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The purpose of this paper is to prove a characterization of the
conditional independence of two independent random variables given a
particular functional of them, in terms of a factorization property. As an
application we discuss the Markov field property for solutions of stochastic
differential equations with a boundary condition involving the values of
the process at times ¢ = 0 and ¢ = 1.

1. Introduction. The study of stochastic differential equations with
boundary conditions can be traced back at least to Kwarkernaak [9]. He
considered an n-dimensional equation of the form

(1.1) dX, = AX,dt +dW,, 0<t<T,

with periodic boundary condition X, = X;, and studied problems of predic-
tion, smoothing and filtering related to the solution process, which in this
case can be written down explicitly.

One can consider the general stochastic boundary value problem

k
dX, =f(t,X,)dt + Y g,(t, X,)odW},
(1.2) =1

where W={W,, 0 <t <1} is a k-dimensional Wiener process and f,g;:
[0,1] X R® - R™ and A: R?" - R" are measurable and locally bounded
functions.

In general, we cannot expect the solution to these types of equations to be
adapted to the Wiener filtration, because of the boundary condition. For this
reason the stochastic integral in (1.2) makes no sense in the framework of the
classical Itd stochastic calculus. An anticipating stochastic integration theory
was developed in the late 1980’s by several authors (see, for instance, [12]
and [17]), thus permitting the use of the formalism of stochastic differentials
in the setting of new problems. In this sense, the circle in the diffusion term
of (1.2) denotes the extended (anticipating) Stratonovich integral.
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In [18], Ocone and Pardoux studied equation (1.2) with linear coefficients,
that is,

f(t,x) =Ax + a(t),
g:(t,x) =B;x + by(¢),
h(xyy) =F0x+F1y_F,

where a(t), b,(t) are d-dimensional processes and A, B;, Fy, F;, F are con-
stant matrices of appropriate dimensions. Using the rules of the anticipating
stochastic calculus, Ocone and Pardoux established the existence and unique-
ness of the solution in a suitable class of processes and studied the Markov
property of the solution in the following sense:

We say that a stochastic process {X,, ¢ € [a, b]} is a Markov field if for any
s,t €la,bl, s <t, the o-fields o{X,, r € [s,t]} and o{X,, r € [a, b] — (s, 1)}
are conditionally independent given X, and X,.

In [18], it is proved that in some particular cases the solution of (1.2) with
linear coefficients is a Markov field. For instance, the Markov field property
holds if either B, = 0for i = 1,..., k (Gaussian case)ora = b; = - =b, =0
and the fundamental solution of the associated homogeneous equation is a
diagonal matrix.

The paper by Ocone and Pardoux was followed by several works on other
classes of equations, where existence and uniqueness results as well as
conditions for a Markov-type property to hold were established.

Nualart and Pardoux [13] studied the case of a one-dimensional equation
with nonlinear drift, constant diffusion coefficient and a general nonlinear
boundary condition. Second order equations with Dirichlet or Neuman bound-
ary conditions were considered by Nualart and Pardoux [11, 14, 15]. Donati-
Martin [2] studied equations with nonlinear drift, linear diffusion term and
linear boundary condition. In all those cases the main result states that the
solution is a Markov (germ Markov, in the second order case) field if and only
if the drift has a special form (affine if the diffusion term is constant). The
method for proving these results is based on a change of measure argument
that can be briefly outlined as follows.

First one considers the particular case where the nonlinear drift is re-
placed by zero or by a linear coefficient. The Markov property for the explicit
solution of this equation is proved by direct arguments. Then, an extended
version of Girsanov theorem (see [10]) is used to obtain a new probability
under which the law of the particular solution coincides with the law of the
solution to the original problem with a nonlinear drift. Finally, it is shown
that the Markov property can be translated into a factorization property for
the Radon—Nikodym derivative.

This procedure has also been applied to discuss the Markov properties of
stochastic difference equations (see [4] and Ferrante and Nualart [8]), higher
dimensional nonlinear equations with constant diffusion coefficient (Ferrante
[6] and Ferrante and Nualart [7]) and stochastic partial differential equations
([3,5,16).
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The main difficulty involved in this method is that the Carleman—Fred-
holm determinant of a certain integral operator must be explicitly computed
in order to obtain conditions for the factorization of the density.

In Alabert and Nualart [1] a new approach was proposed and applied to a
second order nonlinear stochastic difference equation. This new approach led
in a natural way to formulation of the following general question: Given two
independent random variables Z, and Z,, are they conditionally independent
given some function g(Z,, Z,)? An analytical characterization of this condi-
tional independence can be given in some situations (see [1], Proposition 2.2),
using the co-area formula of geometric measure theory.

In this paper we present a generalization of the characterization theorem
given in [1] which allows us to give shorter proofs to known results about
Markov properties and to treat new problems for which the change of
measure method does not seem to apply.

The organization of the paper is as follows. Section 2 is devoted to stating
and proving the characterization theorem of conditional independence which
will be used in the subsequent sections. More precisely, we address the
following general problem: Given two independent sub-o-fields #;, %, of a
probability space, and given two random variables X and Y determined as
the solution of a system of the form

ngl(Y’ w)’
Y=g2(X’ w)’

where g,(y,-) is F-measurable (i = 1,2), under what conditions on g, and
g, are ¥, and %, conditionally independent given X and Y ? This problem
arises in a natural way when treating stochastic equations with boundary
conditions. The result is given in Theorem 2.1 and the proof is based on a
change of variable formula [see (2.3)].

In Section 3 we study the one-dimensional stochastic differential equation

(1.3) dX,=f(t, X, )u(dt) +dW,, 0<t<1, X,=u¢(X,),

where u is a finite positive measure on [0, 1] such that u({0}) = u({1}) = 0.
Under some monotonicity assumptions on the functions f and  we show the
existence of a unique solution.

In Section 4 we provide necessary and sufficient conditions for the problem
(1.3) to lead to a Markov field, using the characterization theorem proved in
Section 2. More precisely, in Theorem 4.1 it is proved that the process X
given by (1.3) is a Markov field only in the following particular cases:

1. X, is given.
2. f(t,x) = A(t)x + B(¢) for-all x € R and ¢ € supp( w).
3. X, =aX; +b,a # 0, and f is of the form (2) except maybe at some point
to € supp( w).
Then, two particular cases of (1.3) are discussed, and the results of Nualart
and Pardoux [13] are recovered.
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In Section 5 we treat the case of general drift and diffusion terms, reducing
it to the case of a constant diffusion coefficient by means of a change of
variables. In this way we provide a direct proof of the results on the Markov
property obtained by Donati-Martin [2].

