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OCCUPATION TIME LARGE DEVIATIONS OF
TWO-DIMENSIONAL SYMMETRIC SIMPLE

EXCLUSION PROCESS

BY CHIH-CHUNG CHANG, CLAUDIO LANDIM AND TZONG-YOW LEE

National Taiwan University, IMPA and University of Maryland

We prove a large deviations principle for the occupation time of a site
in the two-dimensional symmetric simple exclusion process. The decay
probability rate is of order t/ log t and the rate function is given by
ϒα(β) = (π/2){sin−1(2β − 1) − sin−1(2α − 1)}2. The proof relies on
a large deviations principle for the polar empirical measure which contains
an interesting log scale spatial average. A contraction principle permits us to
deduce the occupation time large deviations from the large deviations for the
polar empirical measure.

1. Introduction.

Description of the result. We consider the nearest-neighbor symmetric simple
exclusion process on the lattice Z

2. This process can be informally described as
follows. Distribute particles on Z

2 in such a way that each site is occupied by at
most one particle. Each particle, independently from the others, waits a mean-1
exponential time at the end of which it chooses one of its neighbor sites with
uniform probability. If the site selected is unoccupied, the particle jumps to this
site, otherwise, it stays where it is. In both cases, the particle waits a new mean-1
exponential time and repeats the same procedure.

This stochastic dynamics has a one-parameter family of invariant states. Fix
0 ≤ α ≤ 1. The Bernoulli product measure with density α, denoted by να , is
an ergodic, invariant, reversible state for the exclusion process. This measure is
obtained by placing at each site, independently from the others, a particle with
probability α.

Assume until the end of this Introduction that the initial state is chosen
according to να . Denote by ηs(0) the state of the origin at time s ≥ 0 so that
ηs(0) = 1 if the origin is occupied by a particle at time s and ηs(0) = 0 otherwise.
Let Vt = t−1 ∫ t

0 ηs(0) ds be the proportion of time that the origin is occupied in the
time interval [0, t]. Since να is ergodic, να a.s., Vt converges to α. Kipnis [8]
proved that

√
t/ log t[Vt − α] converges in distribution to a mean-0 Gaussian

variable with variance (2/π)α(1 − α) and Landim [11] proved that the decay rate
of the large deviations is t/ log t . We prove in this article a large deviations result
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for Vt in which the decay probability rate is t/ log t , while the rate function is
given by

ϒα(β) = π

2

{
sin−1(2β − 1) − sin−1(2α − 1)

}2
.

The t/ log t order can be anticipated because it is the order of the expected number
of distinct particles which visit the origin in the time interval [0, t], while the rate
function is related to the variational problem

inf
m

∫ 1

0
dr

m′(r)2

m(r)[1 − m(r)] ,(1.1)

where the infimum is carried over all smooth functions m : [0,1] → R such that
m(0) = β , m(1) = α. The expression m′(r)2/m(r)[1 − m(r)] appears recurrently
in the context of the exclusion process. For instance, in the investigation of the
large deviations of the empirical measure from the hydrodynamic limit, considered
by Kipnis, Olla and Varadhan [10], this is the expression obtained if we consider
paths π(t, du) = π(du) which do not depend on time.

Interest and motivation. The interest of this article relies not only on the result
itself, but also on the method of the proof.

On the one hand, this is the first example of an interacting particle system
where the large deviations rate function associated to the occupation time can be
explicitly computed. This is even more surprising in view of the decay rate which
is of order t/ log t .

On the other hand, it was proved in [11] that in dimension one, the large
deviations of the occupation time for the symmetric simple exclusion process,
whose decay rate is of order

√
t , is closely related to the large deviations of the

empirical measure from the hydrodynamic limit. We show in this article that in
dimension two the large deviations of the occupation time are related to the large
deviations of the polar empirical measure. To explain this connection, fix T > 0
and denote by µ1,T = µ1,T (η) the measure on R+ obtained from a configuration
of particles η = {η(x), x ∈ Z

2} by the formula

µ1,T (η) = 1

2π log T

∑
x∈Z2∗

η(x)
1

|x|2 δσT (x),

where σT (x) = log |x|/ log T , δr is the Dirac measure concentrated on r and
Z

2∗ = Z
2 − {0}. We prove in Lemma 3.1 and Corollary 3.2 that the occupation

time of the origin and the time average of the µ1,T measure of the interval [0, ε]
are superexponentially close in the scale T/ logT ,

lim sup
ε→0

lim sup
T →∞

logT

T
log P

[∣∣∣∣ 1T
∫ T

0
ds

{
ηs(0) − µ1,T (ηs)([0, ε])

ε

}∣∣∣∣> δ

]
= −∞
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for every δ > 0. This result shows that in dimension two the large deviations of the
occupation time is closely related to the large deviations of the time average of the
polar empirical measure.

Consider a continuous function with compact support H : R+ → R. The integral
of H with respect to µ1,T (η) is given by

1

2π logT

∑
x∈Z2∗

η(x)
1

|x|2 H(σT (x)).

Observe that when the support of H falls in interval [r − δ, r + δ] in R+, a space
average over O(T 2(r+δ)) random variables η(x) appears in the above expression.
The number of variables increases with r and is so large at the macroscopic
hydrodynamic scale r = 1/2 that, even at the level of large deviations, the polar
empirical measure µ1,T is fixed and equal to α dλ for r ≥ 1/2. Here λ stands
for the Lebesgue measure. All relevant fluctuations occur therefore in the space
interval [0,1/2), which is seen to be of smaller order than the hydrodynamic scale.

A subhydrodynamic scaling appears in several problems related to two-
dimensional exclusion processes, for instance, in the integration by parts formula
for mean-0 local functions, with important consequence in the equilibrium fluc-
tuations of the empirical measure for asymmetric processes or in the asymptotic
behavior of a second class particle in the symmetric case. We hope that the polar
empirical measure approach and the estimates presented in this article will shed
new light on these problems.

Once the connection between the large deviations of the occupation time and
the large deviations of the time average of the polar measure µ1,T has been
established, a natural strategy delineates. We first prove in Sections 5 and 6
a large deviations principle for the time average of the polar empirical measure
µ1,T (η), and we then deduce from this result and through a contraction argument
in Section 7 a large deviations principle for the occupation time.

Prospectives. We already mentioned problems related to subhydrodynamic
scalings. The results and the methods presented in this article also raise the
following issues. It is conceivable that a similar approach would permit us to
derive explicit formulas for the rate functions of the large deviations principle in
dimension d ≥ 3. This method probably applies also to the case of independent
random walks in dimension two. In this case the variational problem (1.1) would
be replaced by

inf
m

∫ 1

0
dr

m′(r)2

m(r)
,

where the infimum is carried over all smooth functions m : [0,1] → R such
that m(0) = β , m(1) = α. A simple computation shows that the solution of the
variational problem is 4(

√
β − √

α )2, which, up to a constant, is the rate function
obtained by Cox and Griffeath [6]. This would give a new interpretation to the rate
function.
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Historical background. Cox and Griffeath [6] were the first authors to consider
the question of large deviations of the occupation time in interacting particle
systems. They considered the case of independent random walks and proved a large
deviations principle in which the decay rates are

√
t in dimension one, t/ log t

in dimension two and t in dimension d ≥ 3. Bramson, Cox and Griffeath [4]
examined the same problem for the voter model and proved upper and lower
bounds for the large deviations in dimension d ≥ 3, showing that the decay rate
is

√
t in d = 3, t/ log t in d = 4 and t in d ≥ 5.

