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This paper proves that the scaling limit of a loop-erased random walk
in a simply connected domain D � C is equal to the radial SLE2 path. In
particular, the limit exists and is conformally invariant. It follows that the
scaling limit of the uniform spanning tree in a Jordan domain exists and is
conformally invariant. Assuming that ∂D is a C1-simple closed curve, the
same method is applied to show that the scaling limit of the uniform spanning
tree Peano curve, where the tree is wired along a proper arc A ⊂ ∂D, is the
chordal SLE8 path in D joining the endpoints of A. A by-product of this result
is that SLE8 is almost surely generated by a continuous path. The results and
proofs are not restricted to a particular choice of lattice.

1. Introduction.

1.1. Motivation from statistical physics. One of the main goals of both
probability theory and statistical physics is to understand the asymptotic behavior
of random systems when the number of microscopic random inputs goes to ∞.
These random inputs can be independent, such as a sequence of independent
random variables, or dependent, as in the Ising model. Often, one wishes
to understand these systems via some relevant “observables” that can be of
a geometric or analytic nature. In order to understand this asymptotic behavior,
one can attempt to prove convergence toward a suitable continuous model. The
simplest and most important example of such random continuous models is
Brownian motion, which is the scaling limit of random walks. In particular,
a simple random walk on any lattice in Rd converges to (a linear image of )
Brownian motion in the scaling limit.

Physicists and chemists have observed that critical systems (i.e., systems at
their phase transition point) can exhibit macroscopic randomness. Hence, various
quantities related to the corresponding lattice models should converge as the mesh
is refined. In fact, one of the important starting points for theoretical physicists
working on two-dimensional critical models is the assumption that the continuous
limit is independent of the lattice and, furthermore, displays conformal invariance.
This assumption has enabled them to develop and use techniques from conformal
field theory to predict the exact values of certain critical exponents. Until very
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recently, the existence of the limit, its conformal invariance and the derivation
of the exponents assuming conformal invariance remained beyond mathematical
justification for the basic lattice models in critical phenomena, such as percolation,
the Ising model and random cluster measures. Although there are many interesting
questions about higher-dimensional systems, we will limit our discussion to two
dimensions where conformal invariance plays an essential role.

1.2. Recent progress. In [38], a one-parameter family of random growth
processes (loosely speaking, random curves) in two dimensions was introduced.
The growth process is based on Loewner’s differential equation, where the driving
term is time-scaled one-dimensional Brownian motion, and is therefore called
stochastic Loewner evolution, or SLEκ . The parameter κ ≥ 0 of SLE is the
time scaling constant for the driving Brownian motion. It was conjectured that
the scaling limit of the loop-erased random walk (LERW) is SLE2, and this
conjecture was proved to be equivalent to the conformal invariance of the LERW
scaling limit (see [38]). The argument given was quite general and shows that a
conformally invariant random path satisfying a mild Markovian property, which
will be described below, must be SLE. On this basis, it was also conjectured
there that the scaling limits of the critical percolation interface and the uniform
spanning tree Peano curve are the paths of SLE6 and SLE8, respectively, and it
was claimed that conformal invariance is sufficient to establish these conjectures.
(For additional conjectures regarding curves tending to SLE, including the
interfaces in critical random cluster models—also called FK percolation models—
for q ∈ [0,4], see [36].)

At some values of the parameter κ , SLE has some remarkable properties. For
instance, SLE6 has a locality property (see [27]) that makes it possible to relate
its outer boundary to that of planar Brownian motion. This has led to the proof
of conjectures concerning planar Brownian motion and simple random walks (see
[27]–[29]).

In [40] and [41], Smirnov recently proved the existence and conformal
invariance of the scaling limit of critical site percolation on the two-dimensional
triangular lattice: he managed to prove Cardy’s formula (see [5]) which is a
formula for the limit of the probability of a percolation crossing between two arcs
on the boundary of the domain. Combining this information with the independence
properties of percolation, Smirnov then showed that the scaling limit of the
percolation interface is SLE6. This has led to the rigorous determination of critical
exponents for this percolation model (see [30] and [42]).

1.3. LERW and UST defined. The uniform spanning tree (UST), which can be
interpreted as the q = 0 critical random cluster model (see [15]), is a dependent
model that has many remarkable features. In particular, it is very closely related to
the loop-erased random walk, whose definition (see [24]) we now briefly recall.
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Consider any finite or recurrent connected graph G, a vertex a and a set of
vertices V . A loop-erased random walk (LERW) from a to V is a random simple
curve joining a to V obtained by erasing the loops in chronological order from
a simple random walk started at a and stopped upon hitting V . In other words,
if (�(n),0 ≤ n ≤ T ) is a simple random walk on G started from a and stopped
at its first hitting time T of V , the loop erasure β = (β0, . . . , β�) is defined
inductively as follows: β0 = a; if βn ∈ V , then n = �; and otherwise βn+1 = �(k),
where k = 1 + max{m ≤ T :�(m) = βn}.

A spanning tree T of a connected graph G is a subgraph of G such that for
every pair of vertices v,u in G there is a unique simple path (i.e., self-avoiding)
in T with these vertices as endpoints. A uniform spanning tree (UST) in a finite,
connected graph G is a sample from the uniform probability measure on spanning
trees of G. It has been shown in [34] that the law of the self-avoiding path with
endpoints a and b in the UST is the same as that of the LERW from a to {b}. See
Figure 1.

Wilson [44] established an even stronger connection between LERW and UST
by giving an algorithm to generate UST’s using LERW. Wilson’s algorithm runs
as follows. Pick an arbitrary ordering v0, v1, . . . , vm for the vertices in G. Let
T0 = {v0}. Inductively, for n = 1,2, . . . ,m, define Tn to be the union of Tn−1 and
a (conditionally independent) LERW path from vn to Tn−1. (If vn ∈ Tn−1, then
Tn = Tn−1.) Then, regardless of the chosen order of the vertices, Tm is a UST
on G.

Wilson’s algorithm gives a natural extension of the definition of UST to infinite
recurrent graphs. In fact, for transient graphs, there are two natural definitions
which often coincide, but this interesting theory is somewhat removed from the
topic of this paper. Many striking properties of UST and LERW have been

FIG. 1. The LERW in the UST.
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discovered. See [32] for a survey of UST’s and [26] for a survey of properties
of LERW in Zd , d > 2.

Exploiting a link with domino tilings and deriving discrete analogs of Cauchy–
Riemann equations, Kenyon (see [20] and [21]) rigorously established the values
of various critical exponents predicted for the LERW (see [11], [14] and [32]) in
two dimensions. In particular, he showed that the expected number of steps of a
LERW joining two corners of the N ×N square in the square grid Z2 is of the order
of magnitude of N5/4. He also showed conformal invariance for the leading term
in the asymptotics of the probability that the LERW contains a given edge. This
was the first mathematical evidence for full conformal invariance of the LERW
scaling limit.

In [3] and [1] subsequential scaling limits of the UST measures in Zd were
shown to exist, using a compactness argument. Moreover, these papers prove that
all the paths in the scaling limit that intersect a fixed bounded region are uniformly
Hölder continuous. In [38] the topology of subsequential scaling limits of the UST
on Z2 was determined. In particular, it was shown that every subsequential scaling
limit of the LERW is a simple path.

1.4. A short description of SLE. We now briefly describe SLE; precise
definitions are deferred to Section 2.1. Chordal SLE is a random growing family
of compact sets Kt , t ∈ [0,∞), in the closure H of the upper half plane H.
The evolution of Kt is given by the Loewner differential equation with “driving
function” Brownian motion. From [36], it is known that when κ �= 8 the process
is described by a random curve γ : [0,∞) → H, in the sense that, for every t ≥ 0,
H\Kt is the unbounded component of H\γ [0, t]. A corollary of our results is that
this holds for κ = 8 as well. The curve γ satisfies γ (0) = 0 and limt→∞ γ (t) = ∞.
If κ ≤ 4, then γ is a simple curve and Kt = γ [0, t].

There is another version of SLE called radial SLE. Radial SLE also satisfies
the description above, except that the upper half plane H is replaced by the unit
disk U, γ (0) is on the unit circle ∂U and limt→∞ γ (t) = 0.

Both radial and chordal versions of SLE may be defined in an arbitrary simply
connected domain D � C by mapping over to D using a fixed conformal map φ

from H or U to D.

1.5. The main results of the paper. Let D � C be a simply connected domain
with 0 ∈ D. For δ > 0, let µδ be the law of the loop erasure of a simple random
walk on the grid δZ2, started at 0 and stopped when it hits ∂D. See Figure 2. Let
ν be the law of the image of the radial SLE2 path under a conformal map from the
unit disk U to D fixing 0. When the boundary of D is very rough, the conformal
map from U to D might not extend continuously to the boundary, but the proof of
the following theorem in fact shows that even in this case the image of the SLE2
path has a unique endpoint on ∂D.
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FIG. 2. A sample of the loop-erased random walk; proved to converge to radial SLE2.

On the space of unparameterized paths in C, consider the metric ρ(β, γ ) =
inf supt∈[0,1] |β̂(t) − γ̂ (t)|, where the infimum is over all choices of parameteriza-

tions β̂ and γ̂ in [0,1] of β and γ .

THEOREM 1.1 (LERW scaling limit). The measures µδ converge weakly to ν

as δ → 0 with respect to the metric ρ on the space of curves.

Since SLE is conformally invariant by definition, this theorem implies confor-
mal invariance of the LERW. The theorem and proof apply also to some other
walks on lattices in the plane where the scaling limit of the walk is isotropic
Brownian motion. It even applies in the nonreversible setting. See Section 6 for
further details.

There are two distinct definitions for the UST corresponding to a domain
D � C, as follows. Let GF(D) denote the subgraph of Z2 consisting of all the
edges and vertices which are contained in D. If GF (D) is connected, then we
refer to the UST on GF(D) as the UST on D with free boundary conditions. Let
GW(D) denote the graph obtained from Z2 by contracting all the vertices outside
of D to a single vertex (and removing edges which become loops). Then the UST
on GW(D) is the UST on D with wired boundary conditions.

Since the UST is built from the LERW via Wilson’s algorithm, it is not
surprising that conformal invariance of the UST scaling limit should follow from
that of the LERW scaling limit. In fact, [38], Theorem 11.3, says just that.

COROLLARY 1.2 (UST scaling limit). The wired and free UST scaling limits
(as defined in [38]) in a simply connected domain D ⊂ C whose boundary is a
C1-smooth simple closed curve exist and are conformally invariant.
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One can easily show, using [38], Theorem 11.1(i), that the wired tree depends
continuously on the domain, and hence for that case D may be an arbitrary simply
connected domain. However, some regularity assumption is needed for the free
UST scaling limit: conformal invariance fails for the domain whose boundary
contains the topologist’s sine curve (the closure of {x + i sin(1/x) :x ∈ (0,1]}).

The UST Peano curve is an entirely different curve derived from the UST in
two dimensions. The curve is rather remarkable, as it is a natural random path
visiting every vertex in an appropriate graph or lattice. We now roughly describe
two natural definitions of this curve; further details appear in Section 4.

Let G be a finite planar graph, with a particular embedding in the plane, and
let G† denote its planar dual, again with a particular embedding. Then there is
a bijection e ↔ e† between the edges of G and those of G† such that, for every
edge e in G, e ∩ e† is a single point, and e does not intersect any other edge of G†.
Given a spanning tree T of G, let T † denote the graph whose vertices are the
vertices of G† and whose edges are those edges e† such that e /∈ T . It is then easy
to verify that T † is a spanning tree for G†. Therefore, if T is a UST on G, then
T † is a UST on G†.

The UST Peano curve is a curve that winds between T and T † and separates
them. More precisely, consider the graph Ĝ drawn in the plane by taking the union
of G and G†, where each edge e or e† is subdivided into two edges by introducing
a vertex at e ∩ e†. The subgraph of the planar dual Ĝ† of Ĝ containing all edges
which do not intersect T ∪ T † is a simple closed path—the UST Peano path. See
Figure 3.

Some properties of the UST Peano path on Z2 have been studied in the physics
literature; see, for example, [10] and [18]. There, it has been called the Hamiltonian
path on the Manhattan lattice. The reason for this name is as follows. On Z2,
say, orient each horizontal edge whose y-coordinate is even to the right and each
horizontal edge whose y-coordinate is odd to the left. Similarly, orient down each
vertical edge whose x-coordinate is even and orient up each vertical edge whose

FIG. 3. The graph, dual graph, tree, dual tree and Peano curve. The vertex of the dual graph
corresponding to the unbounded face is drawn as a cycle.
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x-coordinate is odd. Now rescale the resulting oriented graph by 1/2 and translate
it by (1/4,1/4). It is easy to check that a Hamiltonian path (a path visiting every
vertex exactly once) respecting the orientation on the resulting oriented graph is
the same as the UST Peano path of Z2. It should be expected that the uniform
measure on Hamiltonian paths in Z2 has the same scaling limit as that of the UST
Peano path.

Given a domain D, one can consider the UST Peano curve for the wired or for
the free UST (which is essentially the same as the wired, by duality). However,
the conjecture from [38] regarding the convergence to chordal SLE pertains to the
UST Peano curve associated with the tree with mixed wired and free conditions.

Let D ⊂ C be a domain whose boundary is a C1-smooth simple closed curve
and let a, b ∈ ∂D be distinct boundary points. Let α and β denote the two
complementary arcs of ∂D whose endpoints are a and b. For all δ > 0, consider
an approximation Gδ of the domain D in the grid δZ2. (A precise statement of
what it means for Gδ to be an approximation of D will be given in Section 4.)
Let γδ denote the Peano curve associated to the UST on Gδ with wired boundary
near α and free boundary near β . Then γδ may be considered as a path in D from
a point near a to a point near b.

THEOREM 1.3 (UST Peano path scaling limit). The UST Peano curve scaling
limit in D with wired boundary on α and free boundary on β exists and is equal
to the image of the chordal SLE8 path under any conformal map from H to D

mapping 0 to a and ∞ to b.

Again, the convergence is weak convergence of measures with respect to the
metric ρ. Figure 4 shows a sample of the UST Peano path on a fine grid.

As explained above, it was proved in [36] that each SLEκ is generated by a
path, except for κ = 8. In Section 4.4, the remaining case κ = 8 is proved, using
the convergence of the Peano curve.

FIG. 4. An arc from a sample of the UST Peano path; proved to converge to chordal SLE8.
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Corollary 1.2 and Theorem 1.3 (and their proofs) apply to other reversible walks
on planar lattices (the self-duality of Z2 does not play an important role); see
Section 6.

To add perspective, we note that the convergence to SLE of the LERW and
the UST Peano curve are two boundary cases of the conjectured convergence
in [36] of the critical FK random cluster measures with parameter q ∈ (0,4).
For these parameter values, the scaling limit of the interface of a critical cluster
with mixed boundary values is conjectured to converge to chordal SLEκ(q),
where κ(q) = 4π/cos−1(−√

q/2). The boundary case κ(0) = 8 corresponds to
the convergence of the UST Peano path to SLE8.

The outer boundary of the scaling limit of a macroscopic critical cluster is
not the same as the scaling limit of a critical cluster outer boundary, because of
“fjords” which are pinched off in the limit. The former is conjectured to “look
like” SLE16/κ(q), but a precise form of this conjecture is not yet known. In the
case q = 0, however, such a correspondence is easy to explain. In Z2, an arc of
the Peano curve is surrounded on one side by a simple path in the tree, and on
the other side by a simple path in the dual tree. Both these paths are LERWs.
Similar correspondences exist for the UST in a subdomain of R2, but one has to
set appropriate boundary conditions. Thus, the convergence of LERW to SLE2 also
corresponds to the case q = 0, as 16/κ(0) = 2.

Suppose that 0 ∈ D and α,β ⊂ ∂D, as before. Consider the simple random walk
on δZ2 which is reflected off β and stopped when it hits α. Using an analogous
method to that of the present paper, one could handle the scaling limit of the loop
erasure of this walk. It is described by a variant of SLE2 where the driving term is
Brownian motion with time scaled by 2, but having an additional drift. The drift is
not constant, but can be explicitly computed.

The identification of the scaling limit as one of the SLEs should facilitate the
derivation of critical exponents and also the asymptotic probabilities of various
events, including some results which have not been predicted by arguments from
physics. This was the case for critical site percolation on the triangular grid; see
[30], [39], [40] and [42].

1.6. Some comments about the proof. Since a loop-erased random walk is
obtained in a deterministic way from a simple random walk (by erasing its loops)
and since a simple random walk converges to Brownian motion in the scaling
limit, it is natural to think that the scaling limit of the LERW should simply be
the process obtained by erasing the loops from a planar Brownian motion. The
problem with this approach is that planar Brownian motion has loops at every
scale, so that there is no simple algorithm to erase loops. In particular, there is no
“first” loop. Our proof does use the relation between the LERW and simple random
walks, combined with the fact that quantities related to simple random walks,
such as hitting probabilities, converge to their continuous conformally invariant
counterparts.



CONFORMAL INVARIANCE 947

The proof of each of our main theorems is naturally divided into two parts. The
first part establishes the convergence to SLE with respect to a weaker topology
than the topology induced by the metric ρ of paths; namely, we show that the
Loewner driving process for the discrete random path converges to a Brownian
motion. This part of the proof, which we consider to be the more important one,
is essentially self-contained. The second part uses some regularity properties of
the discrete processes from [38] to prove convergence with respect to the stronger
topology.

The method for the first part can be considered as a rather general method
for identifying the scaling limit of a dependent system that is conjectured to be
conformally invariant. It requires having some “observable” quantity that can be
estimated well and a mild Markovian property, which we now describe. Suppose
that to every simply connected domain D containing 0 there is associated a random
path γ from ∂D to 0 (e.g., the orientation reversal of the LERW). The required
property is that if β is an arc with one endpoint in ∂D and we condition on β ⊂ γ

(assuming this has positive probability, say), then the conditioned distribution
of γ \ β is the same as the random path in the domain D \ β conditioned to
start at the other endpoint q of β . [Thus, (D \ β,q) is the state of a Markov
chain whose transitions correspond to adding edges from γ to β and modifying q

appropriately.] Interestingly, among the discrete processes conjectured to converge
to SLE, the LERW is the only one where the verification of this property is not
completely trivial. [For the LERW it is not trivial, but not difficult; see part (iii) of
Lemma 3.2.] The statement of this property for the UST Peano curve is given in
Lemma 4.1. The fact that SLE satisfies this property follows from the Markovian
property of its driving Brownian motion.

The particular choice of observable is not so important. What is essential
is that one can conveniently calculate the asymptotics of the observable for
appropriate large-scale configurations. The particular observable that we have
chosen for the LERW convergence is the expected number of visits to a vertex
v by the simple random walk generating the LERW. Conformal invariance is
not assumed but comes out of the calculation—hitting probabilities for random
walks are discrete harmonic functions, which converge to continuous harmonic
functions. One technical issue is to establish this convergence without any
boundary smoothness assumption. Once the observable has been approximated,
the conditional expectation and variance of increments of the Loewner driving
function for the discrete process can be estimated, and standard techniques (the
Skorohod embedding) can be used to show that this random function approaches
the appropriate Brownian motion.

