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If (X,) is a one-dimensional diffusion corresponding to the operator
Z = 30,, — ad, starting from x > 0 and T, is the hitting time of a, we
prove that under suitable conditions on the drift coefficient the following
limit exists: Vs > 0,V A € #, lim, ,,, P.(X € A | T > t). We character-
ize this limit as the distribution of an A-like process, & satisfying Zh =
—nh, h(0) =0, A'(0) = 1, where n = —lim, ., (1/¢)1og P,(T, > ¢). More-
over, we show that this parameter 7 can only take two values: n = 0 or
n = A, where A is the smallest point of increase of the spectral distribution
of the operator * = 34, + d,(a").

1. Introduction and statement of main results. We denote by P, the
probability law of a Brownian motion (B,) starting at x. Consider the
diffusion (X,) given by

X, =B, - f()ta(Xs)ds,

where we assume « to be C*.
Denote by 7, the hitting time of a, T, = inf{t > 0: X, = a}.
We consider the sub-Markovian semigroup given by
P, f(x) =E.(f(X,), Ty > t),
and we denote by p(¢, x, y) its transition density.
Let y(x) = 2/ a(z) dz. We assume the following condition holds:

HypoTHESIS H.

/;wey(x)(Lxe‘y(z)dz) dz = j:e_’(x)(fxe“z)dz) dx = .

0

This means that « is the natural boundary of the process [see Feller
(1952), page 487].
Under Hypothesis H we have [see Azencott (1974)]

(1) lim P, (T, >s) =1 foranys > 0.
xX—o %
A relevant function in our study is

A(x) = fxey(z) dz.
0
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It satisfies ZA = 0, A(0) = 0, where ¥ = 34,, — ad,. Hence we also have
(2) E.(A(X,), s < T,) < A(x).
This follows immediately from It&’s formula. In fact,

A(x) = [Ex(A(XTO/\TM/\s))
=E(A(M), Ty < Ty As) + E,(A(X,), s < Ty ATp)
> E,(A(X,), s < Ty ATy).

Then (2) follows from the monotone convergence theorem. Also note that the
equality A(x) = A(M)P(Ty, < T,) for x € (0, M) gives

3 P_(T T, A=)

Let &* = 14,, + d,(a-) be the formal adjoint of 2. Under Hypothesis H
we are in the limit point case, which means there exists a solution of
F*o =0, ¢(0) =0, ¢'(0) =1, which does not belong to L*(dA). In fact,
it suffices to take ¢ = e ?A. Denote by ¢, the solution of Z*¢ = —Ag,
#,(0) = 0, ¢(0) = 1, and by ¢, the solution of Zi = —Agj, ¥,(0) = 0, i (0) =
1. The spectral properties of #* and . are related by the equality ¢, = e™ ;.
Let p(A) be the spectral distribution of the operator #*. We assume p is left
continuous [see Coddington and Levinson (1955), Chapter 9]. Let A be the
smallest point of increase of p(A). In Mandl [(1961), Lemma 2] it was shown
that

A = sup{A: ¢,(+) does not change sign},

Since ¢, = e ?A does not change sign, we have A > 0. Observe that Hypothe-
sis H implies [¢y(x) dx = [e ?A(x) dx = . Therefore, if ¢, € #Y(dx), then
necessarily A > 0. -

We recall that a main role in the proof of the results obtained by Mandl is
played by the unitary transformation 7: L*(dA) — L?(d p), defined by

(wh)(A) = Iliir;(Lz(dp))j;)Ah(x)%(x) dA(z) for h € L*(dA),

and by L,, the subset of functions 4 € L%(dA), which are nonnegative, not
equivalent to zero and whose image 7/ is bounded from below in some right
. neighborhood of A. E
.Denote by 20(R, ) the set of nonnegative continuous probability densities
with compact support. Since ¢,(x) is continuous in (A, x), the set 20R,) is
included in L,. Hence the conclusion of the following theorem shown in
Mandl [(1961), Theorem 2] holds for A € 2¢(R ).
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THEOREM 0. Assume Hypothesis H holds. Then, for any h € L,

Yy
Pu(X, <y |Ty>¢) f()%(@ dx
_)
Pri=zlTo>t) foz%(x) dx

ast — o,

where
Jh(x)P (X, €A, Ty>1t)dx
Jh(x)P(Ty > t) dx

P(X,€AIT,>t) =

Our main results are the following ones for which we assume Hypothesis
H holds.
THEOREM A. The limit n= —lim,_ (1/8)log P (T, > t) exists and it is
independent of x > 0. Moreover:
(a) Foranyx > 0 and s > 0,
P.(T, >t +s)
P.(T, >t)

—>e ™ ast > x,

(b) For any x > 0,
P.(T, >t)
P(T, > ¢)

where W € C? and satisfies sW" — aW' = —nW with W(0) = 0, W(1) = 1.