2. Characterization of conditional independence. Let (), %, P)be a
probability space and let #; and &, be two independent sub-o-fields of #.
Consider two functions g,;: R X Q - R and g,: R X Q@ — R such that g; is
B(R) ® F-measurable, for i = 1,2, and they satisfy the following conditions
for some ¢, > 0:

(H1) Forevery x € Rand y € R the random variables g,(y, ") and g,(x, )
possess absolutely continuous distributions and the function

1
8(x,y) = sup Q‘P{|x"g1(y)|<3,|y_g2(x)|<8}
0<e<egg

is locally integrable in R2.

(H2) For any |£] < &, Inl < &, the system
x—gi(y,w) =&,

y —8&(x,w) =m,

has a unique solution (x, y) € R2, for almost all w € (.

(2.1)

(H3) For almost all w € (), the functions y — g,(y, ) and x = g,(x, @)
are continuously differentiable and there exists a nonnnegative random
variable H such that E(H) < » and

sup 11 —gi(y,0)gy(x,0) " <H(w) as.
ly—ga(x, w)<eg
lx—g4y, w)<ey

Hypothesis (H2) implies the existence of two random variables X and Y
determined by the system

X(w) =g1(Y(w),w),
Y(w) =gy(X(w), o).

THEOREM 2.1. Let g, and g, be two functions satisfying the preceding
hypotheses (H1)-(H3). Then the following statements are equivalent:

(2.2)

() ¥, and &, are conditionally independent given the random variables
X,Y. '
' (ii) There exist two functions F;: R? X Q > R, i = 1,2, which are Z[R?*) ®
F-measurable for i = 1,2, such that

1-gi(Y)ga(X)=F(X,Y,0)Fy(X,Y,w) a.s.
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Proor. Let G, and G, be two bounded nonnegative random variables
such that G; is F-measurable, for i = 1,2. Suppose that f: R? > R is a
nonnegative continuous and bounded function. For any x € R we will denote
by fi(x,-) the density of the law of g,(x), for i = 1,2. For each ¢ > 0, define
¢°(2) = (1/@2eN1_, ,4(2). Set

I(x,5) =1L - gi(y)ga(x) ™"
We will first show the equality
E[G,G,J(X,Y)f(X,Y)]

(2.3) = [ ElGilew(y) = =] fi(y, %) E[Galga(x) =]

Xfo(x,¥)f(x,y) dxdy.

Actually, we will see that both members of this equality arise when we
compute the limit of

24) [ E[GGyo"(x — &:(9))#"(y — 8a2(2)] (5, ) dxdy

as & tends to zero in two different ways.
For any w € Q) we introduce the mapping ®_: R? - R? defined by

D, (x,y) = (2 —81(y, ©),y = 83(x, ®)) = (X, ).
Notice that @, (X(w),Y(w)) = (0,0). Denote by D, (w) the set
D, (w) = {(x,y) eR?: |x — g (y,w) < g, ly —gy(x, w)| < 80}.

Hypotheses (H2) and (H3) imply that for almost all w the mapping &, is a
C!-diffeomorphism from D, () onto (— &, £,)%. Therefore, making the change
of variable (%, y) = @ («, y(s, we obtain for any ¢ < g,

fR#’s(x —g1(9)e°(y — g2(%))f(x,y) dxdy
= fwz"’a(’_“)w(?)c’(‘l’;l(i, ) (D, (%, 5)) dEdy.

By continuity this converges to J(X,Y)f(X,Y) as & tends to zero. The
convergence of the expectations follows by the dominated convergence theo-
rem because from hypothesis (H3) we have

LI, (R,y)) < sup  [1-gi(y)egs(x)l"! <HeLNQ),
' ly—golx, wl<eg
lx—g(y, @< &g

if |x| < g, and || < &,.
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Consequently, (2.4) converges to the left-hand side of (2.3). Let us now turn
to the proof that the limit of (2.4) equals the right-hand side of (2.3). We can
write

E[G\G,0°(x — 81(¥))e°(y — £2())]
= E[Gléoa(x - gl(y))]E[quoe(y - g2(x))]

= ('[Rqoe(x - a)E[Gilg(y) = a]fi(y, @) da)

x([Rw(y ~ B)E[Gilga(x) = B o %, B) dB)-

We are going to take the limit of both factors as ¢ tends to zero. For the first
one, the Lebesgue differentiation theorem tell us that for any y € R there
exists a set N? of zero Lebesgue measure such that for all x & N7,

lim [ ¢°(x — ) E[Gilg(y) = a] fu(y, @) da

= E[G1|g1(y) =x]f1(y,x).

Similarly, for the second integral, for each fixed x € R, there will be a set N*
of zero Lebesgue measure such that for all y € N¥,

liil(}/[;&éoe(y — B)E[G,lgs(x) = B] fo(x,B) dB

= E[G2|g2(x) =y]fa(x,9).
We conclude that, except on the set
N={(x,y):x€N’oryeN~},
which has measure zero, we will have the convergence
lim B[ GGy ¢°(x — £1(9))¢° (¥ ~ £2())]

— E[Glgy(y) = x] i( 9, x) E[Golga(x) = ¥] Fol %, 9).

The preceding equality provides the pointwise convergence of the integrand
appearing in the expression (2.4). The corresponding convergence of the
integral is derived through the dominated convergence theorem, using hy-
pothesis (H1).

Consequently, (2.3) holds for any continuous and bounded function f
and this equality easily extends to any measurable and bounded func-
tion f. Taking f= 1, where B is a set of zero Lebesgue measure, and
putting G, = G, = 1, we deduce from (2.3) that P{(X,Y) € B} = 0 because
. J(X,Y) > 0 a.s. As a consequence, the law of (X,Y) is absolutely continuous
with a density given by

f(y, ) fa(%, 5)
fxy(x,y) = E[J(x,y)I X=x,Y=y]"
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Therefore, (2.3) implies that
E[GleJ(x,y)|X=x,Y=y]fXY(x,y)

= E[Gilg:(y) =x]fi(y, x) E[G,lg,(x) =y]fa(x,y)
almost surely with respect to the law of (X,Y). Putting G, = 1 we obtain
E[Gd(%,y)|X =x,Y =y]fxy(x,7)

= E[G,lg\(y) =x]fi(y, x)fo(x,y),
and with G, = 1 we get
E[Gyd(%, )| X =2, Y = y]fxy(x,y)

= E[G;lg,(x) =y]fu(y, x)fa(x, ).
Substituting (2.6) and (2.7) into (2.5) yields
2.8) E[G\GyJ (%, 9)|X =x,Y =y|E[J(x,y)| X =x,Y = y]

= E[G,J(%,y)| X =%,Y =y]E[G,J(x,9)|X =x,Y =y].

Conditioning first on the bigger o-fields o(X,Y) V & and o(X,Y) VS, in
the right-hand side of (2.8), we obtain

E[GG,J(X,Y)IX,Y|E[J(X,Y)IX,Y]
(2.9) =E[GLE[J(X,Y)IX,Y,7]IX,Y]
XE[G,E[J(X,Y)IX,Y,%]IX,Y].

