < n,

(22) (logn)”’R,< Y ICi(n) -Zl+ Y Ci(n)+ YL Z.
Jj<b b<j<n b<j<n
Now fix the choice of b = b(n). Fix a coupling of (Z;, j > 1) and the processes
(C(n),...,C,(n)) for n > 1 such that, for all n,
P((Cy(n),...,Cy(n)) # (Zy,...,Z)) = dy(n).
In this coupling, the first term of (22) converges in probability to 0 because
nw( Y IC,(n) - 2 > s) < P((Cy(n),...,Cy(n)) # (Zur- .., Zy))
Jj<b
= db(n) - 0.

For the third term of (22), the first condition in (20), together with the
upper bound on log(n/b), implies

_ 1 n
(23) E )Y Z;= )Y AM<6 ) — = O(log(z)) = o(ylog n).
b<j<n b<j<n b<j<n

Finally, some hard work is needed to show that the second term of (22),
which is the mean number of components of size greater than b, is compara-
ble to the third. Recall from (9) and (16) that

xnlp(n—=j)  h(n-J)

R T P TP T A T ey B
where
h(n) = p(l;?xn = exp( .ilAj)P(TOn =n).
! P

We show in Lemma 3 that if § = liminfi); > 0 and 6 = supiA; < », then
there are constants ¢; < ¢, € (0,) such that ¢;. < nP(T,, = n) < ¢, for all
sufficiently large n. Hence, for n sufficiently large,

: Zi<n—~A n
© Y K< ¥ ¢ Xp(Eizn i) N2 ¥

b<j<n/2 b<j<n/2 (n —Jj)erexp(X;n ) €1 b<j<n/2

Aj-

Since £, /5 < j < ,C;(n) < 2, we conclude from (23) that EX;, ,C;(n) = o(;/log n)

i
as n —» «. Hence R, =, 0, by Markov’s inequality. O



1356 R. ARRATIA, D. STARK AND S. TAVARE

This error estimate allows us to prove Corollary 2 below. It is immediately
applicable to assemblies, such as random mappings, that satisfy the hypothe-
ses of Theorem 3. For random mappings, one can check (19) by noting that
A —1/(Q2i) =0G3/2) as i - .

COROLLARY 2. Assume that an assembly satisfies (19) and the conditions
of Lemma 2. Then the rescaled process B,(-) in (18) converges weakly in
DI[0, 1] to a standard Brownian motion.

ProOOF. Define the functional A,: R* — D[0, 1] by the requirement that
B,(-) = h,(C(n)). Note first that the functional %,(Z) converges weakly to
standard Brownian motion, by application of the functional central limit
theorem for the Poisson process [cf. Ethier and Kurtz (1986), page 263] and
assumption (19). The error introduced in approximating the functional of
dependent component counts by that functional of the independent Poisson
random variables is 4,(C(n)) — h,(Z), with sup norm

sup (9logn) % ¥ (Ci(n) - Z;)| < 67/2R, —p 0,

O<t<1 j<nt
using Lemma 2. O

Another simple corollary is a version of the functional central limit theo-
rem which separates the contributions from even- and odd-sized components.
The standard functional central limit theorem in Corollary 2 is implied by,
but does not imply, the refined one with even-sized and odd-sized components
separated. Assume that the assembly satisfies (20) and that

0.
(24) L A= logb+o(flogh), j=12,
i=3'$mb6d2

as b — . Define 6 = (6, + 0,)/2 and for ¢ € [0, 1] set

(25) Bj(t) =(6logn) | ¥ Ci(n) —6tlogn|, j=1,2.

i<nt;
i=j mod2

COROLLARY 3. Assume that an assembly satisfies (24) and the conditions
of Lemma 2. Then the rescaled process (BL(), BX(-)) in (25) converges weakly
in D[0,1] X D[0,1] to (,/0,/(26) B*,1/6,/(20) B®), where B' and B? are
independent standard Brownian motions.

PRrOOF. ‘ Define the functional A/,: R* — D[0, 1] X D[0, 1] by the require-
ment that (BX(-), B2(})) = #/,(C(n)). Just as in Corollary 2, the functional
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W (Z) converges weakly to (,/0,/(20) B,1/6,/(26) B?). The error in this
approximations is 4/,(C(n)) — h/,(Z) with sup norm at most

(6logn)™ "% sup || ¥ (Ci(n) - Z))| +| X (Ci(n) - %)
0<t<1{| j<nt, j<nt,
Jj even J odd

<0V R, -, 0,

using Lemma 2 once more. O

Arratia and Tavaré (1992b) give a wide variety of other corollaries of
d,(n) - 0 for growing b, in the context of random permutations and random
~ mappings. The methods illustrated here can also be used to give estimates on
the rate of convergence in the functional limit theorems; see Arratia, Barbour
and Tavaré (1993, 1994) for more on this topic.

4. The Ewens sampling formula and its perturbations. The distri-

bution of the component counts (Cy(n),...,C,(n)) of an assembly is deter-
mined by the relationship

(26) (Cy(n),Cy(n),...,Co(n)) =4 (Z1, 23, .-, Z,| Ty, = 1),

where

and the Z; are independent Poisson random variables with means EZ; = A; =
m;x!/i!, as given in (4). The equality (26) holds for any n for which p(n) >0
or, equivalently, P(T,, = n) > 0, and for any x > 0. See Arratia and Tavaré
(1994) for details and extensions. It is convenient to define the generating
function log f(2) of the sequence A;, Ay,... by

(28) f(z) = exp( il )tjzj).
j=

Using (3) and (4) one sees that f satisfies 1 + £, . ; p(n)z" = f(z/x); we have
scaled f so that it has a singularity at z = 1.

The Ewens sampling formula [Ewens (1972)] with parameter 6 > 0, abbre-
viated in what follows to ESF(9), is the distribution of the process of cycle
counts of permutations of n objects, choosing a permutation with probability
proportional to #%°¢, This distribution is given by (26), where

(29) JA; =19, j=12,...,
and the generating function of the A; is .
f(z)=f(z)=(1-2)".
The distributions of the assemblies to which our results apply may be
thought of as perturbations of the Ewens sampling formula. We say that

these assemblies are in the “logarithmic class.” The notion of perturbation
may take several different forms, which we now discuss.

N
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4.1. Bounds on i);. One notion of perturbation of ESF(6) is to suppose
that the Poisson parameters A; satisfy condition (20). In Theorem 2 we
establish that under this condition we have weak convergence of processes in
R*, as in (6). In particular, if for some choice of x > 0,

limi); = lim im;x'/i!= 6 € (0,»),
i—> 1> ®
then we may take § = 6 and 6 = k6 for some & > 1.

Various special cases of the result in (6) are already in the literature.
Perhaps the most celebrated example concerns random permutations, estab-
lished by Goncharov (1944) and Kolchin (1971). This is the case of ESF(1),
with x =1, 6 = 1.

For random mappings, the assembly with

m;=(i—-DI1+i+i2/24+ - +i"71/( - 1)),

the finite-dimensional convergence in (6) was established by Kolchin (1976,
1986). It can be shown that using x = e~ ! yields A; < 1/(2i) and A; ~ 1/(2i),
so that Theorem 2 applies with 6 = 6 = 9 = 1/2.

Another example to which the result applies is 2-regular graphs. This is
the assembly with

m; =1(i > 2)(i — 1)1/2,

so that Theorem 2 applies with x =1, 6= 0= 6= 1/2.