As is evidenced in the literature, the voter and the superrandom walk models
have dimensional-dependent phenomena parallel to the simple exclusion and
the independent random walk models, with the critical dimension shifted by 2.
What would be the results for the four (2 + 2)-dimensional voter/superrandom
walk models, corresponding to that obtained here for the critical dimension two?
Substantial modifications of our approach would be needed when proving super-
exponential estimates because our method of proof relies on the reversibility which
the voter/superrandom walk models lack. Also, the occupation-time difference
between two neighboring sites has been worked out (see [5, 7, 12] and references
therein) for independent random walks and some superrandom walk type of
models. What would be the corresponding results for the simple exclusion model
and the voter model? It would be interesting to have these results worked out
because they demand deep insight and technique to accomplish, although the
simple parallelism seems to go on strong for many qualitative predictions

Landim [11] proved a large deviations principle for the occupation time in the
symmetric simple exclusion process in dimension d 	= 2. In dimension two he
proved that t/ log t is the right decay rate by obtaining lower and upper bounds.
In dimension one, the proof relies on the fact that the large deviations of the
occupation time are connected to the large deviations of the empirical measure
from the hydrodynamic limit. This method was used by Benois [2] to give a new
proof of the large deviations principle in the case of independent random walks in
dimension one.

Finally, it should be observed (see the end of Section 5) that it follows from our
arguments that a superexponential two-blocks estimate is not needed in the proof
of the large deviations of the empirical measure from the hydrodynamic limit in
symmetric simple exclusion processes, which is the problem considered in [10].

2. Notation and results. The nearest-neighbor symmetric simple exclusion
process is a continuous time Markov process on X = {0,1}Z

d
that represents the

evolution of random walks on Z
d with a hard core interaction which prevents more

than one particle per site. The configurations of X are denoted by the Greek letter
eta (η) so that η(x) is equal to 1 or 0 if site x is occupied or not for η.
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Fix T > 0. The generator LT of the speeded-up symmetric simple exclusion
process is given by

(LT f )(η) = (T /2)
∑

x,y∈Zd ,|x−y|=1

η(x)[1 − η(y)][f (σ x,yη) − f (η)].

In this formula, f is a local function and σx,yη is the configuration obtained from
η by exchanging the occupation variables η(x) and η(y):

(σ x,yη)(z) =



η(z), if z 	= x, y,

η(x), if z = y,

η(y), if z = x.

For each 0 ≤ α ≤ 1, denote by να the Bernoulli product measure on X with
marginals given by

να{η,η(x) = 1} = α

for x ∈ Z
d . A simple computation shows that {να,0 ≤ α ≤ 1} is a one-parameter

family of reversible invariant measures. For 0 ≤ α ≤ 1, denote by Pα = PT,α the
probability on the path space D(R+,X) corresponding to the nearest-neighbor
speeded-up symmetric simple exclusion process with generator LT starting
from να .

For t > 0, consider the occupation time of the origin:

Vt = 1

t

∫ t

0
ηs(0) ds.

The main result of this article states a large deviations principle for the occupation
time in dimension d = 2.

THEOREM 2.1. Consider the two-dimensional symmetric simple exclusion
process and fix a density α in (0,1). For every closed subset F of [0,1] and every
open subset G of [0,1],

lim sup
T →∞

logT

T
logPα

[
V1 ∈ F

]≤ − inf
β∈F

ϒα(β),

lim inf
T →∞

logT

T
log Pα

[
V1 ∈ G

]≥ − inf
β∈G

ϒα(β),

where ϒα : [0,1] → R+ is the rate function given by

ϒα(β) = π

2

{
sin−1(2β − 1) − sin−1(2α − 1)

}2
.

We believe that

lim
T →∞

logT

T
logPα[V1 = 1] = −ϒα(1),
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but do not have a proof. Theorem 2.1 provides an upper bound for this probability
of a complete traffic jam at one site, but no lower bound as {1} is not an open set.
Arratia [1] showed that the order T/ logT is correct. The corresponding problem
for other dimensions is also interesting.

The article is organized as follows. In the investigation of large deviations
of Markov processes, a major ingredient is to find the relevant perturbations
that create the fluctuations. In the present context, the fluctuations are closely
connected to the polar empirical measure associated to a configuration, which is
described in Section 3. Superexponential estimates are established in Section 4.
A large deviation principle for the polar empirical measure is established in
Sections 5 and 6. In Section 7, we retrieve a large deviation principle for the
occupation time V1 from the large deviations for the empirical measure through
a contraction principle.

3. Polar empirical measure. We show in this section that the correct
perturbations involved in the investigation of the large deviations of the occupation
time are related to a macroscopic logarithmic scale.

We prove in Lemma 3.1 and Corollary 3.2, through a superexponential estimate,
that in dimension two the occupation-time large deviations are given by the large
deviations of the density of particles in a ball centered at the origin with radius
T ε, ε ↓ 0. This result leads to the following strategy of proof. We introduce
in (3.7) and (3.9) a polar empirical measure and state in Theorem 3.3 a large
deviations principle for it, which is proved in Sections 5 and 6. In Section 7
we recover the large deviations principle for the occupation time from the large
deviations for the polar empirical measure through a contraction principle.

Denote by | · | the Euclidean norm in R
2 for x = (x1, x2), |x|2 = x2

1 + x2
2 . Fix

a positive function q : (0,1] → (0,1], decreasing to 0 slower than the identity:
limε→0 q(ε)/ε = ∞. Denote by Tπ the one-dimensional torus [−π,π). For
θ ∈ Tπ , denote by A

θ,ε
T the annular region

A
θ,ε
T = {v ∈ R

2 :T ε ≤ |v| ≤ 2T ε, |�(v) − θ | ≤ q(ε)
}
,

where �(v) stands for the angle of v. For any region A ⊂ R
2, let |A| be the number

of sites (Z2 lattice points) in A.

LEMMA 3.1. For any δ > 0, θ ∈ Tπ and t > 0,

lim sup
ε→0

lim sup
T →∞

log T

T
log Pα

[∣∣∣∣∣
∫ t

0
ds

{
ηs(0) − 1

|A θ,ε
T |

∑
y∈A

θ,ε
T

ηs(y)

}∣∣∣∣∣> δ

]

(3.1)
= −∞.
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PROOF. From the Feynman–Kac formula and the variational formula for the
largest eigenvalue of a reversible operator (see [9], Chapter 11), to prove (3.1), it
is enough to show that

lim sup
ε→0

lim sup
T →∞

sup
f

{∫ (
η(0) − 1

|A θ,ε
T |

∑
x∈A

θ,ε
T

η(x)

)
f dνα

(3.2)

− a logT D(να,f )

}
= 0

for every a > 0. In this formula, the supremum is carried over all densities f

with respect to να and D(να,f ) is the modified Dirichlet form of f with respect
to να given by

D(να,f ) = 1
4

∑
|x−y|=1

∫ {√
f (σ x,yη) − √

f (η)
}2

dνα.

Fix a density f and two sites x and y. A change of variables ξ = σx,yη and
Schwarz inequality show that∫

[η(x) − η(y)]f (η) dνα = 1
2

∫
[η(x) − η(y)]{f (η) − f (σ x,yη)}dνα

≤
(∫ {√

f (σ x,yη) − √
f (η)

}2
dνα

)1/2

because f is a density with respect to να and η(z) is bounded by 1. Applying this
estimate to the first term inside braces in (3.2), we bound it by

1

|A θ,ε
T |

∑
x∈A

θ,ε
T

(∫ {√
f (σ 0,xη) − √

f (η)
}2

dνα

)1/2

(3.3)

≤
(

1

|A θ,ε
T |

∑
x∈A

θ,ε
T

∫ {√
f (σ 0,xη) − √

f (η)
}2

dνα

)1/2

.