Suppose first that #, and ., are conditionally independent given X and Y.
This allows us to write the equality (2.9) as follows:

E[GIGZJ(X,Y)E[J(X,Y)IX,Y]IX,Y]
= E[GIGZE[J(X,Y)IX,Y,%]E[J(X,Y)IX,Y,%]IX,Y].
Taking the expectation of both members of the above equality we obtain
E[J(X,Y)IX,Y]
E[J(X,Y)IX,Y,Z[]E[J(X,Y)IX,Y,%] '
This implies the desired factorization because any random variable o(X,Y)
V F-measurable (i = 1,2) can be written as F(X(w), Y(w), w) for some

B(R?) X F-measurable function F: R? x Q — R.
Conversely, suppose that (ii) holds. Then we have, from (2.9),

E[G,G,|X,Y]

=E[G,G,F\(X,Y)Fy(X,Y)J(X,Y)IX,Y]

3 E[GIFI(X,Y)J(X,Y)IX,Y]E[GZFZ(X,Y)J(X,Y)IX,Y]
E[J(X,Y)IX,Y] ’
Writing this equality for G, = 1, G, = 1 and for G, = G, = 1, we conclude

E[G,G,|X,Y] = E[G4|X,Y]E[G,|X,Y]. O

(2.5)

(2.6)

(2.7

JYX,Y) =
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REMARKS. Some of the conditions appearing in the above hypotheses can
be weakened or modified and the conclusion of Theorem 2.1 will continue to
hold. In particular, in hypothesis (H3) we can replace H(w) by H,(w)H,(w),
with H,(w) F-measurable for i = 1,2, and assume only H(w)Hy(w) < © a.s.
In (H1) the local integrability of the function &(x, y) holds if the densities
fiy, 2) and f,(x, 2) of g,(y) and g,(x) are locally bounded in RZ.

The following two lemmas will be used in the application of the preceding
factorization property. The proof of the first lemma is immediate.

LEMMA 2.1. Suppose that a(w;)ay(wy) = b(w,)by(w,) a.e., on a product
measure space () X Qy,F; ® F5, uy X Wy). Then either:

(i) a; =0 py-a.e. and/or ay = 0 py-a.e.
or

(ii) there is a constant k + 0 such that a,(w;) = kb (w;) pi-a.e. and a,(w,)
=k 1by(wy) py-a.e.

LEMMA 2.2. Consider two independent o-fields ¥, &, on a probability
space (Q, F, P), and two random variables G,, G, such that G; is F-
measurable for i = 1, 2. The following statements are equivalent:

(a) There exist two random variables H, and H, such that H; is %-
measurable, i = 1, 2 and
1-G,G, =HH,.

(b) G, or G, is constant a.s.

PrOOF. The fact that (b) implies (a) is obvious. Let us show that (a)
implies (b). We can assume that the underlying probability space is a product
space ((; X Q,,9 ® F,, P, X P,). Property (a) implies that

[Gi(@1) ~ Gi()]Ga(ws) = [Hi(wy) = Hy( 1) Hy( ),
where G, and H, are independent copies of G; and H, on some space
(ﬁl,%, 151). Lemma 2.1 applied to the above equality implies either:
(A) G, =0 as.and/or G, — G, =0 as.
or
(B) G, = kH, for some constant & # 0.

Then (A) leads to property (b) directly and (B) implies that 1 = [ H, + kG,]H,.
Applying again Lemma 2.1 to this identity yields that H, and thus G, is a.s.
constant. O .

COROLLARY 2.1. Assume the hypotheses of Theorem 2.1 and, in addition,
* that 1 — g(Y)gy(X) has constant sign. Then conditions (i) and (ii) of this
theorem are equivalent to:

(iii) One (or both) of the variables g(Y) and go(X) is almost surely
constant with respect to the conditional law given X,Y.
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3. Stochastic differential equations with boundary conditions. Let
(9,4, P) be the classical Wiener space. That is, 0 = C,([0, 1]) is the space of
continuous functions vanishing at zero, # is the Borel o-field of ) and P is
the Wiener measure. The canonical process W,(w) = w(¢) will be a standard
Brownian motion.

We want to study the stochastic differential equation

X, =X, + [(0 t]f(s,Xs_),u(ds) +tw, 0<t<l,

Xo=9(Xy)

where u is a finite measure on [0, 1], such that w({0}) = w({1})) = 0, and f and
¢ are real-valued measurable functions on [0,1] X R and R, respectively.
Note that this is a pathwise equation which is well formulated for each
w € (.

Assuming suitable monotonicity assumptions on the functions f and ¢ one
can show that (3.1) has a unique solution. More precisely, we can establish
the following theorem.

(3.1)

THEOREM 3.1. Suppose that the functions f:[0,1] X R > R and y: R - R
satisfy the following conditions.

(al) |f(t,x) — f(t, I < K|x — y|, for all t €[0,1], x, y € R, and for some
constant K > 0 and sup, ., .4/f(s,0)| < .

(a2) For each t such that u({t}) > 0, the mapping x — x + f(¢t, x)u({t}) is
nondecreasing.

(b1) ¢: R > R is a continuous and nonincreasing function.

Then (3.1) admits a unique solution for any w € Cy([0,1]) which is a
cadlag function.

PrOOF. For each x € R, let us denote by ¢, ,(x) the unique solution to the
equation

(3.2) @ x) =x+ [ S0 ())uldr) + o, o,

with 0 < s <t < 1. The Lipschitz and linear growth conditions imposed on
the function f insure that this equation has a unique solution. From hypothe-
ses (al) and (a2) it follows that the mapping x — ¢, (x) is continuous and
nondecreasing. Indeed, the continuity property is clear, and by an approxima-
tion argument it suffices to show the monotonicity property when the mea-
sure u has a finite number of jumps. In that case we deduce the nondecreas-
ing property of the mapping x — ¢, ,(x) at a jump time ¢ from the relation

’ @0, i(%) = @ (x) +f(t, 05,0 (x))m({t}).
" In order to prove that (3.1) admits a unique solution, it suffices to show
that the equation

Xo = ¢’(¢’o,1(x0))
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has a unique solution x,. This is a consequence of the fact that the mapping
x = (@, (x)) is nonincreasing, due to hypothesis (b1) and the preceding
arguments. O

In the sequel we will impose the following stronger hypotheses on the
function f:

(al’) f and its partial derivative d,f = Jf/Jdx are continuous and
[0, f(¢, x)l < K for all ¢ €[0,1], x € R.
(a2) 1+ 9, f(¢t, x)u{t}) = y for all ¢, x and for some y > 0.

