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EIGENVALUES OF THE NATURAL RANDOM WALK
ON THE BURNSIDE GROUP B3, n)

By RICHARD STONG

Rice University

In this paper we give sharp bounds on the eigenvalues of the natural
random walk on the Burnside group B(3, n). Most of the argument uses
established geometric techniques for eigenvalue bounds. However, the
most interesting bound, the upper bound on the second largest eigenvalue,
cannot be done by existing techniques. To give a bound we use a novel
method for bounding the eigenvalues of a random walk on a group G (or
equivalently its Cayley graph). This method works by choosing eigenvec-
tors which fall into representations of an Abelian normal subgroup of G.
One is then left with a large number (one for each representation) of
easier problems to analyze.

1. Introduction. In this paper we will give sharp bounds on the eigen-
values of the random walk on the Burnside group B(3, n) with the obvious
generating set. Recall that the Burnside group B(r,n) is generated by n
elements x,, x,,..., x, and satisfies the relations that g” = 1 for all g. For
r = 2, the Burnside group B(2, n) = (Z/2Z)" is Abelian. The random walk on
B(2, n) generated by {x;, x,,..., x,} is therefore the usual random walk on
the hypercube. This random walk is classical; in particular, all the eigenval-
ues of this random walk are known exactly. The second largest eigenvalue is
B1=1-2/n.For r = 3, the Burnside group B(3, n) is finite and nilpotent of
order

‘3(3, n)| = 3n+(;)+(g) — g(*+5n)/6

A more detailed description is given below. The Burnside groups B(4, n) and
B(6, n) are known to be finite as well, but the detailed structure of these
groups is not known. For larger values of » many of the Burnside groups are
known to be infinite.

The random walk on B(3, n) is interesting for a number of reasons. First it
fits into the general program of analyzing random walks on nilpotent groups
begun by Diaconis and Saloff-Coste [1, 2]. These papers give bounds on the
eigenvalues and rates of convergence of random walks on groups satisfying
certain growth conditions, including nilpotent groups. In particular, suppose
G is a nilpotent group with a symmetric set of E generators (containing the
identity), class number ! and diameter y. Let P be the transition probability
matrix for the associated random walk on G and U the uniform distribution
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on G. They show ([2], Corollary 5.3) that there are constants B = B(l, E) and
C(l, E) such that

|P" — Ullyar <Be ¢ ifn=(1+c)y?Eandc>0
and
“Pn - U“Var = %e—c lfn = c,yZ/C’

These results show that for many families of nilpotent groups (ones with E
and [ fixed), order y? steps are necessary and sufficient to achieve random-
ness. However, for the Burnside groups B(3, n) the parameter E is increas-
ing. The dependence of the constants in [2] on E are such that one cannot get
good bounds for B(3,n) from these results. In fact, we will show that for
B(3, n) dramatically different results hold; that is, less than y? steps suffice
to achieve randomness. Furthermore, the example B(3, n) is also of indepen-
dent interest because of the universal property of B(3, n). The results of this
paper automatically give bounds on the eigenvalues of the random walk on
any group all of whose (nonidentity) elements have order 3.

Since B(3,n) has large diameter, the types of geometric bounds on the
second largest eigenvalue given in [3] cannot hope to give sharp results (this
vague statement is made precise by Proposition 3 and Corollary 3.1 below).
To get around this, our argument will make crucial use of the fact that
B(3,n) has a large Abelian subgroup (namely, its commutator subgroup
[B(3,n), B(3, n)]). Therefore, the eigenfunctions of the transition probability
matrix for the random walk may be chosen to lie in irreducible representa-
tions of this Abelian subgroup. We will show that as a result they are
eigenfunctions of a matrix which can be regarded as the transition probabil-
ity matrix of a twisted random walk on B(3, n)/[ B(3, n), B(3, n)] = (Z/32)".
We must now deal with a more complicated “random walk,” but on a much
simpler graph. These simpler problems are done by applying Cauchy—-Schwarz
and closely related upper bounds in a geometric way. The method used works
in quite a number of situations. For example, one can give bounds on
eigenvalues of random walks on nilpotent groups of small class number. The
terminology in this paper has been set forth fairly generally, but the other
applications and more generalities about the method are given in [7].