Although Theorem 1.3 can probably be derived with some work from
Corollary 1.2, instead, to illustrate our method, we prove it by applying again the
same general strategy of the proof of Theorem 1.1, with the choice of a different
observable.
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Actually, it is easier to explain the main ideas behind the proof of Theorem 1.3.
Fix some vertex v in D and a subarc α1 ⊂ α. Let A be the event that the UST path
(not the Peano path, but the path contained in the UST) from v to α hits α1. By
Wilson’s algorithm the probability of A is the same as the probability that a simple
random walk started at v reflected off β first hits α in α1. The latter probability can
be estimated directly. If γ [0, n] denotes the restriction of the Peano path to its first
n steps, then P[A|γ [0, n]], the probability of A conditioned on γ [0, n], is clearly
a martingale with respect to n. But, by the Markovian property discussed above,
the value of P[A|γ [0, n]] may be estimated in precisely the same way that P[A] is
estimated. The estimate turns out to be a function of the conformal geometry of
the configuration (v,D \ γ [0, n], γ (n),α1, β). Knowing that this is a martingale
for two appropriately chosen vertices v is sufficient to characterize the large-scale
behavior of γ .

As mentioned above, in the case of the LERW, the observable we chose to look
at is the expected number of visits to a fixed vertex v by the simple random walk
� generating the LERW γ . The walk � can be considered as the union of γ with a
sequence of loops �j based at vertices of γ . We look at the conditioned expectation
of the number of visits of � to v given an arc γ̃ of γ adjacent to the boundary of
the domain. This is clearly a martingale with respect to the filtration obtained by
taking larger and larger arcs γ̃ ⊂ γ . This quantity falls into two parts: the visits
to v in the loops �j based at γ̃ , and those that are not. Each of these two parts
can be well estimated by random walk calculations. Translating the fact that this
is a martingale to information about the Loewner driving process for γ inevitably
leads to the identification of this driving process as appropriately scaled Brownian
motion.

Actually, we first had a longer proof of convergence of the LERW to the SLE2,
based on the fact that it is possible to construct the hull of a Brownian motion
by adding Brownian loops to SLE2. This can be viewed as a particular case of
the restriction properties of SLEκ with Brownian loops added, which we study
in [31]. Let us also mention the following related open question. Consider a
sequence of simple random walks Sk(n) on a lattice with lattice spacing δk → 0,
from Sk(0) = 0 to ∂U, and let γ k denote the corresponding loop-erased paths.
Theorem 1.1 shows that one can find a subsequence such that the law of the pair
(γ k, Sk) converges to a coupling of SLE2 with Brownian motion [i.e., a law for
a pair (X,Y ), where X has the same distribution as the SLE2 path and Y has the
same distribution as Brownian motion]. The question is whether, in this coupling,
SLE2 is a deterministic function of the Brownian motion. In other words, is it
possible to show that this is not a deterministic procedure to erase loops from a
Brownian motion?

2. Preliminaries. The reading of this paper requires some background
knowledge in several different fields. Some background about Loewner’s equation
and SLE is reviewed in the next section. It is assumed that the reader is familiar
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with some of the basic properties of Brownian motion (definition, strong Markov
property, etc.). Some of the basic properties of conformal maps (Riemann’s
mapping theorem, compactness, Koebe distortion) are also needed for the proof.
This material may be learned from the first two chapters of [35], for example.
In terms of the theory of conformal mappings, this suffices for understanding the
argument showing that the driving process of the LERW converges to Brownian
motion. For improving the topology of convergence, some familiarity with the
notion of extremal length (a.k.a. extremal distance) is also required. A possible
source for that is [2]. The reader also needs to know some of the very basic
properties of harmonic measure.

2.1. Loewner’s equation and SLE. We now review some facts concerning
Loewner’s equations and stochastic Loewner evolutions. For more details, see, for
example, [27], [28], [36] and [38].

Suppose that D � C is a simply connected domain with 0 ∈ D. Then there is a
unique conformal homeomorphism ψ = ψD :D → U which is onto the unit disk
U = {z ∈ C : |z| < 1} such that ψD(0) = 0 and ψ ′

D(0) is a positive real. If D ⊂ U,
then ψ ′

D(0) ≥ 1, and logψ ′
D(0) is called the capacity of U \ D from 0.

Now suppose that η : [0,∞] → U is a continuous simple curve in the unit disk
with η(0) ∈ ∂U, η(∞) = 0 and η(0,∞] ⊂ U. For each t ≥ 0, set Kt := η[0, t],
Ut := U\Kt and gt := ψUt . Since t → g′

t (0) is increasing (by the Schwarz lemma,
say), one can reparameterize the path in such a way that g′

t (0) = exp(t). If that is
the case, we say that η is parameterized by capacity from 0. By standard properties
of conformal maps (see [35], Proposition 2.5), for each t ∈ [0,∞) the limit

W(t) := lim
z→η(t)

gt (z),

where z tends to η(t) from within U \ η[0, t], exists. One can also verify that

W : [0,∞) → ∂U

is continuous. Assuming the parameterization by capacity, Loewner’s theorem
states that gt satisfies the differential equation

∂tgt (z) = −gt (z)
gt (z) + W(t)

gt (z) − W(t)
.(2.1)

It is also clear that

∀ z ∈ U, g0(z) = z.(2.2)

We call (W(t), t ≥ 0) the driving function of the curve η.
The driving function W is sufficient to recover the two-dimensional path η,

because the procedure may be reversed, as follows. Suppose that W : [0,∞) → ∂U
is continuous. Then for every z ∈ U there is a solution gt (z) of the ODE (2.1) with
initial value g0(z) = z up to some time τ (z) ∈ (0,∞], beyond which the solution
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does not exist. In fact, if τ (z) < ∞ and z �= W(0), then we have limt↑τ(z) gt (z) −
W(t) = 0, since this is the only possible reason the ODE cannot be solved beyond
time τ (z). Then one defines Kt := {z ∈ U : τ (z) ≤ t} and Dt := U \ Kt is the
domain of definition of gt . The set Kt is called the hull at time t . If W arises
from a simple path η as described in the previous section, then we can recover η

from W by using η(t) = g−1
t (W(t)). However, if W : [0,∞) → U is an arbitrary

continuous driving function, then, in general, Kt need not be a path, and even if it
is a path, it does not have to be a simple path.

Radial SLEκ is the process (Kt , t ≥ 0), where the driving function W(t) is set
to be W(t) := exp(iBκt ), where B : [0,∞) → R is Brownian motion. Often, one
takes the starting point B0 to be random uniform in [0,2π ]. It has been shown
in [36] that the hull Kt is a.s. a simple curve for every t > 0 if κ ≤ 4 and that, a.s.
for every t > 0, Kt is not a simple curve if κ > 4. For every κ ≥ 0, there is a.s.
some random continuous path η : [0,∞) → U such that, for all t > 0, Dt is the
component of U \ η[0, t] containing 0. When κ �= 8, this was proved in [36], while
for κ = 8 this will be proven in the current paper. This path is called the radial SLE
path.

Suppose that D is a simply connected domain containing 0. If γ is a continuous
simple curve joining ∂D to 0 with only an endpoint in ∂D, one can reparameterize
the path η := ψ ◦γ according to capacity and find its driving function W , as before.
The conformal map

ĝt = ψD\γ [0,t] :D \ γ [0, t] → U

still satisfies (2.1), but this time, ĝ0 = ψD . (Here, the parameterization chosen
for γ is according to the capacity of ψ ◦ γ [0, t].) Radial SLE in D is then simply
the image under ψ−1

D of radial SLE in the unit disk.
Similarly, one can encode continuous simple curves η from 0 to ∞ in the closed

upper half plane H via a variant of Loewner’s equation. For each time t ≥ 0, there
is a unique conformal map gt from Ht := H\η[0, t] onto H satisfying the so-called
hydrodynamic normalization

lim
z→∞gt (z) − z = 0,(2.3)

where z → ∞ in H. If we write gt (z) = z + a(t) z−1 + o(z−1) near ∞, it
turns out that a(t) is monotone. Consequently, one can reparameterize η in
such a way that a(t) = 2 t , that is, gt (z) = z + 2tz−1 + o(z−1) when z → ∞.
This parameterization of η is called the parameterization by capacity from ∞.
(This notion of capacity is analogous to the notion of capacity in the radial
setting; however, these are two distinct notions and should not be confused.) If
g : H \ K → H is the conformal homeomorphism satisfying the hydrodynamic
normalization, then limz→∞(gt (z) − z) z/2 is called the capacity of K from ∞.
Assuming that η is parameterized by capacity, the following analog of Loewner’s
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equation holds:

∀ t > 0, ∀ z ∈ Ht, ∂tgt (z) = 2

gt (z) − W(t)
,(2.4)

where the driving function W is again defined by W(t) := gt (η(t)). As above, η is
determined by W .

Conversely, suppose that W is a real-valued continuous function. For z ∈ H, one
can solve the differential equation (2.4) starting with g0(z) = z, up to the first time
τ (z) where gt (z) and W(z) collide [possibly, τ (z) = ∞]. Let the hull be defined
by Kt := {z ∈ H : τ (z) ≤ t}. Then gt : H \Kt → H is a conformal map onto H, and
g0(z) = z. In general, Kt is not necessarily a simple curve. If W(t) = Bκt , then
(Kt, t ≥ 0) is called chordal SLEκ .

It turns out (see [28], Section 4.1) that the local properties of chordal SLEκ

and of radial SLEκ are essentially the same. [That is the reason the normalization
a(t) = 2t was chosen over the seemingly more natural a(t) = t .] In particular,
for every κ , chordal SLEκ is generated by a random continuous path, called the
chordal SLEκ path.

At some points in our proofs, we will need the following simple observation.

LEMMA 2.1 (Diameter bounds on Kt ). There is a constant C > 0 such that
the following always holds. Let W : [0,∞) → R be continuous and let (Kt , t ≥ 0)

be the corresponding hull for Loewner’s chordal equation (2.4) with driving
function W . Set

k(t) := √
t + max{|W(s) − W(0)| : s ∈ [0, t]}.

Then

∀ t ≥ 0, C−1k(t) ≤ diamKt ≤ C k(t).

Similarly, when Kt ⊂ U is the radial hull for a continuous driving function
W : [0,∞) → ∂U, then

∀ t ≥ 0, C−1 min{k(t),1} ≤ diamKt ≤ C k(t).

PROOF. This lemma can be derived by various means. We will only give a
detailed argument in the radial case. The chordal case is actually easier and can
be derived using the same methods. It can also be seen as a consequence of the
result in the radial setting (because chordal Loewner equations can be interpreted
as scaling limits of radial Loewner equations).

We start by proving the upper bound on diamKt . Let δ ≥ max{|W(s) −
W(0)| : s ∈ [0, t]}. Then, as long as |gt (z) − W(0)| ≥ 3δ, we have |∂tgt (z)| ≤ 1/δ.
Hence, if |z−W(0)| ≥ 4δ, then, for all t ≤ δ2, |gt (z)−z| ≤ δ and therefore z /∈ Kt .
Hence, diamKt ≤ 8k(t).
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In order to derive the lower bound, we will compare capacity with harmonic
measure. It is sufficient to consider the case where diamKt < 1/10. Let µ denote
the harmonic measure on Kt ∪ ∂U from 0. Because Kt is contained in the disk of
radius diamKt with center W(0) ∈ Kt ∩ ∂U, there is a universal constant c such
that µ(Kt) ≤ c diamKt . Hence, it suffices to give a lower bound for µ(Kt).

Since gt (z)/z is analytic and nonzero in a neighborhood of 0, the function
h(z) = log |gt (z)| − log |z| is harmonic in Ut := U \ Kt . Note that h(0) = t .
Because |gt (z)| → 1 as z tends to the boundary of Ut , the mean value
property of h ◦ g−1

t implies the following relation between harmonic measure
and capacity: t = h(0) = ∫

log(1/|z|) dµ(z). Since Kt contains points in ∂U and
diamKt ≤ 1/10, we have log(1/|z|) ≤ c′ diamKt for all z ∈ Kt . Therefore,
t ≤ c′µ(Kt)diamKt ≤ c′′(diamKt)

2.
It now remains to compare µ(Kt) and |W(t) − W(0)|. We still assume

that diamKt < 1/10. Let At := ∂U \ gt (U \ Kt). If z ∈ ∂U \ Ks and s ≤ t ,
then (2.1) shows that ∂u|gs+u(z) − W(s)| ≥ 0 at u = 0. This implies that
(As, s ≤ t) is nondecreasing. Hence, for all s ≤ t , we have W(0) ∈ A0 ⊂ At and
W(s) ∈ As ⊂ At so that |W(s) − W(0)| is bounded by the length of At , which is
equal to 2πµ(Kt). This completes the proof of the lemma. �

2.2. A discrete harmonic measure estimate. In this section, we introduce some
notation and state an estimate relating discrete harmonic measure and continuous
harmonic measure in domains in the plane. In order to get more quickly to the
core of our method in Section 3.2, we postpone the proof of the harmonic measure
estimate to Section 5.

A grid domain D is a domain whose boundary consists of edges of the grid Z2.
For an arbitrary domain D ⊂ C, and p ∈ D define the inner radius of D with
respect to p,

radp(D) := inf{|z − p| : z /∈ D}.
Let D denote the set of all simply connected grid domains such that
0 < rad0(D) < ∞ (i.e., D �= C and 0 ∈ D).

Points in R2 = C with integer coordinates will be called vertices, or lattice
points. Let V(D) := D ∩ Z2 denote the lattice points in D.

Let D ∈ D and let v be a vertex in ∂D. If ∂D contains more than one edge
incident with v, then it may happen that the intersection of D with a small disk
centered at v will not be connected. Hence, as viewed from D, v appears as
more than one vertex. In particular, ψ = ψD does not extend continuously to v.
This is a standard issue in conformal mapping theory, which is often resolved by
introducing the notion of prime ends. But in the present case, there is a simpler
solution which suffices for our purposes. Suppose v ∈ Z2 ∩ ∂D and e is an
edge incident with v that intersects D. The set of such pairs w = (v, e) will be
denoted V∂(D). If ψ :D → U is conformal, then ψ(w) will be shorthand for the
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limit of ψ(z) as z → v along e (which always exists, by [35], Proposition 2.14).
Similarly, if a random walk first exits D at v, we say that it exited D at w if the
edge e was used when first hitting v. A reader of this paper who chooses to be
sloppy and not distinguish between v and w will not lose anything in the way of
substance. We will not always be so careful to make this distinction.

If a ∈ V(D) and b ∈ V(D) ∪ V∂(D), define H(a,b) = HD(a, b) as the
probability that the simple random walk started from a and stopped at its first
exit time of D visits b.

For any w ∈ D and u ∈ V∂(D), we define

λ = λ(w,u;D) := 1 − |ψ(w)|2
|ψ(w) − ψ(u)|2 = Re

(
ψ(u) + ψ(w)

ψ(u) − ψ(w)

)
.(2.5)

Note that λ is also equal to the imaginary part of the image of w by the conformal
map from D onto the upper half plane that maps 0 onto i and u to ∞. It is also
the limit when ε → 0 of the ratio between the harmonic measure in D of the
ε neighborhood of u in ∂D, taken, respectively, at w and at 0 (i.e., it corresponds
to the Poisson kernel). Therefore, λ can be viewed as the continuous analog of
H(w,u)/H(0, u). Note that the function h(w) = H(w,u)/H(0, u) is discrete
harmonic on V(D), which means that h(w) is equal to the average of h on the
neighbors of w when w ∈ V(D).

PROPOSITION 2.2 (Hitting probability). For every ε > 0 there is some r0 > 0
such that the following holds. Let D ∈ D satisfy rad0(D) > r0 and let u ∈ V∂(D)

and w ∈ V(D). Suppose |ψD(w)| ≤ 1 − ε and H(0, u) �= 0. Then∣∣∣∣H(w,u)

H(0, u)
− λ(w,u;D)

∣∣∣∣ < ε.(2.6)

The proof is given in Section 5.

3. Conformal invariance of the LERW.

3.1. Loop-erased random walk background. We now recall some well-known
facts concerning loop-erased random walks.

LEMMA 3.1 (LERW reversal). Let D ∈ D and let � be a simple random walk
from 0 stopped when it hits ∂D. Let β be the loop erasure of � and let γ be the
loop erasure of the time reversal of �. Then γ has the same distribution as the time
reversal of β .

See [25]. A simpler proof follows immediately from the symmetry of (12.2.3)
in [26]. This result (and the proofs) also holds if we condition � to exit ∂D

at a prescribed u ∈ V∂(D), which corresponds to the event {γ ∩ ∂D = {u}} =
{β ∩ ∂D = {u}} (assuming this has positive probability).
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Throughout our proof, we will use the simple random walk � and the loop
erasure γ = (γ0, γ1, . . . , γ�) of its time reversal (so that γ0 ∈ ∂D and γ� = 0).
We use Dj to denote the grid domains Dj := D \ ⋃j−1

i=0 [γi, γi+1]. Define, for
j ∈ {0,1, . . . , �},

nj := min{n ≥ 0 :�(n) = γj }
and note that nj+1 < nj for j = 0,1, . . . , � − 1 by the definition of γ . Also set

�j+1 := �[nj+1, nj ].
More precisely, consider �j as the grid path given by

�j(m) := �(m + nj ), m = 0,1, . . . , nj−1 − nj .

LEMMA 3.2 (Markovian property). Let j ∈ N and let u0, . . . , uj ∈ Z2.
Suppose that the probability of the event (γ0, . . . , γj ) = (u0, . . . , uj ) is positive.
Conditioned on this event, the following hold:

(i) The paths �1, . . . ,�j and �[0, nj ] are conditionally independent.
(ii) For k ∈ {1, . . . , j}, the conditional law of �k is that of a simple random

walk in Dk−1 started from uk and conditioned to leave Dk−1 through the edge
[uk,uk−1].

(iii) The conditional law of �[0, nj ] is that of a simple random walk started
from 0 conditioned to leave Dj at uj , and γ [j, �] is the loop erasure of the time
reversal of �[0, nj ].

PROOF. Since γ is the loop erasure of the reversal of �, the event
(γ0, . . . , γj ) = (u0, . . . , uj ) is equivalent to the statement that, for each k =
0,1, . . . , j −1, the first hit of � to {u0, . . . , uk}∪∂D is through the edge [uk+1, uk].
Let τk := min{n :�(n) ∈ {u0, . . . , uk} ∪ ∂D}, k = 0, . . . , j . The strong Markov
property of � with the stopping times τk now implies the lemma. �

The following simple lemma will also be needed.

LEMMA 3.3 (Expected visits). Suppose that v ∈ V(D) and that u0 and u1
are two vertices satisfying P[γ0 = u0, γ1 = u1] > 0. Conditioned on γ0 = u0 and
γ1 = u1, the expected number of visits to v by �1 is G(u1, v)H(v,u1).