In that case, we know (cf. Protter [20]) that the mapping x — ¢, ,(x) is
differentiable and its derivative satisfies the linear equation
e(®) =1+ [ 0 f(r, e, (), (x)u(dr).
S,

This equation admits a unique solution given by

o) = exp[ [ oaf(r o ()u(ar)

(s,

x TT [1+ 0xf(7, @, (x))n({7)],

s<7t<t

where u° is the continuous part of u. Hypotheses (al’) and (a2’) imply that

(3.3) ¢, (%) = K; > 0
for some constant K; > 0 given by, for some integer m > 0,
(3.4) K, = exp(—Kp°([0,1]) — 2Kp?([0,1]) + mlogy).

Let X ={X,, t €[0, 1]} be the unique solution of (3.1). We want to study
the mapping o — X(w). We will denote by D* the class of functions x:
[0,1] » R which are cadlag and such that x is continuous except on the
countable set N = {re[0,1]: u({r}) > 0}. The space D* is a separable
Banach space with the supremum norm, and the mapping o — X(w) is
continuous from Cy([0, 1]) into D *. Indeed, it suffices to show that X (w) is a
continuous function of w. We recall that X,(w) is determined by the equation

Xo(w) = l/’(900,1(X0( ®))).
Then, using the continuity of the mappings ¢, ; and ¢ in the variables (x, w)
and x, respectively, we obtain that X,(w) depends continuously on w.
The mapping X is a bijection between Cy([0,1]) and the set

& ={x D" xy=¢(x,;)and
Ax, = f(t,x,_)u({t}), for any ¢ € N}.

In fact, for any x € ¢ there is a unique o € C,([0,1]) such that X(w) = x
given by

(3.5)

w, =%, — %o — [w (8 %0l ds).
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It can be checked that the supremum and the infimum of two elements of
% are still in .

PropPOSITION 3.1. Suppose that the functions [ and  satisfy hypotheses
(al’), (a2’) and (b1). Denote by X = {X,, t € [0, 1]} the solution of (3.1). Then,
for every 0 <t < 1 we have Im X, = R and Im X, = Im ¢. In particular this
implies that the support of the law of X, is the whole real line for each
t €(0,1].

Proor. Fix 0 <t < 1 and a real number ¢. We want to find o such that
X,(w) = ¢£. We will choose a path o of the form
(3.6) w, = 081[0’”(8) + Otl(m](s),
where 6 € R. Note first that, for an  of this type, the trajectory {X (w),

t < s < 1}, assuming X,(w) = ¢, satisfies the equation

X,(w) =&+ j(t s]f(r,X,_(w));u(dr), t<s<l1.

Consequently, the value X, = ¢(X,(w)) does not depend on 6. Consider the
function {R(0), 0 < s < t} solution of the equation

R,(0) =X, + fm s]f(r,R7_(0))/u(dr) +s0, sel0,t].

Then it suffices to find 6 such that R,(8) = &. The continuous path  of the
form (3.6) with this value of 6 will satisfy the required property.

The mapping 6 — R,(0) is continuously differentiable and its derivative is
given by

dR, ¢
= ] s R,._(0))n(d
T =[] [ o Re())u(ar)
x I1 [1+ 0 f(r R, (9) ()] ds.
s<7<
By hypotheses (al) and (a2') we have that

B Kit>o0
—_ >
de = 1 ’

which implies that
lim R,(6) = too.
60— +

Hence, the image of the mapping 6 — R,(6) is the whole real line. The case
t = 0 is treated in a similar form. O

" 4. Markov properties. Let X = {X,, t € [0, 1]} be the solution of (3.1).
Our aim is to study Markov properties of the stochastic process X. More
precisely we are interested in the following notion.
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DEFINITION 4.1. A stochastic process X = {X,, ¢ €[0, 1]} is said to be a
Markov field or a reciprocal Markov process if for any 0 <s <t <1 the
o-fields o{X,, r €[s,t]} and o{X,, r & (s, )} are conditionally independent
given X, and X,.

We have not included the case s = 0 in our definition in order to avoid
some technical difficulties in the application of the characterization theorem.

We will write

FH U5
7,

to mean that the o-fields &, and %, are conditionally independent given ;.

Fix 0 < s <t < 1. From the properties of conditional independence it holds
that

(4.1) o{X,,re[s,t]} LI o{X,,r & (s,t)}
Xs:Xt

if and only if

(4.2) g L F20,
stxt

where

S

Fy=0{W,,0<r<s;W,-W,, t <r<1}.

Indeed, (4.1) implies (4.2) because
%ﬁt colX,,re[s,t]}

Fiy=o{W,. - W, s <r<t},

and
FL,colX,.,r & (s,t)}.
Conversely, from the inclusions
o{X,, re(s,t]}cs,vo{X,, X}
and
of{X,,r & (s,t)} cgt, Vv o{X,, X,}
it follows that (4.2) implies (4.1).

With the notation of the previous section and assuming hypotheses (al’),
(a2') and (b1), let us define the random functions g, g,: R X Q& — R by

g1(y) = ¢,,:(y),

82(x) = Gpo,s(‘!’(ﬁpm(x)));

The proof of the conditional independence (4.2) will be based on the
application of Corollary 2.1 to the functions g, and g,. In order to check that
these functions verify hypotheses (H1)-(H3), we will apply the techniques of
the stochastic calculus of variations.

Let us denote by .# the class of random variables of the form

F=f(W,,. .. W), 0<t<- <t <1, feCiR").

(4.3)
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The elements of . are called smooth random variables. The derivative of a
smooth random variable is the stochastic process defined by

D,F - giﬂm W, 1 0i(0).

For any p > 1 we denote by D' ? the closure of . under the norm

p/2)

The derivative operator is continuous in the norm ||-[l;,» from D2 into
L2([0,1] X Q). For any A € L*(0,1]) and F € D"? we will write

1
\FIf, = E(FI?) + E ’fO(DtF)z dt

D,F = ['h, D,Fd.
0
We will make use of the duality relation
(4.4) E[D,F] = E[Fflh, dW,]
0
for all F € D2, b € L?([0, 1)).

PRrOPOSITION 4.1.  Suppose that the functions f and  satisfy the hypotheses
(al’), (a2') and (bl). Assume also that i is continuously differentiable.
Denote by X = {X,, t € [0, 1]} the solution of (3.1). Then the random functions
g1 and g, defined by (4.3) satisfy hypotheses (H1)-(H3) of Section 2.

PrOOF OF (H1). We claim that g,(y) € D*?2 and, for any 4 € L2([0, 1],

Dy, () =fth,, dr
(4.5) s
+‘/;s t]&zf(r’(Ps’r_(y))Dh‘Ps,r—(y)”‘(dr).

In fact, consider the Picard approximation to ¢, () defined by
() =yt [ F(rel, (N)u(dr) + o, = o,
S

if n >0, and ¢0,(y) = y. The sequence or (y) converges in L*(Q) to o, ()
for each t € [s, 1]. Recursively we can show that o (y) and ¢, _(y) belong
. to D2 for all ¢ € [s,1] and

4.6) Dol () = ['h,dr + /( 27 @2 (9D Dyl (y)uldr),
s s, t
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From (4.6) it follows that

sup E(IIDgos'f,(y)llg) <o and sup E(IIDgos'ft_(y)Ilg) < ®©
n n

for all 0 <s < ¢ < 1. This implies that ¢, , ¢, ,_ € D" forall 0 <s <t <1
and, taking the limit in (4.6), (4.5) holds.