For another example, consider transforming an assembly by, for example,
coloring each component of even size with one of two colors. This yields
m/; = m;(1 + 1(i even)) so that if the original A; satisfy iA; — 6, then the
transformed values X; satisfy limsup iA; = 26 = 2liminf i X;. Such examples
clearly satisfy the hypotheses of Theorem 2, so that process convergence
obtains once more.

4.2. Conditions on log f, the generating function of the A;. Another notion
of perturbation of ESF(8) involves the hypothesis that the generating func-
tion f in (28) satisfies
(30) log f(z) = —61log(1—2) +R(2),
where R(z) is analyticin Ay ={z:]|z| <1+ 75, z € [1,1 + 7]} for some n > 0
and satisfies R(z) = K + o(log™!(1 — 2)) when z — 1 in A,. [The condition
on R stated here differs slightly from that given below (2.2) of Flajolet and
Soria (1990); the version given here is from Flagolet (personal communica-
tion).] The condition (30), combined with Corollary 1 of Flajolet and Odlyzko
(1990a), is enough to show that

(31) i, >0 asi—>

" so'that Theorem 2 applies directly.

" Flajolet and Soria (1990) use condition (30) to deduce asymptotics for p(n)
which imply (5) and hence (6) holds. They also show, inter alia, that the
examples of random permutations, random mappings and 2-regular graphs
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satisfy the required conditions on log f. Hansen (1994) shows that under (28)
and (31) the process of largest components has a Poisson—Dirichlet limit.

4.3. Conditions on the exponential generating function f. Our final notion
of perturbation of ESF(#) involves analytic conditions on f itself. Motivated
by the work of Flajolet and Odlyzko (1990a), we define a A-domain with
parameters n > 0 and 0 < ¢ < 7/2 as the set
(32) A=A(n,¢)={z€C:lzl<1+ n,larg(z — 1)| > ¢}.

We assume f is analytic on A\ {1}, where A = A(n,, ¢) for some 7, > 0,
0 < ¢ < m/2, and that there are constants 6 > 0, 6 > 0, K > 0, such that

f(z) =K(1-2)"{1+0((1-2)")}

as z— 1 in A. If, in addition, we assume that sup,;.;iA; <, then we
establish in Theorem 3 precise asymptotics for d,(n) as n — « with b =
o(n/log n).

For random mappings, it is known that f(ez) = (1 — ¢(2))~!, where #(z) is
the exponential generating function for rooted labelled trees, and that

t(z) =1—-y2(1 -ez) +O(1 —ez);

see Flajolet and Odlyzko (1990b), for example. It follows that
1 -1/2 1/2
f(z) = =(1-2) {1+0((1-2)")}.

The conditions of Theorem 3 are satisfied with § = 6 = 1/2 and 6 = 1/2.
For 2-regular graphs, we have
f(z) = exp(—3log(1l —z) —z/2 — 2%/4)
—e 341 -2)""*1+0(1 - 2)}.
Theorem 3 applies once more, with 6 = § = 1/2 and & = 1.

4.4. A hybrid ESF. In this section, we define a hybrid version of the ESF
that is useful in delimiting the various conditions and assumptions in our
results. We define the hybrid Ewens sampling formula with parameters
0, 6, > 0, denoted by ESF(6,, 6,), as the “assembly” determined by

(33) A= %(Oll(i odd) + 6,1(i even)).

The standard case is ESF(9) = ESF(0, 6). The generating function of the A;
is '
. 6, + 86 6, — 0
, Y Azi= — 12 210g(1—z)+—(lT2llog(1+z),

i>1

s6 that
(34) f(2) = fo0(2) = (1 —2) PT972(1 4 2) 02,
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By construction, Theorem 2 applies, and finite-dimensional convergence as
in (6) obtains for all values of 6, > 0, 6, > 0. Note that the analytic condition
(30) does not apply for any 6, # 6,, because lim,_, i\, does not exist. If
6, > 6, and 6, — 6, is an even integer, than f, , satisfies the analytic
conditions after (32), so that asymptotics for d,(n) can be obtained from
Theorem 3 even when (20) holds, but (31) does not.

5. Convergence of finite-dimensional distributions. IfZ,,Z,,... are
independent Poisson random variables with EZ; = A, and T' = X”_,iZ;, then
q(k) = P(T = k), with q(k) = 0 for k < 0, satisfies the recurrence

i=1

k
(35)  ka(k) = Lgg(k—i)= Ygq(k—i), k=12,

where

g =iN1(1<i<n).

See Arratia and Tavaré [(1994), (153)], for example. We use this recursion for
three different versions of 7. We assume

(36) 6= supi) <
i1

and

(37) 6= liminfi); > 0.
L

Then we have the following theorem.

THEOREM 2. Under conditions (36) and (37), d,(n) — O for every fixed b;
that is, (Cy(n),...,Cy(n)) = (Z,,...,Z,) as n - =,

The theorem is proved using several lemmas. We write a(n) < b(n) to
denote that the lim inf and lim sup of the ratio are strictly positive and finite.

LEMMA 3. Under conditions (36) and (37), P(T,, = n) < n™ %

ProoF. Apply (35) to T' = T, to get, under condition (36),

k &k _ _
©(38) kq(k) = Y giq(h—i) <Y q(k—i) = 0P(Ty, <k) < B
. i=1 i=1

With % = n, this supplies the upper bound needed for this lemma. For the
lower bound, fix £ > 0 and m > 1 such that iA; > ¢ for all i > m. This can be
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achieved under (37). Let Z; be independent Poisson random variables with

means 6/i,i =m,...,n,and let T* = X_, iZf. For n > m,
n n
ng(n) = Y. g;q(n—1i)> Y g;q(n—1i)
i=1 i=m
n
>¢e) q(n—i)=eP(T,, <n—m)
1=m
2 eP(T*+ Ty ,,-1<n—m),

the last inequality following because there is a coupling with 7* > T,,_, . As
noted after Corollary 4, there is a random variable X; having a density, with
T*/n = Xj, so that from (60),

0

P(T*+ Ty ,yr<n—m) > P(X;<1) = > 0.

e
r(e+1)
This completes the proof. O

LEMMA 4. For 1 <m <i<nand 0<¢e<1,let Z, be independent Pois-
son random variables with means e/i and let T' = ¥!_, iZ}. Then

(39) P(T" =k) <P(T'=0), k=1,...,n,
and foru =0,1,...,
(1+ &)
(40) IP(T" = &) = P(T" = k — w)l < ——uP(T" = 0),
k=1,2,...,n.

ProoF. In (35) applied to 7T, with g(k) = P(T' = k), we have g, =
ellm <i<n),sothatforl <k <n,

& k—m 1k-1
q(k) = - 2 q(l) < 7 2 q(1).
=0 =0
This says that each value is at most the average of the previous values, so

that, by induction on %, (39) holds.
To establish (40), use (35) again to see that for £ = 1,...,n,

kq(k) = (k —u)q(k —u) = Ygi(q(k —i) —q(k —u—i))

[

(q(k—1i) —q(k —u—1i))

) . e
i

u—1
e q(k—m—j).
j=0

It
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Hence
u—1
k(a(k) —q(k —u) = —ug(k —u) + o L a(k=m —J),
j=
so that from (39),
(41) klg(k) —q(k —u)l < uq(k —u) +€§61(k —-m —J)

<(1+ &)uP(T' =0).