Just before (4.2) below, for each x in Z
2∗, we define a path �x connecting the

origin to x. By a path, we understand a sequence 0 = z(0), z(1), . . . , z(n) = x such
that z(k) ∈ Z

2, n = |x|1 ≡ |x1| + |x2| and |z(i + 1) − z(i)| = 1 for 0 ≤ i < n. For
each bond b in Z

2, we denote by m(b;A
θ,ε
T ) the number of paths �x that use the

bond b to connect the origin to x ∈ A
θ,ε
T . By Lemma 4.4, the paths �x can be

defined in such a way that m(b;A
θ,ε
T ) ≤ CT 2ε|b|−1, where for a bond b = {x, y},

|{x, y}| = |x| ∨ |y|.
Fix a site x in A

θ,ε
T and recall the definition of the path �x . The configuration

σ 0,xη can be written as

σ z(0),z(1) · · ·σ z(n−2),z(n−1)σ z(n−1),z(n)σ z(n−2),z(n−1) · · ·σ z(1),z(2)σ z(0),z(1)η.
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In particular, introducing intermediate terms in (3.3), by a change of variables and
by Schwarz inequality, for each fixed x in A

θ,ε
T , we may estimate the integral

appearing in the right-hand side of (3.3) by

2

{
n−1∑
i=0

1

|{z(i), z(i + 1)}|
}

(3.4)

×
{

n−1∑
i=0

|{z(i), z(i + 1)}|
∫ {√

f (σ z(i),z(i+1)η) − √
f (η)

}2
dνα

}
·

By (4.3), the sum in the first line is bounded by

sup
x∈�2T ε

∑
b∈�x

1

|b| ≤ C0ε log T(3.5)

for some finite constant C0, where �l = {−l, . . . , l}2. Therefore, after changing
the order of summation, we obtain that the square of the right-hand side of (3.3) is
bounded above by

C0ε logT

q(ε)T 2ε

∑
b∈B(2T ε)

|b|
∫ {√

f (σ bη) − √
f (η)

}2
dνα

∑
x∈A

θ,ε
T ,b∈�x

(3.6)

for some finite constant C0. In this formula, the sum is performed over all bonds
b located in B(2T ε), the ball of radius 2T ε centered at the origin. By Lemma 4.4,
the second sum is less than or equal to CT 2ε|b|−1. This expression is thus bounded
above by

C0ε logT

q(ε)

∑
b∈B(2T ε)

∫ {√
f (σ bη) − √

f (η)
}2

dνα ≤ C0ε logT D(να,f )

q(ε)
.

It follows from this estimate that the left-hand side of (3.2) is bounded above by

lim sup
ε→0

lim sup
T →∞

sup
K>0

{
C0

√
εK logT

q(ε)
− aK logT

}
= lim sup

ε→0

C0ε

aq(ε)
= 0,

since limε→0 ε/q(ε) = 0. This concludes the proof of the lemma. �

In Lemma 3.1, the set A
θ,ε
T can be replaced by several distinct sets. The same

proof applies for balls of radius smaller than a1T
a2ε for fixed a1, a2 > 0 or to

annular regions of type a1T
a2ε ≤ |v| ≤ b1T

b2ε. The only important assumption is
that the angle, if any, must be of order strictly greater than ε.

The arguments presented in the proof of Lemma 3.1 also give the following
estimate which shows that a large deviations principle for the occupation time∫ t

0 ηs(0) ds follows by a contraction argument from a large deviations principle for
the polar empirical measure µT , which is introduced just after the statement.
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COROLLARY 3.2. For every t > 0 and δ > 0,

lim sup
ε→0

lim sup
T →∞

log T

T
logPα

[∣∣∣∣∣
∫ t

0
ds

{
ηs(0) − 1

ZT,ε

∑
y∈B∗(T ε)

ηs(y)

|y|2
}∣∣∣∣∣> δ

]

= −∞,

where ZT,ε is a normalizing constant

ZT,ε = ∑
y∈B∗(T ε)

1

|y|2

and B∗(T ε) is the ball B(T ε) = {x ∈ Z
2, |x| ≤ T ε} without the origin.

Lemma 3.1 shows that a large deviations principle for the occupation time∫ t
0 ηs(0) ds follows by a contraction argument from a large deviations principle

for the macroscopic average Z−1
T,ε

∫ t
0
∑

y∈B∗(T ε) ηs(y)/|y|2 ds. This observation
leads us to introduce the polar empirical measure associated to a configuration
η of {0,1}Z

2
.

Let Z
2∗ = Z

2 − {0} and for each T > 1 define the projection σT : Z2 → [0,∞)

by

σT (x) = log |x|
logT

, σT (0) = 0.

For c > 0, denote by Mc the set of positive Radon measures µ on R+ such that
µ([a, b]) ≤ (b − a) + c for every 0 ≤ a ≤ b < ∞:

Mc = {µ(dr), µ([a, b]) ≤ (b − a) + c for 0 ≤ a ≤ b < ∞}.
The condition on the measure of intervals makes the set Mc, which is endowed
with the vague topology, a compact separable metric space. Let M0 be the
subspace of M of all measures which are absolutely continuous with respect to
the Lebesgue measure and whose density is bounded by 1. The subspace M0 is
closed (thus compact) and a sequence µn in M0 converges to µ if and only if

lim
n→∞

∫
H(r)µn(dr) =

∫
H(r)µ(dr)

holds for all continuous functions H with compact support in (0,∞).
Denote by P : R2∗ → (0,∞) × Tπ the polar coordinates map P(u) = (|u|,

�(u)). For T > 0 and a configuration η, let µT = µT (η) be the empirical measure
on R+ × Tπ associated to η ◦ P−1,

µT (η) = 1

logT

∑
x∈Z2∗

η(x)
1

|x|2 δσT (x),�(x),(3.7)
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where δv is the Dirac measure concentrated on v. Let µ1,T be the projection of µT

on the first coordinate. Thus, µ1,T is the measure on R+ given by

µ1,T (η) = 1

2π logT

∑
x∈Z2∗

η(x)
1

|x|2 δσT (x).

Notice the factor 2π on the denominator to normalize the sum. For a Radon
measure µ on R+ × Tπ (resp. R+) and a continuous bounded function H : R+ ×
Tπ → R (resp. H : R+ → R), denote by 〈〈H,µ〉〉 the integral of H with respect
to µ:

〈〈H,µ〉〉 =
∫

H(r, θ)µ(dr, dθ),

(
resp. 〈〈H,µ〉〉 =

∫
H(r)µ(dr)

)
.

In particular, for H : R+ → R that depends only on the radius r ,

〈〈H,µT (η)〉〉 = 1

logT

∑
x∈Z2∗

H(σT (x))
1

|x|2 η(x)

(3.8)
= 2π〈〈H,µ1,T (η)〉〉.

The strategy of the proof of Theorem 2.1 can now be explained. To prove the
large deviations principle for the occupation time, we first prove a large deviations
principle for the time average of the empirical measure µ1,T and then apply
a contraction principle to recover, from this result, the large deviations principle
for the occupation time.

Let µ̄T be the Radon measure on R+ defined by

µ̄T =
∫ 1

0
µ1,T (ηs) ds.(3.9)

Overestimating η(x) by 1, it is not difficult to show that the random measures
µ̄T belong to Mc for T large enough. More precisely, there exists a finite universal
constant C0 such that

µ̄T ([a, b]) ≤ (b − a) + C0

logT

for all 0 ≤ a ≤ b < ∞, T > 1. In particular, for each c > 0, there exists a finite
T (c) such that µ̄T belongs to Mc for all T > T (c). The same statement remains in
force for µ1,T in place of µ̄T . This property of the random measures µ̄T explains
the introduction of the spaces Mc.

From now on we fix some c > 0 and keep it until the end of the article.
We prove in Sections 5 and 6 a large deviations principle for µ̄T . To state the

result requires some notation. For any α in (0,1), let C2(R+, α) be the space of
twice continuously differentiable functions γ : [0,∞) → (0,1) such that γ ′ has
a compact support in (0, 1

2 ) and such that γ (r) = α for r ≥ 1/2. There exists,
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therefore, 0 < β < 1 and 0 < ε < 1/4 such that γ (r) = β for r ≤ ε and γ (r) = α

for r ≥ 1
2 − ε.