From the linear equation (4.5) we deduce the following formula for the
derivative of g,(y) = ¢, (y):

De(y) = exp[ [ o qos,u-(y))uf(du)]

x IT [1+ aZf(T’¢’s,7—(y))”‘({T})]l[s,t](r)'

r<rt<t

Notice that D, ¢, (y) = K; > 0 with K; > 0 given by (3.4) and for every
r €[s,t]. In a similar way we obtain

exo [ au(w on,- (W () ()]
x T1 [1 + 3y f(r, 900,1—(l/’(‘Pt,l(x))))M({T})]’

r<t<s
if0 <r <s,

D, g5(x) = (p’oys(z,[/(gpt’l(x)))t//'(qot’l(x))exp[f Io f(ts @y (%)) p(du)
x T1 [1+ 35 (75 @0, - (¥( ey, 1(x))) Ju({r )]

r<r<li
ift<r<l,

0, if r € (s,1).

Again D, g,(x) > K, > 0 if r € [0, s]. However, notice that D,g,(x) < 0 if
t<r<l1

In order to compute the densities of the random variables g;(y) and g,(x)
and to show the local integrability of 8(x, y) we proceed as follows. For every
&> 0 and x € R we introduce the function §*: R — R defined by

0, ifz<x—eg,
b (2) ={(1/2e)[z—(x—¢)], fx—e<z<x+e,
1, ifz>x+ e

. Then taking the derivative of ¢,*(g,(y)) and projecting this derivative on the
function h = 1;, ;) we obtain

Dh[‘l’ (gl(y))] 1, gl(y)|<a}Dh[gl(y)]
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We have D,[g,(y)] > K,(t — s). Consequently, taking expectations in the
above equality and using the duality relation (4.4) we obtain

1
§P(|x —gi(y)l<e)

_ E[Dh[ng(gl(y))]
Dh[gl(y)]

_ED[w ()] _ ELOW, ~ W) 0 (ex()

- K\ (t—5s) K,(t—s)
1

< .

KVt —s
This implies the absolute continuity of the law of g,(y) and the uniform

boundedness in the variables x, y of the above probability.
Similarly,

1 1 1
—P(ly — < — () —_—
2¢ (Iy gZ(x)l "3)S KISE[Dh(l'[,E (g2(x)))] = Kl /S ’
where A’ = 1j, ;. So hypothesis (H1) holds. O

Proor oF (H2). We can prove directly that for all w € Q the transforma-
tion
(%,5) = (x — 81y, 0), 5 — &(x, w))

is bijective from R? to R?. Let (%, ¥) € R% Set x = % + ¢, ,(¥). It suffices to
show that the mapping

¥ = 0o, s(U( @1 (X + @,(9))) +7
has a unique fixed point, and this follows from

dr
2 = (00T + @ DNV (60a(F + 01.())

X@,1(% + @, (7)), (¥) < 0. o
ProoF oF (H3). We have
1-g1(y)ga(x) =1- ¢;,t(y)¢6,s(¢/(¢t,1(x)))w,(¢t,1(x))¢;,l(x) =1. 0O
The proof of the proposition is now complete. O
THEOREM 4.1. Let f: [0,1] X R > R and ¢: R > R be two functions

satisfying hypotheses (al’), (a2’) and (b1). Assume also that i is continuously
differentiable. Let u be a finite measure on [0,1] with w{0}) = p({1}) = 0.
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Then the unique solution of the boundary value problem (3.1) is a reciprocal
Markov process if and only if one of the following conditions is satisfied:

(@ ¢y’ =0.

(b) For each t € [0,1] N supp( u) the function &, f(t, x) does not depend
on x. ‘

(¢c) ' is constant and there exists t, € (0,1) N supp( u) such that 9, f(¢, x)
does not depend on x for each t € [0,1] N supp( ), t # ¢,.

Proor. Fix 0 <s <t < 1. The random variables X, and X, are solutions
of the system
Xt =8 1( Xs) ’
X, =8,(X,),
with g,(y) = ¢, (¥) and g,(x) = ¢, (P(¢, 1(x))). We have seen in Proposi-
tion 4.1 that Corollary 2.1 can be apphed to these random functions. As a
consequence,
t I_I ‘%e,t

Xs’Xt

if and only if g}(X,) or g5(X,) is constant with respect to a regular version of
the conditional probability given X, and X,.
For each path X in D* we define

Gx(I) = exp[j;&zf(r,X,_),uc(dr) TI;II[l + a0y f(m, X, u({7])].

We know that Gx(I) > K; > 0. We have

g1(X,) = Gx((s,t]),
and

gx(X,) = Gx([0,1]\ (s,2]) ¥’ (Xy).
Consequently, by Corollary 2.1 the conditional independence %', L1 x_x %,
holds if and only if there exists a measurable function A: R? — R such that

(4.7) Gx((s,t]) = h(X,, X,) a.s.
or
(4.8) Gx ([0, 1N\ (s,tDy'(Xy) = h(X,, X,) as.

If ¢’ =0, then (4.8) clearly holds. Actually in this case X is a Markov
process. So we will assume in the sequel that ¢’ # 0.

Let us start by proving that condition (b) or condition (c) implies that the
solution of (3.1) is a reciprocal Markov process. It is easy to see that if (b)
- holds, then Gx((s,t]) is always constant and therefore (4.7) is true. Let us
now assume that (¢) holds. We have that

if t, & (s,t], then Gx((s,t]) is constant, and
if t, € (s,t], then Gx([0,1] \ (s,¢])¥'(X,) is constant.



1278 A. ALABERT, M. FERRANTE AND D. NUALART

Consequently, for any 0 < s <t < 1, (4.7) or (4.8) is true.
To prove that the Markov property of the solution X of (8.1) implies one of
the two conditions (b) or (c), we shall divide the exposition into four steps.

STEP 1. Let x; < x, be two real numbers. Fix r € (0,1). For each ¢ > 0
satisfying [ — &, 7 + ] € (0, 1), there exists a couple of paths X% and X%*
in the set of solutions € defined in (3.5) such that:

G Xte=X2%2c0on[0,1]\(r — &,r + &).
Gi) Xbe=x,, X2°=x,.
Gii) X{e=XE* =x, with ¢'(x) # 0.