This completes the proof of the lemma. O

LEMMA 5. Let Z; be independent Poisson random variables whose means
A; satisfy (836) and (37). Fix 0 < e < land m €[b + 1,n/4], withi); = & for
alli>m.Then for 0 <u<n/4,3n/4 <k <n,

P(Ty, = &) = P(Ty, =k — u)l

(42)

no1 8e(l1+ &)u
)+¥.
n

20u
s——;—[1+2(1+s)(1+logn)]exp(—sz? o)

ProOF. Let Z; be independent Poisson random variables with means
X, =1(m <i < n)e/i and let Z be independent Poisson random variables
with means X} = (A; — X))1(i > b) > 0, independent of the Z. Define 7' =
X! jiZ and T" = X! ,iZ!. Then T,, =; T' + T" with independent nonnega-
tive summands, so

P(T,, = k) = f P(T' =k —i)P(T" =i).
i=0

Hence for u > 0,

P(Typ = k) = P(Tp, =k —u)l

IA

lfomw(:r' =) -P(T' =1—-uw)P(T" =k —1)
" (43) - '

r + X + X

O<l<u-1 u<l<3n/4 3n/4<i<k

=3, + 3, + 2.
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For the first sum, use Lemma 4 and (38) applied to 7" to see that

u—1
S, = L P(T =D)P(T" =k — 1)
=0

< P(T' = 0) bl P(T" =k — 1)
1=0
(44) < P(T' = 0) uil—é—
B =0 k=1
< P(T' = O)um

20u
< TP(T’ =0).

For the second sum, use Lemma 4 to bound the first factor and (38) applied
to T" to bound the second factor by 6/(k — 1), to get for u > 0,

S,= L P(T' =0 -P(T =1-w)P(T" =k -1)
u<l<3n/4

0

(45) <u(l+é&)P(T' = 0)u$l§;n/4 ————(k ~
<u(l+8)P(T" = O)ﬂlilo—gn).

For u = 0, we have 3, = 0, and so (45) applies once more.
For the third sum, note that ©,P(T" =k — ) < 1, so that

Sa= X P(T=1) - B(T' =1 - w)P(T" =k~ 1)
3n/4<i<k
< P(T' =1) —P(T' =1—-u)l
= AP D Rt

Applying (41) to T' to get the first line below, and then the bound from (38)
with & playing the role of 0, we have for I > 3n /4,

u gu—l )
P =1) - P(T" =1 - w) < Tq(L-w) + 7 T q(l=m =)
j=0
) u ¢ +8”i1 e
~ <—— + = —
ll-u I S l-m—j

8su 8&%u
+
n n? ’

<
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so that

8e(l+ ¢e)u
(46) g .

n
Finally,
n
(47) P(T'=0)=P(Z,,= =Z,=0) = exp(— Y s/j).
J=m

Combining (44), (45), (46) and (47) completes the proof. O

ProOF OF THEOREM 2. From (50), we have for any [, > 0,

dy(n) < P(To, > 1,)

ln

+——— ) P(Ty, =r)IP(Ty, =n) — P(Ty, =n —r)l.

P(Ton — n) rg() ( 0b r)l ( Oon n) ( bn n r)l
We need to choose I, — «© so that P(T,, > [,) = 0. From Lemma 3, we know
that P(T,, = n) < n™1, so if we show that [, may be chosen so that uniformly
in0<r<l, [P(T,, =n) — P(T,, =n —r)l =o(n"'), then the second term

is also o(1) as n — «. However,

IP(TOn =n) - I]:D(Tbn =n _r)l
T P(Toy = DP(Ty = 1 = i) = P(Tuy =1 1)

IA

Y P(Ty, = )P(T,, = n — i) — P(Ty, =1 — )|
i=0

L
<P(Ty, >1,) + ¥ P(T,, = i)IP(T,, =n — i) — P(T,, =n —r)l.
i=0

We may suppose that [, < n/4. For 0 <i, r <[, we apply Lemma 5 with
u=I|r—il<l,, k=n— (i Ar),to get the uniform bound

P(Tpp =n —i) = P(Ty, =n — 1)

261,[1+2(1 + &)(1 + log n)] i 1
< — pa—
(48) < n exp ami
8e(1+ &)l
N &( 28),,,
n

so that uniformly in 0 < r <1,

l,logn
“p(TOn = n) - P(Tbn =n- r)l = O(P(Tob > ln) + W)
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We shall see in Lemma 9 that if we take [, = b log n, then for every fixed %,

P(To, > 1,) = o((b/n)*).
For this choice of /,, it follows that indeed
I,
Y P(Ty, = r)IP(To, =n) = P(T,, =n —r)l=0(n7"),
r=0
completing the proof of Theorem 2. O

REMARK. The proof of Theorem 2 provides an explicit upper bound for
d,(n) for some b that vary with n. To see this, fix m, so that i\, > ¢ for all
i > m, and let m be given by m = max(m, b + 1). Then the factor in (47) is
of order (n/b)¢, so that the upper bound in (48) yields

b1+ & logz n
(49) dy(n) =O(——n—e—).

Thus if b = o(n®/1*+*)1og=2/1+) pn) then d,(n) — 0.

6. The main results. This section states our main result, Theorem 3,
which concerns the asymptotic behavior of d,(n) for large n. The proof, which
is given in Sections 7-10 below, starts with the fact that

' * P(T,, =n—r) *
(50) dy(n) = T P(Ty, r)(l ST =) ) .
Large deviation analysis is used in Section 7 to show that the terms in (50)
with r large enough are insignificant. To simplify the significant terms of
(50), with r small, we need precise local limit approximations to the densities
of Ty, Ty, and T,,, all of which are weighted sums of independent Poisson
random variables. This involves careful analysis of coefficients in generating
functions like (28), f(2) = exp(LA;z’). Each of these terms is expanded in
partial Taylor series. Faa di Bruno’s formula is used to bound derivatives, the
maximum modulus principle is used to bound remainder terms and singular-
ity analysis is applied to obtain asymptotic behavior. The rest of this section
gives some easy results which can be used to simplify the asymptotics in (53),
and a simple local limit heuristic which makes it easy to guess the result of
Theorem 3.

Recall from (32) that a A-domain with parameters n > 0 and 0 < ¢ < 7/2
is the set

A=A(n,¢)={z€C:lzl<1+ n,laré(z - 1) > ¢}.

" THEOREM 3. Assume f is analytic on A\ {1}, where A = A(n,, ¢) for some
M > 0, 0 < ¢ < 7w/2, and that there are constants 6 > 0, 6 > 0, K > 0 such
that

(51) f(z) =K(1-2)""{1+0((1-2)")}
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as z = 1 in A. Assume further that (36) holds: sup iA; < . If

(52) b =o(n/logn),
then

| b
(53) dy(n) = EITy, — ET,,l + o(-’—{).

The proof of this theorem is organized into 13 lemmas, concluding at the
end of Section 10.

The assumption supi); < © implies that E|T,, — ET,,| = O(d), so that
Theorem 3 implies that d,(n) = O(b/n) for any 6 and d,(n) = o(b/n) in case
0 = 1. For the case of uniformly chosen permutations, which has 6 =1,
Arratia and Tavaré (1992a) show that d,(n) converges superexponentially
fast as a function of b/n, so that the upper bound d,(n) = o(b/n) is not
sharp. If b is fixed, ET,, > 0 and 6 # 1, then (53) provides the asymptotics
for d,(n) as n — «. The next corollary observes that in Theorem 3, for 6 # 1,
not only is the upper bound d,(n) = O(b/n) sharp, but also that the error
bound in (53) is negligible in comparison to the first term, which thus
supplies the asymptotic decay rate for d,(n) when b — .