Here G(u,v) denotes the discrete Green’s function, that is, the expected number
of visits to v by a simple random walk started at u, which is stopped on exiting D.

PROOF OF LEMMA 3.3. Let X be a simple random walk from u1 stopped on
exiting D and let k be the last time such that X(k) = u1. Then �1 conditioned on
γ0 = u0 and γ1 = u1 has the same distribution as X conditioned on X(k +1) = u0.
But the path j → X(k + j) is independent from X[0, k]. Consequently, the
expected number of visits of X to v conditioned on X(k + 1) = u0 is equal to
the expected number of visits to v of X[0, k]. The lemma follows. �
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3.2. The core argument. We keep the previous notation and also use the
conformal maps ψj :Dj → U satisfying ψj(0) = 0 and ψ ′

j (0) > 0. Set Uj :=
ψj(γj ) and U := U0. Note that γ can also be viewed as a continuously growing
simple curve from ∂D to 0 and therefore can be represented by Loewner’s
equation. Let W : [0,∞) → ∂U denote the (unique) continuous function such that
solving the radial Loewner equation with driving function W(t) gives the path γ .
Note that Uj = W(tj ), where tj is the continuous capacity of γ [0, j ] from 0 in D

(i.e., the capacity of ψ(γ [0, j ]) from 0 in U ). We denote by (ϑ(t), t ≥ 0) the
continuous real-valued function with ϑ(0) = 0 such that W(t) = W(0) exp(iϑ(t)).
We also define �j = ϑ(tj ), so that Uj = U exp(i�j ).

PROPOSITION 3.4 (The key estimate). There exists a positive constant C such
that, for all small positive δ, there exists r0 = r0(δ) such that the following holds.
Let D ∈ D satisfy rad0(D) > r0. For every u0 ∈ V∂(D) with P[γ0 = u0] > 0, let
γ denote the random path from u0 to 0 obtained by loop erasure of the time
reversal of a simple random walk from 0 to ∂D conditioned to hit ∂D in u0. Let

m := min{j ≥ 1 : tj ≥ δ2 or |�j | ≥ δ},
where �j and tj are as described above. Then

|E[�m]| ≤ Cδ3(3.1)

and

|E[�2
m] − 2E[tm]| ≤ Cδ3.(3.2)

Recall that Lemma 3.1 says that γ has the same distribution as the chronological
loop erasure of a random walk from 0 to ∂D conditioned to hit ∂D at u0.

Here is a rough sketch of the proof. Let v ∈ V(D) satisfy

rad0(D)/200 < |v| < rad0(D)/5.(3.3)

Let h+
0 denote the number of visits to v by �. (This is the quantity which we

referred to in Section 1 as the “observable.”) The proof is based on estimating the
two sides of the equality

E[h+
0 ] = E

[
E

[
h+

0 |γ [0,m]]].(3.4)

The estimate for the right-hand side will involve the distribution of tm and �m.
We get the two relations (3.1) and (3.2) by considering two different choices for
such a v.

The estimates for the two sides of (3.4) are rather straightforward. Basically,
each side is translated into expressions involving the Green’s functions Gj and
the hitting probabilities Hj . These are then translated into analytic quantities
using (2.6). Earlier versions of the proof required other estimates, somewhat more
delicate, in addition to (2.6). Fortunately, it turned out that (2.6) is sufficient. Since
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we came across several different variants for the proof, based on choosing different
observables, it may be said that the proof is inevitable, rather than accidental (and
this also applies to Theorem 1.3). Basically, the reason the proof works is that the
expected number of visits to v in

⋃m
j=1 �j given γ [0,m] can be estimated rather

well given the rough geometry of γ [0,m] in a scale much coarser than the scale
of the grid. Similarly, it is important that E[h+

0 ] can be estimated given the rough
geometry of D, but this fact is not surprising.

In the following, we abbreviate the Green’s functions and hitting probabilities
in Dj by Gj := GDj

and Hj := HDj
. The following lemma will be needed.

LEMMA 3.5 (Green’s function bounds). There is a constant C > 0 such that,
for every D ∈ D and v ∈ V(D) satisfying (3.3),

1/C ≤ GD(0, v) ≤ C(3.5)

holds. Also, given δ > 0, there is an r = r(δ) such that, if rad0(D) > r , then, with
the notation of Proposition 3.4,

G0(0, v) − Gm(0, v) ≤ Cδ2.(3.6)

PROOF OF PROPOSITION 3.4. Since tm−1 < δ2, it follows from the Koebe 1/4
theorem that rad0(Dm−1) > rad0(D)/5 ≥ r0/5 if δ is small. (Apply [35], Corol-
lary 1.4, with z = 0 to ψ−1

0 and ψ−1
m−1.) Moreover, the continuous harmonic mea-

sure in D at 0 of any edge e with a vertex on ∂D can be made arbitrarily small
by requiring rad0(D) to be large. [A Brownian motion started at 0 has probability
going to 1 to surround the disk rad0(D)U before hitting e, as rad0(D) → ∞.] By
the conformal invariance of the harmonic measure, this implies that the diameter
of ψ(e) can be made arbitrarily small. Applying this to the domains Dj and using
Lemma 2.1, we see that we may take r0 large enough so that, for all j < m, for all
t ∈ [tj , tj+1], |ϑ(t) − ϑ(tj )| ≤ δ3 and |tj+1 − tj | ≤ δ3. In particular, tm ≤ δ2 + δ3

and |�m| ≤ δ + δ3. We also require r0/8 to be larger than the r(δ) of Lemma 3.5.
Suppose v ∈ V(D) satisfies (3.3). Set Zj := ψj(v) and Z := Z0. For each

j ∈ {1, . . . , �}, let hj denote the number of visits to v by �j . Also let

h+
j :=

�∑
k=j+1

hk,

which is the number of visits of v by �[0, nj ]. Let λj := λ(v, γj ;Dj), where
λ(v, v′;Dj) is as in (2.5). Since, conditionally on γ [0, j ], �[0, nj ] is a random
walk in Dj conditioned to leave Dj at γj ,

E
[
h+

j |γ [0, j ]] = Gj(0, v)Hj(v, γj )

Hj (0, γj )
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and Proposition 2.2 [together with (3.5)] implies that if r0(δ) is sufficiently large,
then, for every j ∈ {0,1, . . . ,m},

E
[
h+

j |γ [0, j ]] = Gj(0, v)λj + O(δ3).

[This O(·) notation is shorthand for the statement that there is an absolute constant
C such that |E[h+

j |γ [0, j ]] − Gj(0, v)λj | ≤ Cδ3. We freely use this shorthand
below.] In particular,

E

[
m∑

j=1

hj

]
= E[h+

0 − h+
m] = E[G0(0, v)λ0 − Gm(0, v)λm] + O(δ3).(3.7)

We will now get a different approximation for the left-hand side. Applying
Lemma 3.3 to the domain Dj−1 gives

E
[
hj |γ [0, j ]] = Gj−1(γj , v)Hj−1(v, γj ).

Proposition 2.2 implies that, for r0(δ) large enough,

E
[
hj |γ [0, j ]] = (

λj−1 + O(δ)
)
Gj−1(γj , v)Hj−1(0, γj ).(3.8)

Considering the same simple random walk starting at 0 and stopped when it exits
Dj or Dj−1 shows that

Gj−1(0, v) − Gj(0, v) = Hj−1(0, γj )Gj−1(γj , v).(3.9)

We now derive an a priori bound on max{|λj − λm| : j ≤ m}. Recall that

λj − λ0 = Re
(

Uj + Zj

Uj − Zj

− U + Z

U − Z

)
.(3.10)

But |Uj − U | ≤ O(δ) for j ≤ m, and Loewner’s equation shows that

∀ j ≤ m, Zj = Z + tjZ
U + Z

U − Z
+ tjO(δ)

(3.11)

= Z + tjZ
U + Z

U − Z
+ O(δ3),

and, in particular, Zj = Z + O(δ2). (The equation blows up when |U − Z|
is small, and such estimates would not be valid in such a situation. How-
ever, this is not a problem here. First, ψ ′

0(0) ≤ 1/ rad0(D) by the Schwarz
lemma applied to the restriction of ψ0 to rad0(D)U. Now the Koebe 1/4 the-
orem (the case z = 0 in the left-hand inequality in [35], Corollary 1.4) gives
ψ−1

0 ((4/5)U) ⊃ (1/4)|ψ ′
0(0)|−1 (4/5)U ⊃ (rad0(D)/5)U. In particular, |Z| =

|ψ0(v)| ≤ 4/5 by (3.3). Since tm = O(δ2), it is clear that if δ is small and one
starts flowing from Z according to Loewner’s equation, it is impossible for Z to
get close to ∂U up to time tm.) Thus, we get our bound,

∀ j ≤ m, |λj − λm| ≤ O(δ).
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Using (3.8), this implies

E
[
hj |γ [0, j ]] = (

λm + O(δ)
)
Gj−1(γj , v)Hj−1(0, γj ).

Now applying (3.9) yields

E

[
m∑

j=1

hj

]
= E

[(
λm + O(δ)

)(
G0(0, v) − Gm(0, v)

)]
,

and hence (3.6) implies

E

[
m∑

j=1

hj

]
= E

[
λm

(
G0(0, v) − Gm(0, v)

)] + O(δ3).

Comparing with (3.7) gives G0(0, v)E[λm −λ0] = O(δ3), and hence (3.5) implies

E[λm − λ0] = O(δ3).(3.12)

[The reader may wonder about the apparent miracle happening here, namely,
that λj turns out to be “almost” a martingale. In fact, this is not important for
identifying the scaling limit. If the right-hand side in (3.12) turned out to be any
other explicit quantity, up to δ3 error terms, the proof would still work, but give
a different limiting process. In Remark 3.6 below, we give a short proof of (3.12)
and further comments.]

Recall that this equation is valid uniformly over all choices of v. We now Taylor-
expand λm − λ0 with respect to Um − U and Zm − Z, up to O(δ3) error terms.
As we have seen, Um − U = O(δ) and Zm − Z = O(δ2), and hence only the first-
order derivative with respect to Zm − Z and the first two derivatives with respect
to

Um − U = (
ei�m − 1

)
U = iU�m − U�2

m/2 + O(δ3)

come into play (the mixed derivatives can be ignored). Using (3.10) and (3.11), we
get

λm − λ0 = �m Im
(

2ZU

(U − Z)2

)
+ (2tm − �2

m)Re
(

ZU(U + Z)

(U − Z)3

)
+ O(δ3),

and therefore (3.12) gives

Im
(

2ZU

(U − Z)2

)
E[�m] + Re

(
ZU(U + Z)

(U − Z)3

)
E[2tm − �2

m] = O(δ3).(3.13)

We claim that when r0(δ) is large enough we may find v1, v2 ∈ V(D) in the
range (3.3) satisfying |ψ(v1) − U/30| < δ3 and |ψ(v2) − i U/30| < δ3. Indeed,
by Theorem 1.3 and Corollary 1.4 from [35], for every R ∈ (0,1), there is a
C = C(R) < ∞ such that |ψ ′(z)| ≤ C/ radz(D) and radz(D) ≥ C−1 rad0(D) hold
for all z ∈ ψ−1(RU). Let v1 be a vertex closest to ψ−1(U/30). By integrating
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the above bound on ψ ′ along the line segment from ψ−1(U/30) to v1 (whose
length is less than 1), we get |ψ(v1) − U/30| < δ3 if rad0(D) is large enough.
Another application of Theorem 1.3 and Corollary 1.4 from [35] now shows that
v1 satisfies (3.3). An entirely similar argument produces v2.

Consequently, (3.13) holds with Z ∈ {U/30, i U/30}. Plugging in these two
values for Z produces two linearly independent equations in the variables
E[2tm − �2

m] and E[�m] and thereby proves (3.1) and (3.2). �

REMARK 3.6. Here is another proof of (3.12). Given a vertex v ∈ V(D),
let β = (β0, β1, . . . ) denote the loop erasure of the reversal of the simple
random walk �v started from v and stopped on exiting D (i.e., the analog
of γ , but starting from v instead of 0). Abbreviate γ n := (γ0, . . . , γn) and
similarly βn := (β0, . . . , βn). For a sequence of vertices u = (u0, u1, . . . , un), let
an(u) := P[γ n = u] and bn(u) := P[βn = u]. Set Mn := bn(γ

n)/an(γ
n). (In other

words, Mn is the Radon–Nikodym derivative of the law of βn with respect to the
law of γ n.) It is easy to verify that Mn is a martingale:

E[Mn+1|γ n] = ∑
w

bn+1(γ
nw)

an+1(γ nw)

an+1(γ
nw)

an(γ n)
=

∑
w bn+1(γ

nw)

an(γ n)
= Mn.

Lemma 3.2 implies that Mn = Hn(v, γn)/Hn(0, γn), since, on the event that
�v and � first hit {u0, . . . , un} ∪ ∂D at un, we may couple them to agree after
that first visit to un. Now (2.6) implies (3.12).

Although this proof is shorter than the first proof of (3.12), it is harder to
motivate and less natural. For this reason, we chose to stress the first proof.

Let us finally note that (as opposed to the martingale that shows up in the
analysis of the UST Peano curve), the quantity corresponding to this martingale
in the scaling limit is unbounded and converges almost surely to 0 (it is not
uniformly integrable), so that it cannot be interpreted as a conditional probability
or a conditional expectation. Correspondingly, in the discrete setting, Mn is very
large when the path hits v (if it does) and Mn is very small when the path hits 0.

3.3. Recognizing the driving process. The objective in this section is to show
that W of the previous section is close to a time-scaled Brownian motion on the
unit circle.

THEOREM 3.7 (Driving process convergence). For every T > 0 and ε > 0,
there is an r1 = r1(ε, T ) > 0 such that, for all D ∈ D with rad0(D) > r1, there is
a coupling of γ with Brownian motion B(t) starting at a random uniform point in
[0,2π ] such that

P
[
sup{|ϑ(t) − B(2 t)| : t ∈ [0, T ]} > ε

]
< ε.
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Recall that a coupling of two random variables (or random processes) A and B

is a probability space with two random variables A′ and B ′, where A′ has the same
distribution as A and B ′ has the same distribution as B . In the above statement (as
is customary), we do not distinguish between A and A′ and between B and B ′.

In order to deduce this theorem from Proposition 3.4, we will use the Skorohod
embedding theorem, which is one of the standard tools for proving convergence to
Brownian motion (one could work out a more direct proof but the following proof
seems cleaner).

LEMMA 3.8 (Skorohod embedding). If (Mn)n≤N is an (Fn)n≤N martingale,
with ‖Mn − Mn−1‖∞ ≤ 2δ and M0 = 0 a.s., then there are stopping times
0 = τ0 ≤ τ1 ≤ · · · ≤ τN for standard Brownian motion (Bt , t ≥ 0) such that
(M0,M1, . . . ,MN) and (Bτ0,Bτ1, . . . ,BτN

) have the same law. Moreover, one can
impose, for n = 0,1, . . . ,N − 1,

E
[
τn+1 − τn|B[0, τn]] = E

[(
Bτn+1 − Bτn

)2∣∣B[0, τn]](3.14)

and

τn+1 ≤ inf
{
t ≥ τn :

∣∣Bt − Bτn

∣∣ ≥ 2δ
}
.(3.15)

The proof can be found in many probability textbooks, including [9] and [37].
Often, it is stated for just one random variable M1; for a statement in terms
of martingales, see, for instance, [8] and [43]. The relation (3.15) is not stated
explicitly in these references (since the assumption that the increments of Mn are
bounded is weakened), but is a consequence of the proof. It can also be derived a
posteriori from E[τn+1 − τn] = E[(Mn+1 − Mn)

2] < ∞, since the expected time
for Brownian motion started outside an interval to hit the interval is infinite.

PROOF OF THEOREM 3.7. Since the hitting measure of a simple random walk
from 0 is close to the hitting measure for Brownian motion when rad0(D) is large
(see, e.g., Section 5), it is clear that W(0) is nearly uniform in ∂U. It is therefore
enough to show that ϑ(t/2) is close to standard Brownian motion.

Assume, without loss of generality, that T ≥ 1. Pick δ = δ(ε, T ) > 0 small. Let
r0 be as in Proposition 3.4 and take r1 := 8 exp(20T )r0. Let γ t denote the initial
segment of γ such that ψD(γ t) has capacity t from 0. By the Schwarz lemma,
ψ ′

D(0) ≤ rad0(D)−1. Therefore, the Koebe 1/4 theorem implies rad0(D \ γ t) ≥
exp(−t) rad0(D)/4. Hence, if rad0(D) ≥ r1, Proposition 3.4 is valid not only for
the initial domain D, but also for the domain D slitted by subarcs of γ , up to
capacity 20T .

As in Proposition 3.4, define m to be the first j = 1,2, . . . such that |�j | ≥ δ

or tj ≥ δ2. Set m0 := 0, m1 := m and inductively let mn+1 be the first j ≥ mn + 1
such that |�j −�mn | ≥ δ or tj − tmn ≥ δ2, whichever happens first. Let Fn denote
the σ -field generated by γ [0,mn]. Set

N := �10T δ−2�.
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Our choice of r1 ensures that tj+1 − tj ≤ 2δ2 for all j < N and that tN ≤ 20T .
Hence, Proposition 3.4 holds for all domains Dmn with n < N . Applying clause
(iii) of Lemma 3.2 therefore gives

E
[
�mn+1 − �mn

∣∣Fn

] = O(δ3)(3.16)

and

E
[(

�mn+1 − �mn

)2∣∣Fn

] = 2E
[
tmn+1 − tmn

∣∣Fn

] + O(δ3).(3.17)

For n ≤ N , set

Mn :=
n−1∑
j=0

(
�mj+1 − �mj

− E
[
�mj+1 − �mj

∣∣Fj

])
.(3.18)

Clearly, M0, . . . ,MN is a martingale for F0, . . . ,FN . The definition of mn and the
choice of r1 imply that ‖Mn+1 − Mn‖∞ ≤ 2δ.

By Lemma 3.8, we may couple (M0, . . . ,MN) with a standard Brownian motion
with stopping times τ0 ≤ τ1 ≤ · · · ≤ τN such that Bτn = Mn and (3.14) hold.
Extend the coupling to include γ (this clearly can be done).

Note that the definition of tmn and (3.15) ensure that, for all n < N ,

sup
{∣∣Bt − Bτn

∣∣ : t ∈ [τn, τn+1]} ≤ 2δ,
(3.19)

sup
{∣∣ϑ(t) − �tmn

∣∣ : t ∈ [
tmn, tmn+1

]} ≤ 2δ

and (3.16) shows that

sup
{∣∣�tmn

− Mn

∣∣ :n ≤ N
} = O(δ3N) = O(δ T ).(3.20)

Hence, as Mn = Bτn and Bt is a.s. continuous, it remains to relate the capacities tmn

with the stopping times τn and verify that tmN
> T with high probability. For this

purpose, define

Yn =
n−1∑
j=0

(Mj+1 − Mj)
2.