For each γ in C2(R+, α), � = �γ,α ,

�(u) = 1

2
log

γ (u)[1 − α]
[1 − γ (u)]α ·(3.10)

Notice that � is a twice continuously differentiable function with compact support
in [0,1/2) and whose derivative has compact support on (0,1/2). Denote by
�(R+) the space of functions {�′

γ,α, γ ∈ C2(R+, α)}. Notice that �(R+) is
a vector space [which is not the case of C2(R+, α) or {�γ,α, γ ∈ C2(R+, α)}]
and that every function h in �(R+) is continuously differentiable and has compact
support in (0,1/2). Moreover, given h in �(R+) there exists one and only one γ in
C2(R+, α) such that h = �′

γ,α . This means that the map from C2(R+, α) to �(R+)

is one to one.
For 0 < α < 1, let F(a) = a(1 − a) and Iα :Mc → R+ be given by

Iα(µ) = π sup
h∈�(R+)

{−〈〈h′,m〉〉 − 〈〈h2,F (m)〉〉}

if µ(dr) = m(r) dr is absolutely continuous with respect to the Lebesgue measure
and has a density such that m(r) = α for r ≥ 1/2. In all other cases, Iα(µ) = ∞.
We remark that Lemma 5.1, which states that in the large deviations regime the
measure µ̄T (dr) is fixed on [1/2,∞) and equal to α dr , justifies the concentration
of Iα on such measures. We prove in Section 6 that the rate function Iα is lower
semicontinuous, convex and such that

Iα(µ) = π

4

∫
R+

m′(r)2

m(r)[1 − m(r)] dr.

THEOREM 3.3. For every closed subset F of Mc and every open subset G

of Mc,

lim sup
T →∞

logT

T
logPα[µ̄T ∈ F ] ≤ − inf

µ∈F
Iα(µ),

lim inf
T →∞

logT

T
log Pα[µ̄T ∈ G] ≥ − inf

µ∈G
Iα(µ).

4. Superexponential estimates. The proof of the large deviations principle
for the polar empirical measure stated in Theorem 3.3 relies on a superexponential
estimate, similar to Lemma 3.1, which permits us to replace the average of local
functions by functions of the polar empirical density. To state this result, we need
some notation.
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For r0 > 0, θ0 in Tπ , 0 < ε < r0 and a configuration η, let

ι+ = ι+(ε, r0, T ) = 1

logT
log

T r0 + T ε

T r0
,

ι− = ι−(ε, r0, T ) = 1

logT
log

T r0

T r0 − T ε

and denote by �
r0,θ0
ε,T : R+ × Tπ → R+ the function defined by

�
r0,θ0
ε,T (r, θ) = 1

2(ι+ + ι−)q(ε)
1{r0 − ι− ≤ r ≤ r0 + ι+}1{|θ − θ0| ≤ q(ε)}.

Denote, furthermore, by M
r,θ
T,ε(η) the average number of particles in the polar

cube [r − ι−, r + ι+] × [θ − q(ε), θ + q(ε)]:
M

r,θ
T,ε(η) = 〈〈�r,θ

ε,T ,µT 〉〉

= 1

2(ι+ + ι−)q(ε) logT

∑
T r−T ε≤|z|≤T r+T ε

θ−q(ε)≤�(z)≤θ+q(ε)

η(z)

|z|2 .

In the previous formula, the sum is carried over all sites z in Z
2∗ satisfying

T r − T ε ≤ |z| ≤ T r + T ε and θ − q(ε) ≤ �(z) ≤ θ + q(ε). Notice that
(ι+ + ι−) log T = log{T r + T ε/T r − T ε}, so that the previous sum is an average
up to smaller order terms.

Denote by {e1, e2} the canonical basis of R
2. Fix a continuous function

H : R+ → R with compact support in (0,1/2), 1 ≤ j ≤ 2, ε > 0, and let

W
H,ε
T,±ej

(η) = 1

log T

∑
x∈Z2∗

H(σT (x))
1

|x|2

×
{
η(x)η(x ± ej )

(x · ej )
2

|x|2 − (MσT (x),�(x)
T ,ε (η)

)2}
.

LEMMA 4.1. For any δ > 0, j = 1, 2 and t > 0,

lim sup
ε→0

lim sup
T →∞

logT

T
logPα

[∣∣∣∣
∫ t

0
ds W

H,ε
T,±ej

(ηs)

∣∣∣∣> δ

]
= −∞.

PROOF. The same proof of Lemma 3.1 gives that for any 0 < a < 1/4,

lim sup
ε→0

lim sup
T →∞

sup
T a≤|x|≤T 1/2−a

logT

T

× logPα

[∣∣∣∣
∫ t

0
ds
{
ηs(x) − M

σT (x),�(x)
T ,ε (ηs)

}∣∣∣∣> δ

]

= −∞.
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Introducing intermediary terms, as in Lemma 3.2 in [11], we may deduce the
statement of the lemma from this result. �

REMARK 4.2. The term M
σT (x),�(x)
T ,ε (η) is not an average over a macroscopic

polar cube. This lemma is thus not replacing local functions by empirical density
over macroscopic regions and must be interpreted as a superexponential one-block
estimate. However, we will see that almost no technical tools are needed in the
proof of the lower bound and that a convexity argument for simple exclusion
processes permits us to go from microscopic boxes to macroscopic boxes in the
proof of the upper bound.

The second ingredient in the proof of a large deviations principle is the
description of the relevant perturbations of the original dynamics which create
the fluctuations. To introduce these large deviations dynamics, recall the definition
of the space C2(R+, α) and of the logarithmic rescaling σT (·) introduced in the
previous section.

For T > 0 and γ in C2(R+, α), denote by LT,γ the generator of the
inhomogeneous exclusion process in which a particle jumps from x to y at rate
exp{�(σT (y)) − �(σT (x))}, � = �γ,α:

(LT,γ f )(η) = T

2

∑
|x−y|=1

η(x){1 − η(y)}e�(σT (y))−�(σT (x))[f (σ x,yη) − f (η)].

Denote by νT,γ the product measure on X, with marginals given by

νT,γ {η,η(x) = 1} = γ (σT (x)).

Notice that νT,γ coincides with να outside a ball of radius T 1/2−ε centered at
the origin, for some ε > 0. A simple computation shows that νT,γ is an invariant
reversible measure for the Markov process with generator LT,γ . Denote by PT,γ

the probability on the path space D(R+,X) that corresponds to the stationary
Markov process with generator LT,γ starting from νT,γ .

The superexponential estimate stated in Lemma 4.1 holds if we replace the
exclusion dynamics by the dynamics induced by the generator LT,γ and replace
the initial state by νT,γ for some γ in C2(R+, α).

COROLLARY 4.3. Fix γ in C2(R+, α). The superexponential estimate holds
for PT,γ .

PROOF. In view of Lemma 4.1, to prove this corollary, it is enough to show
that the Radon–Nikodym derivative dPT,γ /dPα restricted to Ft , the σ -algebra
generated by {ηs, 0 ≤ s ≤ t}, is bounded in L∞ by exp{C0(T / logT )} for
some finite constant C0. The derivative dPT,γ /dPα|Ft can be decomposed into
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a stationary and a dynamical part. An elementary computation shows that the
stationary part is equal to

dνT,γ

dνα

= exp
∑
x∈Z2∗

{
η0(x) log

(
γ (σT (x))

α

)
+ [1 − η0(x)] log

(
1 − γ (σT (x))

1 − α

)}
,

while the dynamical piece is equal to

exp

{∑
x∈Z2∗

�T (x){ηt (x) − η0(x)}
}

× exp

{
−(T /2)

∫ t

0
ds

∑
|x−y|=1

ηs(x)[1 − ηs(y)]{e�T (y)−�T (x) − 1
}}

,

where �T (x) = �(σT (x)).
By definition of γ and σT , γ (σT (x)) = α provided |x| > T (1/2)−λ for some

