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ON THE LARGE TIME GROWTH RATE OF THE SUPPORT
OF SUPERCRITICAL SUPER-BROWNIAN MOTION

By Ross G. PINSKY

Technion—Israel Institute of Technology

Consider the supercritical super-Brownian motion X(t,-) on R? cor-
responding to the evolution equation

ut=3Au+u—u2.

We obtain rather tight bounds on P (X(s, B;(0)) = 0, for all s €[0,¢])
and on P, (X(t, B;(0)) = 0), for large n, where P, denotes the measure
corresponding to the supercritical super-Brownian motion starting from
the finite measure, w, B,(0) ¢ R? denotes the ball of radius n centered at
the origin and BZ(0) denotes its complement. In particular, we show, for
example, that if w is a compactly supported, finite measure on R¢, then

lim B,(X(t, B(0)) = 0,forall t € [0,yn]) =1 ify< (2D)"'/?
n—x

and R
lim P,( X(yn, B(0)) = Olthe process survives) = 0 if y > (2D) '/%.
n—x

In this article, we investigate the large time growth rate of the support of
supercritical super-Brownian motion. In particular, we show that the linear
growth rate known to hold for classical binary branching Brownian motion
continues to hold with the same constant in the present context. We recall the
construction of the supercritical super-Brownian motion. For each positive
integer n, consider N, particles, each of mass 1/n, starting at points x{® €
R¢, i=1,...,N,, and performing independent branching d-dimensional
Brownian motions corresponding to the generator (D/2)A, with branching
rate cn, ¢ > 0, and with branching distribution {p{™};_,. Assume that
Y _okpi =1+ b/n, b >0, and that ¥;_o(k — D?p{” =a + o(1), a > 0, as
n — . Let N,(t) denote the total number of particles alive at time ¢ and
denote their positions by x{"(¢), i = 1,..., N (¢). Recalling that the mass of
each particle is 1/n, define as follows the measure-valued process X, (¢) =
X,(¢,-) on .#(R?), the space of finite measures on R

1 N, (t)
X,(t,B) = — ¥ 15(("(t)), B <B(RY).
i=1

It has been shown that if X,(0,-) = (1/n)LYr;8,:() converges weakly as
n — © to a limiting measure, u €.#(R?), then the measure-valued process
X, (¢) converges weakly to a limiting measure-valued process, X(¢) = X(¢, - ),
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LARGE TIME GROWTH RATE OF THE SUPPORT 1749

which can be characterized uniquely as the solution to the following martin-
gale problem. [In the sequel, {f, X(¢)) denotes [ f(x)X(¢, dx).]

MG. X(¢) = X(t,-) is an .#(R%)-valued process such that X(0) = u a.s.
and, for each f & C3(RY),

D
M(t) =(f, X()) - fot<5Af, X(s>>ds ~ b [{f, X(s))ds isa
(1)
martingale with increasing process (M;);=2ca f t( f2, X(s))ds.
0

(See, e.g., [6] or [1].)

The solution to the above martingale problem is known as supercritical
super-Brownian motion. (If b = 0, then the process is called critical super-
Brownian motion.) Probabilities and expectations with respect to the above
supercritical super-Brownian motion satisfying MG will be denoted by P, and
E,. The independence built into the approximating particle system manifests
itself in the limiting supercritical super-Brownian motion via the following
log-Laplace equation. For nonnegative g, ¢ € C (R @),

¢

(2) E, exp(—(g, X(¢t)) — f( o, X(s)) ds) = exp( —f u(x, t)u(dx)),
0 R4

where u is the unique mild solution to the following evolution equation:

D
ut=EAu+cbu—cau2+l//, (x,t) € R? x [0,),

u(+,0) =g, u=0, u(-,t) € Co(R?) fort>0.

where Cy(R?) = {w € C(R?): lim ,,_,, w(x) = 0}. This was proved in [3] for
the case of critical super-Brownian motion; the same type of proof works in
the present case; see also [1]. If u satisfies the above equation, then v(x, t) =
(a/b)ulx,t/(cb)) satisfies the same equation with ca = c¢b = 1, and with D,
g and ¢ replaced by D /(cb), (a/b)g and (a/(cb?))¢. Thus, in the sequel, we
will make the normalization ca = cb = 1. We record the corresponding equa-
tion for future reference:

D
ut=EAu+u—u2+(//, (x,t) € R? X [0,).

u(-,0) =g(-), u=0, u(-,t)e€Cy(RY).

We note that, for ¢, g € CZ(R?), it follows from standard regularity results
for parabolic equations that u(x,t) is a classical solution to (3).