COROLLARY 4. Assume the conditions of Theorem 3 obtain and that 6 # 1.
For fixed b,

1- 6l

Furthermore, if E|T,, — ET,,| < b, then for any choice of b = b(n) with
b = o(n/log n), (54) holds.

To apply Corollary 4, it is convenient to have the following lemma.

LEMMA 6. Assume that liminfi), = § > 0 and supi); = 0 <. As b —

ProOOF. For the upper bound, note that

b
EIT,, — ETosl < 2ETy, = 2 X jA; < 26b.
Jj=1 .

For a lower bound, we proceed as follows. Since liminfiA; = 8 > 0, we can
. choose i, such that iA, > /2 for all i > i;. Letting S = Zb/zslstH we
observe that, for b > 210, S has a Poisson distribution with mean

1 1 1 3
[ESZEQ Yy —>§_010g( )Ef.
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Letting S’ be a Poisson random variable with mean ¢, we see that

b
P(Top — ETop 2 b) = P(Ziz;' >b+ IETob)
1

b
> P( YiZ;>b+ [ETOb)
b/2
> P(bS/2 > b + ETy,)
=P(S = 2 + 2ET,,/b)
>P(S=2+20)
>P(S 22 +20) =c(9,0)>0.
Hence for b > 2i,,
b EITy, — ETg,l = P(Ty, — ETy, = b) 2 ¢(8,6) > 0. o

The asymptotics in Corollary 4 can be further simplified with additional
assumptions about the sequence {A;}. For 6> 0, let X, be the random
variable with mean 6 and Laplace transform determined by

1 — exp(—ux
(55) — log Eexp( —uX)) =f1——-——-2£————)0dx, u>0.
0 x

LEMMA 7. Assume that 6 = supi); < © and fix 6 € (0,). The following

are equivalent:

1 &
56 lim — N =
( ) bl_l;rg'o b igll 14 0’
(57) b Ty, = U and 6=EU,
(58) b 1Ty, = X,.

ProoF. We show that (567) = (56) and that (56) = (58); clearly, (58) =
(57). Suppose then that (57) holds. Since

ETf, = T i+ (I

i<b i<bd

2
m,.) < Y id+ %2 < b%(1 + §),
i<b
the sequence b 'T,, is uniformly integrable. Hence ET,,/b = L, _,iA; —
EU = 6 and (56) holds.
Now suppose that (56) holds. Let w, be the measure on Borel subsets of
[0, 1] given by '
i
My = Z —Aidi b,
i<b b

" so that for y € (0, 1],

i 1
/-"b([o’y])= Z g’\i=yb_ Z A > 0y
i/b<y Y i<by
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Since sets of the form [0, y] are convergence determining, we have u, = u = 6
times Lebesgue measure on [0, 1]. Since (1 — e¢™*?)/y is a bounded continu-
ous function of y,

b
—logEe #Tos/b = 3" )\ (1 — e~ i4/?)
i=1

-uy

f11—e‘”y (dy) /-11—6 (dy)
= R — a _—
A ¥ Myl QY A ¥ may

as b - », Hence b 'T,, = U =; X,. Since b~ 'T,, is uniformly integrable,
EU = 6 (0, ). This completes the proof. O

COROLLARY 5. Assume the conditions of Theorem 3 and that as b — ,
b7 T,, = X,. If 06 # 1, b > © and b = o(n/log n), then

11— ol
2

b
(59) dy(n) ~ EIX, — 0l

ProOF. Uniform integrability shows that

EITy, — ETy,l/6 — EIX, — EX,| = E|X, — 6.
We may now apply Corollary 4 to complete the proof. O

The evaluation of E|X, — 6| as an explicit function of 6 is possible, in
principle, using expressions for the density g of X, given by Ignatov (1982)
and Griffiths (1988). In particular,

e "t
60 = -1 0<x<l,
where y is Euler’s constant. In case 6 < 1, it follows from the fact that
ElX, — 6] = 2E(6 — X,)* that

14 00
0
El X, — 0| =2 - =2 .
1%, = 61 =2[ (6~ 2)g () dr TORET]
The example of random mappings has § = 1/2 and if b, n — «, we see that
e 7% b b
d ~ — = 0.0996—.

o(n) 3V2m n n

For the Ewens sampling formula, Arratia, Barbour and Tavaré (1992)
proved an upper bound of the form d,(n) < c(6)b/n for all 1 <b <n for
some explicit constant ¢(8). Compared with this upper bound, Corollary 4 is
-weaker in that it requires b =o(n/log n) and does not provide an upper
bound with an explicit constant, but stronger in that it provides asymptotics
when 6 # 1. For perturbations of the Ewens sampling formula, such as
random mappings, Corollary 4 provides the first proof that, for some b = b(n)
tending to infinity, d,(n) = O(b/n).
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Before proving the theorem, we give a heuristic derivation of the form of
the asymptotics in (53). See Arratia and Tavaré [(1994), Section 4.2] for
further details. We noted above that if iA; = 6 as i — o, then T, /n = X, a
random variable with density g satisfying g'(1 —)/g(1) = 6 — 1. The local
limit heuristic then approximates P(T,, = n — k) by n '(g(1) -
kg'(1 —)/n), to get

n

P(Ty, =n) = Z P(Top = k)P(Ty, =n — k)

k=0
1 k
(61) = LR, =) (s - a0 )
1 ET
- (e - S0 o)

Using this approximation and the result in (17), we see that, for some cutoff
L, —» « with n,

d T N PR € Vel el O] BTV )
s(n) = 2 & (Top = k)|1 — P(T,, = n) t3 (To» > L)
1 n Yk —-ET "(1 -
=3 IP(TOb = k) ( —1 Ob)g ,( )
2,20 g(1) —n 'ETyg'(1 )
o1 lg'(1-)
= %_—‘g'Tl)—lElTOb - IETObl‘

7. Large deviations of T,,,. In this section, we assume that conditions
(86) and (37) are satisfied. Think of L, as the dividing line between terms of
(50) that are shown by singularity analysis to have the proper asymptotics
and those that are shown by large deviation theory to be insignificant. We
define

L, = min(b log n, b*/3n'/?).

Note that L, = blogn when 1 <b <n(logn)™® and L, = b*/°n'/? when
b > n(log n)~°. Recall that for Theorem 1, we assume b = o(n /log n).

LEMMA 8. Forany b> 1 and w > 0, P(Ty, > bw) < (6e/w)".

» ProoOF. Using Chebysheﬁ’s inequality, for any 8 > 0,

P(To, = bw) = P(exp( BTy,) >exp( Bdw))

(62)
< Eexp( BTy, — Bbw).
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We calculate

b
log Eexp( BTy,) = log ]_[1 Eexp( B;Z;)
je

o

= log exp(—/\j + A; exp( Bj))

~
Il
[un

b

= X (—x + A exp(B))

J

[y

B. .
Y / JA;exp(jt) dt
170

b
j=
b

<Y fBEP exp(jt) dt
‘=1 O

~

< 6b

= 6(exp( Bb) — 1)
< fexp( Bb).
Thus, for any 8 > 0,
logP(T,, = bw) < 0eP® — Bbw.
Using B = b~ !log(w/0) completes the proof. O

Lemma 9 shows that the terms of (50) indexed by r > L, make a net
contribution which is o(b/n). Our overall strategy for proving Theorem 1
involves omitting these terms from d,(n), and Lemma 10 shows that the
corresponding contribution to the right side of (53) is negligible. Lemma 6 is
needed to deduce Corollary 1 from Theorem 1.