We first show that Yn is close to 2tmn . Let Zn := Yn − 2tmn . By (3.18) and (3.16),
we have, for n < N , |Mn+1 − Mn − �tmn+1

+ �tmn
| = O(δ3). This implies

|Mn+1 − Mn| = O(δ) and hence also

Yn+1 − Yn = (Mn+1 − Mn)
2 = (

�tmn+1
− �tmn

)2 + O(δ4).

Consequently, (3.17) gives

E[Zn+1 − Zn|Fn] ≤ O(δ3).

From the fact that the increments of tmn and those of Yn are bounded by O(δ2),
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we also have E[(Zn+1 − Zn)
2|Fn] ≤ O(δ4). Set Z′

n := Zn − ∑n
j=1 E[Zj −

Zj−1|Fj−1]. Since this is an Fn-martingale, we have E[Z′
N

2] = ∑N
j=1 E[(Z′

j −
Z′

j−1)
2] and the above estimates give E[Z′

N
2] = O(N δ4). Assuming Nδ3 <

δ1/2/2, without loss of generality, and applying Doob’s maximal inequality
(see [37], II.1.7) for L2-martingales to Z′

n, we get

P
[
max
n≤N

∣∣Yn − 2 tmn

∣∣ > δ1/2
]

= O(Nδ3) = O(T δ).(3.21)

By the definition of the tmn , we have Yn+1 − Yn + tmn+1 − tmn ≥ δ2. Summing
gives YN + tmN

≥ Nδ2 ≥ 10T . Therefore, (3.21) implies

P
[
tmN

< 2T
] = O(T δ).(3.22)

We now show that with high probability τn is also close to Yn for every n ≤ N .
By (3.15), it is clear that E[(τn+1 − τn)

2|B[0, τn]] = O(δ4) and therefore

E
[(

(τn+1 − Yn+1) − (τn − Yn)
)2∣∣B[0, τn]]= O(δ4).

Also, (3.14) gives

E
[
(τn+1 − Yn+1) − (τn − Yn)|B[0, τn]]= 0.

Doob’s inequality therefore implies

P
[
max
n≤N

|τn − Yn| > δ1/2
]

= O(T δ).

Combining this with (3.21) leads to

P
[
max
n≤N

∣∣τn − 2tmn

∣∣ > δ1/2
]

= O(T δ).

Since Bt is a.s. continuous, together with (3.22), (3.19) and (3.20), this completes
the proof. �

3.4. Convergence with respect to a stronger topology. Theorem 3.7 provides
a kind of convergence of the loop-erased random walk to SLE2. As we will see in
this section, this kind of convergence suffices, for example, to show that the scaling
limit with respect to the Hausdorff metric of the union of ∂U and the LERW in U
is the union of ∂U and the SLE2 path.

Let α : [0,1] → C and β : [0,1] → C be two continuous paths. Define

ρ(α,β) := inf
φ∈�

sup
t∈[0,1]

|α(t) − β ◦ φ(t)|,

where � is the collection of all monotone nondecreasing continuous maps from
[0,1] onto [0,1]. It is an easy well-known fact that ρ is a metric on equivalence
classes of paths, where two paths α and β are equivalent if α ◦ φ1 = β ◦ φ2, where
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φ1, φ2 ∈ �. Since ρ(α,β) does not depend on the particular parameterization of
α or β , the metric ρ is also defined for paths on intervals other than [0,1].

To explain our present goal, let us point out that there is a sequence of paths
αn from 1 to 0 in U such that their Loewner driving functions Wn(t) converge
uniformly to the constant 1 but αn does not converge to the path α(t) = 1 − t ,
t ∈ [0,1], in the metric ρ, although the driving function for α (reparameterized
by capacity) is the constant 1. For example, we may take αn as the polygonal path
through the points a1, b1 + in−2, a2, b2 − in−2, a3, b3 + in−2, . . . , a�n/2�,0, where
aj := 1 − n−1 + (jn)−1 and bj := 1 − j/n.

THEOREM 3.9 (LERW image in U converges). For any sequence Dn ∈ D

with rad0(Dn) → ∞, if µn denotes the law of γ̃ n := ψDn ◦ γ n, where γ n is the
time reversal of the LERW from 0 to ∂Dn, then µn converges weakly (with respect
to the metric ρ) to the law of the radial SLE2 path started uniformly on the unit
circle.

The outline of the proof is as follows. We define a suitable family of compact
subsets of the space of simple paths from ∂U to 0 in U, which we can use to show
that the sequence µn is tight. (See, e.g., [9] for background on weak convergence
and the notion of tightness.) This implies that a subsequence of µn converges
weakly to some probability measure. Theorem 3.9 then shows that the law of SLE2
is the unique possible subsequential limit.

In order to prove tightness, we will use properties of the loop-erased random
walk proved in [38]. The actual details will require some background in the
geometric theory of conformal maps. In particular, some properties of extremal
distance (a.k.a. extremal length) will be used. See, for example, [2] for background.
The basic ideas that are used in the proof are taken from [3] and [38].

For a simply connected D � C containing 0, let X0(D) denote the space of all
simple paths γ : [0,∞] → D from ∂D to 0 in D, which intersect ∂D only at the
starting point. Given a monotone nondecreasing function ϒ : (0,∞) → (0,1], let
Xϒ(D) ⊂ X0(D) denote the space of all simple paths γ ∈ X0(D) such that, for
every 0 ≤ s1 < s2,

dist(γ [0, s1] ∪ ∂D,γ [s2,∞])/ rad0(D) ≥ ϒ
(
diam(γ [s1, s2])/ rad0(D)

)
.

Note that whether γ ∈ Xϒ(D) does not depend on the parameterization of γ and
is scaling invariant.

LEMMA 3.10 (Compactness). Let ϒ : (0,∞) → (0,1] be monotone nonde-
creasing. Then Xϒ(U ) is compact in the topology of convergence with respect
to ρ.

PROOF. We use an idea from [3]. For all n ∈ N, let Zn be a finite collection
of points such that the open balls B(z,2−n), z ∈ Zn, cover U. Given a setK ⊂ U



964 G. F. LAWLER, O. SCHRAMM AND W. WERNER

and a point z ∈ Zn, let s(K, z,n) denote the diameter of K ∩ B(z,21−n) in the

metric obtained from the Euclidean metric on the disk B(z,21−n) by collapsing
the boundary ∂B(z,21−n) to a single point. [In other words, this metric d(x, y)

is defined as d(x, y) = min{|x − y|,dist(x, ∂B) + dist(y, ∂B)}, where B =
B(z,21−n).]

Fix γ ∈ Xϒ(U ). Given t ≥ 0, let

s(t) = sγ (t) := ∑
n∈N

∑
z∈Zn

s(γ [0, t], z, n)

|Zn| .

Clearly, sγ (t) ≤ ∑
n≥0 22−n = 8, and s : [0,∞] → [0,∞) is continuous and strictly

monotone increasing. (To verify that s is strictly monotone increasing, note that,
if t2 > t1 ≥ 0, then there is some n ∈ N such that dist(γ (t2), γ [0, t1]) ≥ 22−n, and
so s(γ [0, t2], z, n) ≥ s(γ [0, t1], z, n) + 2−n if z ∈ Zn satisfies γ (t2) ∈ B(z,2−n).)
Let γ̂ (s) be γ parameterized by s; that is, γ̂ = γ ◦ s−1. Let s1 < s2 and set
ε := diam γ̂ [s1, s2] > 0. Then dist(γ̂ (s2), γ̂ [0, s1]∪ ∂U ) ≥ ϒ(ε). By the argument
for strict monotonicity given above, this shows that s2 − s1 ≥ 2−n/|Zn|, where
n := min{k ∈ N : 22−k ≤ ϒ(ε)}. Therefore, γ̂ satisfies an equicontinuity estimate.
By the Arzela–Ascoli theorem, it follows that the closure of Xϒ(U ) is compact in
the ρ metric. It is also clear that Xϒ(U ) is closed. �

Our next goal is to use these compact sets to prove tightness, and we start by
observing that the diameter is tight.

LEMMA 3.11 (Diameter is tight). There are constants c,C > 0 such that for
every D ∈ D and every r ≥ 1 the simple random walk � starting from 0 and
stopped on hitting ∂D satisfies

P[diam(�) ≥ r rad0(D)] ≤ Cr−c.

Consequently, the same estimate holds for the loop erasure γ .

The first statement is an easy well-known fact. Since the complement of D is
connected and unbounded, if the random walk makes a loop separating the circle
rad0(D)∂U from the circle (r/2) rad0(D)∂U before hitting the latter circle, then it
must hit ∂D before (r/2) rad0(D)∂U. Thus, the lemma is easily proved directly
and also follows from the convergence of a simple random walk to Brownian
motion. A rather precise form of this estimate for the random walk, where c = 1/2,
is known as the discrete Beurling theorem (see [25], Theorem 2.5.2).

LEMMA 3.12 (Tameness). For every ε > 0, there is some monotone nonde-
creasing ϒ : (0,∞) → (0,1] and some r0 > 0 such that for every D ∈ D with
rad0(D) ≥ r0 its time-reversed loop-erased walk γ = γD satisfies

P[γ ∈ Xϒ(D)] ≥ 1 − ε.
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PROOF. The proof is essentially contained in the proof of [38], Theorem 1.1,
where it is established that every subsequential scaling limit of LERW is a.s. a
simple path. We will not repeat the complete proof from [38] here, but indicate
how it may be adapted to yield the statement of the lemma.

Let ε > 0. Clearly, γ ∈ X0(D). If γ /∈ Xϒ(D), then there are 0 ≤ s1 < s2 < ∞
such that the distance between γ [0, s1] ∪ ∂D and γ [s2,∞] is smaller than
rad0(D)ϒ(diamγ [s1, s2]/ rad0(D)). Let us first deal with the case where the
distance between γ [s2,∞] and ∂D is small. Let � be the walk generating the
time reversal of γ , and let tn be the first time t where the distance from �(t) to ∂D

is smaller than 2−n rad0(D) and let τ = inf{t :�(t) ∈ ∂D}. By the Markov property
of � at time tn and Lemma 3.11,

P
[
diam�[tn, τ ] > 2−n/2 rad0(D)

] ≤ C2−cn/2.

Consequently, there is an N = N(ε) such that with probability 1 − ε/2 for
every integer n ≥ N we have diam�[tn, τ ] ≤ 2−n/2 rad0(D). In this case, if
diamγ [0, s2] > 2−n/2 rad0(D), where n > N , then γ [0, s2] is not contained in
�[tn, τ ], which implies that γ [s2,∞] ⊂ �[0, tn] and gives dist(γ [s2,∞], ∂D) ≥
2−n rad0(D). In other words, if ϒ satisfies

ϒ(t) < min{t2,2−2N }/4,(3.23)

then with probability at least 1 − ε/2, for every s1, s2 ∈ [0,∞],
dist(∂D,γ [s2,∞]) ≥ rad0(D)ϒ

(
diamγ [s1, s2]/ rad0(D)

)
.(3.24)

We now focus on the case where the distance between γ [0, s1] and γ [s2,∞) is
small. We shall say that γ has a (β,α)-quasi-loop if there are 0 < s1 < s2 < ∞
such that |γ (s1) − γ (s2)| ≤ α rad0(D) but diamγ [s1, s2] ≥ β rad0(D). Note that
if there are 0 < s1 < s2 < ∞ such that dist(γ [0, s1], γ [s2,∞]) < α rad0(D) and
diamγ [s1, s2] ≥ β rad0(D), then γ has a (β,α)-quasi-loop. Let A(β,α) denote
the event that γ has a (β,α)-quasi-loop. Assume, for the moment, that, for all
n ≥ 0,

lim
α↘0

P[A(2−n,α)] = 0,(3.25)

uniformly in D. Then we may take a decreasing sequence αn ↘ 0 such that∑∞
n=1 P[A(2−n,αn)] < ε/2 holds for every D ∈ D. Then with probability at

least 1 − ε/2, γ has no (2−n,αn)-quasi-loop for any n = 1,2, . . . . Assuming that
ϒ(t) < αn holds whenever t ≤ 21−n, n ∈ N, and ϒ(t) < α1 for all t , on this event
we also have

dist(γ [0, s1], γ [s2,∞]) ≤ rad0(D)ϒ
(
diamγ [s1, s2]/ rad0(D)

)
for all 0 < s1 < s2 < ∞. If we also assume (3.23), then together with (3.24) we get
P[γ ∈ Xϒ(D)] ≥ 1 − ε, completing the proof of the lemma. Thus, it remains to
verify (3.25).
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Let A(z0, β,α) denote the event that there are 0 < s1 < s2 < ∞ such that
|γ (s1) − γ (s2)| ≤ α rad0(D), γ (s1), γ (s2) ∈ B(z0, β rad0(D)/4) and diam(γ [s1,

s2]) ≥ β rad0(D). In particular, this implies that γ [s1, s2] is not contained in
the interior of B(z0, β rad0(D)/2). Assume that 8α < β . By Lemma 3.11,
there is an R = R(ε) > 0 such that with probability at least 1 − ε/2 we have
γ [0,∞] ⊂ B(0,R rad0(D)). There is a collection {z1, z2, . . . , zk} of points such
that every disk of radius 2α rad0(D) with center in B(0,R rad0(D)) is contained
in one of the k balls B(zj , β rad0(D)/2), j = 1,2, . . . , k, and we may take
k < c((R/β)2 + 1), where c is an absolute constant. On the event γ [0,∞] ⊂
B(0,R rad0(D)), we have A(β,α) ⊂ ⋃k

j=1 A(zj , β,α). Since ε > 0 was arbitrary
and P[γ [0,∞] ⊂ B(0,R rad0(D))] ≥ 1 − ε/2, it is therefore sufficient to show
that P[A(zj , β,α)] → 0 as α → 0 uniformly in D. The proof of this statement is
given (with minor changes in the setup) in [38], Theorem 1.1. �

Let Xr
ϒ(D) denote the set of paths γ ∈ Xϒ(D) that are contained in the ball of

radius r rad0(D) about 0. Given γ ∈ X0(D), let γ ∗ : [0,∞) → U denote the path
ψD ◦ γ , parameterized by capacity.

LEMMA 3.13 (Tameness invariance). For every monotone nondecreasing
ϒ : (0,∞) → (0,1] and every r > 1, there is a monotone nondecreasing
ϒ∗ : (0,∞) → (0,1] such that, for all D ∈ D and γ ∈ Xr

ϒ(D), γ ∗ ∈ Xϒ∗(U ).

PROOF. Let D ∈ D, γ ∈ Xr
ϒ(D) and 0 ≤ s′

1 < s′
2 ≤ ∞. Note that there exist

s1 and s2 satisfying s′
1 ≤ s1 ≤ s2 ≤ s′

2 such that

diam(γ ∗[s1, s2]) ≥ diam(γ ∗[s′
1, s

′
2])/4

and

dist(0, γ ∗[s1, s2]) ≥ diam(γ ∗[s1, s2]).(3.26)

Since

dist
(
γ ∗[0, s′

1] ∪ ∂U, γ ∗[s′
2,∞)

) ≥ dist
(
γ ∗[0, s1] ∪ ∂U, γ ∗[s2,∞)

)
,(3.27)

it is sufficient to give a lower bound of the right-hand side of (3.27) in terms of
ε := diam(γ ∗[s1, s2]).

The Schwarz lemma gives ψ ′
D(0) ≤ 1/ rad0(D). Therefore, by the Koebe 1/4

theorem (applied to the restriction of ψ−1
D to εU) and (3.26), dist(0, γ [s1, s2]) >

c1 rad0(D), where c1 = ε/4. On the other hand, the harmonic measure in U from 0
of γ ∗[s1, s2] is at least c2, where c2 = c2(ε) > 0, so that the harmonic measure
in D from 0 of γ [s1, s2] is at least c2. Hence,

diamγ [s1, s2] ≥ c3 rad0(D),(3.28)

where c3 = c3(ε).



CONFORMAL INVARIANCE 967

Also set δ := dist(γ ∗[0, s1] ∪ ∂U, γ ∗[s2,∞]). Since

diamγ ∗[s2,∞] ≥ dist(0, γ ∗[s1, s2]) ≥ ε,

the extremal distance between γ ∗[0, s1]∪∂U and γ ∗[s2,∞] is at most φ1(δ, ε) > 0,
where φ1 is some function satisfying φ1(δ, ε) → 0 as δ ↓ 0. By the conformal in-
variance of the extremal distance, this implies that the extremal distance between
γ [0, s1] ∪ ∂D and γ [s2,∞] is at most φ1(δ, ε). Because γ is contained in the disk
of radius r rad0(D) about 0, this implies that

dist(γ [0, s1] ∪ ∂D,γ [s2,∞]) ≤ φ2(δ, ε)r rad0(D),

where φ2 → 0 as δ ↓ 0. Because γ ∈ Xϒ(D), (3.28) and this together imply

φ2(δ, ε)r ≥ ϒ(c3(ε)),

which gives a positive lower bound for δ = dist(γ ∗[0, s1] ∪ ∂U, γ ∗[s2,∞]) in
terms of ϒ , r and ε = diam(γ ∗[s1, s2]). This completes the proof. �

LEMMA 3.14 (Convergence relations). Suppose Wn,W are continuous func-
tions from [0,∞) to ∂U such that Wn → W locally uniformly. Let gn

t , gt be
the corresponding solutions to Loewner’s radial equation and set f n

t = (gn
t )−1,

ft = g−1
t . Then f n

t → ft locally uniformly on [0,∞) × U. If there are continuous
curves γ n : [0,∞) → U such that, for all t ≥ 0, the image of f n

t is the compo-
nent of 0 in U \ γ n[0, t] and there is a γ : [0,∞) → U such that γ n → γ locally
uniformly on [0,∞), then for all t ≥ 0 the image of ft is the component of 0 in
U \ γ [0, t].

PROOF. Since gt is obtained by flowing along a vector field depending on W ,
the inverse ft is obtained by flowing along the opposite field, with the time
reversed. Hence, the first statement is an immediate consequence of the principle
that solutions of ODE depend continuously on the parameters of the ODE. The
second statement is an immediate consequence of the Carathéodory kernel theorem
(see [35], Theorem 1.8). �

PROOF OF THEOREM 3.9. Let Wn denote the Loewner parameter of γ̃ n and
let µ̂n denote the law of the pair (γ̃ n,Wn). By Theorem 3.7, we know that the
law of Wn tends weakly to the law of Brownian motion. Lemmas 3.10–3.13 show
that the set of measures {µn} is tight with respect to the metric ρ. Consequently,
the sequence µ̂n is also tight. Prokhorov’s theorem (e.g., [9] and [37]) implies that
there is a subsequence such that µ̂n converges weakly along the subsequence. Let
µ̂ be any subsequential weak limit and let (γ̃ ,W) be a sample from µ̂. The lemmas
show that γ̃ is a.s. a simple path, and Theorem 3.7 shows that W is Brownian
motion (with time scaled). By the properties of weak convergence, we may couple
the subsequence of pairs (γ̃ n,Wn) and (γ̃ ,W) so that a.s. ρ(γ̃ n, γ̃ ) → 0 and
Wn → W locally uniformly.