Let Z(¢) = (1, X(¢)) denote the total mass process. Substituting f= 1 in
(1), it follows that under P,, Z(t) is a one-dimensional diffusion on [0, )
corresponding to the operator x(d?/dx?) + x(d/dx) and satisfying Z(0) =
w(R%). As is well known, the probability that a diffusion corresponding to the

operator x(d?/dx?) + x(d/dx) and starting from y € (0, n) reaches 0 before

(3)
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reaching n is given by u,(y), where u, solves xu + xu/, =0, u,(0) =

u,(n) = 0. Solving this gives u,(y) = (e v e ")/(1—e ”) Lettlng n — oo,
we conclude that, starting from y, the probability of the diffusion ever hlttmg
0 is e™”. Furthermore, by a theorem due to Yamada and Watanabe [7], it
follows that, upon hitting zero, the diffusion remains there forever. Applying

this to Z(¢) gives
@ P, (Z(t) > 0,Vt > 0) =1 — exp(—u(R?)),
P,(Z(¢t) = 0, for all large t) = exp(—u(R?)).
If Z(t) > 0, for all ¢ > 0, we will say that the supercritical super-Brownian

motion survives, while if Z(¢) = 0, for all large ¢, we will say that it dies out.
Construct {, ,); -1 © C*(0,%)) such that ¢, , < 4, ,,,, and such that

YUy (r) =0 if0<r<n,
1

b, (ry=m ifn+—<r<n+m,
' m

Uy m(r)=0 ifr=n+m+1,
and
0<y,, ,<m.
Let u, ,, denote the solution to (3) with ¢(x) = ¢, ,(Ix)) and g = 0. From

the symmetry of g and ¢, the symmetry of (3) and the umqueness of the
solution to (3), it follows that u, ,, is radially symmetric. Thus, in the sequel

we will write u, , =u, ,.(r,t), r >0, ¢t > 0. From (2), it also follows that
Uy m 18 monotone nondecreasing in m. Define
(5) u,(r,t) = lim \ u,, p(r,t) for(r,t) € [0,) X [0, ).

Let B,(0) denote the ball of radius r centered at the origin and let BZ(0)
denote its complement. Using (2), (3) and (5) and letting J, m(x) = l/zn,m(lxl)
x € R%, we obtain

P,(X(s,B;(0)) =0, forall s € [0,¢])
) P“(fotx(s, B:(0)) ds = o) - lmE, exp(_fot< B> X(5)) ds)

lim exp( j u, (12, t),u,(dx)) —exp( fdun(lxl,t),u.(dx)).

m— ©
We now reverse the order of ¢ and g. Let {g, )7 ,,_; € C*(0,»)) satisfy

gn,m Sgn,m+1 and
Enm(r)=0 if0<r<n,

1
Enm(ry=m ifn+ —<r<n+m,
’ m

Eum(r)=0 ifr>n+m+1,

and
0<gnm=m,
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and let U, ,, denote the solution to (3) with ¢(x) =0 and g(x) =g, ,(lx].
The same considerations used above for u show that U, ,, is radially

n,m
symmetric and monotone nondecreasing in m. Thus, in the sequel, we will

write U, ,, = U, ,.(r,t), r =2 0, t > 0. Define
(7 U(r,t) = lim U, ,(r,t) for(r,t) € [0,) X [0,).
m— o

By a calculation similar to (6), it follows that

(8) P(X(t,Bi(0) = 0) = exp - [ U(1xl, ) ().

From (6) and (8), it follows that the growth rate of the support of the
supercritical super-Brownian motion is governed by the asymptotic behavior
as n,t — » of the functions «, and U, in (5) and (7). The behavior of u, and
U, was investigated by the author in [5]; the relevant results are summarized
in Proposition A and Theorem A below.

PROPOSITION A. (i) There exists a unique positive radial solution ¢,(|x|) €
C2(B,(0)) to the equation

D
EAd) = ¢2 - ¢ in Bn(O)’
lim ¢(x) = o,

lx|—>n
¢ = 1.
Furthermore,

() <1 12 Dn?
W(r) <1+ —————
(n? = r?)"

(i) For each p € (0,V2), there exists a unique positive increasing solution
f, € C*(0,)) to the equation

if' —pf +f-f*=0, x20,
f(0) =0, lim f(x) = 1.
x> ®©
THEOREM A. Let u, and U, be as in (5) and (7) and let ¢, and f, be as in

Proposition A. Then the following hold:

(a)(@) For each & > 0, there exists a constant c, > 0 and an n, such that,
forn>=n_,

+

(1) < ¢n(r>exp(—(% - ) )
(r,t) €[0,n) X [0,).
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(ii) For p € (0,V2) and n > 0,
r—n

un(r,t)zf,,((pw = )mr), (r,t) € [0,n) X [0,9).