- W(x) ast— x,

THEOREM B. For any s > 0 and for any A € &,
IimP(Xe€A|T,>t) =Q,(A),

t— oo

where Q, is the distribution of a diffusion with transition probability densities
given by

(s,x,y) =e™ () (s,x,5)
q ’ > y ‘4’( ) p ’ ’ y ’
with W and n given by Theorem A.

THEOREM C. (a) If 1> 0, then m = A, ¢ = [, ¢(2)dz <> and, for any
Borel set ECR,,

il

imP,(X,€E|Ty>t) =c* f ¢(z) dz forevery x > 0.
t— E ~

M) If q =0, then lim, P (X, €E|Ty,>t)=0 for any bounded Borel
set E Cc R, for every x > 0.
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If P (T, = ) > 0, we are in the case n = 0 and Theorems A, B and C can
be proved directly by using the equalities

P(Ty =) _ A(x)
P(T, =) A

Therefore, in the proof of the theorems we restrict ourselves to the case
P.(T, = ») = 0, that is, A(®) = .

From Theorem C it is deduced that if [ ¢(2) dz = », then n = 0, and the
pointwise version of Mandl [(1961), Theorem 3] is satlsﬁed On the other
hand, if [, ¢(2)dz <~ and [z e 7 dz < = hold, then by using Mandl
[(1961), Theorem 5] it is deduced that n=A>0.

For n =0 we can give another characterization of the limit studied in
Theorem B. For this purpose consider the process (Z,), the unique solution of

AN (Z,)
A(Z,)

W(x) =

(4) dZ, = dB, + ( - a(Zt)) dt, Z, = «x.
PROPOSITION D. If n = 0, then:

(@) MX)1y , ; is a P,-martingale.

(b) For anyx > 0, P (TO <worlim,,,T? <x) =0

© lim, ,,P(X€A|Ty>¢ =1limy ,,P(X€AI|Ty, <T,) =R (A)
for any A 6.9:, where R, is the distribution of the diffusion (Z,) whose
transition probability densities are given by

r(s,x,y) = Agy;p(s x,5).

The study of general one-dimensional diffusions can be reduced, under
suitable conditions on the diffusion coefficient, to the previous setting. In fact,
consider the solution of

dY, = o(Y,) dB, ~ h(Y,) dt, Y, =3,
where we assume o >0, o€ C!R), [§(1/0(uw)du =». Take F(y)=
/3 1/(a(w)) du. Then F € C*(R) and F~! exists. By It&’s formula we obtain
¢
F(Y,) = F(y) + B, ~ [ «(F(Y.)) ds,
where a(x) = (h/o + 20')o F~1(x).
If we consider the process X, = F(Y,), X, = x = F(y), then
dX, = dB, — a(X,) dt.
‘Since the hitting time of 0 is the same for both processes, T = T{, we get
P(X€A,TE>t, Xy =x) = P(YEF1(A),TY >¢,Y,=y).

Therefore, for our purposes it is enough to study the semigroup associated
with the process (X,).
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The case a constant was studied in previous works. We note that in this
case Hypothesis H always holds. For a = 0, Theorem B follows, respectively,
from Knight (1969) and Williams (1970). For a < 0 the limit distribution of
Theorem B corresponds to a three-dimensional Bessel process BES(3, |a]); see
Rogers and Pitman (1981). For a > 0, Theorem B was shown in Martinez and
San Martin (1994). Moreover, Theorem C follows from the fact that the
distribution of X, on {T, > ¢} is explicitly known. For « < 0, lim, ., P,(X, >
b1Ty>t)=1 for any b and for a>0, lim, . P(X,€E|T,>¢) =
[z a?ye ¥ dy for any E C R,.