968 G. F. LAWLER, O. SCHRAMM AND W. WERNER

Recall that the capacity is continuous with respect to the metric ρ; that is, if
β,βn : [0,1] → U \ {0} and ρ(βn,β) → 0, then the capacity of βn[0,1] tends to
the capacity of β[0,1]. (In fact, it is enough that βn[0,1] tends to β[0,1] in the
Hausdorff metric.) Indeed, this follows immediately from Carathéodory’s kernel
theorem (see [35], Theorem 1.8) and the fact that the local uniform convergence of
conformal maps implies the convergence of the derivatives (by Cauchy’s formula
for the derivative).

Since γ̃ is almost surely a simple path, the capacity of γ̃ increases strictly, and
one can parameterize the path continuously by its capacity. We also parameterize
the paths γ̃ n by capacity. The next goal is to show that γ̃ n → γ̃ locally uniformly
on [0,∞). Since ρ(γ̃ , γ̃ n) → 0, there are strictly monotone continuous onto maps
εn : [0,∞) → [0,∞) so that γ̃ n ◦ εn → γ̃ locally uniformly. If tn ∈ [0,∞) and
tn → t ∈ [0,∞), then it follows from the continuity of capacity with respect to ρ

that εn(tn) → t [because if s is a subsequential limit of εn(tn), then the capacity
of γ̃ (s) must be t ; i.e., s = t]. This implies that εn converges to the identity map
t → t , locally uniformly. By the continuity of γ̃ , it follows that γ̃ ◦ε−1

n → γ̃ locally
uniformly. This gives γ̃ n → γ̃ locally uniformly.

We can now finally apply Lemma 3.14 to show that γ̃ is the SLE2 path. As the
law of the limit γ̃ does not depend on the subsequence, the theorem follows. �

In the following proof of Theorem 1.1, the main technical point is that we do
not make any smoothness assumptions on ∂D. If ∂D is a simple closed path,
the theorem follows easily from Theorem 3.9, because the suitably normalized
conformal maps from U to the discrete approximations of D converge uniformly
to the conformal map onto D.

PROOF OF THEOREM 1.1. Let Dδ be the component of 0 in the complement
of all the closed square faces of the grid δZ2 intersecting ∂D. Let γδ be the time
reversal of the loop-erased random walk from 0 to ∂Dδ and let β be the radial
SLE2 path in U. Let φδ : U → Dδ be the conformal map satisfying φδ(0) = 0 and
φ′

δ(0) > 0 and let φ : U → D be the conformal map satisfying φ(0) = 0, φ′(0) > 0.
Theorem 3.9 tells us that we may couple β with each of the paths γδ such that
ρ(φ−1

δ ◦ γδ,β) → 0 in probability as δ ↓ 0. Moreover, the proof shows that if we
use the capacity parameterization for both, then, in probability,

sup{|φ−1
δ ◦ γδ(t) − β(t)| : t ≥ 0} → 0.

(There is no problem with convergence in a neighborhood of t = ∞, because we
know that the weak limit of φ−1

δ ◦γδ with respect to ρ is a simple path tending to 0
as t → ∞.)

The Carathéodory kernel theorem (see [35], Theorem 1.8) implies that φδ → φ

uniformly on compact subsets of U as δ ↘ 0. Consequently, the above gives

∀ t0 > 0, sup{|γδ(t) − φ ◦ β(t)| : t ≥ t0} → 0,(3.29)
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in probability. Let ε > 0 be small. Then, by Lemma 3.11, there is an ε′ > 0 such
that for every D′ ∈ D the probability that a simple random walk from 0 gets to
distance rad0(D

′)/(2ε′) before hitting ∂D′ is less than ε/2. Let A be the connected
component of 0 in the set of points in D ∩ (rad0(D)/ε′)U having distance at
least εε′ rad0(D) from ∂D. By considering the first point where the random walk
generating γδ exits A, it follows that, with probability at least 1 − ε, the diameter
of γδ[0,∞] \ A is at most ε rad0(D) + δ. Now note that there is a compact A′ ⊂ U
such that φ−1

δ (A) ⊂ A′ for all sufficiently small δ, since φδ → φ uniformly on
compacts. Therefore, there is some t1 > 0 such that γδ[0, t1] ∩ A = ∅ a.s. for all
sufficiently small δ > 0. In particular,

P
[
diamγδ[0, t1] > ε rad0(D) + δ

]
< ε.(3.30)

If we take t2 ∈ (0, t1), then taking δ ↘ 0 in (3.29) implies

P
[
diamφ ◦ β[t2, t1] > 2ε rad0(D)

]
< ε.

Since this holds for every t2, it follows that

P
[
diamφ ◦ β(0, t1] > 2ε rad0(D)

]
< ε.

Using this with (3.30) and choosing t0 = t1 in (3.29) gives

P
[
sup{|γδ(t) − φ ◦ β(t)| : t > 0} < 3ε rad0(D)

] → 1.

Since this holds for every ε > 0, the theorem follows. �

4. The UST Peano curve.

4.1. Setup. The UST Peano curve is obtained as the interface between the
UST and the dual UST. The setup which corresponds to chordal SLE8 is where
there is symmetry between the UST and the dual UST. Loosely speaking, the UST
is the uniform spanning tree on the grid inside a domain D but with an entire arc
α ⊂ ∂D on the boundary identified (wired) as a single vertex, and the dual UST
also has an arc β ⊂ ∂D on the boundary which is identified. The arcs α and β

are essentially complementary arcs. See Figure 5, where D is approximately a
rectangle. As mentioned in Section 1, it was conjectured in [36] that, for an
analogous setup, the interface defined for the critical random cluster models with
q ∈ (0,4] converges to SLEκ , where κ = κ(q) ∈ [4,8).

A combinatorial framework is necessary in order to be more precise. There are
several different possible setups that would work, and the following is somewhat
arbitrary.

If a tree T lies in the grid Z2, then its dual tree T † will lie in the dual grid
(Z + 1/2)2, and the Peano path γ will lie in the graph G whose vertices are
(1/4 + Z/2)2 and where v,u neighbor iff |v − u| = 1/2. We have three kinds of
vertices: elements of Z2 are the primal vertices, elements of (1/2+Z)2 are the dual
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FIG. 5. The tree, dual tree and Peano UST path γ .

vertices and elements of (1/4 +Z/2)2 are the Peano vertices. If w �= v are vertices
of any kind, not necessarily the same, we say that they are adjacent if the distance
between them is as small as it can be for distinct vertices of these particular kinds.
In other words, if they are of the same kind, this means that they are neighbors, if
v ∈ (1/4 + Z/2)2 and w ∈ Z2 ∪ (1/2 + Z)2, this means ‖v − w‖∞ = 1/4, while if
v ∈ Z2 and w ∈ (1/2 + Z)2, this means ‖v − w‖∞ = 1/2.

Since there is no added complication, we consider a more general case where α

and β are trees, rather than arcs. Let α be some finite tree in the primal grid Z2 and
let β be a finite tree in the dual grid (1/2+Z)2. Suppose that no edge of α intersects
an edge of β . Further suppose that there are two Peano vertices a, b ∈ (1/4+Z/2)2

such that a is adjacent to both a primal vertex αa ∈ α and a dual vertex βa ∈ β , and
b is adjacent to both a primal vertex αb ∈ α and a dual vertex βb ∈ β . See Figure 6.
Note that the line segment [αa,βa] has a as its midpoint, and the line segment
[αb,βb] has b as its midpoint. Let D = D(α,β, a, b) be the (unique) bounded

FIG. 6. The boundary data and the Peano grid.
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connected component of C \ (α ∪ [αb,βb] ∪ β ∪ [βa,αa]). Let VP = VP (D)

denote the collection of all Peano vertices in D, and, as before, V(D) denotes
the collection of all primal vertices in D. Let � = �(D) denote the cardinality of
VP \ {a, b}. By switching the role of a and b, if necessary, assume that D lies to
the immediate right of the oriented segment [αa,βa]. Let D∗ denote the collection
of all domains obtained in this way.

Let H = H(D) denote the subgraph of Z2 whose vertices are the vertices
of α and V(D) and whose edges are those edges on this set of vertices which
do not intersect β . Since β is a tree, H is connected.

Since H is connected, there is at least one spanning tree T of H which
contains α. If we replace α by T and apply the dual argument, it follows that there
is also a tree T † in the dual grid (1/2 + Z)2, which is disjoint from T , contains β

and whose vertices are the dual vertices in β and the dual vertices in D. In fact, T †

contains every dual edge lying in D \ T .
We now need to give an orientation to the Peano grid G. Every edge in G

is either on the boundary of a square face of G centered on a primal vertex
or on the boundary of a square face of G centered on a dual vertex, and these
two possibilities are exclusive. We orient the edges of G by specifying that
the square faces of G containing a primal vertex are oriented clockwise, while
those containing a dual vertex are oriented counterclockwise. When we want to
emphasize the orientation of the edges, we write G→ instead of G. Note that the
edges of G contained in a horizontal or vertical line all get the same direction
in G→, and consecutive parallel lines get opposite orientations. For this reason,
G→ is often called the Manhattan lattice.

Let γ = γ (T ) denote the set of all edges of G→ which do not intersect T ∪ T †

and which have at least one endpoint in D. Let v ∈ VP \ {a, b} be some Peano
vertex in D. Note that there are precisely two oriented edges of G→ with initial
point v, say e1 and e2, where one of these, say e1, intersects an edge f1 of the
primal grid Z2, and the other intersects an edge f2 of the dual grid (1/2 + Z)2.
Note also that f1 ∩f2 �= ∅. It therefore follows that exactly one of the edges f1, f2
is in T ∪T †. Consequently, exactly one of the edges e1, e2 is in γ . This shows that
γ has out-degree 1 at every v ∈ VP \ {a, b}. An entirely similar argument shows
that γ has in-degree 1 at every such v. In particular, this shows that γ does not
contain the entire boundary of a square face of G that does not contain a primal
or dual vertex. If γ had a cycle, the cycle therefore would have to surround some
primal or dual vertex. But as T and T † are connected and disjoint from γ , this is
impossible. It therefore follows that γ is an oriented simple path (i.e., self-avoiding
path), and the endpoints of γ are a and b. Since we are assuming that D lies to the
right of [αa,βa], the initial point of γ is a and the terminal point is b.

Conversely, suppose that γ ∗ = (γ ∗
0 , . . . , γ ∗

�+1) is any oriented simple path
in G→, respecting the orientation of G→, from a to b, whose vertices are VP .
For n ∈ {0, . . . , � + 1}, let vn be the (unique) primal vertex adjacent to γ ∗

n and
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let v†
n be the dual vertex adjacent to γ ∗

n . Note that vn and vn+1 are either the same
vertex or adjacent vertices when n = {0, . . . , �}. Let αn = αn(γ

∗) denote the union
of α with the collection of all edges [vk, vk+1] for k < n such that vk �= vk+1 and,
similarly, let β = βn(γ

∗) denote the union of β with the collection of all dual
edges [v†

k , v
†
k+1] for k < n such that v

†
k �= v

†
k+1. Then T (γ ∗) := α�+1(γ

∗) and
T †(γ ∗) := β�+1(γ

∗) are obviously connected, and there are no edges in T (γ ∗)
intersecting edges in T †(γ ∗). Now, T (γ ∗) cannot contain a cycle, for such a
cycle would have to separate T †(γ ∗). Hence, T (γ ∗) is a spanning tree of H

containing α. It is also clear that γ ∗ = γ (T (γ ∗)). That is, T → γ (T ) is a bijection
between the set of spanning trees of H containing α and the set of oriented paths in
G→ ∩D from a to b containing VP . Hence, when T is the UST on H conditioned
to contain α, γ is uniformly distributed among such Peano paths; it is the UST
Peano path associated with (α,β, a, b).

Let (a = w0,w1, . . . ,w�+1 = b) be the order of the vertices in the UST Peano
path γ . For n ∈ {0,1, . . . , �}, let γ [0, n] denote the initial arc of γ from w0 to wn.
Since γ is uniformly distributed among simple oriented paths in G→ from a to b

which contain VP , we immediately get the following Markov property.

LEMMA 4.1 (Markovian property). Fix any n ∈ {1,2, . . . , �}. Conditioned on
γ [0, n], the distribution of (γ \ γ [0, n]) ∪ {wn} is the same as that of the UST
Peano curve associated with (αn(γ ),βn(γ ),wn, b).

This lemma will play the same role in the proof as Lemma 3.2 in the case
of the LERW. We will also use the convergence of certain discrete harmonic
functions toward their continuous counterparts. To facilitate this, we have to set
the combinatorial notation for the discrete Dirichlet–Neumann problem.

Let H be a finite nonempty connected subgraph of Z2 with vertices VH and
let E∂ denote the set of oriented edges in Z2 whose initial endpoint is in VH ,
but whose unoriented version is not in H . Suppose E∂ = E0 ∪ E1 ∪ E2 is a
disjoint union, where E0 ∪ E1 �= ∅. Suppose also that ĥ :VH → [0,1] is some
function. For v ∈ VH , set �H,E0,E1,E2 ĥ(v) := ∑

dĥ[v,u], where the sum is over

all neighbors u of v in Z2, and dĥ[v,u] := ĥ(u) − ĥ(v) when [v,u] /∈ E∂ ,
dĥ[v,u] := 0 − ĥ(v) when [v,u] ∈ E0, dĥ[v,u] := 1 − ĥ(v) when [v,u] ∈ E1
and dĥ[v,u] := 0 when [v,u] ∈ E2. Note that there is a unique ĥ :VH → [0,1]
such that �H,E0,E1,E2ĥ(v) = 0 in VH : ĥ(v) is the probability that a simple random
walk on H ∪ E0 ∪ E1 started from v will use an edge in E1 before using an edge
of E0. This ĥ will be called the �H,E0,E1,E2 -harmonic function.

PROPOSITION 4.2 (Dirichlet–Neumann approximation). For every ε > 0,
there is an r0 = r0(ε) such that the following holds. Let D ⊂ C be a simply
connected domain satisfying rad0(D) ≥ r0. Let A0,A1 ⊂ ∂U be two disjoint arcs,
each of length at least ε, and set A2 := ∂U \ (A0 ∪ A1). Let η ⊂ D be a simple
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closed path which surrounds 0, such that each point of η is within distance 5
from ∂D. Suppose that A′

0,A
′
1 ⊂ η are two disjoint arcs, A′

2 := η \ (A′
0 ∪ A′

1) and
the triple (A′

0,A
′
1,A

′
2) corresponds to (A0,A1,A2) under ψD , in the sense that

for each j = 0,1,2 and each p ∈ A′
j there is a continuous path σ : [0,1) → D

satisfying diamσ [0,1) ≤ 5, σ(0) = p, and lims↑1 ψD ◦ σ(s) exists and is in Aj .
Let H be the component of 0 in the set of edges of Z2 that do not intersect η.

For j = 0,1,2, let Ej denote the set of oriented edges [v,u] intersecting η, where
v is in H , and the first point of intersection from the direction of v is in A′

j . Let
ĥ denote the �H,E0,E1,E2-harmonic function. Let h : U → [0,1] be the continuous
harmonic function which has boundary value 0 on A0, 1 on A1, and satisfies the
Neumann boundary condition on A2. Then |ĥ(0) − h(0)| < ε.

The proof will be given in Section 5.4.

4.2. Driving process convergence. Let α,β, a, b and D = D(α,β, a, b) be as
above and suppose now that 0 ∈ D. As before, let � denote the number of Peano
vertices in D and let γ = (γ (0), . . . , γ (� + 1)) be the UST Peano path from a to
b in G→ ∩ D. For each n ≤ �, there are two domains that are naturally associated
to γ [0, n]. The first one (as in Lemma 4.1) is D̃n := D(αn,βn, γ (n), b) (see
Figure 7). But D̃n is not so useful if we want to make estimates using Loewner’s
equation. We therefore also define Dn := D \ γ [0, n]. Let φ0 = φ :D → H be
the conformal map which takes D to H, takes b to ∞, takes a to 0 and satisfies
|φ(0)| = 1. Let φn :Dn → H be the conformal maps satisfying φn(z)− φ0(z) → 0
as z → b within Dn. Define Wn := φn(γ (n)) ∈ R. Also let tn denote the capacity
from ∞ in H of φ0 ◦ γ [0, n], so that φn ◦ φ−1

0 (z) = z + 2tn/z + o(1/z) when
z → ∞ in H.

FIG. 7. The domain D̃n is shaded.
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We now prove the analog of Proposition 3.4 for the UST Peano curve. Let
HD(z,A) denote the continuous harmonic measure of A from z in the domain
D \ A.

PROPOSITION 4.3 (The key estimate). For every sufficiently small δ, ε > 0,
there is some r0 = r0(δ, ε) such that the following holds. Let γ,Dn,φn,Wn and tn
be as above, let k ∈ N and let m be the first n ≥ k such that |Wn − Wk| ≥ δ or
tn − tk ≥ δ2. Then

E[Wm − Wk|Dk] = O(δ3)(4.1)

and

E[(Wm − Wk)
2|Dk] = 8E[tm − tk|Dk] + O(δ3),(4.2)

provided that rad0(Dk) ≥ r0 and HDk
(0, αk(γ )) ∈ [ε,1 − ε].

PROOF. Assume first k = 0. Let v0 ∈ V(D) be some vertex such that
|φ(v0)| ≤ 2 and Im φ(v0) ≥ 1/2, say. [As we have seen in Section 3.2, there is such
a v0 when rad0(D) is large.] If Q = [q, q ′] is a line segment where q ∈ D is a dual
vertex and q ′ ∈ α is the midpoint of a dual edge containing q , then let φ∗(Q) ∈ R+
denote the limit of φ(z) as z tends to ∂D along Q (which always exists by [35],
Proposition 2.14). Fix such a Q0 satisfying U := φ∗(Q0) ∈ [1/2,2]; there clearly
is such Q0 when r0 is large, because the harmonic measure from 0 of any square
of the dual grid adjacent to the boundary of D is small. Let η ⊂ D be the set of
points within distance 1/10 from ∂D. Then η is a simple closed path. Consider it
as oriented counterclockwise around the bounded domain of C \ η. Let p0 be the
point of η closest to a, p1 the point in η ∩ Q0 and p2 the point of η closest to b.
Let A′

0 be the positively oriented subarc of η from p0 and p1, A′
1 the positively

oriented arc from p1 to p2 and A′
2 the positively oriented arc from p2 to p0.

Let A be the event that the path in the tree T (γ ) = α�+1(γ ) from v0 to α hits A′
1.