Proor orF STEP 1. Fix any y € R, and take ¢! € Cy([r + &, 1] such that
the solution at ¢ = 1 of

X, =y+ fu, X, )u(du) + &, te[r+e,1],
t]

(r+e,

belongs to the open set {x € R: '(x) # 0}. This is possible thanks to Proposi-
tion 3.1. Then, with x = (X;) and another arbitrary point z € R, take
£2 € Cy([0,r — &) such that ’

Xo=x+ [ flu,X, )p(du) + &2, te[0,r—s],
©,1] ‘

give a solution with X, _, = z.
We can also find an element ¢2 € Cy([r — &, r]) such that the solution of

X, =z+ flu, X, Yu(du) + &3, te[r—e,r]
(r—e,t]

satisfies x,_= x,, and an element ¢* € Cy([r, r + £]) which forces the solu-
tion of

X, =ay 4 fOrowpp((ed) + [ flu, X, w(du) + &

to satisfy X,,, =y.
Now, clearly, the function @ € Cy([0, 1]) defined by

2, uel[0,r—e],
2+ &3, uelr—-e,r],
w, = ,
“ 2+ E3+ gD uelr,r+e
r—e r u ’
§r2—6‘ + §r3 + r4+€ + gul’ u e [r + 8’1]’

. produces a path X'*={X!* u €[0,1]}) €% and X} *=x,.

In a similar way, and using the same functions ¢! and £2, and the same
real numbers x, y, z, we get a second path X% ¢ € @ with X ¢ = x,. Clearly
the functions X2 and X2 ¢ possess the desired properties. O
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STEP 2. Assume Gy((s, t]) = h(X,, X,) a.s. for some measurable function
h. Then, for any r € (s, ¢) N supp( ), 9, f(r, x) is constant in x.

PROOF OF STEP 2. Suppose that there exist r € (s,¢) N supp(u) and two
real numbers x,, x, such that

3o f(r,x1) < dyf(r, x3).

We are going to show that this leads to a contradiction. We will assume
x, < Xg.

Let {X%° &> 0} and {X?°, & > 0} be two families of solutions constructed
by the method presented in Step 1. For each & > 0 such that (r — &,r + &) C
(s, t), and for each n > 0, we can consider the open sets

B! ,={XeD~*IXx - X4, < m},
B2 ={XeD* X -X*|l < n}.

Clearly, P(X"*(BL.,) >0 and P(X"'(B?,)) >0 because X~ (B} ,) and
X (B? ,) are nonempty open subsets of the Wlener space. Moreover

B!, NB:, =0

(4.9)

if 1 is small enough.
We claim that there exists £ > 0 and 1 > 0 such that

{Gx((s,t]): XeB!,} and {Gx((s,t]): X<B?2,}

are disjoint sets of real numbers. In order to show this claim we distinguish
two different cases:

CasE 1. Suppose that r is an atom of w; that is, u({r}) > 0. We can write
Gx((s,t]) = Gx((s,t]\(r — &, 7 + &])

X exp f 35 f(u, X, ) n(du)
(410) (r—e,r+e¢l
< T [+ af(r X))
X[1+ d,f(r, X,_)u({r})]-
We have

lim sup sup Iﬁzf(r X, ) —dyf(r, x) 0,

M0 o' <o xeBi
for : = 1,2. On the other hand,_the second and third factors in the expression
© (4.10) converge to 1 as ¢ |0, uniformly with respect to X. Finally, for each
&> 0, the first factor Gx((s,t]\(r — &,r + £]) converges to the common
value

Gxro((s,t]\(r— &,7 + €]) = Gxoo((s, t]\ (r — &, 7 + £])
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as 7 10. This allows us to conclude that the sets {Gx((s,t]: X € Bj’ n} and
{Gx((s,tD: X € B2} are disjoint for some &> 0 and some 1 > 0.

CASE 2. Suppose u({r}) = 0. We have
Gx((5,4]) = Gx((5, 1N (r = o17 + eD)esp| |
(r—e, r+e

x IT  [1+a,f(r, X, )u({D].

re(r—e,r+e¢]
Notice that X, = X,_ for any X € D* because r is a continuity point of u.
Moreover, X¢ =x; for i = 1,2. Then for any o > 0 we can find 0 <6< ¢
such that

lﬁzf(u,Xu-)Mc(dU)

sup | X ¢ —x)<a fori=1,2.
lu—r|<é

We can assume that » — 6 and r + 5 are continuity points of u. Now if we fix
the paths X%° on the interval [r — 8, r + 8],  will not change, and we can
make & — 8 small enough in such a way that the quantities

exp f dg f(u, X, )n(du)
(r—e,r+e]\(r—48,r+8]

x I1 [1+ d,f(7, X, ) m({7})]

re€(r—e, r+e\(r—8,r+8]

for i = 1,2, are arbitrary close to 1 uniformly with respect to X € Béyn.

Taking into account that u((r — 8,7 + 8] > 0, we can take o, 3, £ — 8
and 7 small enough (in that order) in such a way that the above claim holds.
This completes the proof that for some & and 7 the sets

{Gx((s,t]): X B} and {Gx((s,t]):X € B2}

are disjoint.

Notice that X — Gx((s, t]) is a continuous functional on D*. We have
shown that there exist two disjoint sets I}, I, C R such that

Gx((s,t]) €l, ifXeB],,
Gy((s,t]) eI, if XeB2,.

Set X»®=X2¢=z2, and X}»* = X2 = z,. Then we have

h(X,,X,)€l, as.if X€B]},
and '

X, X,)el, asifXe B .
‘Consider the mappings

CO([O’]-]) -x D* —)‘rrs, RZ’

o~ X(0) = (X(0), X(0)).
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We are going to see that m, (B} ,) and =, (B? ) both contain a rectangle
R=(z;— Az, +A) X (25— A, 25 + A)
for some A < 7. This will imply that R ¢ A~*(I;) N A~ '(I,) and consequently
XY 1 (R7H(L) NhTN(DL))) + D,

since R is open and X and =, , are continuous. However, this is impossible,
because I, N I, = &, and we will get a contradiction.

Therefore, we only need to show that for any x € (z; — A, z; + A) and any
y € (25 — A, 2, + A), there exists a path in # N B}, and another in & N BZ,,
both satisfying X, = x and X, = y. Let us show the existence of the one in
le,n' This path can be constructed starting from X' ¢ and modifying this
function to make its graph contain the points (s, x) and (¢, y), while keeping
it in the set € N B, .

The new path will coincide with X ¢ except in small intervals centered at
the points s and ¢. We are going to construct the piece of path in an interval
of the form [s, s + 8]. The other pieces of the path can be defined by a similar
method.

Take a point § > s, and let 2, = X} *. Take A = n.Fix x € (z; — m, 2, + 1)
and let [x,, x,] be an interval containing both x and z,, and contained in
(z; — m, 2z, + 7). We know there exist paths in # joining the points (s, x1)
and (§, Z,), and the points (s, x,) and (§, Z,). Let us denote by X and X these
two paths. We can assume that X, < X" * < X, for all r € [s, §]; otherwise,
we can replace X, by inf{X,, X"°} and X, by sup{X,, X>°}. Taking into
account that the trajectories are right-continuous, we can find § small
enough in order to have s + 6 < § and

X ,X € [X,l'f -, Xbe+ 77] forall » € [s,s + &8].