LEMMA 9. Foranyk, asn — o, with 1 <b = o(n),

P(Ty,=n—r)\" ’
Y P(T,, =r)|1 - (P(b’:'l‘o :n)r) s[P’(TOb>Ln)=o((;) )

r>L,

PROOF. Since the expression involving positive parts is at most 1, the first
inequality is obvious. We apply Lemma 8 in two cases. In the first case, with
L, = blogn, we have w = log n, so that

logP(Ty, > L,) < wlog(fe/w) ~ —wlogw = —(loglog n)log n,

* which, for any fixed %, tends to minus infinity faster than log n™* = —k log n.
In the second case, for large b, we have L, = bw = b%>/3n'/3, so that
w = (n/b)/3 - . Thus

logP(T,, > L,) < wlog(fe/w) ~ —wlogw = — 3w log(n/b),
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which, for any fixed k, goes to minus infinity faster than log(b/n)* =
—klog(n/b). O

LEMMA 10. For any k, as n — «,

I1- 6l b\*
E(1Top = ETosir,, > 2,) =0l | =] |-

PrROOF. Use the Cauchy—-Schwarz inequality to see that

[E(lTOb - IETObll(TOb>Ln)) < \/[E(TOb — ETy)*P(Ty, > Ly) -

However,
b — -
E(Top — [ETOb) ZJZ/\ Z < 6b” < 6n?,

and from Lemma 9, P(T,, > L,) = o((b/n)?*). O

8. Analysis of d,(n) via generating functions. Singularity analysis
gives asymptotic information on the coefficients of a given generating func-
tion, based on the behavior near the singularity of smallest modulus. Flajolet
and Odlyzko (1990a) prove several “transfer” theorems in which behavior of
the generating function near the singularity of smallest modulus transfer
into similar properties of coefficients; o, O and ~ behavior of the generating
function near the singularity transfer to similar coefficient behavior. They
prove these theorems by calculating

[2"]1(z >=——g6fﬁ+)1

about suitably designed contours lying within the A-domain and containing
the origin. Theorem 4 appears as Theorem 1 of Flajolet and Odlyzko (1990a),
while Theorem 5 is their Corollary 2.

THEOREM 4. Let a be a real number. If if is analytic on A\ {1} and
f(2) =01 —2)" % asz - 1lin A, then[2"]f(z) = O(n*™1).

THEOREM 5. Suppose a & {0, —1, -2, —3,...}. If f is analytic in A\ {1}
and f(z) ~K(1 —2z) % asz — 1in A, then [2"]f(z) ~ K/(T(a)n*"1.

. The asymptotic expansion of the coefficient [2"] of z” in f,(2z) will be
. needed later. Flajolet and Odlyzko (1990a) show that

nf-1 (1 -6
(63) Az"1f(2) ~ o) (1— (2n ))+0(n"_3).
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Define
. o _ P(Ton=n-1)\"
(64) di = E‘,O[P’(TO,, = r)(l - (T, =n) ) .

We see from Lemma 9 and (50) that
b
(65) d, =d} +o(;).

We rewrite the probabilities under the positive part sign in terms of generat-
ing functions. First,

P(T,, = n) = [2"]EzTo»

n
= [z”]exp(— 21 A+ )tjzf)
j=

n n
=exp[— X A [z”]exp( Y )tjzj)
j=1 j=1

n [
=exp|— X A [z"]exp( Y )tjzj)

j=1

—exp| - X A |[2"1£(2).

Defining h(z) = exp(—X%_;A;2/), we have
P(T,,=n—r) =[2"""]EzTe

n
=[z”"]exp(— N )tj+/\jzf)
Jj=b+1

=exp|— YL A [z”"]exp( i )tjzj)
j=b+1 J=b+1
= exp| — i A [z”"]exp( Y )tjzj)
j=b+1 j=b+1
= exp| — %‘, l)tj [27"1R(2) f(2).
j=b+
Hence we can write (64) in thé' form
L L exp(Z8. 102" " 1F(2)A(2) |
(66) db = r§0 I]:D(Tob = 7‘) 1- [z”]f(z) .
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Our basic strategy for simplifying (66), which is used repeatedly, starting
with (79), is to write d} in the form
L,
(67) di = ¥ P(Top = r)(S1,n,r + Spn,0) >
r=0
where S, , , are asymptotically insignificant and may be ignored. We state
this idea in the form of a lemma. It is applied when M, , is o(b/n).

LEMMA 11.  Define M, , = maxy., 1 |S, , .. Then
L,
df = L P(Toy =r)(Sy,,r) + Bas
r=0
where |R,| < M, .

Proor. Since [(x + y)*— x*| < |yl, we see that

(68) I(Sl,n,r+SZ,n,r)+_(Sl,n,r)+|SMb,n'
Summing against weights P(T,, = r), we get
L,
IR, =|d} — ¥ P(To, =r)(S1,n,,) | <M, .,
r=0

establishing the result. O

9. Expansion of h(2) in finite Taylor series. We expand the analytic
function A(z) = exp(—Zj;l)tsz) in a finite Taylor series, with remainder,
about z = 1:

N p)(q
h(z) = ¥ kg )(z—l)k“'sz(z)(z_l)N+1
69) e
( N h(k)(l) 5 N+l
=B+ TS (- )t Bz - )

where N = N(n) may grow with n. Finite Taylor series expansion in C have
the property that when the original functions are analytic, the remainder
term Ry(z) is analytic as well [Ahlfors (1979)]. We first bound A®*)(1) and
then bound R, (z) on an appropriate disc in the complex plane.

To bound A*)(1), 2 > 1, we use Faa di Bruno’s formula:

k m 4 1y a1 k) \ %k
0 LD H e e

dz ay+2a,+ - +hay—k a! a,! dz™\ 1! k!
-where m = a; + a, + - +a,; see Gradshteyn and Ryzhik [(1980), page 19]
for example. As noted by Harris (1960) in the context of random mappings,
(70) is similar in form to (1). In our case, h = ¢~ g, with ¢(2) = exp(—z) and
g(z) = Xb_ a2,
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LEMMA 12. For k = 0,
b
ooz o - £ )t

where B, is the kth Bell number and
p = max{1, 6} .

ProoF. Define (¢); = t(¢t — 1(¢ — 2)---(¢ — i + 1), for i > 0. Then for & >
0,

d*g b
dzk - jgl(.])k J
b 0
< X (D
=1 J
(71) b
=0 Z (j - 1)k—1
Jj=1
_ (b
k
< 6b*.
Observing that, for m = Xa,, 9™ < p™ < p* when m < k, we obtain
B!
IB®(1)] < Y

a,+2ay+ - +ka,=k a’l a’k'(]")a1 '(k!)ak

Z )<0b) - (B6%)™

XeXp
j=1
< exp a
= a1+2a2 " thay—k Gl c‘%'(1') e (RD™
Jj=1

Now we analyze the behavior of the remainder term Ry (2). Define

(72) Dn%{zeCzlzlsl+n}.
' LEmMa 13. sup, < p | Ry(2)l < = N+D((eb)?™ + exple”™® — 1)).