We will now estimate both sides of the identity

P[A] = E
[
P[A|Dm]](4.3)

using Proposition 4.2. By Wilson’s algorithm, P[A] is the probability that a simple
random walk on the graph H(D) started at v0 stopped on hitting α will cross A′

1.
This is exactly ĥ(v0), where the function ĥ is as defined in Proposition 4.2. Set

h(z) := 1

π
cot−1

(
1 − |z|

2 Im
√

z

)
= 1

π
cot−1

(
1 − r

2
√

r sin(θ/2)

)
,

where z = reiθ and we take the value of cot−1 between 0 and π . Note that h is
harmonic in H, is equal to 0 on (0,1), is equal to 1 on (1,∞), and ∂yh = 0 on
(−∞,0). (Of course, we found the map h satisfying these boundary conditions by
reflecting the domain along the negative real axis, mapping this larger domain to H
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with z → √
z and then using a conformal map from H to U to calculate the hitting

probabilities.) Consequently, Proposition 4.2 shows that if r0 is sufficiently large,
then

P[A] = h
(
φ(v0)/U

) + O(δ3).(4.4)

Set Vj := φj(v0) and Uj := φj ◦ φ−1
0 (U). By the chordal version of Loewner’s

equation and the definition of m, we have

Vm = V0 + 2tm

V0
+ O(δ3), Um = U0 + 2 tm

U0
+ O(δ3).(4.5)

Note also that rad0(Dm) > rad0(D)/2, v0 ∈ Dm and Um ∈ [1/4,4] provided that
δ is small enough.

We now employ a similar argument to estimate P[A|Dm]. Recall that D̃n =
D(αn,βn, γ (n), b). Assume that Q0 intersects D̃n, which will be the case if
Un > 1/4, say. Let ηn be the set of points in D̃n at distance 1/10 from ∂D̃n. Again,
ηn is a simple closed path, and we write ηn = A′

0(n)∪A′
1(n)∪A′

2(n), where A′
0(n)

is the arc of ηn from the closest point to γ (n) to the point of intersection of Q0
with ηn, A′

1(n) is the arc of ηn from the point in Q0 ∩ ηn to the point of ηn closest
to b and A′

2(n) is the remaining part of ηn. By Lemma 4.1, P[A|Dn] is the same
as the quantity ĥn(v0), where ĥn is the function ĥ defined in Proposition 4.2, but
with A′

0(n),A′
1(n),A′

2(n) and ηn replacing A′
0,A

′
1,A

′
2 and η and Dn replacing D.

(It is Dn replacing D, not D̃n. The conditions of Proposition 4.2 hold for either
of these, but the conformal map we consider is defined on Dn.) Proposition 4.2
therefore gives

P[A|Dm] = h

(
Vm − Wm

Um − Wm

)
+ O(δ3).(4.6)

Write f (U,V,W) := h((V − W)/(U − W)). We Taylor-expand the right-hand
side in (4.6) to second order in Wm and to first order in Vm − V0 and Um − U0.
Together with (4.3)–(4.5) this gives

0 = E
[
P[A|Dm]] − P[A]

= 1

2
∂2
Wf E[W 2

m] + ∂Wf E[Wm] + ∂V f
2E[tm]

V0
+ ∂Uf

2E[tm]
U0

+ O(δ3).

Here, the derivatives of f are evaluated at (V0,W0,U0). (Note that V is complex
valued, and we interpret ∂V f as an R-linear map from C to R.) If we plug in
V0 = i + O(δ3) and U0 = 1 + O(δ3) [as we have seen in Section 3.2, one can
certainly find v0 and u0 satisfying φ(v0) = i + O(δ3) and φ(u0) = 1 + O(δ3) if
r0 is large], then after some tedious but straightforward computations the above
equality simplifies to

E[W 2
m] + 2E[Wm] − 8E[tm] = O(δ3),
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while V0 = 2 i + O(δ3) and U0 = 1 + O(δ3) give

3E[W 2
m] + 8E[Wm] − 24E[tm] = Oδ3).

Combining these two relations implies (4.1) and (4.2) in the case k = 0. For k > 0,
the proof is basically the same; the only essential difference is that one must use
ηk in place of η. �

THEOREM 4.4 (Driving process convergence). For every positive ε1,ε2, ε3
and t̄ , there is some positive r1 = r1(ε1, ε2, ε3, t̄ ) such that the following holds.
Let D = D(α,β, a, b) ∈ D∗ satisfy rad0(D) > r1 and HD(0, α) ∈ [ε1,1 − ε1]. Let
γ be the corresponding UST Peano path, let φ :D → H denote the conformal map
which takes a to 0, b to ∞ and satisfies |φ(0)| = 1, let γ̂ := φ ◦ γ , parameterized
according to capacity from ∞, and let W(t) denote the Loewner driving process
for γ̂ . Then there is a coupling of standard Brownian motion B : [0, t̄ ] → R and
W such that

P
[
sup{|W(t) − B(8t)| : t ∈ [0, t̄ ]} > ε2

]
< ε3.

PROOF. The proof is almost identical to the proof of Theorem 3.7, where
we used Skorohod’s embedding, but one has to be a little careful because it may
happen that 0 is “swallowed” before time t̄ .

Let us first assume that φ(0) is close to i, say |φ(0) − i| < 1/100, and that t̄ is
small enough so that

t̄ ≤ 1/100 and P
[
B[0, t̄ ] ⊂ [−1/10,1/10]] > 1 − ε3/3,(4.7)

where B is standard Brownian motion. Take δ = δ(ε1, ε2, ε3) > 0 small and
ε = 1/10. Define r0(ε, δ) as in Proposition 4.3. Let k ∈ N be the first integer where
rad0(Dk) ≤ r0 or HDk

(0, αk) /∈ [ε,1 − ε] and define t̄0 := min{t̄ , tk}, where tn is as
in the proposition. Exactly as in the proof of Theorem 3.7, Proposition 4.3 implies
that we may couple W with a Brownian motion B in such a way that

P
[
sup{|W(t) − B(8t)| : t ∈ [0, t̄0]} > ε2/3

]
< ε3/3,

if rad0(D) ≥ r1 and r1 is large enough. By our assumptions regarding t̄ , we have
with high probability that, for all t ∈ [0, t̄0], W(t) ∈ [−1/5,1/5]. If we choose r1
large enough, this guarantees that P[t̄0 �= t̄ ] < ε3/3 and proves the theorem when
(4.7) is satisfied and φ(0) is close to i.

Consider now a general t̄ < ∞. Let t̄1 > 0 be some constant satisfying (4.7) and
let z0 := φ−1(2it̄ 2/t̄ 2

1 ). From the Koebe distortion theorem, it follows that there is
a constant c = c(t̄, ε1) such that radz0(D) ≥ c rad0(D). (See, e.g., Theorem 1.3 and
Corollary 1.4 in [35].) Consequently, by choosing r1 appropriately larger, we may
invoke the above argument with the basepoint moved from 0 to a vertex near z0
and with a smaller ε2. Rescaling now completes the proof of the theorem. �
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4.3. Uniform continuity. In order to prove convergence with respect to a
stronger topology, tightness will be needed, and we therefore derive in this section
some regularity estimates for UST Peano curves with respect to the capacity
parameterization. Some results from [38] will be used.

Let D ⊂ C be a simply connected domain containing 0, whose boundary is a
C1-simple closed path. Let a and b be two distinct points on ∂D. In this section,
we consider for large R the UST Peano curve from a point near Ra to a point near
Rb on a grid approximation of RD. One reason not to consider arbitrary domains
is that we need to partially adapt to the framework of [38] in order to quote results
from there. Also, it is natural (since the UST Peano curve is asymptotically space
filling) to impose regularity conditions on ∂D in order to get uniform regularity
estimates for the UST Peano curve.

Let αD and βD be, respectively, the clockwise and anticlockwise arcs of
∂D from b to a. Given R large, let DR = D(αR,βR, aR, bR) ∈ D∗ be an
approximation of (RD,RαD,RβD) in the following sense. Fix some sufficiently
large constant C > 0; for example, C = 10 would do. We require αR to be a
simple path in Z2 satisfying ρ(αR,RαD) ≤ C and require βR to be a simple
path in the dual grid (1/2 + Z)2 satisfying ρ(βR,RβD) ≤ C. We also require that
βR ∩ αR = ∅, of course, and that each of aR, bR is a Peano vertex adjacent to an
endpoint of αR and an endpoint of βR .

Let γ = γ R be the UST Peano path in DR . Let φ :D → H be the con-
formal homeomorphism satisfying φ(a) = 0, φ(b) = ∞ and |φ(0)| = 1. Let
φR :DR → H be the conformal homeomorphism satisfying |φR(0)| = 1, taking
aR to 0 and bR to ∞. Then limR→∞ R−1φ−1

R (z) = φ−1(z) uniformly in H. (This
follows, e.g., from Corollary 2.4 in [35].) Let γ̂ := φR ◦ γ , parameterized accord-
ing to capacity from ∞. Let gt : H \ γ̂ [0, t] → H be the conformal map with the
usual normalization gt (z) − z → 0 when |z| → ∞.

PROPOSITION 4.5 (Uniform continuity estimate). For every ε > 0 and t̄ > 0,
there are some positive R0 = R0(D, t̄, ε) and δ = δ(D, t̄, ε) such that, for all
R > R0,

P
[
sup{|γ̂ (t2) − γ̂ (t1)| : t1, t2 ∈ [0, t̄ ], |t2 − t1| ≤ δ} > ε

]
< ε.

We first prove a slightly modified version of this proposition.

LEMMA 4.6. For 0 < t1 < t2 < ∞, let Y (t1, t2) := diam(gt1 ◦ γ̂ [t1, t2]). For
every ε > 0, there is a δ = δ(D, ε) > 0 and an R0 = R0(D, ε) > 0 such that, for
all R ≥ R0,

P
[
sup{|γ̂ (t2) − γ̂ (t1)| : 0 ≤ t1 ≤ t2 ≤ τ,Y (t1, t2) ≤ δ} ≥ ε

]
< ε,(4.8)

where τ := inf{t ≥ 0 : |γ̂ (t)| = ε−1}.
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The proof will use Theorems 10.7 and 11.1(ii) of [38]. As explained there,
the proofs of these theorems are now easier, because we have established the
conformal invariance of the UST; see Corollary 1.2.

PROOF OF LEMMA 4.6. Let δR be a positive function of R such that
limR→∞ δR = 0. It suffices to show that (4.8) holds for all sufficiently large R

with δR in place of δ. Let Z denote the semicircle 2ε−1∂U ∩ H, say. For R large,
let t1 and t2 be such that |γ̂ (t2) − γ̂ (t1)| is maximal subject to the constraints
0 ≤ t1 ≤ t2 ≤ τ and Y (t1, t2) ≤ δR . Note that mint≤τ dist(gt (Z), gt ◦ γ̂ [t, τ ]) is
bounded from below, as γ̂ [0, τ ] ⊂ ε−1U. [Considering the harmonic measure from
a point near ∞, one deduces that the diameter of gt ((1/2)Z) is bounded below.
The extremal distance between gt (Z) and gt ((1/2)Z) is the same as the extremal
distance between Z and (1/2)Z. This shows that dist(gt (Z), gt ◦ γ̂ [t, τ ]) ≥
dist(gt (Z), gt ((1/2)Z)) is bounded from below.] Since Y (t1, t2) ≤ δR → 0 as
R → ∞, the extremal length of the collection of simple arcs in H \ gt1 ◦ γ̂ [t1, t2]
which separate gt1 ◦ γ̂ [t1, t2] from gt1(Z) goes to 0. By the conformal invariance of
the extremal length, it follows that the extremal length of the collection of simple
arcs in H \ γ̂ [t1, t2] which separate γ̂ [t1, t2] from Z in H \ γ̂ [0, t1] tends to 0 as
well. In particular, the shortest such arc for the Euclidean metric, say η, satisfies
limR→∞ length(η) = 0.

We are going to study separately the three cases where η is close to the origin,
close to the real line but not to the origin and not close to the real line. In each
case, we will see that the existence of such an η is very unlikely. Let A be the
event |γ̂ (t1) − γ̂ (t2)| ≥ ε. For s > 0, let X0(s) be the event dist(0, η) < s and let
X1(s) be the event dist(R, η) < s. We will prove

∀ s1 > 0, ∃R0 > 0, ∀R > R0, P[A \ X1(s1)] < ε,(4.9)

∀ s0 > 0, ∃ s1 > 0, ∃R0 > 0, ∀R > R0,
(4.10)

P[A ∩ X1(s1) \ X0(s0)] < ε,

∃ s0 > 0, ∃R0 > 0, ∀R > R0, P[A ∩ X0(s0)] < ε.(4.11)

Using these statements, the proof of the lemma is completed by choosing s0
according to (4.11), then choosing s1 according to (4.10) and, finally, choosing
R0 according to (4.9), (4.10) and (4.11).

We start with (4.9). Fix some s1 > 0 and assume that A \ X1(s1) holds. We
also assume that ε < s1. There is no loss of generality in that assumption, since
A is monotone decreasing in ε. Since limR→∞ length(η) = 0, for large R the two
endpoints of η must be in γ̂ [0, t1]. Because γ̂ tends to ∞ with t , it is clear that
γ̂ [t2,∞) ∩ η �= ∅. In fact, the crossing number of γ̂ [t2,∞) and η must be ±1,
since γ̂ and η are simple curves. Consider the concentric annulus A whose inner
circle is the smallest circle surrounding η and whose outer circle has radius ε/4.
Let B denote the open disk bounded by the outer circle of A and note that
B ⊂ H, by our assumption ε < s1. On the event A, there is a t∗ ∈ [t1, t2] such
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that the distance from γ̂ (t∗) to η is at least ε/2. In particular, γ̂ (t∗) /∈ B . Now,
η separates γ̂ (t∗) from ∞ in H \ γ̂ [0, t1]. Therefore, if A \ X1(s) holds, then
γ̂ [0, t1] ∪ η separates γ̂ (t∗) from ∞. Since γ̂ is a simple path, this implies that the
arc of γ̂ [0, t1] between the two points η ∩ γ̂ [0, t1] does not stay in B . Hence,
γ̂ [0,∞) ∩ B has three distinct connected components, say γ̂1, γ̂2, γ̂3, each of
which intersects the inner circle of A such that γ̂1, γ̂3 ⊂ γ̂ [0, t∗] and γ̂2 ⊂ γ̂ [t∗,∞)

and γ̂2 separates γ̂1 from γ̂3 within B . See Figure 8.
Note that adjacent to one side of φ−1

R (γ̂2) lies T , the UST, and T †, the dual UST,
is adjacent to the other side. Both are connected, and they do not intersect φ−1

R (γ̂ ).

It follows that there are paths χ1 ⊂ T and χ2 ⊂ T † with endpoints in φ−1
R (∂B),

each of which intersects the inner boundary of φ−1
R (A). But the diameter of the

inner boundary of R−1φ−1
R (A) goes to 0 as R → ∞, and the distance between the

two boundary components of R−1φ−1
R (A) does not. Hence, by [38], Theorem 10.7,

the probability that such a configuration appears somewhere goes to 0 with R.
(Although the result from [38] refers to the UST in the whole plane, the proof is
local, and since we are bounded away from the boundary, the result is applicable
here.) This proves (4.9).

Now fix s0 > 0 and let s1 > 0 be much smaller. Assume that A ∩ X1(s1) \
X0(s0) holds, ε < s1 and R is large. Also assume that η is closer to [0,∞)

than to (−∞,0]. Note that η is then bounded away from (−∞,0]. Let A be
defined as above and let B be the intersection of H with the disk bounded
by the outer boundary component of A. We now need to consider two distinct
possibilities. Either both endpoints of η are on γ̂ [0, t1], and then the configuration
is topologically as in the argument for (4.9), or one endpoint of η is on [0,∞).
But it is easy to see that in either case there is a simple path in T † which
intersects φ−1

R (η) whose endpoints are in φ−1
R (∂B), by an argument very similar

to the one given above. Now [38], Theorem 11.1(ii), shows that these events
have small probabilities if s1 is small. The case where η is closer to (−∞,0] is
treated similarly, with the roles of the tree and the dual tree switched. Thus, (4.10)
is established.

FIG. 8. The paths γ̂1, γ̂2 and γ̂3 and the annulus A.
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To prove (4.11), let s > 0 and let v ∈ Z2 be a vertex closest to φ−1
R (is). Let

v† ∈ (Z + 1/2)2 be a dual vertex adjacent to v. Let χ be the simple path from v

to αR in T and let χ† be the simple path from v† to βR in T †. We may sample
χ by running a simple random walk from v on H(DR) stopped on hitting αR

and loop-erasing it. It therefore follows by Proposition 4.2 that if s is sufficiently
small, then the diameter of φR(χ) is smaller than ε/10 with probability at least
1 − ε/10. Moreover, there is some s0 > 0 such that for all sufficiently large R

with probability at least 1 − ε/10 the distance from φR(χ) to 0 is at least s0,
and the same two estimates will hold for χ†. Let D′ be the domain bounded by
[v, v†] ∪ χ ∪ χ† ∪ ∂DR which has the initial point aR of γ on its boundary. Note
that γ crosses the boundary of D′ exactly once, through the segment [v, v†]. In
particular, if diam(φR(D′)) < ε and A holds, then η is not contained in φR(D′).
This proves (4.11) and completes the proof of the lemma. �

PROOF OF PROPOSITION 4.5. Theorem 4.4 implies that we may find some
r > 0 such that P[sup{|W(t)| : t ∈ [0, t̄ ]} ≥ r] < ε/4 for all sufficiently large R.
Let ε′ := min{ε, r−1} and let δ′ denote the δ obtained by using Lemma 4.6 with
ε′ in place of ε. Since Brownian motion is a.s. continuous, Theorem 4.4 implies
that there is some δ > 0 such that if R is large enough we have

P
[
sup{|W(t1) − W(t2)| : t1, t2 ∈ [0, t̄ ], |t1 − t2| < δ} ≥ δ′] < ε/4.

Lemma 2.1 applied to the path t → gt1 ◦ γ (t − t1) − W(t1) now implies

P
[
sup{Y (t1, t2) : 0 ≤ t1 ≤ t2 ≤ t̄ , |t1 − t2| < δ} ≥ C(δ1/2 + δ′)

]
< ε/4.

Now the proof is completed by using Lemma 4.6. �

4.4. Consequences. In this section we gather some consequences, starting
with the following two theorems.

THEOREM 4.7 (Chordal SLE8 traces a path). Let g̃t denote the chordal SLE8
process driven by B(8t), where B(t) is standard Brownian motion. Then, a.s. for
every t > 0, the map g̃−1

t extends continuously to H and γ̃ (t) := g̃−1
t (B(8t)) is a.s.

continuous. Moreover, a.s. g̃−1
t (H) is the unbounded component of H \ γ̃ [0, t] for

every t ≥ 0.

THEOREM 4.8 (Peano path convergence). Let D ⊂ C be a domain contain-
ing 0 such that ∂D is a C1-smooth simple closed path. Let ∂D = αD ∪ βD be a par-
tition of the boundary of D into two nontrivial complementary arcs. For R > 0, let
(DR,αR,βR) be an approximation of (RD,Rα,Rβ), as described in Section 4.3.
Let γ = γ R denote the UST Peano curve in DR with the corresponding boundary
conditions. Let φR :DR → H denote the conformal map which takes the initial
point of γ to 0, the terminal point to ∞ and satisfies |φR(0)| = 1. Let γ̂ := φR ◦ γ ,
parameterized by capacity from ∞. Then the law of γ̂ tends weakly to the law of γ̃

from Theorem 4.7.
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Here, we think of γ̂ and γ̃ as elements of the space of continuous maps from
[0,∞) to H, with the topology of locally uniform convergence.