The multidimensional analogues of Theorems B and C have been studied
by Pinsky (1985) in bounded regions G. The methods he used are based upon
the theory of Stroock and Varadhan about the martingale problem. We
remark that for nonbounded regions, as occurs in our case where G = (0, %),
Hypotheses 2 and 3 of Pinsky do not hold in general. This is due to the fact
that the spectrum of . is not necessarily discrete. For instance, if the drift «
is a positive constant, Hypothesis 2 of Pinsky is not satisfied because (P (T,
> 1)) /(W(x)exp(—(a2/2)t)) = o(1/ Vt), and similarly it can be proved that
his Hypothesis 3 also fails.

2. Proof of the results. First, let us study the quantities
P.(T, > t)
(%) = B 7,5y
(Lo

For any ¢ > 0, v,(x) increases in x and satisfies v,(0) = 0, v,(1) = 1.
Take x >y > 0. We have

P(Ty>t) =2P(To>t+T,,Ty>T,)
= [Ey(TO > Tx’ |]:Dx(TO > t))
=P, (Ty > T,)P.(T, > t)

A
= X%Px(TO > t)’

where the last equality follows from (3). Then, dividing both sides by P(T, >
t), we get
(5) v 0, u(®) <)
x>y >0, v,(x) < ——v(y)-
! A(y) ™

" Now v,(x) < 1 for x < 1 and v,(x) < (A(x))/A(D) for x > 1, so

A A
(6) v(x) < max(x((glc—)),l) < ( A((alc))

+1) for x > O.
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LEMMA 1. There exists a sequence t, — © and a function w: R, - R,
which is continuous in R, —{0} such that,

Px(To > tn)

v, (x) = m - w(x)t, ast, > >foranyx € R,.

Moreover, w is increasing, w(0) = 0, w(1) = 1 and

A(x) A(x).
0< w(x) smax(x(l—),l) < (X(l_) + 1),

for x > 0.

PrOOF. Since v,(x) is increasing in x and the family of functions (v,),.
is bounded by the continuous function max(A(x)/A(1),1), we can apply the
Helley theorem [see Coddington and Levinson (1955), page 233] to get the
existence of a subsequence ¢, — «, such that v, — w as ¢, — «. Obviously w
is increasing, w(0) = 0, w(l) =1 and w(x) < max(A(x)/A(l) 1.

Let us show w(y) >0 for y € (0,1). From (5) we get w(x) <
(A(x)/A(y)w(y) for any x > y. From w(1) = 1 we conclude w(y) > 0.

Let us show the continuity of w for x > 0. Since w is increasing, it is
enough to prove that w(x +) < w(x —). We have that w(x + h) <
(Alx + h)/A(x — W)w(x — h) for A > 0. Thus the continuity of A implies
wlx+)<w(x—) O

We remark that w is also continuous at x = 0; that is, lim, , ,, w(x) =0
This will be proved as a consequence of Lemma 4.

Now fix a probability density 2 on R,. Consider the distribution function
G of X, conditioned to nonabsorption up to time ¢, when the starting
density function is A:

G (y) =Py(X, <y | Ty >t).

In the sequel, #= {h,} is a fixed countable family of probability densities
onR,.

LEMMA 2. Let R, = R, U{x} be the one point compactification of R, . Then
there exists a sequence t, — © and F®): R, — [0,1] a right-continuous in-
creasing function with F*)X0) = 0 and F¥(») = 1, such that for any continu-
ous and bounded function n: R, - R:

[ n(y)dGP(y) = [ m(y) dF¥(y) ast, >, fork €.
R+ " ﬁ+

.PROOF. This follows from the compactness of the set of probability mea-
sures on R,. O
Notice that we can take the same sequence ¢, — © in Lemmas 1 and 2. In
the sequel F“ will denote the distribution as well as the measure defined by
it.
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LEMMA 3. Let Zc2{(R.) (continuous probability densities with compact
support). For any h € Z and for any s > 0,

[r, B(P)E(To > s, w(X,))dy ~
fR+ h(y)w(y) dy - fﬁ+Py(T0 > 3) dF(z/)(y),

ProOF. For s > 0 fixed, consider the function n®(y) = P(T, > s) for
y € R, where n((w) = P(T, > s) = 1. Using (1) this function is continuous
on R, and bounded. Now, take §{*)(s) = P,(T, >t + s | Ty > t). We have

Ex(To > t, Px(Ty > 5))

g(h) =
() Pu(T, > t)

— E,(n(X,) | T, > t).
Then, by definition of G we obtain 6" = [} dG{®. From Lemma 2,

6(s) = [ 19(y) dFD(y) (as b, > =)
(7) )
- [ﬁ P,(Ty > s) dF¥)(y).