λ > 0. In particular, since να is a product measure,∣∣∣∣dνT,γ

dνα

∣∣∣∣≤ C(γ )T 1−2λ

for some finite constant which depends only on the profile γ . On the other hand,
since �T (x) vanishes for |x| > T 1/2−λ,∣∣∣∣∣

∑
x∈Z2∗

�T (x){ηT (x) − η0(x)}
∣∣∣∣∣≤ C(γ )T 1−2λ

for some finite constant C(γ ) depending only on γ . It remains to estimate the
time integral expression in the Radon–Nikodym derivative. The argument relies
on the fact that |σT (x)− σT (y)| ≤ C{[1 + |x|] log T }−1 for some finite constant C

if |y − x| = 1 so that |�T (x) − �T (y)| ≤ C(γ ){[1 + |x|] log T }−1 for some finite
constant depending only on γ . Expanding the exponential up to the second order,
we get that

(T /2)

∫ t

0
ds

∑
|x−y|=1

ηs(x)[1 − ηs(y)]{e�T (y)−�T (x) − 1
}

= (T /2)

∫ t

0
ds

∑
|x−y|=1

ηs(x)[1 − ηs(y)]{�T (y) − �T (x)} + O(T/ log T )

because
∑

T λ≤|x|≤T 1/2−λ[1 + |x|]−2 ≤ C(γ ) logT . The first term on the right-hand
side can be rewritten as

T

2

∫ t

0
ds
∑
x

ηs(x)(��T )(x)

= T

2 logT

∫ t

0
ds
∑
x∈Z2∗

ηs(x)�′(σT (x))� log |x| + O

(
T

logT

)
,
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because η(x)η(y){�T (y) − �T (x)} is antisymmetric. In this formula, �F stands
for the discrete Laplacian defined by

(�F)(x) =
2∑

j=1

{F(x + ej ) + F(x − ej ) − 2F(x)}.(4.1)

Expanding log |x| up to the third order and taking advantage of the fact that
log |x| is a harmonic function on R

2, it is easy to show that the previous expression
is of order T/ logT , which concludes the proof of the corollary. �

We conclude this section with some results on paths that link the origin to
sites x of Z

2, leading to Lemma 4.4, which was used in Lemma 3.1. Fix a site
x = (x1, x2) in Z

2 and recall that a path from the origin to a site x is a sequence
of sites 0 = z(0), . . . , z(|x|1) = x such that |z(i + 1) − z(i)| = 1 for 0 ≤ i <

|x|1 = |x1| + |x2|. Assume without loss of generality that 0 ≤ x2 ≤ x1. We define
a path �x from the origin to x, imposing that each site z(i) = (z(i)1, z(i)2) is such
that z(i)2/z(i)1 ≤ x2/x1 and requiring the path to increase its second coordinate
whenever possible. These two conditions define a unique path from the origin to x.

This path �x can be defined as follows. Let m0 = 0 and for each 1 ≤ j ≤ x2,
let mj be the increasing sequence of positive integers defined by

j

mj

≤ x2

x1
<

j

mj − 1
.(4.2)

Then, for 0 ≤ i ≤ x2 and mi + i ≤ n ≤ mi+1 + i, z(n) = (n − i, i).
Notice that for x in

�1 = {(j, k) ∈ Z
2 : 0 ≤ k ≤ j},

the path �x remains in �1. We may, of course, extend the definition of the path to
the other seven possible cases.

Recall that for a bond b = (x, y) in Z
2∗, |b| = |x| ∨ |y|. We claim that

∑
b∈�x

1

|b| ≤ √
2{2 + log |x|}.(4.3)

Indeed, assume that 0 ≤ x2 ≤ x1 and let �x = {z(i), 0 ≤ i ≤ |x|1}. Since |z(i)| ≤
|z(i + 1)|,

∑
b∈�x

1

|b| =
|x|1∑
i=1

1

|z(i)| .

By construction z(i) = (k, i − k) for some 0 ≤ k ≤ i. In particular, |z(i)| ≥
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|(i/2, i/2)| = i/
√

2. Therefore,

∑
b∈�x

1

|b| ≤ √
2

|x|1∑
i=1

1

i

≤ √
2{1 + log |x|1} ≤ √

2
{
1 + log

√
2 + log |x|},

which proves (4.3)

LEMMA 4.4. For l ≥ 1, let �l = {−l, . . . , l}2. There exists a finite constant C0
such that for any bond b,

|{x ∈ �l :b ∈ �x}| ≤ C0
l2

|b| .

PROOF. We first deduce some properties of the sites that belong to a path �x .
Fix x in �1 and assume that z belongs to �x . By (4.2), z = (n, i) for some
0 ≤ i ≤ x2 and some mi ≤ n ≤ mi+1. In particular,

z2

z1
≤ i

mi

≤ x2

x1
and

z2 + 1

z1 − 1
≥ i + 1

mi+1 − 1
>

x2

x1
·

Therefore, all sites z in the path �x are such that z2/z1 ≤ x2/x1 < (z2 + 1)/

(z1 − 1).
Fix now a bond b = (z, y) and assume, without loss of generality, that 0 ≤

z2 ≤ z1 and that y = z + e1, where {e1, e2} stands for the canonical basis of R
2.

Fix a site x in �l whose path uses the bond b. By the previous remark, z2/z1 ≤
x2/x1 < (z2 + 1)/(z1 − 1). It remains to count the number of sites x in �l which
satisfy these restrictions and such that x1 ≥ z1 to conclude the proof of the lemma.

�

5. Large deviations upper bound. We prove in this section the upper bound
of the large deviations principle for µ̄T . We start with a useful elementary
observation. Let H : R+ ×Tπ → R be a continuous function with compact support
in (0,∞) × Tπ . Then

1

log T

∑
x∈Z2∗

H
(
σT (x),�(x)

) 1

|x|2 =
∫

R+
dr

∫
Tπ

dθ H(r, θ) + oT (1),(5.1)

where oT (1) is a constant which depends on H and T and which vanishes as
T ↑ ∞. In the case where the function H is of class C1(R+ × Tπ ), it can be
shown that the remainder oT (1) is absolutely bounded by C(H)/ logT .

The proof of the upper bound relies on the following result which states that in
the large deviations regime the measure µ̄T (dr) is fixed on [1/2,∞) and equal
to α dr .
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LEMMA 5.1. For r in R+ and ε > 0, let �r,ε(r
′) = ε−11{[r, r + ε]}(r ′). For

every r ≥ 1/2, ε > 0 and δ > 0,

lim sup
T →∞

log T

T
logPα

[|〈〈�r,ε, µ̄
T 〉〉 − α| > δ

]= −∞.

PROOF. Fix r ≥ 1/2, ε > 0 and δ > 0. In view of (5.1), it is enough to show
that

lim sup
T →∞

log T

T
log Pα

[∣∣∣∣ 1

2π

∫ 1

0
ds

1

log T

∑
x∈Z2∗

�r,ε(σT (x))
ηs(x) − α

|x|2
∣∣∣∣> δ

2

]

= −∞.

It is enough to prove this statement without the absolute value. Multiplying both
sides of the inequality by a, by an exponential Chebyshev inequality, to prove the
theorem it is enough to show that

lim sup
T →∞

log T

T
logEα

[
exp

{
a

2π

∫ 1

0
ds

T

(log T )2

∑
x∈Z2∗

�r,ε(σT (x))
ηs(x) − α

|x|2
}]

≤ 0

for every a > 0. Fix T > 0 and consider the previous expression. By Jensen’s
inequality and since να is a product stationary state, it is bounded above by

logT

T

∑
x∈Z2∗

logEα

[
exp
{

a

2π

T

(logT )2 �r,ε(σT (x))
η(x) − α

|x|2
}]

.