ProoF. We use the maximum modulus principle: If g is a function
defined and continuous on a closed bounded set D and analytic on the
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interior of D, then the maximum of |g(z)| on D is assumed on the boundary
of D:

sup |Ry(2)l= sup |[Ry(2)l
zeDb, lzl=1+n
h(z) — TN o(R®(1) k) (2 — 1)*
= sup !
lzl=1+n (z—- 1!
N b »)B
<n VD[ gup |h(2)| + E exp(— Z Aj)gﬁ#
lzl=1+7n k=0 j=1 k!
= b)*B
< WD sup |h(2)+ —-( il ') k
|zl=14+7 k=0 k!
(73) = n”(N“)( sup |h(2)| + exp(e”"® — 1))

|z|=1+7

Analyzing the first term of (73),

sup |h(z)l= sup
lz|=1+7 |zl=14+7

b
exp( -y Ajzj)
j=1

< exp( i Ai(1+ n)j)
j=1

b

(7]
< exp( Y —em

Jj=1

< exp(6e™(1 + log b))
= (eb)aenb,

completing the proof. O

LEMMA 14. Assume that ¢ and r are analytic in A(n, $)\ {1} and
ly(2)l < K411 — 2z|* in A(y, )\ {1}. Then there is a universal constant W, ,
such that, for all |a| <1 and n > 2|al + 4,

(74) [z"]r(2)n(2)l < K1|z|s:ilin|r(z)lna_l[wl,‘ﬁ* ?i’%nl_a]

and

V

‘ l 1+2
(75) W,,¢5A(1+(COS¢) ),

where A = (2 + 4/cos ¢)>.
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ProOOF. In (2.15) of the proof of Theorem 4, Flajolet and Odlyzko (1990a)
give the following uniform bound. There is a function J(a, ¢) < «© such that
if f is analytic and satisfies |f(2)| < K|1 — z|™® in A(y, ¢) \ {1}, then for all
n > 2lal + 4,

I[z"1f(2)] <Kn“‘1(5

N J(a, ) Lo nn_ﬁl)’
w (1+m)
where
- tcos ¢ | 2lelm4
J(a, d) =j1t (1+ 2|a|—+4) dt.
We apply this with
f(2) =r(2)¢(z), K=K, sup |r(z)l

lzl<1+7q

To establish (75), observe first that sup,,, ., J(a, ¢) = sup, . 5., J(—B, )
and that the integrand in J(—p, ¢) has its maximum at the point

_ 2B(B+2)
B (B+4)cos ¢’

with value

o (2

cos ¢

B+4 \P** B \*
2B+4) <(cos¢)'

We estimate the size of J(—pB,¢) by breaking the integral into two
pieces—the first over ¢ € (1, ¢¢), the second over ¢ € (¢2,0)—for ¢, = (28 +
4)/cos ¢. The second integral is

-2p-4 -2 2

o t © t [0)3)
[t*{1+ — dt <tdf4 [ P idr = —— < ¢51,

t2 tO 2 B+ 3 48

whereas the first integral is bounded by ¢3 times the maximum value of the
integrand over (0, t2). From (76), this is at most

B 2 .
t2 B <2+ 4 max B\’ B\ .
lecosp| cos ¢ cos¢p| '\ cos

This completes the proof. O

10. The asymptotics of d,(n). In the following section, we take
(77) N=N(n) =[logn]
and recall from (52) that b = o(n /log n) and that L, = min(b log n, 562/3n'/3)
so that L, = o(n). From condition (51) we can write
(78) f(z) =K(1-2)""+¥(2),
where ¥ is analytic in A\ {1} and is O((1 — 2)* %) as z » 1 in A. We begin
by removing the ¥(z) terms from the numerator of (66).
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LEMmMmA 15.

b L,
df = o(—) + Y P(T,, =1)
n r=0

y ( [2"]K(1-2)""~ exp(Elex\j)[z”"](h(z)K(l — z)_o) '
[2"]f(2)

Proor. Use (78) to write (66) in the form
Ln

di = X P(To, =)
r=0

[2"]1f(2)
L [2719(2) — exp(Th i) [ 2" I(R(2) ¥(2)) )
[2"]f(=) '
In order to use Lemma 11 we must show that
[2"]%(2) — exp(E)-1A;)[ 2" "](h(2) ¥(2)) =O(g)
[2"]f(2) n)

We can use (69) and A(1) = exp(—X%_;))) to conclude that (79) is dominated
by the sum of three terms:

y ( [2"1K(1-2)"" - exp(Elex\j)[z""](h(z)K(l — z)_o)

(79)

O0<r<L,

[2"]¥(z) = [2"7"]¥(2)

(80) 0<r<L, [2"]f(2) ;
exp(Z2-14)[ 2" I{¥(2) (ZY-. (AP (1) k1) (2 - D)) '
B+ 1y, [2"17(2) ’
exp(Z2 1 4)[ 2" " I{¥(2) Ry(2)(z - DV}
(82)  + max [2"17(2) ‘

We now show that each of the expressions (80)-(82) is o(b/n).
Define ®(z) = ¥(z)(1 — z) and notice that ®(z) = O((1 - 2)3~%*1). Using
the identity 1 —2"=(1 —2)1 + 2z + - +2""!), we obtain V r € [0, L, ],
[2"]¥(2) = [2"7"]¥(2)| = [2"]®(2) + - +[2"7" 1 ]D(2)]

< LA o))
- rOsI?sarX—ll[z ] (Z)|

n—1 [6))
SL"o?i’inl[z 12(2)

= O(L,n®"2).
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The last step follows from Theorem 2 and the fact that n/(n — L,) = O(1).
Using Theorem 5 to get the asymptotics for [ 2] f(2), it follows that

n[z"]¥(z) - [2"7"]¥(2) nL,n% %2
0sreL,|b [2"17(2) =O( bn® 1 )
n~°L,
= O( 3 ) - 0.

Next we consider expression (81). Using the result of Lemma 12, the
numerator is bounded above by '

¥ (2)(1 - 2)"|.

() e )
We now apply the result of Lemma 14 to each term in the absolute value
signs, taking ¢(z) = ¥(2)1 —2)* and r(z) =1, =0—6—Fk, k=
1,2,..., N. The second term in brackets on the right of (74) yields an O(1)
bound, uniformly in 2 and r, which follows by taking 7 fixed and noting that
the exponential growth of (1 + )"~ L~ relative to n dominates sup, . y ™%~ 1
= O(n'°&™). For the first term, W, ,, we take a bound depending on k: if
B>6-5,then |al=Fk — 0+ 8 <Fk+ 6=1, so that from (75),

E+ 8)(k+8+2)

A
Wiy < (cos )

Using the fact that B, < k!, we see that n/b times expression (83) is at most

bp k-1 ry0-6-k-1
K, pno-5-1 z( ) max (1- ) (Wiss. + O(1)).