Let B(3, n) be the Burnside group B(3,n) = {x,, %,,..., x,: g3 = 1 for all
g €BB,n)), and let S = {x!, x4,..., x,f'} be the obvious generating set.
A nice discussion of B(3,n) can be found in [4], pages 320-324. For our
purposes the salient features of B(3, n) will be the following. Commutators in
B(83, n) satisfy the identities

[y, 2] =[x 5] " =[z%y] = [y, 27}]"

Double commutators satisfy the identities

[[x,5],2] = [[5, 2], 2] = [[2,x],9] = [[3,%],2] "
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All higher commutators vanish. As a consequence, any element of B(3, n) can
be written (in fact by [4] uniquely) in the form

g =xfag o xixy, 1] [2y, 251" [, q, 20,1000

X [[ X1, xz], :’Cs]c123 [[xn—2’ xn_l], xn]c”'z'”‘l‘",

€ Z/3Z. Hence

(1)

for a;,ay,...,¢, 2 1-1.n

1B(3,n)| =3 (5)+(5) = sewtssnvs,

which we will denote by N. The commutator subgroup of B(3, n), which we
will denote by H, is Abelian and consists of exactly the elements of the form

h = [xl,xz]bu[xl’xs]bw '“[xn—vxn]b"—l'"

X [[xl’ xz]’ xf)']c123 [[ Xn-2 xn—l], xn]cn_z’”_l’”.

Let P be the transition probability matrix for the associated random walk on
B(3, n) (i.e., randomly left multiply by an element of S) and let 1 = B, > B,
> -+ > By_; > —1 be the eigenvalues of P. Let I' denote the corresponding
Cayley graph. The main goal of this paper will be to show that the following
bounds on the eigenvalues hold.

(2)

THEOREM 1. (i) 1 —1/(8n) > B, >1-3/@2n).
G) -1/2>By_1= —7/9.

Let U denote the uniform distribution on B(3, n) and let || - |lva, denote the
bounded variation distance between probabilities on B(3,n). As an easy
corollary, if we apply Proposition 3 of [3], we get the following bound on the
convergence rate of the random walk on B(3, n).

CorOLLARY 1.1. If k = (21og 3/3)n* + (10 log 3/3)n? + 8sn, then
2”Pk - U”Var <e’’.

As remarked above, these results contrast sharply with the results of [2].
For the Burnside group B(3, n), the diameter y must be at least Cn?/log n
since we requ1re words of at least this length in our 2n generators to
generate all 3(n°+5n)/6 glements of B(3, n). [This bound cannot be too far off
since the representation of the elements given in (1) above shows the diame-
ter is at most Cn?.] Therefore, y? steps for B(3, n) means at least Cn®(log n) 2
steps and at most Cn® steps. Thus the convergence is substantially faster
than one would guess from naively extrapolating the results of [2].

2. The easy bounds. The lower bound on B; and the upper bound on
By_, are easy. Let x: (Z/3Z)" — C be a character of (Z/3Z)" and consider
the composition

: B(3,n) > B(3,n)/H = (Z/3Z)" -, C.
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This function ¢ is an eigenfunction of P, and its eigenvalue is the same as
the eigenvalue of y for the usual random walk on (Z/3Z)". Therefore, the
eigenvalues 1 — 3k/(2n), k=0,1,...,n, of the usual random walk on
(Z/3Z2)" are among the eigenvalues for P and, in particular, 1 — 3/(2n) and
—1/2 are among them.

The lower bound on B,_,; is a direct application of Proposition 2 in [3].
Instead of doing the calculation directly, we will prove an amusing reformula-
tion of Proposition 2. A number of interesting examples are easily handled by
this reformulation; for example, Lemma 1 of [6] is a special case of this
proposition.