Since �r,ε(r
′) = 0 if r ′ ≤ 1/2, the previous sum is carried over sites x such that

σT (x) ≥ 1/2, that is, over sites x such that |x|2 ≥ T . In particular, the expression
multiplying η(x) − α is less than or equal to Ca/(log T )2, which vanishes
as T ↑ ∞. Since exp{b} ≤ 1 + b + b2 exp{|b|}, Eα[η(x)] = α and log(1 + b) ≤ b,
expanding the exponential up to the second order, we obtain that the previous
expression is bounded by

T

(log T )3

a2F(α)

4π2

∑
x∈Z2∗

�r,ε(σT (x))2 1

|x|4 .

By (5.1) and since |x|2 ≥ T , the previous sum is less than or equal to

1

(log T )2

a2F(α)

2π

(
1

ε
+ oT (1)

)
.

This proves the lemma. �
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The same argument shows that

lim sup
T →∞

log T

T
logPα

[∣∣∣∣〈〈H, µ̄T 〉〉 − α

∫
R+

H(r) dr

∣∣∣∣> δ

]
= −∞(5.2)

for every δ > 0 and every continuous function H : R+ → R with compact support
in [1/2,∞).

We are now in a position to prove the upper bound. Fix a closed subset C of Mc

and γ ∈ C2(R+, α). The set C is compact because Mc is itself compact. Let � be
the function associated to γ by (3.10) and set

WT,γ (s) = 1

2 logT

∑
x∈Z2∗

2∑
j=1

ηs(x)ηs(x + ej )�
′(σT (x))2 1

|x|2
(x · ej )

2

|x|2 ·

In this formula, x · ej stands for the scalar product between x and ej . Recall
the definition of the function �

r,θ
ε,T introduced just before the superexponential

estimate stated in Lemma 4.1. Let

W̃ ε
T,γ (s) = 1

2 logT

∑
x∈Z2∗

�′(σT (x))2 1

|x|2
〈〈
�

σT (x),�(x)
ε,T ,µT

s

〉〉2

and let B
δ,ε
T,γ be the set defined by

B
δ,ε
T,γ =

{
η :
∣∣∣∣
∫ 1

0
ds
{
WT,γ (s) − W̃ ε

T,γ (s)
}∣∣∣∣≤ δ

}
for δ > 0. It follows from the superexponential estimate stated in Lemma 4.1 and
from the fact that

lim sup
N→∞

1

N
log(aN + bN) = max

{
lim sup
N→∞

1

N
logaN, lim sup

N→∞
1

N
logbN

}

that for any δ > 0 and any subset A of Mc,

lim sup
T →∞

logT

T
log Pα[µ̄T ∈ A]

= max
{

lim sup
T →∞

logT

T
log Pα

[
µ̄T ∈ A,B

δ,ε
T,γ

]
,C�(δ, ε)

}
,

where C�(δ, ε) decreases to −∞ as ε ↓ 0 for each fixed � in C2
K(R+) and δ > 0.

To estimate the right-hand side, observe that

Pα

[
µ̄T ∈ A,B

δ,ε
T,γ

]= ET,γ

[
dPα

dPT,γ

1
{
µ̄T ∈ A,B

δ,ε
T,γ

}]
,

where the Radon–Nikodym derivative dPα/dPT,γ must be understood as re-
stricted to the σ -algebra F1 = σ {ηs,0 ≤ s ≤ 1}. For r0 > 0, θ0 in Tπ and ε > 0,
denote by �r,θ

ε : R+ × Tπ → R+ the function defined by

�r0,θ0
ε (r, θ) = 1

4εq(ε)
1{|r − r0| ≤ ε}1{|θ − θ0| ≤ q(ε)}.
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At the end of the proof we show that on the set B
δ,ε
T,γ , if 0 < ε < δ,

log
dPα

dPT,γ

≤ T

2 logT

∫ 1

0
ds

{
〈〈�′′ + [�′]2,µT

s 〉〉

−
∫ 1/2

0
dr

∫
Tπ

dθ �′(r)2〈〈�r,θ
ε ,µT

s 〉〉2
}

(5.3)

+ 2δT

log T
+ o

(
T

logT

)
.

Since � depends on the first coordinate r only, by definition of µ̄T and by Schwarz
inequality, the previous time integral is bounded above by

π

{
〈〈�′′ + [�′]2, µ̄T 〉〉 −

∫ 1/2

0
dr �′(r)2〈〈�r

ε , µ̄
T 〉〉2
}
,

where �r
ε (r0) = (2ε)−11{|r − r0| ≤ ε}.

Recollecting all previous estimates and minimizing over �, 0 < ε < δ, we obtain
that

lim sup
T →∞

log T

T
logPα[µ̄T (η) ∈ A]

≤ inf
γ∈C2(R+,α),0<ε<δ

max
{

sup
µ∈A

J̃γ,ε,δ(µ),C�(δ, ε)

}
,

where lim supε→0 C�(δ, ε) = −∞ for every γ in C2(R+, α) and δ > 0. In
this formula, J̃γ,ε,δ(µ) = δ − J�′

γ,α,ε(µ) and, for any continuously differentiable
function H : R+ → R with compact support in (0,1/2), JH,ε :Mc → R is the
functional given by

JH,ε(µ) = −π

{
〈〈H ′ + H 2,µ〉〉 −

∫ 1/2

0
dr H(r)2〈〈�r

ε ,µ〉〉2
}
.(5.4)

Remember that � is a function of γ and that there is a one-to-one correspondence
between C2(R+, α) and �(R+). In particular, in the penultimate formula, the
minimization may be performed over �(R+) instead of C2(R+, α). On the other
hand, for each fixed γ , ε and δ, J̃γ,ε,δ is a continuous function for the vague
topology. Since the set C is compact, by Varadhan’s lemma (see [9], Appendix II,
Lemma 3.3), we may interchange the supremum with the infimum to obtain

lim sup
T →∞

log T

T
log Pα[µ̄T (η) ∈ C]

≤ − inf
µ∈C

sup
h∈�(R+),0<ε<δ

min
{
Jh,ε(µ) − δ,−C�α,h

(δ, ε)
}
,
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where �α,h is the space integral of h with the condition that �α,h(1/2) = α. Since
lim supε→0 C�(δ, ε) = −∞ for every γ in C2(R+, α) and δ > 0, letting first ε ↓ 0
and then δ ↓ 0, we obtain that

lim sup
T →∞

logT

T
logPα[µ̄T (η) ∈ C] ≤ − inf

µ∈C
I (µ),(5.5)

where

I (µ) = sup
h∈�(R+)

lim sup
ε→0

Jh,ε(µ).

We are almost done. We need to observe, however, that the rate function I does
not depend on α and that the proof is thus not yet complete. The dependence on
the density α is given by Lemma 5.1, which states that under the large deviations
regime the measure µ̄T (dr) is equal to α dr on the region [1/2,∞). In other
words, it asserts that the rate function of the large deviations principle, denoted
by Iα , is identically equal to +∞ on the subset of measures µ(dr) which are not
equal to α dr on the set [1/2,∞).

To turn the previous discussion into a rigorous argument, denote by
CK([1/2,∞)) the space of continuous functions H : R+ → R with compact sup-
port in [1/2,∞) endowed with the supremum norm. Consider a dense and count-
able sequence {Hk, k ≥ 1} in CK([1/2,∞)). For δ > 0 and k ≥ 1, denote by Ak,δ

the closed subspace of Mc defined by

Ak,δ =
{
µ ∈ Mc :

∣∣∣∣〈〈Hj,µ〉〉 − α

∫
Hj(r) dr

∣∣∣∣≤ δ for 1 ≤ j ≤ k

}
.

It follows from (5.2) that

lim sup
T →∞

logT

T
logPα[µ̄T (η) ∈ C] = lim sup

T →∞
log T

T
logPα[µ̄T (η) ∈ C ∩ Ak,δ]

for all k ≥ 1, δ > 0. Since Ak,δ is a closed set, by (5.5),

lim sup
T →∞

logT

T
logPα[µ̄T (η) ∈ C] ≤ − inf

µ∈C∩Ak,δ

I (µ).