(b)G) For each &> 0, there exists a constant c_, > 0 such that, for all
n>0,

(1- exp(—t))_lexp(—(g(bn?l_—_;):)? -t - cg) ),
Uy (r,t) < (r,t) € [0,n) x [0,),
(1—exp(—t)) ",
(r,t) € [n,») X [0,).
(ii) For p € (0,vV2) and n > 0,

r—n

Un(r,t)zfp((pt+ VE) )(1—e—t)‘1, (r,¢) € [0,%) x [0,).

Using Proposition A and Theorem A, we can prove the following theorem
concerning the asymptotic growth rate of the support of the supercritical
super-Brownian motion.

THEOREM 1. (a) Let u €.#(R?) have compact support. Then the following
hold:
(i)
lim P,(X(¢, BS(0)) =0, forallt € [0,yn]) =1 ify<(2D) />
n—-oow
(ii)
lim P,(X(yn, B;(0)) = Olthe process survives) = 0 ify> (2D)" %
n—-ow
() Let {x,);_, € R? satisfy |x,| =n —[,, where lim, [, = ©. Then:
(1)
lim P;_(X(t,BS(0)) =0, forallt € [0,y1,]) =1 ify<(2D) /%
n— oo *n
(i)
lim P; (X(yl,, B;(0)) = Olthe process survives) = 0 if y > (2D) "2,
n— o n

(© Let {m, ) _,,{t,);_, c(0,°) and let {x,);_, € R? satisfy |x,|=n —1,,
where lim, _, 1, = «. If
12 '
li S R — - >
o eXp( (2D(1 + 8)t, t”) ) 0 forsome >0,

then
lim Pmnﬁx (X(t, B,f(O)) =0 forallt€]O0, tn]) =1.
n—o n
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REMARK 1. Part (a) is reminiscent of a well-known result for binary
branching Brownian motion. A Brownian motion corresponding to the gener-
ator (D /2)A starts at x, € R? and, at a mean 1 exponential time, dies and
bears two offspring in its stead. The two offspring perform independent
Brownian motions from their birth location and die and bear two offspring at
independent mean 1 exponential times and so forth. Let P, denote the
probability measure corresponding to this branching process. Then

lim P, (all particles alive at time yz lie in (-, n])
n—-w«

1, ify<(2D) "2,
0, ify>(2D) '/?

(see [4]). A recent paper by Evans and O’Connell [2] was brought to my
attention by the referee. In that paper, the authors obtain a representation
for supercritical super-Brownian motion in terms of a subcritical super-
Brownian motion with immigration, where the immigration is governed by
the state of an underlying binary branching Brownian motion. It may be
possible to give an alternative proof of Theorem 1, especially parts (a) and (b),
via [2] and [4].

REMARK 2. Using Theorem A, Proposition A, (6) and (8), it is easy, of
course, to formulate and prove a more general result involving arbitrary
sequences of times {¢,};_; and of initial measures { u,);_, C.Z(R?).

Proor oF THEOREM 1. The proofs of (a)(i), (b)i) and (c) follow immediately
from Theorem A(a)(i), Proposition A and (6), by picking &> 0 sufficiently
small depending on y < (2D)~1/2, We now prove (a)(ii) and (b)(ii). In order to
handle the two cases simultaneously and to maintain simple notation, we will
assume that u(R?) =1 in (a)(ii), and we will define u, = u in (a)(ii) and
Ky = 8, in (b)ii). By (4),

(9) P, (the process dies out) =e~' for all n.
As noted earlier, under P, , the total mass process is a one-dimensional

diffusion on [0,) corresponding to the operator x(d?/dx?) + x(d/dx) and
starting at [.Ln(Rd) = 1. Thus, clearly,

(10) lim P, (the process dies out at some time in [¢,®)) = 0,
10) -
uniformly in n.

It follows from (a)(i) and (b)(i) that
(11) lim B, (X(s, B;(0)) = 0,forall s € [0,t]) =1 foreach ¢ > 0.
n— o

From (9)-(11), we conclude that

lim P, (X(t,, B;(0)) = 0, and the process dies out) = e~ !,
(12) if lim ¢, =

n-—ow
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From (8), Theorem A(b)(ii) and the fact that lim, .. f,(x) = 1, it follows, by
choosing p sufficiently close to V2 depending on y > (2 D) v/ 2 , that

lianMn(X(yn, B:(0)) = 0) =e™! in case (a)(ii),

n—

(13)
,}i_r,I}cPun(X(yln’ B:(0)) =0) =e~' incase (b)(ii).

Now (a)ii) and (b)(ii) follow from (12) (with ¢, = yn or yl,) and (13).
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