PROPOSITION 2. Let S be a generating set for the group G with 1 ¢ S, S
closed under taking inverses, |S| =d and |G| = N. Let P be the transition
probability matrix for the random walk on G given by S and let 1 = B, > B,
> -+ = By_; = —1 be the eigenvalues of P. Let k,, be the number of elements
of S with order m. Then

2 m
—_— + J— —
By-1= —1 a )y

5 -
modd M

Proor. To apply Proposition 2 of [3] we must choose for every vertex x of
G a collection of paths from x to itself of odd length with total weight 1. For
each element g € S of odd order, take the path x, gx, g2x,..., go4® 1y,
x with weight C ord(g) 2. The total weight will be 1 if and only if C~! =
X, oaa (k,,/m?). Then Proposition 2 of [3] says that By_; > —1 + 2/, where
in our case their formula for « simplifies to « = d max,Y_ |o|wt(o), where the
maximum is taken over directed edges and the sum is over all the paths
containing that edge. If the edge e is [ x, gx] and ord(g) is odd, then e is on
exactly ord(g) paths, all of length ord(g) and all of weight C ord(g) 2. If
ord(g) is even, then e is not on any path. Hence « = dC and By_, > —1 +
(2/d)2m odd (km/mz) O

COROLLARY 2.1.  For the random walk on B(3,n), By_, = —7/9.

ProoF. The generating set S for B(3, n) has 2n elements all of order 3, so
d=2nand L,, 44 (k,,/m?) = 2n/9. Therefore, we get the desired bound. O

Before turning to the proof of the remaining bound, the upper bound on 8,
it is worth noting that the geometric bounds of [3] cannot give sharp bounds
on the eigenvalues [though they do at least give some bound, even bounds on
B(4, n) and B(6, n)]. To see this we have the following proposition. (A similar
result holds for the bounds coming from path bounds on the Cheeger constant

[51)

PROPOSITION 3. Let P be the transition probability matrix for the random
walk on a connected, regular graph T = (V, E). Let D be the expected squared
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distance between points of V. Suppose B is the upper bound on B, coming
from [3], Proposition 1 or 1, for some choice of paths. Then B > 1 — D1,

Proor. This fact is contained in the proof of Proposition 4 in [3]. For any
choice of paths we get a lower bound on « by replacing the maximum over
edges by the average over edges. The calculation in [3], Proposition 4, then
gives k > D, as desired. O

COROLLARY 38.1. If T above is vertex-transitive, then B > 1 — 4 diam(I")~2.

COROLLARY 3.2. For the random walk on B(3, n) defined above, let B be
any upper bound on B; coming from [3], Proposition 1 or 1'. Then B >
1 - C(og n)*n—8

3. The upper bound on B,. For the upper bound on B;, we need the
following observation. Let H c B(3, n) be the commutator subgroup of B(3, n).
Recall from our discussion above that H is Abelian [in fact, isomorphic to
(Z/3Z)"*~")/¢]. We chose the random walk to be given by left multiplication
by generators; therefore, H acts on I' by right multiplication. Hence the
eigenfunctions of P may be chosen to lie in irreducible representations of H
(which are of course one-dimensional since H is Abelian). Pick one such
representation p: H — C and let ¢ be an eigenfunction of P which lies in
that representation; that is, ¢(gh) = ¢(g)p(h) for all g € B(3,n) and & € H.
If we fix coset representatives for B(3,n)/H, then ¢ is determined by its
values on the coset representatives. That is, we can view ¢ as a function on
B@3,n)/H = (Z/32)".

Explicitly let [g] denote the coset containing g and let #,, be the coset
representative. Define y: B(3,n)/H = (Z/3Z2)" - C by v(g) = ¥t ). We
can recover ¢ from ¢ by the identity y(g) = y(gDp(t;\g). In terms of v,
the equation Py = Ay becomes

_ 1 2
Ap([g]) = Ap(ty) = Ei§1<‘/’(xit[g1) + ¢(x;1t[g])}

1
2_

W [\1:

{‘/’(t[x,g])p(t[x,glx t[g])
(3) 9 (trg) P (10157 ) )
{E([ %,81)p(tiie %itis)

+ E([x;lg])p(t[‘x}lg]xi‘lt[g])>.

That is, ¢ is an eigenfunction of a “random walk on (Z/3Z)" with phases on
the edges.” Let P denote the corresponding matrix. The phases are values of
p and hence are all 1, w = (=1 + iV3)/2 or w? = (=1 — iV3)/2. If p is the

Il

I
—

1
2n

l
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trivial representation of H, then all the phases are 1. Thus i is an eigenfunc-
tion of the usual random walk on (Z/3Z)" as encountered above. The eigen-
values are therefore 1 — 3k/(2n) for £ =0,1,..., n. Except for the 2 =0
eigenvalue, which is B,, these all satisfy the bound claimed in Theorem 1.
Thus we are reduced to bounding the eigenvalues of P away from 1 for all
nontrivial representations p of H. We will do so by showing that for any
vector v we have v”Pv < c|v|* for some ¢ < 1 — 1/(8n).