Set s’ =s + 6 and 2z, = X1 *. Clearly X,, < 2} < X,.. Now, take apath Y € &
verifying Y, = x and Y, = 2}, and define

X, = inf{sup{Y,, X,}, X,} forallre[s,s'].

This constitutes a path on [s, s’] verifying X, =x and X, =2} and X, €
[XLe—n, X e+ q]lforall rels,s']

For the construction of a path over some interval [s’, s] on the left of s,
satisfying X, = X%°, X,=x and X, €[X}*—n, X} °+ 7] for all re
[s’, s], we proceed similarly, taking into account the fact that although the
‘paths are not left-continuous, it holds that, for any X.Y € %,

Y,_— X,

r— r—

1
| < —Y, - X,| forallr[0,1].
Y
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This is easily proved from the relation
X, =X, +f(r,X._)u({r}) forall Xe@.

In this case we have to take A = y1.

Finally, we perform the same construction around ¢ and complete the
whole path by letting X, = X outside these small intervals. The path thus
obtained satisfies Y, =x,Y, =y and Y € Bj ,- Exactly the same reasoning

provides another path Y Wlth Y =x,Y,=yand Ye Ba ,» and Step 2 is
proved. O

STEP 3. Assume Gx([0,1]\ (s, D¢’ (X,) = h(X,, X,) a.s. for some mea-
surable function A. Then, for any r € ((0,1)\ [s, t]) N supp(w), 9, f(r, x) is
constant in x.

Proor oF STEP 3. Let r € (¢,1), r € supp(u). We want to prove that
dy f(r, x) is constant in x. Suppose this is false. Then there exist two real
numbers x; and x, such that 9, f(r, x;) < 9, f(r, x,).

Given ¢ > 0 such that [r — &, + ¢] < (¢, 1) we can construct two families
of functions {X"*¢, &> 0} and {X%°, &> 0} by the technique of Step 1.
Consider the open balls B,sly,7 and B‘f’,7 defined by (4.9). We can show that

{Gx([0,1]\ (s,t])¥'(X,); X € B,
and
{Gx([0,1]\ (s,t])w'(X,); X € B2}

are disjoint sets of real numbers for £ > 0 and 7 > 0 small enough.

This can be done as in Step 2, with the only difference that the factor
¥'(X,) appears. Denote by x the common value of the paths X% ¢ and X2¢
at time ¢ = 1. Since §'(x) # 0 and ¢’ is continuous, we can choose 1 such
that for all X Belyn U B?, we have inf]'(X;)| > 0. Then we can repeat the
same arguments as in Step 2. The case r € (0, s) would be treated similarly.

O

STEP 4. The function f(r, x) is of the form f(r, x) = a(r)x + b(r) for all
r € [0,1] N supp( w), except for at most one point ¢, € (0, 1).

ProOOF OF STEP 4. We will abbreviate by P[r] the property f(r, x) = a(r)x
+b(r). From (4.7), (4.8) and Steps 2 and 3 we get that, for any 0 <s < ¢
< 1, either P[r] holds for any r € (s, ¢) N supp( ,u) or P[r] holds for any r €
o, 1)\ [s, 2D N supp(w).

Suppose there exists ¢, € (0,1) N supp( u) such that P[¢,] does not hold.
Then we conclude that P[r] holds for all r # ¢y, r € (0,1) N supp( w). In fact,
given such r we can choose s < r < ¢ such that ¢, & (s, ¢) and from the above
dichotomy P[r] holds in (s, ¢) N supp(u). Notice that the set {r € (0,1) N
supp( w): Plr] holds} is closed. Therefore, ¢, must be an isolated point of the
support of . O
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Finally it suffices to show that if there exists ¢, € (0,1) N supp(u) for
which 4, f(¢,, x) is not constant, then ¢’ is constant. Choose s such that
0 <s <t, < 1. Let us compute

Gx((sa]) = e [ a(r)us(an)| TT [1+a(r)u((o)]

Te(s,
T# to

X (1 + 35 (0, X, - ) u({20}))
and

Gx(10,5]) = exp| [ a(r)us(an)| TT [1+ a(m)u(irh)]w'(K0).

The random variable (1 + d, f(¢,, X, _) ,U«({to})) is not constant because u({¢,})
# 0, the support of the law of X _ is R and 4, f(¢y, x) is not constant.
Consequently ¢'(X;) is constant a.s. "and this implies that ¢’ is constant. The
proof is complete. O

Let us illustrate the preceeding result with two particular examples.

EXAMPLE 1. Suppose that w is Lebesgue measure. Let us consider the
following stochastic differential equation:

dX, =f(t,X,)dt +dW,, te][0,1],
= ¥(X).

This equation, with the boundary condition written in the form X; = g(X; —
X,) has been studied in [13] making use of the technique of change of
probability.

By Theorem 4.1, if f is of class C%([0,1] X R), with a bounded partial
derivative in x, and ¢ is of class C! with ' < 0, then the unique solution of
(4.11) is a reciprocal Markov process if and only if either ' = 0 or f is of the
form

(4.11)

f(t,x) =a(t)x + b(t).

EXAMPLE 2. Suppose that u is a point measure of the form u = 8, with
t, €(0,1). Clearly the function f(¢, x) is here defined just for ¢t =¢, and
therefore we can simply write f(x). Assume that f is differentiable, f'(x) + 1
>y, vy>0, for all x €R and ¢ is a decreasing C! function with ' < 0.
Then the unique solution of (3.1) is given by

(4.12) X, = Xo + W, + f(Xo + W, )1y, 14(2),
where X, is the unique solution of
' (413) Xo = ¥(Xo + Wy + f(Xo + W,,)).

A simple application of Theorem 4.1 to this case gives the following result.
The cadlag stochastic process X, defined by (4.12) is a reciprocal Markov
process if and only if one of the functions f or ¢ is affine.
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5. Equations with a general diffusion coefficient. In this section we
will consider stochastic differential equations of the form

Xt=X0+f0tb(Xs)ds+f0ta(Xs)odWs, te[0,1],

XO = l//(Xl)’

where [{a(X,)> dW, denotes the generalized Stratonovich integral defined as
follows (see [12]):

(5.1)

DEFINITION 5.1. A measurable process u = {u,, ¢ €[0,1]} such that
[dlu,l dt < = is said to be Stratonovich integrable if for any ¢ € [0, 1] the
random variables

n-1 1

tl+1 t
Sr=Y ___(f /\usds)(WtM—W,L),

im0 biv1 —ti \Jeat

where 7 ={0 =¢, <¢, < - <¢, = 1}, converge in probability to a limit S,
as || = max,(¢;,, — ¢t;) tends to zero. The limit will be called the Stratonovich
integral of u, and we will write S, = [{u,° dW,.