On the other hand,

IR, h(y)[Ey(To > s, Py (T, > t)) dy
Iz, R(¥)P,(To > t) dy

Dividing the numerator and denominator by Py(T, >t) and considering
t=1t,, we get

o (s) =

JR(y)E,(To > s, Px(To > t,) /Py(To > t,)) dy
fh(y)(Py(TO > tn)/Pl(TO > tn)) dy

From (6), (2) and Lemma 1, we can apply the dominated convergence
theorem to get:

(8) 0" (s) =

I]:DXS(T'O > tn)

T,>s, ————
0 ° |]:[>1(T0>tn)

forany ye R, E - E (T, >s,w(X,)) ast, = .
+ y y\+o s n

Let [0, a] be an interval containing the support of /. From (6) and (2), for any
y < a we have :

A E T l}:DXS(TO‘ ,> tn) 3 E
! (y) y 0>3’ P](T0>tn) =< (y) y

@ 3 A(y)
<h(y) A +1

T, > s,

ACX,)
O 1)
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and

I]:Dy(TO > tn) A(y)
M BTy >4, h(y)( O 1)‘

The function on the right of (9) is integrable with respect to y. Thus by the
dominated convergence theorem, we can pass to the limit in the numerator
and denominator of 0}:‘)(3) in expression (8). Since w(y) is strictly positive for
y > 0, we get

Jr, P(P)EL(To > s, w(X,)) dy
Iz, R(y)w(y) dy

Hence, from (7) and (10) we obtain the result. O

ast > x,

(10) {(s) -

Let M(s) = [, P(T, > s) dF*X(y). From the previous lemma we have for
s> 0,

11 j R(PE Ty > s, w(X,) dy = M(s) j h(y)w(y)dy forany h €%

We assume the family.Z = {h,} is contained in Z{(R,) with extra property
that for any bounded interval with rational extremes (c,d) there exists a
function h, €.# whose support is contained in (c, d).

LEMMA 4. There exists B > 0 such that for any x > 0 and s > 0,

(12) E.(T, > s, w(X,)) =e P w(x).

ProoF. From the choice of the family /# and the monotonicity properties
of E (T, > s, w(X,)) and w(x) we deduce from (11) that the following equality
holds:

(13) E.(To > s, w(X,)) = M(s)w(x),

for s > 0 and dx-a.e. Since both sides of (13) are increasing in x and w is
continuous on R, —{0} the equality holds for every x > 0. For x = 0, (13) is
obviously satisfied.

Let us prove now that M(s) = e #¢ for some B > 0. To this end it will be
enough to prove V s,¢t > 0: M(s +t) = M(s)M(¢), because M is monotone
and bounded by 1. Using the Markov property and (13), we obtain

‘ M(s + t)w(x) =E (T, >s + i, w(X,,,)) = E(To > s, Ex(To > ¢, w(Xt)))
=E (T, >s, M(t)w(X,)) = M(t)M(s)w(x).

Since w(x) > 0 for any x > 0, the result follows. O
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Now let us show w is continuous at x = 0. We have

AX) ) A

IEx(T0>8,w(XS))S|Ex T0>s,—A—(ﬁ_ + < — A(].) +P(To>3)
A(x)
ZA(x) + P.(T, T
< AL (To > s, Ty >5).

This last term converges to 0. In fact, A(x) - 0 as x - 0 and P/(T, > s,
T, >s) — 0 as x - 0 + because the drift is bounded on [0, 1].
From (12), B depends only on w (not on the particular family #).

LeMMA 5. If B=0, then FO(+o)) = 1. If B> 0, then FPOR,) = 1,
¢ = [, e(x)dx < © and dF"(x) = ¢ Yg,(x) dx.