For n = 2 we can easily give such a bound (but a little too easily to give the
full picture). The two nontrivial representations of H = Z/3Z differ by
complex conjugation; hence the associated matrices P will have the same
eigenvalues. Calculating using (3) above, one sees that i on (Z/3Z)? will be
an eigenfunction of the 9 X 9 Hermitian matrix

=l
Il
N
QO OO M O
O OO MO MO M
oroglog oo
E OO O=ROO

g oglo~OORO
oglSil~o0Oo~mOO

HOOHOOO M H
cComHglglooc o
HOOOELE & ~mOO

g

As remarked above, this matrix P has an interesting property. It is the
transition probability matrix for the usual random walk on (Z/3Z)? with
some phases added to the edges as shown in Figure 1. As such it is the sum of
nine nearly identical contributions from the nine squares that make up
(Z/3Z)* [here we are thinking of (Z/3Z)? as lying on the torus]. Explicitly,
P=3(Q, +Q, + - +Qy), where @, is the 9 X 9 matrix that has zeroes in
rows 3,6,7,8,9 and columns 3,6,7,8,9 but otherwise agrees with P, and
similarly for @,,..., Q. The matrices @, are all conjugate and all involve
only four of the coordinates. They are all, up to conjugation and adding rows

1 11 0)1 ®
o @ o
1 0] )
1 1 1
L ] @ [ )
1 o ®
1 1 1
] [ ] ]

Fic. 1. The graph underlying P drawn as though on a torus.
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and columns of zeroes, the same as the 4 X 4 matrix
1 0 1 0 o
A_ 211 0 1 O
=7lo 1 0 1
» 0 1 0

The largest eigenvalue of this matrix is V3 /4; therefore
vTQ < V3 (v + vi +v? +v?)/4,

and similarly for the other eight @’s. Summing over i we get v7Puv
< V3|v|?/2. Therefore, the largest eigenvalue of P is bounded above by
V3/2<1-1/16.

One difficulty in extending the bound above for B(3,2) to B(3, n) is that
describing the intermediate matrices is cumbersome with this method. In-
stead note that we can encode a Hermitian matrix by a graph with some
weights. This encoding is only a slight generalization of the encoding one gets
by saying any regular graph (without weights) encodes the transition proba-
bility matrix for the usual random walk. This is another reason why it is
convenient to think of these intermediate steps as being new “random walks”
with some nonstandard features.

Consider the following data: a graph I = (V, E), a positive real number d,
a function w from the directed edges to C with w([y, x]) = w([x, y]) and a
function s from the vertices to [0,d]. Call such a collection of data I’ =
(I',d,w, s) a twisted graph. We will interpret this data as follows. The graph
I' is the underlying graph for our “random walk with phases on the edges.” In
our application I will always be a simple graph. We will regard d as roughly
the degree of the graph. The function w we will regard as giving the weight
on the edge. Our weights will generally be in {z € C: |z| = 1} and in this case
we will also refer to them as the phase on the edge. We regard s(x) as giving
the weight for remaining stationary at x and s(x)/d as the probability of
remaining stationary. In our examples we will always have s(x) in the range
[0,d — X, lw((x, yDIl. We may regard a(x) =d — X, lw([x, yD| — s(x) as the
weight for a particle at x to disappear, or be absorbed, and a(x)/d is the
probability a particle at x will be absorbed.