The previous bound holds for all k ≥ 1, δ > 0. As δ ↓ 0, the sequence of sets Ak,δ

decreases to the closed subset Ak of Mc given by

Ak =
{
µ ∈ Mc, 〈〈Hj,µ〉〉 = α

∫
Hj(r) dr for 1 ≤ j ≤ k

}

so that

lim sup
T →∞

logT

T
logPα[µ̄T (η) ∈ C] ≤ − inf

µ∈C∩Ak

I (µ).
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As k ↑ ∞, the sequence of sets Ak decreases to the closed subset Mc,α of Mc

given by

Mc,α =
{
µ ∈ Mc, 〈〈Hj,µ〉〉 = α

∫
Hj(r) dr, j ≥ 1

}
.

In particular,

lim sup
T →∞

log T

T
logPα[µ̄T (η) ∈ C] ≤ − inf

µ∈C∩Mc,α

I (µ).

Since {Hk, k ≥ 1} is a dense subset in CK([1/2,∞)), Mc,α corresponds to the
subset of Mc of all measures µ(dr) which are equal to α dr on [1/2,∞). If we
now define Iα :Mc → R+ by

Iα(µ) =
{

I (µ), if µ ∈ Mc,α ,

+∞, otherwise,

we have that

lim sup
T →∞

log T

T
logPα[µ̄T (η) ∈ C] ≤ − inf

µ∈C
Iα(µ)

for every closed subset C of Mc.
To conclude the proof of the upper bound, it remains to check (5.3). To keep

the proof short, we derive below an upper bound for dPT,γ /dPα taking advantage
of the computations presented in the proof of Corollary 4.3. The same arguments
give an upper bound for dPα/dPT,γ . Recall from the proof of the superexponential
estimate the expression of the Radon–Nikodym derivative dPT,γ /dPα . We need to
compute precisely the order (T / logT ) term. We have seen there that

dPT,γ

dPα

= exp
{
−1

2
T

∫ 1

0
ds

∑
|x−y|=1

ηs(x)[1 − ηs(y)]{e�T (y)−�T (x) − 1
}}

× exp
{
o

(
T

logT

)}
.

Recall that σT (y) − σT (x) = O({|x| log T }−1). Expanding the exponential up to
the third order, we obtain that the expression inside the integral is equal to

−(1/2)
∑
x

ηs(x)(��T )(x) − (1/4)
∑
x

ηs(x)
∑

|y−x|=1

[�T (y) − �T (x)]2

(5.6)
+ (1/4)

∑
|y−x|=1

ηs(x)ηs(y)[�T (y) − �T (x)]2 + o(1/ logT ),

where � is the discrete Laplacian defined in (4.1). Since log |x| in a harmonic
function in R

2, the first term in this expression is equal to

− 1

2(log T )2

∑
x

ηs(x)�′′(σT (x))
1

|x|2 + o

(
1

logT

)
.
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Expanding �T up to the second order, we obtain that the sum of the second and
third terms in (5.6) is equal to

− 1

2(logT )2

∑
x

ηs(x)[�′(σT (x))]2 1

|x|2

+ 1

2(log T )2

∑
x

2∑
j=1

ηs(x)ηs(x + ej )[�′(σT (x))]2 1

|x|2
(x · ej )

2

|x|2

+ o

(
1

log T

)
.

Recall the definition of the measure µT and identity (3.8). With this notation,
we may write the Radon–Nikodym derivative dPT,γ /dPα as

exp

{
− T

2 logT

∫ 1

0
ds〈〈�′′ + [�′]2,µT

s 〉〉 + o

(
T

log T

)

+ T

2(logT )2

∫ 1

0
ds(5.7)

×∑
x

2∑
j=1

ηs(x)ηs(x + ej )[�′(σT (x))]2 1

|x|2
(x · ej )

2

|x|2
}
.

On the set B
δ,ε
T,γ the second term of the previous formula is bounded above by

T

2 logT

∫ 1

0
ds

∫ 1/2

0
dr

∫
Tπ

dθ �′(r)2〈〈�r,θ
ε,T ,µT

s 〉〉2 + δT

logT
.

Hence, replacing dPT,γ /dPα by dPα/dPT,γ , up to this point we have proved that

log
dPα

dPT,γ

≤ T

2 logT

∫ 1

0
ds

{
〈〈�′′ + [�′]2,µT

s 〉〉

−
∫ 1/2

0
dr

∫
Tπ

dθ �′(r)2〈〈�r,θ
ε,T ,µT

s 〉〉2
}

+ δT

logT
+ o

(
T

logT

)
,

which is (5.3) with �
r,θ
ε,T in place of �r,θ

ε . We do not have �r,θ
ε in the formula above

because in Lemma 4.1 we were not able to replace local functions by macroscopic
functions of the empirical measure. Nevertheless, a convexity argument permits us
to substitute �

r,θ
ε,T by �r,θ

ε . Since � is a smooth function, we may replace in the
above formula [�′]2 by an average of [�′]2 over an interval of length 2ε, paying
the price εT / logT . Changing the order of integrals, we may transfer the average
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to 〈〈�r,θ
ε,T ,µT

s 〉〉2. Due to the presence of the negative sign, by Jensen inequality,

we may introduce the average inside the square. The average of 〈〈�r,θ
ε,T ,µT

s 〉〉
over an r-interval of length 2ε is just 〈〈�r,θ

ε ,µT
s 〉〉 plus a smaller-order term. This

concludes the proof of (5.3) and the proof of the upper bound.

REMARK 5.2. The last argument in the proof shows that a superexponential
two-blocks estimate is not needed in the proof of the large deviations of the
empirical measure from the hydrodynamic limit for symmetric simple exclusion
processes considered in [10].

6. Large deviations lower bound. We prove in this section the lower bound
of the large deviations principle. It relies on the following law of large numbers.

LEMMA 6.1. Fix γ in C2(R+, α) and recall the definition of � = �γ,α given
by (3.10). As T ↑ ∞, the measure µ̄T (η) converges in PT,γ probability to the
measure γ (r) dr .

PROOF. Fix a continuous function H : [0,1/2] → R with compact support
in (0,1/2). It is enough to show that 〈〈H, µ̄T 〉〉 converges in PT,γ probability

to
∫ 1/2

0 H(r)γ (r) dr . By definition of µ̄T ,

ET,γ

[∣∣∣∣〈〈H, µ̄T 〉〉 −
∫ 1/2

0
H(r)γ (r) dr

∣∣∣∣
]

= ET,γ

[∣∣∣∣∣
∫ 1

0
ds

1

2π log T

∑
x∈Z2∗

H(σT (x))
ηs(x)

|x|2 −
∫ 1/2

0
H(r)γ (r) dr

∣∣∣∣∣
]
.

Since νT,γ is a stationary state and since by (5.1),

lim
T →∞

1

2π log T

∑
x∈Z2∗

H(σT (x))
γ (σT (x))

|x|2 =
∫ 1/2

0
H(r)γ (r) dr,

the previous expression is bounded by

EνT,γ

[∣∣∣∣∣ 1

2π logT

∑
x∈Z2∗

H(σT (x))
η(x) − γ (σT (x))

|x|2
∣∣∣∣∣
]

+ oT (1),

where oT (1) is a finite constant depending on H , γ and T which vanishes
as T ↑ ∞. By the Schwarz inequality, since νT,γ is a product measure and
EνT,γ

[η(x)] = γ (σT (x)), the square of the previous expectation is less than or
equal to

1

4π2(log T )2

∑
x∈Z2∗

H(σT (x))2F
(
γ (σT (x))

) 1

|x|4 ,



684 C.-C. CHANG, C. LANDIM AND T.-Y. LEE

where F(a) = a(1 − a). A computation similar to the one that led to (5.1) shows
that the previous expression is equal to

1

2π logT

∫ 1/2

0
H(r)2F(γ (r))

1

r2 dr + oT (1),

which proves the lemma. �

The lower bound requires an explicit expression for the rate function. Recall
from (5.4) and (5.5) the definitions of the functionals JH,ε and I .