Since L, < n/2, it follows that max,_,_ (1 — r/n)?" 2% 1 <
max(1, Qk+1+5-0) Using this and the bound (75), we see that, for £ > 6 — 8,
the kth term in the series above is bounded by

. 2pb k-1 E+6 k+86+2
“e T ( n ) cos ¢ ’

which satisfies

N
Upia — 0(__9) - 0’ )
293 n

using (52) and (77). We conclude that the 2 = 1 term of (83) dominates.
Combining this bound with the asymptotic behavior of [2"]f(2) determined
'by Theorem 5 [namely, [2"]f(2) ~ K;n®"!/T'(8)], we see that indeed

%{expression (81)} =0(n7%) — 0.
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Finally we consider the term (82). First,

{expression (82)}
X zl 0/j N+1
50 sWogignl[Z""]Rw(Z)W(Z)(l—Z) |
(b)’

= LTy o228, 1T R @V =T

We now use Lemma 14 with

r(z) =Ry(2), #(2)=T(2)(1-2)""",
so that from (78), a = 0 — § — N — 1. Combining (84) with the results of
Lemmas 13 and 14, we see that

{expression (82)}

eb 6 Ge®
(85) < [_z(—”]T)(z_)og?i Km‘(N“)((eb)"e + exp(e® — 1))

n “ l1-a
——=(n—r ,
(1+m)y ( )
where [ =0 — 6 — N — 1|. There are essentially two cases to consider: b
fixed and b —» © as n — o,

In the first case, we may take 1 = 7,, determined by the A-domain of f. As
in the previous part of the proof, the rightmost term in brackets in (85) has
an O(1) bound uniform in 0 <r < L,. Since n — L, > n/2, we may use (75)
and the fact that [2"]f(z) ~ Kn®"!/I'(#) to deduce that (85) is bounded by a
term of the form

X(n - r)a_l Wl:d’ +

CN\¥
(—;—) X a polynomial in n,

for some positive constant C. Since N = log n, we see that this term is o(n™")
for any r. It follows that indeed

%{expression (82)} =o(1).

In the case b —» ©, we may take n = 1/b and assume that n is so large
that n < 7n,. The second term in brackets in (85) is

,n—a e nl—aba(]_‘_i_ ,n)"
P :
(1+m) (1+m)
e SPRRSNTY

< n22‘"/b(g) ,
n
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the last two inequalities following from the fact that (1 + )" > 2"/% and
(1 + n)t» < n. Hence the right side of (85) is bounded above by

(en)’
[2"]f(2)

b a
Wl,tﬁ + n22_"/b(;) ],

(87) Kln“'121"’bN“((en)9e + exp(e” — 1))

X

since n — L, > n/2. Using the bound for W, , once more, the first term above

is of the form
N

X a polynomial in n,

( CbN

which is o(rn ") for any r since bN/n — 0 and N x log n. The second term is
of the form
27"/% X a polynomial in n,
which is also o(n~") for any r since log n = o(n/b). Thus in case b — «,
n
g{expression (82)} = o(1),
completing the proof of the lemma. O

In Lemma 17, we need to bound max,_,; [2"7"K1 — 2)7¢|, with a =
0,0 —1,..., 6 — N — 1. This is accomplished in the following lemma.

LEMMA 16. For 1 <m <n,
—w n
[z"](1 - 2) |sm“‘ls(z)n“‘1 (0<a<1)

<e* 'n*l  (1<a)
andif a=0—-k,0>0,k=1,2,...,m — 1, then

k+1
I[z’"](l—z)_alsk!max(ek,l)( ) eno1.

m—k
Proor. For a > 0, we have

[=ml -2 1= 5e)|= S s - 22

m

i ) <o £2))

1

Depending on whether o < 1 or not, we bound the harmonic sum below or
" above by log m or 1 + log m. For the case « = 6 — k, we use falling factorials
to write '

(o
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In absolute value, the first factor is bounded by k!max(6*,1)(m — k)%, and
using the first part of this lemma, the second factor is bounded by
nen®-1/(m — k). O

Now we remove the ¥(z) terms in the denominator.

LEMMmA 17.

b L,
d =o(—) b Y B(Ty, = 1)
n r=0

[2"](1-2)"° - exp(Zlex\j)[z""](h(z)(l - z)_o)
[2"](1-2)""

X

Proor. Rewrite Lemma 15 as

* b Ln
db=O; + Y P(Ty, =r)
r=0

y ( [2"]K(1 -2)"" - exp(Zj?:l)\j)[z""](h(z)K(l - z)_o)
[2"]K(1-2)""

z2"]K(1-2)"" —ex ZILIJ- 2" (h(2)K(1 —2)"° ’
—[z"]‘lf(z)[ 1K1 - 2) p(X)-14))[ 2" "1 (A(2) K( ) ))

[z2"]K(1-2)""[2"]f(2)

In this case, to use Lemma 11 we must show that

(88)
i [2"]K(1-2)"" — exp(Zl,A)[ 2" "](R(2) K(1 —2) ")
e SR [ 1K(1L—2) "[2"17(2)

is o(b/n). Expression (88) is dominated by the sum of three terms:

e [2"E(1-2) ' —[2" 1K1 -2)"°|
8 max (=) e ) 170 ’
I (Bu(pb)* /RN 2" IR (1 —2) |
L (90) 4 max |[2"]¥(z) [2"]K(1 —2) *[2"](2) ’
) exp(Z2,A)[ 27 T ](Ry(2)(1 —2) "V
(91) +0$r$Ln [ ]\I’( ) [z”]K(l—z)_o[z”]f(z) '




1382 R. ARRATIA, D. STARK AND S. TAVARE

To bound (89) we use the binomial expansion: for all r € [0, L, ],
(92) (1-r/n)"" "' =14+ 0(r/n).
It then follows from (63) that

1
r'(o)

[2%](1 - z)_o —[z*"](1 - z)_e = (n"_1 —(n - r)o_l) + 0(n’?%)

Hence from Theorem 4,

n . ol o-s-1_Tn
z{expressmn (89)} =0 " PUESEY

L n9—2
=

0] Lo s 0
= — L d
( b " ) '

The argument to show that expression (90) is o(b/n) is similar to that
used to analyze (81), using Lemma 16. The argument to show that expression
(91) is o(b/n) is analogous to that used to analyze (82). We omit further
details. O

Next we remove the higher terms in the expansion of ~ from the numera-
tor in Lemma 17.

LEMMA 18.

b Ln
Z=0(_) + X P(To, = 1)
n r=0

><([zn](l —Z)_o - [z"_’]{(l —z)_" — ET,,(1 _z)—9+1} +
[zn](l_z)—e .

ProOF. We rewrite Lemma 17 in the form

b L,
a3 =o(—) £ Y BTy = 7)
n r=0

y ({ ([2"1(1 = 2) ™" — exp(Z 1 1) 2" " 1A(1)(1 - 2) ~°)

[2"](1-2)"°
L xR(Z5a )2 IH{A (1) - z) "t
[z2"](1-2)"°
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B { exp(E0 1 4))Th o[ 2" 7 1(= D (AP(1) k) (1 - 2) "

[2"](1—-2)""
N eXP(Z?=1)\j)(—1)N+1[z"“r](RN(z)(1 _ z)—0+N+1) } +
[2"](1-2)"" .