We will say a Hermitian matrix A’ dominates another A if vTAv < v7A'v
for all v. Similarly we will say one twisted graph dominates another if the
vertex sets agree and the corresponding Hermitian matrix dominates the
other. Note that we can easily build twisted graphs which dominate others. If
X is a sub(twisted graph) of I', X’ dominates X and I'’ is the twisted graph we
get by replacing X in I" by X', then I'' dominates I'. The easiest example of
this is Cauchy—Schwarz applied to an edge. The twisted graph

3 1 . (S = 0)
is dominated by the twisted graph
s=1-¢ s=1/(1-¢)
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for any 0 < £ < 1. Therefore we may do this replacement to any edge (with
any starting phase in fact) to get a dominating twisted graph. This fact, if not
this terminology, was used extensively in [6]. Note that removing an edge
symmetrically with Cauchy—Schwarz leaves the absorption weight un-
changed. The other basic example we need for this paper is the one used
above: the twisted graph

1
T (s=0)

k1 |wk+1
T e

w

is dominated by the twisted graph

with s = V3 at every vertex.

As a first easy example of how this terminology can be used to give
eigenvalue bounds, consider the following example (which will be used below).
Suppose our twisted graph has as its underlying graph a 3-cube,d = 3,s =0
and w(e) € {z € C: |z|? = 1} for all directed edges e.

LEMMA 4. If the twisted graph T is as above and any face of the cube is of

the form
1

k1 |wk+1
—. ’

w

then T is dominated by the twisted graph whose underlying graph is eight
points with no edges, d = 3 and s = 23 /8 at every vertex.

Proor. By the above, the face of the form
1

wkl 1 |wk+1
Ll Ll

is dominated by

(with s = V3 at every vertex) and the opposite face is necessarily dominated

by

(with s = 2 at every vertex) since every edge weight is of unit norm. There-

fore, I' is dominated by the disjoint union of four twisted graphs of the form
s=1V3 s=2

for some |n| = 1. Applying Cauchy—Schwarz asymmetrically to the edge, this
twisted graph is dominated by the twisted graph consisting of two vertices
with weights V3 + 1/(1 — £) and 3 — ¢, respectively. Taking & = 1/8 gives
the near optimum value of s = 23/8. O
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We will use these definitions to give eigenvalue bounds as follows. Call a
twisted graph diagonal if the underlying graph has no edges (or each edge
has weight 0). Then we have the following obvious lemma.

LEMMA 5. If the twisted graph T is dominated by the diagonal twisted
graph T' ={T',d',w’',s') and A is any eigenvalue of T, then A <
max, . s'(v)/d’.

With this terminology the remaining steps in the bound on B, are
straightforward. Fix a nontrivial representation p: H — C and let ¢ be an
eigenfunction of P in that representation; that is, ¥(gh) = ¥(g)p(h) for all
g € B(3,n) and h € H. Recall from (2) above that any element of H can be
written uniquely as

h =[x, xz]bm[xl’ 353]b13 e,y xn]bnnl'"

><[[5":1’ x2]’ 5":3]6123 [[xn—2’ xn—l]’ xn]

and with respect to this decomposition,

Cn-2,n-1,n

p(h) = @2l tanbigt tan 1 nbn 1 n T Y123C123 Tt Yo2,n-1,nCn-2,n-1,n

for some ayy,..., @, 1 45 Yig3s+-+» Yn-2,n-1,n € Z/3Z, not all 0. We are free to
act on H by any isomorphism of B(3, n) without changing the eigenvalues.
(It is remotely possible one could actually use symmetry to reduce the
problem to a small enough set of representations to give a complete list of
eigenvalues.) Since we can permute or invert the elements x,,...,x, by
isomorphisms of B(3, n), we may assume one of the following holds:

1. a;p = 1and y93 = 1;
2. a;y =1and y;y, =0forall 2 =3,...,n;
3. a;=0foralll <i<j<nandy; =1

Choose coset representatives for B(3,n)/H to be x{x3> -+ xi» for
a,a,,..., a, € Z/3Z. If we view ¢ as ¢ a function on B(8,n)/H = (Z/3Z)"
as above, then ¢ is an eigenfunction of the Hermitian matrix associated with
the twisted graph I' whose underlying graph is (Z/32)", d = 2n, s = 0 and
the weights always phases. In fact, from (3) above the weight on the edge
from [g] to [x,g] is p(¢;, x;t,)). Thus the following lemma gives the
weights.