In the case where ¢ is an affine function, these equations have been
studied by Donati-Martin [2], who gave a general result on existence and
uniqueness of solutions and studied the Markov properties of the solution in
the case of o linear. We show here how these equations can be reduced to the
case of a constant diffusion coefficient by means of a change of variable, thus
permitting an easier analysis of the Markov properties.

By a solution to (5.1) we mean a continuous process {X,, ¢ € [0, 1]} such
that {o(X,), 0 < ¢t < 1} is Stratonovich integrable and (5.1) holds.

We first recall a version of the anticipating It6 formula for Stratonovich
integrals. For any p > 1 we will set L'? = L?([0, 1], D" 7). We will denote by
L%? the set of processes u € L? such that there exists a version of the
derivative Du satisfying the following properties:

1. The sets of L?(Q)-valued functions

{s i sttus/\t}te[o,l]
and

{S i DsAtuth}te[O,I]

are equicontinuous.
2. esssup, ;co, 12 ElIDu,l"] < .

" We will denote by (L'z?),,, the set of measurable processes u such that
there exists a sequence {(,, Q,)},cn With Q, 1 Q, u, € L¢? and ulg, = u,q,
a.s. for all n. Then we have the following change of variables formula, which
is a localized version of [19], Theorem 5.3.
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LEMMA 5.1. Let I be an open interval (bounded or not) of the real line and
let G € C%(I). Let X, A, B be stochastic processes in [0,1] satisfying A €
L%(0,1)) ass, B, X € ('4*),,, X has continuous paths, P(X € I) = 1 and

¢ ¢
X, =X,+ | A, ds+ | B,-dW,.
=X+ [ A
Then

G(X,) = G(X,) + fOtG'(XS)AS ds + fOtG’(XS)BSodWS.

The following lemma, whose proof is straightforward, establishes the
stability of the set of continuous processes in (L'z*),,, under composition with
C! functions.

LEMMA 5.2. Let X be a continuous process belonging to (Us*),,.. Let o be a
continuously differentiable function. Then o(X,) belongs to (Lz*),,,.

We turn now to the change of variables in (5.1). The following result is an
easy consequence of the previous Lemmas 5.1 and 5.2.

PROPOSITION 5.1. Let I be an open interval and o: I — (0, +x) a C*
function. Fix ¢ € I and define

1
(5.2) G(x) =[c Ty)dy.

Then G is a C? diffeomorphism between I and an open interval J C R. Let
b,y: I > R be C! functions and define f, ¢: J > R by

b(G ()

f(y)=;("G‘:1(—y)), e(y) =(Geop oG )(y).

Then a continuous stochastic process X = {X,, t € [0, 1]} with values on I,
belonging to (L's*),,., satisfies

dX, = b(X,) dt + o(X,)odW,, te<[0,1],

Xo = ¥(Xy),
if and only if the process Y, = G(X,), which also b;alongs to (%4*),,., satisfies
dy,=f(Y,)dt +dw,, te]0,1],

®3) Y, = o(¥,).

We will finally discuss the Markov property in two particular cases.
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CASE 1. Suppose that ¢ > 0 on R and

1
a(y)

o 1
L o(y)

dy =+ and fo dy = +oo,

Then the function G defined in (5.2) maps R onto R and using Proposition 5.1
we get the following result.

THEOREM 5.1. Let b: R - R and o: R » R be two C! functions satisfy-
ing:

(1) o > 0 and the function G(x) = [*(dy/c(y)) maps R onto R.

(ii) The function

b(G'(y))

() =';YZ§TT(;35

has a bounded derivative.
Let ¢: R > R be a C! nonincreasing function. Then, the boundary value
problem (5.1) has a unique solution in (Us*),,..

PrOOF. Consider the system

dy, =f(Y,)dt + dw,, te][0,1],
Y, = ‘P(Yl)’

with f(y) =(boG 1) /(o °G™!) and ¢ = Goy oG !. The function ¢ is con-
tinuously differentiable and nonincreasing. We know that in this situation
there exists a unique solution {Y}, ¢ € [0, 1]}, and one can show that it belongs
to (4*),,.. Therefore, X, = G~ '(Y,) is the unique solution to (5.1). O

Concerning the Markov property, we obtain:

THEOREM 5.2. Under the hypotheses of Theorem 5.1, the solution to (5.1) is
a Markov field if and only if

@y =0
or
(i) b(x) = Ao(x) + Ba(x)[*(1/0(t)) dt, for some A, B,c € R.

Proor. First notice that {X,, t € [0, 1]} is a Markov field if and only if the
solution {Y,, ¢ €[0,1]} of (5.3) is so. Consider the system (5.3). Applying
Theorem 4.1 to this case we obtain that {Y,, ¢ € [0, 1]} is a Markov field if and
only if ¢’ = 0 or f' is constant.

The condition ¢’ = 0 is clearly equivalent to ' = 0. On the other hand, a
simple computation shows that f’ is constant if and only if b’ — (¢’ /0)b is
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constant. Solving this linear differential equation for b, we get

b(x)—a(x)[ (()) kfwdt] c €R.

That is,

b(x) =Ao(x) +Ba(x)f ————dt for some A, B,c € R. O

CASE 2. We turn to the case o linear [o(x) = ox] and ¢ affine. In
particular, let ¢(x) = (h — F,x)/F,, where h, F,, F; > 0 and let o > 0.
We can consider the equation

t
54 Y= Yo+ [f(Y,)ds+ W, te[o1],

Fyexp(oY,) + Fiexp(oY,) =h
If f is a C! function with a bounded derivative, there is a unique solution of
this equation. In fact, the boundary condition can be written as Y, = g(Y,)
with
h - F Oe 7y
Fl ’

This g is a decreasing bijection between (—,(1/0)log(h/F,)} and

—»,(1/0)log(h/F;)). On the other hand, the solution of Y, =Y, +
JEf(Y,)ds + W, at time ¢ = 1 as a function of Y, has a derivative bounded
from below by a positive constant. This implies the existence of a unique
solution.

Equations (5.4) and (5.1) are related through the change of variable
G(x) = 07! log x and b = o xf(G(x)). Applying Proposition 5.1, we deduce
that X, = G"X(Y,) = exp(c'Y,) is a positive solution to (5.1).

In Donati-Martin [2] it is proved that, assuming

~1<b'(x )—-i—)<1 x>0,

1
g(y) = ;log(

(5.1) has a unique solution, which takes values on R*\{0}. This unique
solution must coincide with G~!(Y,). Notice that the above condition on b is
equivalent to |f'| < 1.

We know that {Y,, ¢ € [0, 1]} is a Markov field if and only if f’ is constant.
Thus, reasoning as in the proof of Theorem 5.2, we easily obtain the result
proved in [2], that is, that {X,, ¢t € [0, 1]} is a Markov field if and only if

b(x) = Ax + Bx log x, x> 0.
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