Proor. Since P, (T, > s) > 0as s > < forany y € R, and P(T, > s) =
for any s > 0, we get

M(s) = fn‘x P,(T, > s) dF7(y) =e P - F*({+=}) ass— o,

Therefore, B = 0 implies F*({+®}) = 1 and if 8 > 0, then F7({+x}) =

For the rest of the proof we assume 8 > 0. Take A, B bounded F*- contmu-
ous sets in R, of strictly positive F* measure. By Theorem 0 due to Mandl
and Lemma 2, we get

F™(A) . Pu(X, €AIT,>¢,)  [ye(x)dx
FP(B)  1,0uPy(X, €BITy>t,) Jpe(x)dx’
Hence
W(x) d
[ o) dx = F(”’)(B)%,)(—%)—x

Takmg B R,, we get. ¢c= [z ¢(x)dx <, and moreover F*(A) =
"4 @(x) dx for any set A as above. Since dF(’?’)(x) and ¢ '¢(x) dx induce
probablllty measures on R, the result follows. O

LEMMA 6. The function w is C? and it is the unique solution of the
equation

3w —aw' = —Bw, w(0) =0andw(l) = 1.
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Proor. Assume B > 0. Consider U, the unique solution of
(14) 1U" - aU’ = —Bw, U(0) = 0and U'(0) = m.
The solution of (14) is given by

U(x) = fxey(z){m - 2,sze“7(§)w(§) df} dz.
0 0

Now, choose m such that U(1) = 1. To achieve the result it is enough to show
U=uw.

Recall that T,, = inf{¢ > 0: X, = M}. Then S,; = T, A T}, is the exit time
of (0, M) when starting from x € (0, M). Since « is bounded in any compact
of R,, E .(S)) <« for any 0 < x < M. By Itd’s formula,

E.(U(Xs,)) = U(x) + [Ex(fOSMfZU(Xs) ds)

~U() + (-BIE [Mu(x,) do).

Since U(0) = 0, it follows that E (U(Xg, )) = UM)P,(Ty, < Ty). From (3) we
get

A(x)
A(M)
Since w is a positive function, we deduce from the monotone convergence
theorem that

(15) U(M)

- U(x) - B, [0 (x,) s

. Su T,
lim E, w(X,)ds| =E, w(X, ds).
e e
From the equality E, ([ w(X,)ds) = [§ E (w(X,), T, > s)ds and Lemma 4,
we get E_(fFo w(X,)ds) = w(x)fg e P*ds = w(x)p™ L.

Therefore, if we pass to the limit M — « in (15) we obtain

tim U(M) L)

A, U 300y
Since A(1) # 0 and U(1) = w(1), we get lim,, ., U(M)/A(M) = 0. Therefore,
U = w as required.

Now assume B = 0. Since ZA = 0, we must show w(x) = (A(x)/A(1)) for
any x > 0. Consider the function G(x) = (A(x)/A(1)) — w(x). From Lemma
1, G(x) = 0 for any x > 1. Let us prove that in this case G(x) > 0 for every «x.
In fact, if there exists x, < 1 for which G(x,) < 0, we obtain from (2) and
’ (12), ’

‘ ~ max |G(x)|P, (X, <1,Ty >s) <E,(G(X,), Ty >s) < G(x,) <O.

=U(x) —w(x) forany x> 0.

Letting s — « and since P, (T, = «) = 0 we arrive at a contradiction. There-
fore, G > 0.
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From G(1) = 0, G > 0 and E,(G(X,), T, > s) < G(1) = 0 we deduce G = 0,
P,(-,T, > s)-a.e. for any s > 0. Given that G is continuous, to achieve the
result, that is, G = 0, it is enough to prove that for any fixed interval [a, b],
P(X, €[a, b], T, > s) is strictly positive for some s > 0. Now P(X| € [a, b],
T, > s) > P(X, € la, bl, Ty > s, Ty; > s) and this quantity is strictly positive
by the Cameron—-Martin formula and the fact that it is so for the Brownian
motion. O

LEMMA 7. If B =0, then w(x) = (A(x)/AQ). If B> 0, then B = A, w(x)
= (e"®g,(x)) /(e (1)) for x = 0.

PrOOF. The case 8 = 0 has already been proved in the previous lemma.
Now, if B > 0, it suffices to show g = A. In fact from Lemma 6, w will satisfy
Fw = —cw, w(0) =0, w(l) =1, which implies w(x) = (y(x)/y(1) for
x > 0. The result then follows from the duality relation ¢ = e%, between &
and Z*.