The expressions in large braces play the roles of S; , , and S, , , in Lemma
11. Now max, ., ., S, , .| is dominated by the sum of two terms:

max(Zf_, 4)Eha[ 2" 7 1(~ D (AP k)1 —2) "]
(98)  max [2"](1-2)"° ’
exp(Ll_14,)[ 2" "Ry (2)(1 —2) """
@ EnTT e |
Now

—9+k|

N k n—r _
(expresion (93] < max. I a( Bk/kll)[(zl:f;)( 1|[_:)_]o(|1 2)

2

which is o(b/n) by an argument similar to that used to analyze expression
(90). That expression (94) is also o(b/n) follows from an argument akin to
that applied to expression (91). We have shown that

b L,
f-of>)+ X Rt =)
r=0
[27](1 —2)"" — exp(Zt- ) [ 2" " TR(D)(1 - 2)"°
X -9
[2"](1 - 2)

+

N exp(Zle)\j)[z""]h'(l)(l —z) "t
(/11 -2)"" |

To complete the proof we use the fact that A(1) = exp(—X5_;A;) and

h'(1) = (— ij)\j)exp(— {', )\j) = —ETy, exp(— i /\j). |
j=1 j=1 ‘ j=1
Using the expansion in‘ (63), we can simplify d, further. Define
G,o=T(8)[2"](1—2)"" —n'".
By (63), for fixed 6 > 0,
(95) G, o= —30(1—0)n" %+ 0(n°?).
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LEmMA 19.
L 6-1 -1 -2\ "
" nl—(n—-r)"" =(6-1)ETy(n —r)
dy = ZP(T0b=")( o1
r=0

o)

PrOOF. Write Lemma 18 in the form

L, (n*"-l—(n—r)"‘l—(e—1)[ET0,,(n—r)"‘2

= L= o)1 -2) "

r=0
+
Gn,o - Gn—r,o - (0 - 1)[ET0bGn—r,9—1
r(e)z"1(1-2)""

<of3)

and apply Lemma 11 again. In this case it suffices to show that

G,,— G

96 n—-r,6 _ (2)
©9 022k | T(0)[z")(1-2) | \n
and

[ETObGn—r,9—1 _ 2
(57) 02, | T(O)[2"](1 —2) ° _o(n)

First, we need a bound on the numerator of (96). Using (95) and (92), we
have forall0 <r <L,

|Gn,0 - Gn—r,ol = %l - 0(1 — 0)71.9_2 + (1 — O)O(n — r)0_2| + O(n9—3)
= %0'1 — 0lnf21 — (1 — r/n)9_2| + O(n0—3)

=0(L,n"?),
implying that
n n L,n%3
g{expression (96)} = 0(3 -—;0_—1)
Ln
) = 0(2)—;) -0

The numerator of (97) is bounded by
[ETObGn—r, -1~ 0( bno_ 3)
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so that
n ) n bn®3 1
z{expressmn (97)} =0 gF = 0(—) - 0.
We have now seen that

, L ~ n’ = (n—r)""" —(0-1)ETp(n—r)""> '
8) db_r§op(T0b_r)( ro)[z"1(1-2)"" )

( : )

+ o — .

n

Finally, we substitute n°~! in place of I'(§)[2")(1 — z)~? in the denominator

of (98). This makes a difference of at most O(1/n), since I'(§)[ z"[(1 — 2)~ ¢ =
n® '(1+0@Q/n) and df <1. O

LEMMA 20.

Ln

Slr—l

P(To, = r)((6 — 1)(r — ETy,)) " + o(%).

r=0

Proor. We write Lemma 19 in the form

+

o2 el
(r — ETy,) — ((0— 1) - (1 - (1 B %)H))

1—(1—r/n)o_2)++o(b)

n

df =

{P’(TO,, - r)(l - (1 - %)H

MFFM“

0_
(TOb—")(

0

r

We use the binomial expansions

(L-r/m) '=1-(6-1)r/n+ O(r?/n?)
and
(1-r/m)°%=1+0(r/n)

to see first that

o5

n
— max
b O<r<L,
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and then that

n
— max
b O<r<L,

(6-1) ETos (1 = (1 - i)M)

n

proving the lemma. O

ProoF oF THEOREM 3. We have seen that

QU
o
It
S
[SE
+
S)
—
| o
N ——

n
Ly P(Ty, = r)((6 — 1)(r — ETy,))" + o(ﬁ)
L 0b "
-+ L BTy, = 1((0- D~ 7)) + o1
n r=0 n
1

b
= —E((6 — 1)(Tyy — ETy)) " + o —
n (( 1)(Tys 05)) +O(n)’
the first equality following from (65), the second from Lemma 20 and the
third from Lemma 10. The proof is completed by noting that E(T,,, — ET,,) =
0, which implies that

[E((0 = 1)(Ty — [ETOb))+ = [E((O — 1)(Ty — IETOb))—’
so that
E((6 — 1)(Tos — ETy5))" = 310 — LIEITy, — ETy4l. o

11. Discussion. The asymptotics in Theorem 3 are proved for the case
b = o(n/log n). It is shown in Arratia, Barbour and Tavaré (1992) that for
ESF(0), d,(n) — iff b = o(n). We conjecture that the conclusions of Theorem
3 remain valid assuming only that b = o(n) rather than b = o(n /log n). For
the case b(n) = [n/loglog n] and 6 = 1/2, we computed values of d,(n) for
ESF(#) using a variant of the method described in Arratia and Tavaré
(1992a). The results are given in Table 1, together with the ratio of d,(n) to
its value predicted from the right-hand side of (59). These results support our
conjecture.

We have seen in (84) that asymptotics of the form d,(n) ~cb/n are
available from Theorem 3 for some cases in which (20) holds, but (81) does
not. There are other assemblies, not satisfying Theorem 3, for which d,(n)
.does, not appear to decay like cb/n. The simplest examples are provided by
the hybrid Ewens sampling formula structure determined by (33), with
6, > 6,. In Table 2, we present the values of di(n) for the special case
6, + 6, = 2, for four values of ;. Intuitively, we might expect that d,(n) =
o(n~1), in accordance with the heuristic behind Theorem 3. However, com-
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TABLE 1
Values of dy(n) for b = |n/loglog nl

n b dy(n) Ratio*

5,000 2,334 0.171 3.68
10,000 4,503 0.153 3.42
20,000 8,722 0.138 3.18
25,000 10,798 0.134 3.11
50,000 20,996 0.122 2.90
100,000 40,925 0.111 2.72
200,000 79,938 0.102 2.55
400,000 156,423 0.093 2.40

*Ratio = d(n)/(predicted value), from (59).

TABLE 2
Values of d|(n) for hybrid ESF with 6, + 6, = 2

n 0, = 0.75 0, = 0.50 0, = 0.25 0, = 0.01
10 0.0659 0.1354 0.1457 0.00982
50 0.0187 0.0631 0.1069 0.00974

100 0.0111 0.0452 0.0929 0.00971

250 0.0056 0.0289 0.0767 0.00966

500 0.0033 0.0206 0.0660 0.00963

1000 0.0020 0.0146 0.0567 0.00959
2000 0.0012 0.0104 0.0485 0.00956
3000 0.0009 0.0085 0.0442 0.00954
5000 0.0006 0.0066 0.0393 0.00951

pletely different behavior is shown in the table. An examination of the
two-term local limit heuristic used in (61) shows that

IP(Ty,=n—k) —P(T,,=n—k—1)|=0(n""%),

leading us to conjecture that d,(n) = O(n~%1) as well. This is consistent with
the numerical evidence in Table 2.

Finally, we note that results analogous to Theorem 3 for combinatorial
multisets and selections in the logarithmic class have been established by
Stark (1994).
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