LEMMA 6. In B(3,n), x;x{1x5? -+ x0n = xft o+ xf*h o xnh, where
ho=[x, %] T2, %] o [x, %]
X[[ars 2], x5] " e [[%1, %], %]

X[[ x4, x;], x5] Thafs . [[x;_1 2], x,] Tt

That is, the exponent of [x,, x;,]1 in-his —a, ifk <iand 0 if k > i, and the
exponent of [[ x,, x;1, x;1 = [[ x;, /1, x,17Vis —apa; ifk <i,k <jandj+i,

a4 a,



NATURAL RANDOM WALK ON THE BURNSIDE GROUP 1959

and 0 otherwise. (Note that to put this into our standard form, we must
choose the first form if i < j and the second if i > j.)

Proor. Calculate using the identities for commutators in B(3, n) from [4]
mentioned above. O

Now we are ready to find a diagonal twisted graph which dominates I'. The
underlying graph of I' can be edge-decomposed into the following pieces: for
each i > 4, a collection of 3"~ ! 3-cycles corresponding to multiplication by x,
and 3" cubes (each with weight 1/4). A typical cube has its eight vertices of
the form

[P PN ] a a,+1 a9 ,.a a ay..a9+1 . a . A
{x11x22x33 ces xnn’ xll x22x33 cee xnn’xlleZ x33 .o xnn’
xil1+1x(212+1x§3 xzn’ xflllxgzxgs*l x’c:n’ xih*lxgzxga"'l xgn’

az+1l

xf1x§2+1x3 az+1 ., xan}.

a a;+1 ,.as+1
T Xy, Xt "(:22 X3 n

Each vertex is in exactly eight such cubes and each edge generated by one of
{x1, x5, x5} is in exactly four such cubes. [If one views each copy of (Z/3Z)*
generated by x;, x, and x; as lying on a 3-torus (S')3, then these are the
cubes into which the graph divides the 3-torus.]

LEMMA 7. Each of these cubes satisfies the hypotheses of Lemma 4; hence
each is dominated by a diagonal twisted graph with s(v) < 23 /8.

PrOOF. We need only check that at least one of the faces of the cube has

the form
1

k| q |wk+1
T e

w

(the other hypotheses being clear). The edges generated by x, always have
weight 1 since by Lemma 6 or inspection we have x,¢,, = ¢z The edge
from x{ixgexgs - xl to x{xgz*lxds .- x% has, by Lemma 6 and the
definition of p, weight

P([ X1, x2]—a1[[x1’ x5], x3] s [[x1,x5], xn]fa‘a")

= @ %12017 712301837 """ ¥122010n
Note that this can be rewritten as n®, where n = @ @127 7123% 7 "~ Yizal,
Similarly, the weight on the edge from

xftlxg2xls .. x2 to xih*lxgz"'lxga s xln
is n®*1, Therefore, unless n = 1 the face

a a a;+1 ay.00+1 0 a
{xllxgzxga xnn,xll xlzlzxga xzn’xlleZ x33 e Xpn,
x@tlygdatlpds . xzn}

has the desired form. Similarly, the face {x{1xg2xgs*! -+ x% xf1+1xdsxgstl

cexfn xPiafetlafatl o xOn p@itlpgatlegatl Ly} will have the desired
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form unless 7' = w *12"Y2s@+1= " "Yp.8 = 1 Recall that we assumed by
symmetry that one of the following holds:

1. a;p=1and y53 = 1;
2. ajp=1and y,, =0forall 2 =3,...,n;
3. aq;=0foralll <i<j<nandyy =1

If 2 holds, then n = ' = w™! # 1, both these faces have the desired form and
hence we are done. If either 1 or 3 holds, then 7(n')"! = @ # 1 and hence at
least oné of these two faces has the desired form. In any event, Lemma 6
applies. O

Therefore, the twisted graph I’ is dominated by the twisted graph where
all the edges generated by x;, x, and x; have been replaced with s =
8(1,/4)23/8) = 23/4 on every vertex. Since the remaining 3-cycles all have
weights of norm 1, each is dominated by the twisted graph with s =2 on
every vertex the 3-cycle goes through. Replacing every 3-cycle in this fashion,
we see that I' is dominated by the diagonal twisted graph with d = 2n and
s=2(n—38) +23/4 =2n — 1/4 on every vertex. Thus by Lemma 5 every
eigenvalue of I' is bounded above by 1 — 1/(8n). This completes the bounds.

O
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