A consequence of the theorem is that R−1γ is close to R−1φ−1
R ◦ γ̃ . That is, we

may approximate the UST Peano path γ by the image of chordal SLE8 in DR .
The analog of Theorem 4.7 was proven in [36] for all κ �= 8, but the particular

case κ = 8 could not be handled there. It is fortunate that the convergence of the
UST Peano path to SLE8 settles this problem. By Remark 7.5 in [36], it follows
that with the notation of Theorem 4.7 for κ ≥ 8 we have g̃−1

t (H) = H \ γ̃ [0, t] for
every t ≥ 0 a.s.

PROOF OF THEOREMS 4.7 AND 4.8. Let W(t) = WR(t) denote the chordal
Loewner driving process for γ̂ . Fix a sequence Rn → ∞. First, note that the family
of laws of γ̂ is tight, because of Proposition 4.5 and the Arzela–Ascoli theorem
(see, for instance, [17], Theorem 2.4.10). Also, Theorem 4.4 implies that the law
of W converges weakly to the law of B(8t). Hence, there is a subsequence of
Rn such that the law of the pair (γ̂ ,W) converges weakly to some probability
measure µ. Let (γ ∗,W ∗) be random with law µ. Then we may identify W ∗(t) with
B(8t). By the chordal analog of Lemma 3.14, which is valid with the same proof,
it follows that, for all t > 0, g̃−1

t (H) is the unbounded component of H \ γ ∗[0, t].
Since γ ∗ is continuous, elementary properties of conformal maps imply that g̃−1

t

extends continuously to H (e.g., Theorem 2.1 in [35]). It is easy to verify that, a.s.
for every t > 0, g̃−1

t (B(8t)) = γ ∗(t), using the fact that γ ∗[t, t ′] is contained in a
small neighborhood of γ ∗(t) when t ′ − t > 0 is small. This proves Theorem 4.7.
Because the law of the limit path γ ∗ does not depend on the subsequence, the
original sequence converges, and so Theorem 4.8 is proved as well. �

We now list some easy consequences of Theorems 4.7 and 4.8.

COROLLARY 4.9 (Radial SLE8 traces a path). Let g̃t denote a radial SLE8
process driven by W(t) = exp(iB(8t)), where B is standard Brownian motion.
Then, almost surely, for every t > 0, the map g̃−1

t extends continuously to U.
Moreover, g̃−1

t (W(t)) is almost surely continuous.

PROOF. This follows readily from Theorem 4.7 and the absolute continuity
relation between radial and chordal SLE8 derived in [28], Proposition 4.2. �

PROOF OF THEOREM 1.3. Define Gδ = δD1/δ , where D1/δ is defined as in
Theorem 4.8. Consider the situation of Theorem 4.8. As previously remarked, it
follows from [35], Corollary 2.4, that limR→∞ R−1φ−1

R (z) = φ−1(z) uniformly
in H. Consequently, Theorem 4.8 shows that, for all t̄ > 0, the UST Peano curve
scaling limit up to capacity t̄ from b is equal to φ−1 ◦ γ̃ up to time t̄ . It therefore
suffices to prove that for all ε > 0 there is an ε′ > 0 such that for all sufficiently
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large R with probability at least 1 − ε the part of γ after the first time it hits the
ε′-neighborhood of b stays within the ε-neighborhood of b. This is easily proved
by the same argument used to prove (4.11) applied to the reversal of the UST Peano
path, which is also a UST Peano path. �

COROLLARY 4.10 (Path reversal). The law of the chordal SLE8 curve is
invariant under simultaneously reversing time and inverting in the unit circle, up to
a monotone increasing time change. More precisely, if γ̃ is the chordal SLE8 curve
from 0 to ∞ defined in Theorem 4.7, then a time change of (−1/γ̃ (1/t), t ≥ 0) has
the same law as γ̃ .

PROOF. This follows immediately from the fact that the reversed UST Peano
curve is also a UST Peano curve. �

5. Random walk estimates. The goal of this section is to prove the remaining
random walk estimates and thereby complete the proofs of the theorems. Basically,
we show that, under certain boundary conditions, discrete harmonic functions
converge to continuous harmonic functions satisfying corresponding boundary
conditions, as the mesh of the grid goes to 0. This general principle is not new,
of course (see, e.g., [6]), but it seems that the precise statements which are needed
here do not appear in the literature. In particular, our results make no smoothness
assumptions on the boundary. It should perhaps be noted that some of the following
proofs (and most likely the results, too) are special to two dimensions.

5.1. Preliminary lemmas. We now state some lemmas on discrete harmonic
functions, which will be helpful in the proofs of Proposition 2.2, Lemma 3.5 and
Proposition 4.2.

For δ > 0, define the discrete derivatives

∂δ
xf (v) := δ−1(

f (v + δ) − f (v)
)
,

∂δ
yf (v) := δ−1(

f (v + iδ) − f (v)
)
.

Let Dδ := {δD :D ∈ D}, that is, domains adapted to the grid δZ2. Similarly, for
Dδ = δD ∈ Dδ , define V δ(Dδ) := Dδ ∩ δZ2 = δV(D) and V δ

∂ (Dδ) := δV∂(D).

LEMMA 5.1 (Discrete derivative estimate). There is a constant C > 0 such
that, for every D ∈ D and every bounded function h :V(D) ∪ V∂(D) → R that is
harmonic in V(D),

∂1
xh(0) ≤ C rad0(D)−1‖h‖∞, ∂1

yh(0) ≤ C rad0(D)−1‖h‖∞.(5.1)

This lemma is proved using the Green’s functions in [25], Theorem 1.7.1; see
also [16], Lemma 7.1, for a proof of the analogous statement in the triangular
lattice using the maximum principle. In Section 6, we rewrite and adapt the proof
from [25] to more general walks on planar lattices. One can also rather easily prove
the lemma using coupling.
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LEMMA 5.2. For all ε > 0 and k ∈ N, there exists a c = ck(ε) > 0 such that
the following always holds. Let δ ∈ (0, c−1) and let D ∈ Dδ satisfy rad0(D) ≥ 1/2.
Let ∂δ

a1
, . . . , ∂δ

ak
∈ {∂δ

x, ∂δ
y}. Let h :V δ(D) ∪ V δ

∂ (D) → [0,∞) be nonnegative and

harmonic in V δ(D). If v ∈ V δ(D) satisfies |ψD(v)| ≤ 1 − ε, then∣∣∂δ
a1

∂δ
a2

· · · ∂δ
ak

h(v)
∣∣ ≤ ch(0).(5.2)

Note that the case k = 0, which is included, is a kind of Harnack inequality.
It is easy to give quantitative estimates for ck(ε), but they will not be needed

here. Only k ≤ 3 will be used in the rest of the paper.
In the proof of the lemma, the following simple conformal geometry conse-

quences of the Koebe distortion theorem (see [35], Theorem 1.3) will be needed.
Let D,ε and v be as in the statement of the lemma. First, note that 1/4 ≤
rad0(D)ψ ′

D(0) ≤ 1 follows from the Koebe 1/4 theorem and the Schwarz lemma,
respectively. Let � = �(ε) be large and set zj := j ψD(v)/� and wj := ψ−1

D (zj ),
j = 0,1, . . . , �. The Koebe distortion theorem gives upper and lower bounds for
rad0(D) |ψ ′

D| on the preimage of the line segment [0, z�]. This implies that there
is a constant c1 = c1(ε) > 0 such that radwj

(D) ≥ c1 rad0(D) and that if � = �(ε)

is large, then, |wj − wj−1| ≤ c1 rad0(D)/20, j = 1, . . . , �. In particular, if vj is
the vertex in V δ(D) closest to wj , then, provided that δ is sufficiently small,
|vj − vj−1| ≤ radvj−1(D)/10.

PROOF OF LEMMA 5.2. We start with k = 0. Suppose first that |v| ≤
rad0(D)/10. Let W ⊂ V δ(D) be the set of vertices w satisfying h(w) ≥ h(v).
Then W contains a path from v to ∂D. But the probability p that the path
traced by a simple random walk from 0 before exiting D separates v from ∂D

is bounded away from 0. On that event, the simple random walk hits W before
exiting D. Consequently, h(0) ≥ ph(v), as needed. For arbitrary v ∈ V δ(D)

satisfying |ψD(v)| ≤ 1−ε, as we have noted, the Koebe distortion theorem implies
that there is an � = �(ε) depending only on ε and a sequence 0 = v0, v1, . . . , v� = v

in V δ(D) with � ≤ �(ε) such that |vj −vj−1| ≤ radvj
(D)/10 for each j = 1, . . . , �.

Consequently, iterating the above result gives h(0) ≥ p�h(v) and proves the case
k = 0.

Using the above, we know that h(w) ≤ c′h(0) on the set of vertices w ∈ V δ(D)

such that |w−v| ≤ radv(D)/10, where c′ = c′(ε) is some constant depending only
on ε. Consequently, the case k = 1 now follows from Lemma 5.1 applied with v

translated to 0.
For k > 1, the proof is by induction. By the above, we may assume v = 0.

Let M be the maximum of |∂δ
ak

h(w)|/h(0) on the set V of vertices w ∈ V δ(D)

satisfying |w| ≤ rad0(D)/10. The above shows that M is bounded by a universal
constant. Since ∂δ

ak
h is discrete harmonic on V , the proof is completed by applying

the inductive hypotheses to the function ∂δ
ak

h(w) + Mh(0). �
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LEMMA 5.3 (Continuous harmonic approximation). For every ε > 0, there is
some r0 = r0(ε) > 0 such that the following holds. If D ∈ D satisfies rad0(D) ≥ r0
and h :V(D) ∪ V∂(D) → [0,∞) is discrete harmonic in V(D), then there exists a
harmonic function h∗ :D → [0,∞) such that

|h∗(v) − h(v)| ≤ εh(0)(5.3)

holds for every vertex v ∈ V(D) satisfying |ψD(v)| < 1 − ε.

PROOF. Suppose that the lemma is not true. Then there exists ε > 0 and a
sequence of pairs (Dn,hn), where Dn ∈ D satisfies rad0(Dn) ≥ n and hn > 0 is
discrete harmonic in V(Dn), satisfies hn(0) = 1, but (5.3) fails for every harmonic
function ĥ.

Set δ = δn := 1/ rad0(Dn). Our objective is to apply compactness to show
that the maps hn ◦ ψ−1

D converge locally uniformly in U as n → ∞ along some
subsequence to some harmonic ĥ, so that (5.3) does hold for some n. We put
hn(v) := hn(v/δn).

First, standard compactness properties of conformal maps say that one can
take a subsequence such that the maps δnψ

−1
Dn

converge locally uniformly in U to
some conformal map, say φ. (This follows, e.g., from the Arzela–Ascoli theorem,
together with [35], Corollary 1.4, with z = 0 and part two of [35], Theorem 1.3.) If
K ⊂ U is compact, then Lemma 5.2 shows that there is a constant C > 0 such that,
for all sufficiently large n in the subsequence, the discrete derivatives |∂δ

xhn| and
|∂δ

yhn| are bounded by C in φ(K) ∩ V(δDn). By a variant of the Arzela–Ascoli
theorem, it then follows that there is some continuous h∗ :φ(U ) → [0,∞) and a
further subsequence such that, for every compact K ⊂ φ(U ),

sup{|hn(v) − h∗(v)| :v ∈ K ∩ δZ2} → 0

along the subsequence. The same argument may also be applied to prove the
convergence of the discrete derivatives of hn to arbitrary order, possibly in a
further subsequence. Obviously, the discrete derivatives of hn will converge to
the corresponding continuous derivatives of h∗; that is,

sup
{∣∣∂δ

a1
· · · ∂δ

ak
hn(v) − ∂a1 · · · ∂ak

h∗(v)
∣∣ :v ∈ K ∩ δZ2} → 0,(5.4)

where ∂δ
aj

∈ {∂δ
x, ∂

δ
y} and ∂aj

∈ {∂x, ∂y} is the corresponding continuous derivative,
j = 1,2, . . . , k. The fact that hn is discrete harmonic translates to (∂δ

x)2hn(v−δ)+
(∂δ

y)2hn(v − iδ) = 0. Therefore, (5.4) shows that h∗ is harmonic. This completes
the proof. �

LEMMA 5.4 (Boundary hitting). For every ε1, ε2 > 0, there is a δ =
δ(ε1, ε2) > 0 such that if D ∈ D and w ∈ V(D) is a vertex satisfying |ψD(w)| ≥
1 − δ, then the probability that the simple random walk started at w will hit

{v ∈ V(D) : |ψD(v) − ψD(w)| > ε1}
before hitting ∂D is at most ε2.
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PROOF. We first prove the lemma in the case where ε2 is very close to 1.
Let δ > 0 be much smaller than ε1. Fix some vertex w ∈ V(D) and suppose that
|ψD(w)| ≥ 1 − δ. Let

α := {z ∈ D : |ψD(z) − ψD(w)| = ε1}.
Let z1 be a point in ∂D closest to w and set r := dist(w, ∂D) = |z1 − w|. Let
A1 be the line segment [w,z1]. Let Q be the connected component of C(z1, r)∩D

which contains w, where C(z, r) denotes the circle of radius r and center z. Then
Q is an arc of a circle. Let A2 and A3 denote the two connected components of
Q \ {w}. See Figure 9. For j = 1,2,3, let Kj be the connected component of
D \ (A1 ∪ A2 ∪ A3) which does not have Aj as a subset of its boundary.

Because δ is small compared to ε1, the Koebe distortion theorem (e.g.,
Corollaries 1.4 and 1.5 in [35]) shows that α ∩ C(w, r/8) = ∅. For j = 1,2,3,
let Sj be the collection of all paths which stay in Kj from the first time they
hit C(w, r/8) until they first exit from D. Let B(t) denote Brownian motion
started from w. It is easy to see that there is a universal constant c1 > 0 such
that P[B ∈ Sj ] > c1 for j = 1,2,3. For example, to prove this for j = 3, observe
that the collection of Brownian paths which first hit C(w, r/8) in K3 and later hit
A3 before A1 ∪ A2 has probability bounded away from 0.

Suppose for the moment that α intersects A1 and A2. Consider a subarc α′ ⊂ α

whose endpoints are in A1 and A2, which is minimal with respect to inclusion.
Then α′ ⊂ K3 or α′ ⊂ K1 ∪ K2. If α′ ⊂ K3, then α′ separates C(w, r/8) from ∂D

in K3. Consequently, on the event B ∈ Sj , B hits α before hitting ∂D. However,
by choosing δ to be sufficiently small and invoking the conformal invariance of
the harmonic measure, we may ensure that the latter event has probability smaller
than c1. An entirely similar argument rules out the possibility that α′ ⊂ K1 ∪ K2.
Similarly, it is not possible that α intersects both A1 and A3 or that α intersects

FIG. 9. The arcs Aj and the components Kj .
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both A2 and A3. Hence, there is some j ∈ {1,2,3} such that α ∩Kj = ∅. Let j ′ be
such a j .

By the convergence of a simple random walk to Brownian motion, it is
clear that there is some universal constant r0 > 0 such that if r > r0, then the
probability that the simple random walk started from w is in Sj ′ is at least c1/2.
This establishes the lemma in the case where ε2 ∈ (1 − c1/2,1] and r > r0.
Suppose r ≤ r0. Then there are two grid paths of bounded length starting from w

to ∂D that are disjoint except at w. If α intersects both these paths, then this gives a
lower bound for the continuous harmonic measure of α from w. Consequently, by
making δ small enough, we can make sure that this does not happen. Thus, again,
with probability bounded away from 0, the random walk from w hits ∂D before α,
since it may follow any one of these two paths. This proves the lemma in the case
where ε2 ∈ (c2,1], where c2 is some universal constant.

The Koebe distortion theorem implies that there is a constant c > 0 such that
if v1, v2 ∈ V(D) are neighbors, then 1 − |ψD(v2)| ≤ c(1 − |ψD(v1)|). (See, e.g.,
Corollaries 1.4 and 1.5 in [35].) Consequently, we may iterate the above restricted
case of the lemma and use the Markov property, thereby proving the lemma for
arbitrary ε2 > 0. �

5.2. The hitting probability estimate.

PROOF OF PROPOSITION 2.2. Let ε1 > 0 be much smaller than ε. We
consider the discrete harmonic function h(w) := H(w,u)/H(0, u). For δ > 0, let

V (δ, ε1) := {z ∈ V(D) : |ψD(z)| ≥ 1 − δ, |ψD(z) − ψD(u)| > ε1}.
Our first goal is to show that, for every ε1 ∈ (0,1/4), there is some δ = δ(ε1) > 0

and some r0 = r0(ε1) > 0 such that

max{h(z) : z ∈ V (δ, ε1)} < ε1,(5.5)

provided that rad0(D) > r0. This will be achieved by first showing that h is not too
large on the set

W := {z ∈ V(D) : ε1/2 ≥ |ψD(z) − ψD(u)| ≥ ε1/3}
and then letting δ go to 0 and appealing to Lemma 5.4.

Assume that rad0(D) is sufficiently large so that any nearest neighbor path from
0 to u in D has a vertex in W . Let M denote the maximum of h on W . We claim
that M is bounded by a constant c = c(ε1) depending only on ε1. Indeed, let K be
the set of all v ∈ V(D) satisfying h(v) ≥ M/2 and let K ′ be the union of all edges
where both endpoints are in K ∪ {u}. Then the maximum principle shows that
K ′ is connected and contains a simple nearest neighbor path J joining W to u

whose vertices are in {z ∈ V(D) : |ψD(z) − ψD(u)| ≤ ε1/2} ∪ {u}. Note that, in
particular, diam(ψD(J )) ≥ ε1/3. Consequently, the continuous harmonic measure
from 0 of J in D is bounded from below by some constant c1(ε1) > 0.
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We claim that the discrete harmonic measure HD(0, J ) of J at the origin is
also bounded away from 0 if r0 is large enough. Indeed, let D′ = D \ J and let
A be the arc on ∂U corresponding to J under the map ψD′ . The length of A

is bounded from below, since it is equal to 2π times the harmonic measure
of J . Let A′ denote the middle subarc of A having half the length of A. By
Lemma 5.4 applied to the domain D′, it follows that there is a c2 = c2(ε) ∈
(0,1/10), such that HD′(v, J ) ≥ 1/2 on vertices v such that ψD′(v) is within
distance c2 of A′. Using Lemma 5.3 with ε replaced by c2/4, we find that if
r0 is large, there is a nonnegative harmonic function h∗

J :D′ → [0,∞) such that
|h∗

J (v)−HD′(v, J )| ≤ c2/4 for all v ∈ V(D′) satisfying |ψD′(v)| < 1−c2/4. Take
a ∈ A′ and z := (1 − c2/2)a. Then it follows from the Koebe distortion theorem
(as in the argument toward the end of the proof of Proposition 3.4) that we may
find a vertex v ∈ V(D′) such that |ψD′(v) − z| < c2/4, assuming that r0 is large
enough. Thus, h∗

J (v) > HD′(v, J ) − c2/4 ≥ 1/2 − c2/4 > 1/4. By the Harnack
principle applied to h∗

J , there is a universal constant c3 > 0 such that h∗
J (z) ≥ c3.