By Theorem 0 of Mandl we deduce that for f, g continuous on R, with
nonempty compact supports

B(FX) 1Ty > 8) _ Jf(x) 6, dx
En(g(X,) | Ty > t) Jg(x) ¢ dx
Notice that n/(x) = E (f(X,), Ty > s) is a continuous bounded function on

R, (the same for g). From Lemma 5, F*(R,) = 1 and dF*(x) = ¢ 'g(x) dx.
Therefore, from Lemma 2 we get

En(F(Xopd) | To> ta+5)  Ex(n(X,) 1 To > t,)
[Eh(g(Xt,,+s) ] TO > tn + S) [Eh(ng(Xt,,) l TO > tn)
() e(x) dx

/mE(x) @y(x) dx

Therefore, letting g .~ 1 and since [¢(x) dx < , we obtain

1 ~JE(A(X,), Ty > s)g(x) dx
¢ ff(x)goi\(x) dx = JP(Ty > s)p(x) dx

Given that (see Lemma 5) ¢ I[P (T, > s)g,(x) dx = M(s) = e °, we get
(16) e b [f(x)gy(x) dx = [E(F(X,), Ty > s)@(x) dx,
which, by integrating s on (0, ¢) yields

1—e bt -

P () de = [E ([, ds ) d.

. Let g be a C? function with compact support contained in (0,%) and
consider f =.%g. Then the last equality and It6’s formula give

1—e B¢
_B_fyg(x)%(x) dx = [(E.(8(X,), Ty > t) - g(x))e() da.

t — o,

as t, = o,
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Let ¢t — « to obtain

[Zg(x) () dx = —B[g(x)a(x) dx.

Finally, integration by parts gives

[Ze(x) () dx = [g(x) Lo (%) dx
and this last term is — A [ g(x)¢,(x) dx. This shows that g = A. O

PrOOF OF THEOREM A. We have shown that for any sequence (¢,) there
exists a subsequence (¢,) such that v, —» w as t, = «. The function w
satisfies Yw = —Bw, w(0) =0, w(l) = "1, where B depends on w and is
either 0 or A. This means that the only possible limit points of (v,) are of the
form w(x) = A(x)/AQ1) for any x > 0 or w(x) = ¢(x)/¢(1) for any x > 0.

Assume that (v,) does not converge. Therefore, there exists x, € R,
(which is necessarily different from 0 and 1) and two subsequences (), (t”)
such that v,(x,) = a' as t, = @, vu(xy) > a” as ¢, - © and @' # a’. Passing
if necessary to subsequences we ‘can assume that v, and v, converge
pointwise. Without loss of generality, we assume vt,() - A( /A1) as
t, > » and v,() > $()/%(1) as ¢, - = Since o #a’ and v,(xy)
is continuous in #, we can construct a sequence (¢,) such that Utw(xo) -
(a' +a")/2 as t! — o, which is different from o' = A(x,)/A(D) and d

(x0)/9(D. Now by passing to a subsequence of (¢,) we can assume that v,
converges pointwise either to A(-)/A(1) or to ,(-)/ :,bA(l) which is a contradic-
tion. Therefore, (v,) converges and we denote its limit by W. Moreover, we
denote by 1 the parameter B associated to w = W in (12).

Let us show

P.(Ty >t +s)

(17) T =
P.(Ty > t)

Since P(T, > t)/P(T, > t) - W(x) as t — = it suffices to show the result

for x = 1. By the Markov property,

P(Ty>t+s Px (T, >t

(T )=[E1T0>s, x,(To > 1)

P.(T, > ¢) P(T, >t)

We have v,(X,) » W(X,) as t — ». Using (6), (2), the dominated convergence
theorem and (12) we obtain
P(Ty, >t +s)

im—2""""7 _F =e MBW(1) =e "
lim o ~ BTy > 5, W(X) = e W) = e

—e " agt — o, foranys > 0.

[El(TO > S, vt(Xs))‘

N

To finish the proof it suffices to show that n = —lim, _,.(1/t)log P,(T, > ¢).
This is a direct consequence of (17), being easily deduced from the equality
1/mlog P (T, > n) = 1/n)L}-§log(P (T, > k + 1)/PT, > k). O
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Since W and 7 are uniquely determined, from Lemmas 5 and 2 we deduce
that for any 2 € 2{R,), E,(X, € -| Ty > t) converges weakly to a distribu-
tion F independent of h which is e1ther 8, ifp=0or dF(x) = c go,\(x) dx if
n > 0. In the case 1 > 0, equation (16) implies that go,\P . Hence, if
the starting distribution is dF(x) = ¢ 'p,(x) dx, the hitting tlme T is expo-
nentially distributed with parameter A.