Since this applies to every z ∈ (1 − c2/2)A′, the mean value property for h∗
J gives

h∗
J (0) ≥ c3 length(A′)/(2π). Since |h∗

J (0) − HD′(0, J )| < c2/4, our claim that
H ′

D(0, J ) is bounded away from 0 is established. Since h is positive, harmonic
h(0) = 1 and h ≥ M/2 on J , this also gives the bound M ≤ c(ε).

Since h is harmonic, Lemma 5.4 with ε̃1 = ε1/2 and ε2 := ε̃1/c(ε) instead of ε1,
ε2 implies that if δ = δ(ε1) is sufficiently small, and rad0(D) is large enough to
guarantee that W separates V (δ, ε1) from u (in the graph-connectivity sense), then
h(z) ≤ Mε2 < ε1 for all z ∈ V (δ, ε1): (5.5) holds.

Now apply Lemma 5.3 again to conclude that there is a harmonic function
ĥ : U → [0,∞) such that

|ĥ ◦ ψD(z) − h(z)| < ε1

for all z ∈ V(D) such that |ψD(z)| < 1 − δ/4. Set h̃(z) := ĥ((1 − δ/2)z). We
know that h̃ ≥ 0 in ∂U, h̃(z′) ≤ 2ε1 on the set S := {z′ ∈ ∂U : |z′ − ψD(u)| ≥ 2ε1}.
Consequently, the Poisson representation of h̃ gives

h̃(z) = O(ε1) +
∫
∂U\S

h̃(z′) 1 − |z|2
|z − z′|2 |dz′|.

Since h̃(0) = 1 + O(ε1) and ε1 is arbitrary, the proposition follows. �

5.3. Some Green’s function estimates. As opposed to Proposition 2.2,
Lemma 3.5 requires only crude bounds. It is actually possible to prove that
G0(0,0) − Gm(0,0) is close to tm, but we do not need this result here.

PROOF OF LEMMA 3.5. We start with (3.5). Let S be the set of vertices in
V(D) satisfying (3.3) and assume S �= ∅. For a random walk starting from a vertex
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in S, there is probability bounded away from 0 that within rad0(D)2 steps it will
exit D. This gives ∑

w∈S

GD(0,w) ≤ O(1) rad0(D)2.(5.6)

On the other hand, with probability bounded away from 0, the number of steps
into vertices in S for the random walk started at 0 that is stopped on exiting D is
greater than rad0(D)2. Therefore,

O(1)
∑
w∈S

GD(0,w) ≥ rad0(D)2.(5.7)

By reversing the walk, we know that GD(0,w) = GD(w,0). Since GD(w,0) is
harmonic on V(D) \ {0}, the Harnack principle [i.e., k = 0 in (5.2)] can be used
to show that GD(w,0)/GD(w′,0) = O(1) when w,w′ ∈ S. Combining this with
GD(0,w) = GD(w,0) and the estimates (5.6), (5.7) gives (3.5).

By Lemma 2.1, we have

diam(ψD ◦ γ [0,m]) = O(δ).(5.8)

In the following, we fix γ [0,m] (i.e., it will be considered deterministic).
Let z be the vertex where a simple random walk from 0 first exits Dm. By
considering what happens to the random walk after first hitting z, we get the
identity G0(0, v) − Gm(0, v) = E[G0(z, v)] [where G0(z, v) = 0 for z /∈ V(D),
by definition]. Consequently,

G0(0, v) − Gm(0, v) ≤ P
[
z ∈ γ [0,m]] max{E[G0(γj , v)] : j = 1, . . . ,m}.

By (5.8), the continuous harmonic measure from 0 of ψD ◦ γ [0,m] in U is O(δ).
Therefore, the continuous harmonic measure from 0 of γ [0,m] in D is also O(δ).
As in the argument given in Section 5.2, this implies that if rad0(D) is large
enough, P[z ∈ γ [0,m]] = O(δ).

Let K denote the disk {w ∈ D : |w − v| < rad0(D)/10} and fix some j ∈ {1,

2, . . . ,m}. Since ψD ◦ γ [0,m] is contained in U \ (1 − O(δ))U. It follows that
the continuous harmonic measure of K from γj in D is O(δ). If ψD(γj ) is
sufficiently close to ∂U (how close may depend on δ), then we can make sure
that the corresponding discrete harmonic measure HD(γj ,K) is less than δ by
Lemma 5.4. If ψD(γj ) is not close to ∂U, then when rad0(D) is large the bound
HD(γj ,K) ≤ O(δ) follows by the convergence of the discrete harmonic measure
to the continuous harmonic measure, as we have seen before. If w ∈ V(D) ∩ K

neighbors with a vertex outside of K , then G0(w, v) = O(1) follows from (5.7)
by translating w to 0. Hence, G0(γj , v) = O(1)HD(γj ,K) = O(δ). Putting these
estimates together completes the proof. �
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5.4. Mixed boundary conditions. Recall that Proposition 4.2, which we will
now prove, is not used in the proof of Theorem 1.1.

PROOF OF PROPOSITION 4.2. Suppose first that the distance between
A0 and A1 is at least ε. Let A∗

0 and A∗
1 denote the two connected components

of η \ (A′
0 ∪ A′

1) such that the sequence (A′
0,A

∗
0,A

′
1,A

∗
1) conforms to the

counterclockwise order along η. This induces a corresponding partition E2 =
E∗

0 ∪ E∗
1 of E2, according to whether or not the first point on the edge is in A∗

0
or in A∗

1.
We need to use the discrete harmonic conjugate function k̂ of ĥ. To be perfectly

precise, it is necessary to set some combinatorial infrastructure: we first define
a (multi-) graph Ĥ , and k̂ will be defined on the planar dual Ĥ † of Ĥ . The
vertices of Ĥ are VH ∪ {v0, v1} (where v0 and v1 are new symbols not appearing
in VH ). As edges of Ĥ , we take all the edges of H , and, additionally, for every
j = 0,1 and every directed edge [v,u] in Ej , there is a corresponding edge [v, vj ]
in Ĥ . Finally, there is also the edge [v0, v1] in Ĥ . Consider a planar embedding
of Ĥ which extends the planar embedding of H such that v0 and v1 are in the
unbounded component of C \ H . Let Ĥ † denote the planar dual of Ĥ . Then there
is a unique edge [v†

0, v
†
1] in Ĥ † which crosses [v0, v1]. We choose the labels so

that v
†
j naturally corresponds to A∗

j , j = 0,1. Set ĥ(vj ) := j , j = 0,1. If we

consider ĥ as a function on Ĥ , then it is discrete harmonic except at v0 and v1.
This easily implies (see, e.g., [7] or, more explicitly, [4]) that there is a discrete
harmonic conjugate k̂ defined on the vertices of Ĥ †; that is, for every directed edge
e = [u, v] in Ĥ if {u, v} �= {v0, v1}, then the discrete Cauchy–Riemann equation
ĥ(v)− ĥ(u) = k̂(v†)− k̂(u†) holds, where [u†, v†] is the edge of Ĥ † intersecting e

from right to left. In fact, k̂ is harmonic in Ĥ † except at v
†
0 and v

†
1 . The function k̂

is unique, up to an additive constant. We choose the additive constant so that
k̂(v

†
0) = 0. Since ĥ ≥ 0, by considering the neighbors of v0 and the orientation,

it follows that k̂(v
†
1) ≥ 0.

Consider a sequence Dn of such domains satisfying rad0(Dn) ≥ n, with arcs
η = ηn and such harmonic functions ĥn, k̂n. Let Ln denote the maximum value
of k̂n, which is the value of k̂n on v

†
1 .

Since ε > 0 is fixed, we can consider a subsequence of n → ∞ such that the arcs
A0 and A1 converge to arcs Ã0 and Ã1 of length at least ε, and the distance between
them is at least ε. Let Ã∗

0 and Ã∗
1 denote the two components of ∂U \ (Ã0 ∪ Ã1),

so that Ã0, Ã
∗
0, Ã1, Ã

∗
1 is the positive order along ∂U of these arcs.

We now separate the argument into two cases according to whether or
not Ln > 1. Suppose that Ln > 1 for infinitely many n and take a further
subsequence of n such that Ln > 1 along that subsequence. Then k̂n/Ln and
ĥn/Ln are both bounded by 1. It follows from Lemma 5.3 that after taking a
further subsequence, if necessary, there are harmonic functions h and k on U
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such that L−1
n ĥn ◦ ψ−1

Dn
→ h and L−1

n k̂n ◦ ψ−1
Dn

→ k uniformly on compact subsets

of U (appropriately interpreted, since ĥn and k̂n are only defined on vertices and
dual vertices, not on every point of Dn). Moreover, (5.4) shows that h and k are
harmonic conjugates, because the discrete Cauchy–Riemann equations tend to the
continuous Cauchy–Riemann equations.

By Lemma 5.4, it follows that k is, respectively, equal to 0 and 1 in the
relative interior of Ã∗

0, Ã
∗
1, and similarly h has boundary values 0 and 1/L̃ in

Ã0 and Ã1, where L̃ := limn→∞ Ln (where the limit is along the subsequence
and must exist and be finite). By Schwarz reflection, say, this implies that h and k

satisfy Neumann boundary conditions in Ã∗
0 ∪ Ã∗

1 and Ã0 ∪ Ã1, respectively. It
now easily follows (e.g., from the maximum principle) that h + ik is the (unique)
conformal map taking U to the rectangle [0,1/L̃]×[0,1] which takes the four arcs
Ã0, Ã

∗
0, Ã1, Ã

∗
1 to the corresponding sides of the rectangle.

The argument in the case where Ln ≤ 1 for infinitely many n proceeds in the
same manner, except that one should not divide ĥn ◦ ψ−1

Dn
and k̂n ◦ ψ−1

Dn
by Ln.

It remains to remove the assumption that the distance between A0 and A1 is at
least ε. Observe that the probabilistic description of ĥ shows that it is monotone
increasing in A′

1 and monotone decreasing in A′
0. Take ε′ > 0 much smaller than ε.

Then ĥ(0) for the given configuration is bounded from above by the value of ĥ(0)

for the configuration where arcs of length ε′ are removed at the two ends of A1,
and A′

1 is adjusted accordingly. Similarly, ĥ(0) is bounded from below by the
value of ĥ(0) for the configuration where such arcs are removed at the two ends
of A0. The difference between the value of h for the original versus any of the
modified configurations goes to 0 as ε′ → 0, since h depends continuously on
(A1,A2), as long as the length of A1 ∪ A2 is not 0. Consequently, we get the
proposition by applying the restricted version proved above with ε′ in place of ε

and by “sandwiching.” �

6. Other lattices. For convenience and simplicity, the proofs up to now have
been written for the loop-erased random walk and UST Peano curve on the square
grid. The purpose of this section is to briefly indicate how to adapt the proofs to
more general walks on more general grids. In order to keep this section short, we
will not try to consider the most general cases.

Let L be a (strictly two-dimensional) lattice in R2; that is, L is a discrete additive
subgroup of R2 that is not contained in a line. Discrete means that there is some
neighborhood of 0 whose intersection with L is {0}. Suppose that G is a planar
graph whose vertices are the elements of L, and G is invariant under translation
by elements of L. That is, if u, v ∈ L are neighbors in G and � ∈ L, then � + u

neighbors � + v. It is not hard to verify that there is a linear map taking L to the
triangular lattice such that neighbors in G are mapped to vertices at distance 1. In
particular, as a graph, G is isomorphic to the triangular grid or to the square grid.
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Let N be the set of neighbors of 0 in G and let N ′ := {0} ∪ N . Let X be an
N ′-valued random variable and let X1,X2, . . . be an i.i.d. sequence where each
Xn has the same law as X. Consider the random walk

Sn :=
n∑

j=1

Xj

on G. We are interested in the situation where the scaling limit of Sn is standard
Brownian motion. For this purpose, we require that E[X] = 0 and that the
covariance matrix of X is the identity matrix. (Note that if the covariance matrix
of X is nondegenerate but not equal to the identity, we can always apply a linear
transformation to the system to convert to the above situation. Therefore, what
we say below also applies in that case, provided that we appropriately modify the
linear complex structure on R2.)

Note that, under these assumptions, the Markov chain corresponding to the walk
Sn does not need to be reversible. An interesting particular example the reader may
wish to keep in mind is where P[X = exp(2πij/3)] = 1/3 for j = 0,1,2.

THEOREM 6.1. Theorem 1.1 applies to the loop erasure of the random
walk Sn.

PROOF. An inspection of the proof of Theorem 1.1, including all the necessary
lemmas, shows that only the generalization of the proof of Lemma 5.1 to the
present framework requires special justification, which is given below. �

LEMMA 6.2. Let τr denote the first time n with |Sn| ≥ r . There exists a
constant C, depending on X but not on r , such that, for all r ≥ C, w ∈ N and
y ∈ L, ∣∣P0[

Sτr = y
] − Pw

[
Sτr = y

]∣∣ ≤ Cr−1P0[
Sτr = y

]
.

Here, Pw denotes the law of the Markov chain started from w; that is, the law
of (Sn + w :n ∈ N) under P = P0. This lemma is clearly sufficient to provide the
necessary analog of Lemma 5.1 for Sn.

PROOF OF LEMMA 6.2. There are various ways to prove the lemma (via
coupling, for instance). We give here a proof based on the Green’s functions, as
in [25]. Without loss of generality, we assume that P[X = 0] > 0 and that L is the
minimal lattice containing {w ∈ N :pw > 0}. Then the random walk is irreducible
on L. The discrete Laplacian �X associated with X is defined by

�Xf (z) := E[f (z + X)] − f (z).

Let a be the potential kernel for the random walk,

a(z) :=
∞∑

j=0

(P0[Sj = 0] − P0[Sj = −z]).
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It is known that the series converges and, in fact,

a(z) = c1 log |z| + c2 + O(|z|−1)(6.1)

as |z| → ∞, z ∈ L (where c1, c2 depend on the law of X). This is proved in [12] for
the lattice Z2 with arbitrary nondegenerate covariance matrix (with an appropriate
dependence on the matrix), so the above follows for other L by applying a linear
transformation. Since P0[Sj = −z] = Pz[Sj = 0], it follows that

�Xa(z) =
{

1, z = 0,

0, z �= 0.

Let Gr denote the Green’s function for the walk in L ∩ rU, that is, Gr(z, z
′) :=∑

j∈N Pz[j < τr, Sj = z′]. Note that, for all z,w ∈ L ∩ rU,

a(z − w) + Gr(z,w) = Ez[a(
Sτr − w

)]
,(6.2)

since for fixed w both sides are �X-harmonic for z ∈ L ∩ rU and equality holds
for z ∈ L\ rU. Set M := max{|w| :w ∈ N} and Z = {z ∈ L : r/2 ≤ |z| < M + r/2}.
By (6.1) and (6.2), Gr(z,w) = c1 log 2 + O(r−1) for z ∈ Z and w ∈ N ′. The
same argument applied to the reverse walk −Sj , which has potential kernel
ā(z) = a(−z) and Green’s function Ḡr(z,w) = Gr(w, z), gives

∀w ∈ N ′, ∀ z ∈ Z, Gr(w, z) = c1 log 2 + O(r−1).(6.3)

Assuming r > 4M , by considering the last vertex in Z visited by the walk before
time τr , we obtain, for all w ∈ N ′ and all y ∈ L,

Pw[
Sτr = y

] = ∑
z∈Z

Gr(w, z)Pz[Sτr = y,min{j ≥ 1 :Sj ∈ Z} > τr

]
.

Together with (6.3), this completes the proof of the lemma. �

Observe that Theorem 1.1 also holds for the simple random walk on the
honeycomb grid, because two steps on the honeycomb lattice are the same as a
single step on a triangular grid containing every other vertex on the honeycomb
grid, and so Lemma 6.2 may be applied.

We now turn our attention to spanning trees and the generalizations of
Corollary 1.2 and Theorem 1.3. Suppose that X and −X have the same
distribution, so that the walk S is reversible. For an edge e = [x, y], define
pe = P[X = y − x] = P[X = x − y]. In this case, it is easy to generalize the
definition of UST to a measure on trees related to the law of X. This can be done
either by using Wilson’s algorithm or, equivalently, by giving to each tree T a
probability that is proportional to the product of the transition probabilities along
the edges of T . In other words, P[T ] = Z−1 ∏

e∈T pe, where Z is a normalizing
constant. (The equivalence is proved in [44]; see also [26].) We call this the UST
corresponding to the walk S (even if this probability measure is not uniform). Note
that Lemma 4.1 also holds in the present setting because the probability P[T ] is
given in terms of a product.



CONFORMAL INVARIANCE 993

THEOREM 6.3. Assuming that −X has the same distribution as X (i.e., Sj is
reversible), Corollary 1.2 and Theorem 1.3 hold for the UST corresponding to the
walk S.

PROOF. The proof of Corollary 1.2 holds in this generality. In the proof of
Theorem 1.3, the only significant changes concern the discrete harmonic conjugate
function, used in the proof of Proposition 4.2. Recall that there is an appropriate
definition for the discrete harmonic conjugate for reversible walks on planar
graphs, where the discrete Cauchy–Riemann equation is modified (see [7] or [19],
Section 6.1). If G is graph isomorphic to the square grid, the same is true for
the dual graph. If G is graph isomorphic to the triangular grid, then the dual is
graph isomorphic to the honeycomb grid. As pointed out above, Lemma 6.2 may
therefore be applied to the harmonic conjugate. The details are left to the reader.

�

In the nonreversible setting, instead of a spanning tree, one should consider
a spanning arborescence, which is an oriented tree with a root and the edges
are oriented toward the root. Fix a finite Markov chain with state space V

and a root o ∈ V . Consider the measure on spanning arborescences of V with
root o, where the probability for T is proportional to the product of the transition
probabilities along the directed edges of T . This is the analog of the UST in
the nonreversible setting. Wilson’s algorithm holds in this generality (see [44]);
however, the choice of the root o clearly matters.

If we consider a finite piece of the lattice L, and we wire part or all of the
boundary, it is natural to pick the wired vertex as the root. With this convention,
Corollary 1.2 holds for the wired tree. It would be interesting to see if the free tree
with root chosen at 0 ∈ D is invariant under conformal maps preserving 0, say (in
the nonreversible setting). Of course, one needs to choose a grid approximation
of D where there is an oriented path from each vertex to the root 0.

In the proof of Theorem 1.3, we have used reversibility in two places. The
proofs of Theorems 10.7 and 11.1 of [38], which we quoted, currently require
reversibility. However, these results were only used to improve the topology of
convergence to SLE. More seriously, Section 5.4 uses the conjugate harmonic
function, whose definition in the nonreversible setting is not clear. Notwithstanding
the obstacles, it seems likely that these results can be proven in the nonreversible
setting, too.
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