Proor or THEOREM B. Let A € %,. Then by the Markov property,
P(Xe€A,T,>t)
P.(T, > ¢)
E(XE€A,Ty>s,Px(Ty>t—s))
P.(To > ¢)

E(X €4,0,(X,) PyTy >t —5)
v(x) Py(To > ¢)

From the dominated convergence theorem and Theorem A, we get

W) ,

W(x)

P(XEAIT,>t) =

IimP(Xe€A|T,>t)=E,|X€A,T,>s,
t—> o
from which the result follows. O

PrOOF OF THEOREM C. Take h € Z0(R,) with support & C (x — &, x). By
monotonicity,

Pu(X,>a, T, >t) P(X,>a,T,>1t)
< .
Py(T, > t) JR(3)P,(To > t) dy

The term on the left-hand side converges to F(a, +«]. Now, dividing by
P.(T, > ¢), letting ¢t — ~ and using Theorem A, we deduce

1 . .
[h(¥)(W(y)/W(x)) dy liminf P.(X, > a | Ty > ¢).

Finally, let & converge to 0 to deduce
F(a,+] < liminfP, (X, >a | T, > t).
t—o oo

F(a, +>] <

By a similar argument, considering support A C (x,x + &), we obtain
F(a, +=] > limsup,,,, P.(X, >a | Ty > t). Then the result follows from
Lemma 5. O

PROOF OF PROPOSITION D. - (a) When 1 = 0, we have W(x) = A(x)/A(1).
,Therefore from (12) we get E (A(X,), T, > s) = A(x), which by the Markov
property implies that (A(X| )lT 5> s)ss 0o is a P,-martingale.

(b) Consider the process (Z, ) introduced in (4). Let 77 = inf{¢t > 0: Z, = a}
and S% = lim_ ,, TZ.

a/® "a
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Let G(y) = 1/A(y) for y > 0. A direct computation shows that ;G" +
(A’ /A — @)G’ = 0. Therefore, by Itd’s formula, if 0 < ¢ < x < a,
G(x) = E,(G(Zrz n12)) = G(&)P(TF < T7) + G(a)P,(T7 < T7),

from which we deduce that P(TZ < T?) = (G(x) — G(&))/(G(a) — G(¢&)).
Since G(0 + ) = », we obtain ¥ a > x, P (T < T¢) = 1. Hence
(18) P(S*<T§)=1.

An application of Girsanov’s theorem [see Karatzas and Shreve (1988),
page 191] leads to
A(X,)
A(x)
for A€F,0<e<x<a. Now,let £ > 0+, a — « and use (18) to obtain

Vs>0,VA ez,

,IT,>s,T,.>s

[Ex(XeA, =P (Z€A, T} >s, T/ > s)

(19) A(X;)
A(x)’

From A(x) = A(MIP(Ty <s, Ty <Ty) + E(AX,), s <Ty AT, and
P.(Ty, < Ty) = A(x)/A(M), we get

[Ex(XeA, T0>s) =P/ (Z €A, S%>5s).

A(X,)
A(x)

, s <Ty AT,

P(Ty >s| Ty <T,) = [Ex(

From the monotone convergence theorem and (19) we obtain
A(X;)
A(x)
The middle term is equal to 1 by (a). From (18) we get P,(TZ > S >s) =1

for any s > 0 and (b) follows.
(¢c) We have

,8 <Ty| =P, (S%>5s).

lim P(Ty > s Ty <Ty) = [Ex(

E.(X €A, Ty >s,Ty>s, Py (Ty <Ty))
l]:Dx(fI‘M < TO)

P(Xe€A Ty>s|Ty<Ty) =

A(X,)
—E,|Xe€A, T, >s,T)>s,

A(x)
=P(Z €A, Tf >s)
'The last equality follows from (19). Therefore,

lim P(X €A, Ty >s 1Ty <To) =P(Z €A, 57 >5) =P(ZEA).
On the other hand, lim,, ,, P(X € A, Ty, <s | Ty < Ty) < limy, ,, P(Ty <s
| Ty < Ty) = 0. Then the result follows. O
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