It is not difficult to show that Iγ (µ) = ∞ if µ is not absolutely continuous with
respect to the Lebesgue measure on the interval [0,1/2] because

∫
R+ dr 〈〈�r

ε ,µ〉〉2

diverges as ε ↓ 0 if µ is not absolutely continuous. On the other hand, if µ(dr) =
m(r) dr ,

I (µ) = π sup
h∈�(R+)

{−〈〈h′,µ〉〉 − 〈〈h2,F (m)〉〉}.

By choosing an appropriate sequence of functions h, we may further show that
I (µ) = ∞ if the set {r ∈ [0,1/2],m(r) /∈ [0,1]} has positive Lebesgue measure.

Recall that we denote by M0 the compact subspace of Mc of all measures µ

which are absolutely continuous with respect to the Lebesgue measure and whose
density is positive and bounded above by 1:

M0 = {µ ∈ Mc,µ (dr) = m(r) dr,0 ≤ m(r) ≤ 1
}
.

Recall from the previous section the definitions of the set Mc,α and of the rate
function Iα . Let

M0,α = Mc,α ∩ M0

be the set of absolutely continuous measures µ(dr) = m(r) dr whose density m is
such that 0 ≤ m(r) ≤ 1 for 0 ≤ r ≤ 1/2, m(r) = α for r ≥ 1/2. It is easy to check
that M0 is closed for the weak topology. Putting together the previous estimate
with the definition of Iα , we obtain that

Iα(µ) = π sup
h∈�(R+)

{−〈〈h′,µ〉〉 − 〈〈h2,F (m)〉〉}(6.1)

for µ in M0,α and Iα(µ) = ∞ otherwise.
We claim that the functional Iα(·) is convex and lower semicontinuous. To

prove this claim, it is enough to check that for any h in �(R+), the functional
Jh defined by

Jh(µ) =
{

−〈〈h′+,µ〉〉 − 〈〈h2,F (m)〉〉, if µ ∈ M0,α,

∞, otherwise

is convex and lower semicontinuous. It is convex because M0,α is a convex set
and F is a concave function. To show that it is lower semicontinuous, consider
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a sequence µn converging weakly to µ. If µn is not in M0,α for n sufficiently
large, there is nothing to prove. Assume, therefore, that there is a subsequence,
still denoted by µn, in M0,α converging to µ. Let ιε = ε−11{[0, ε]} be an
approximation of the identity and let ∗ be the convolution in R. By the explicit
form of Jh,

Jh(µ) = lim
ε→0

Jh(µ ∗ ιε) = lim
ε→0

lim
n→∞Jh(µn ∗ ιε)

≤ lim
ε→0

lim inf
n→∞ −〈〈h′ ∗ ιε,µn〉〉 − 〈〈h2 ∗ ιε,F (mn)〉〉

= lim inf
n→∞ Jh(µn).

In the previous sequence of steps, we used the convexity of −F , the Fubini
theorem, to transfer the convolution from m to h and the fact that h, h′ are
continuous functions with compact support so that the convolution converges
to the function in L1(R+). We have thus proved that Iα is convex and lower
semicontinuous.

We now derive an explicit formula for the rate function Iα . Fix a measure µ

in M0,α such that Iα(µ) < ∞. By the previous observation, µ(dr) = m(r) dr

for some density m(r) which is almost surely equal to α on [1/2,∞). Denote
by H1(µ) the Hilbert space induced by �(R+) endowed with the scalar product
defined by

〈h,g〉µ =
∫ 1/2

0
dr h(r)g(r)F (m(r)).

Denote by Lµ the linear functional defined on �(R+) by Lµ(h) = −〈h′,m〉. By
definition of Iα ,

π sup
h∈�(R+)

{Lµ(h) − 〈h,h〉µ} ≤ Iα(µ).

Replacing h by ah for a in R and minimizing over a, we obtain that π2Lµ(h)2 ≤
Iα(µ)〈h,h〉µ. Therefore, by the Riesz representation theorem, there exists gµ in
H1(µ) such that Lµ(h) = 2〈h,gµ〉µ for all h in H1(µ). In particular,

Iα(µ) = π sup
h∈�(R+)

{2〈h,gµ〉µ − 〈h,h〉µ} = π〈gµ,gµ〉µ

and for all h in �(R+),

−
∫

R+
h′(r)m(r) dr = Lµ(h) = 2〈h,gµ〉µ

= 2
∫

R+
h(r)gµ(r)F (m(r)) dr.
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It follows from these identities that m′(r) = 2gµ(r)F (m(r)). From this relation
and the penultimate formula we deduce the following explicit formula, for the rate
function Iα :

Iα(µ) = π

4

∫
R+

m′(r)2

F(m(r))
dr.

We summarize in the next lemma the statements proved above.

LEMMA 6.2. The rate function Iα defined by (5.5) and (6.1) is convex and
lower semicontinuous. Moreover, if µ in Mc is such that Iα(µ) < ∞, then
µ(dr) = m(r) dr is absolutely continuous with respect to the Lebesgue measure,
0 ≤ m(r) ≤ 1 for 0 ≤ r ≤ 1/2, m(r) = α for r ≥ 1/2 and

Iα(µ) = π

4

∫
R+

m′(r)2

F(m(r))
dr.

Denote by M∗ the subspace of M0,α of all measures µ(dr) = m(r) dr whose
density m belongs to C2(R+, α) and is bounded away from 0 and 1: δ ≤ m(r) ≤
1 − δ for some δ > 0.

LEMMA 6.3. Fix µ in Mc such that Iα(µ) < ∞. There exists a sequence
µn(dr) = mn(r) dr of measures in M∗ which converges to µ and such that Iα(µn)

converges to Iα(µ).

PROOF. Fix a measure µ in Mc such that Iα(µ) < ∞. Since Iα(µ) is finite,
µ(dr) = m(r) dr for some density m which is equal to α on [1/2,∞) and such
that 0 ≤ m(r) ≤ 1. For each 0 < θ < 1, let mθ(r) = θm(r) + (1 − θ)α. Of course,
µθ(dr) = mθ(r) dr converges vaguely to µ as θ ↑ 1. On the other hand, since Iα is
convex and since Iα(α dr) = 0, Iα(µθ) ≤ θIα(µ) so that lim supθ→1 Iα(µθ) ≤
Iα(µ). In contrast, by lower semicontinuity of Iα , Iα(µ) ≤ lim infθ→1 Iα(µθ).
Up to this point, we obtained a sequence µn(dr) = mn(r) dr such that

lim
n→∞µn = µ, lim

n→∞ Iα(µn) = Iα(µ), 0 < δn ≤ mn(r) ≤ 1 − δn,

for some positive sequence δn. Fix a measure µ(dr) = m(r) dr in Mc such
that Iα(µ) < ∞, δ ≤ m(r) ≤ 1 − δ for some δ > 0. Since Iα(µ) < ∞, by
Lemma 6.2,

∫
R+[m′(r)]2/F (m(r)) dr < ∞. Since m is bounded away from

0 and 1,
∫
R+ dr [m′(r)]2 < ∞. Consider a sequence of smooth functions mn(r)

in C2(R+, α) converging to m(r) in H1:

lim
n→∞

∫
R+

[m′
n(r) − m′(r)]2 dr = 0.
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Since δ ≤ m(r) ≤ 1 − δ, we may take mn satisfying the same bounds and
converging a.s. to m. In particular, µn(dr) = mn(r) dr converges vaguely to µ

and

lim
n→∞ Iα(µn) = lim

n→∞
π

4

∫
R+

m′
n(r)

2

mn(r)[1 − mn(r)] dr

= π

4

∫
R+

m′(r)2

m(r)[1 − m(r)] dr = Iα(µ).

This proves the lemma. �

We are now in a position to prove the lower bound. Fix an open subset G of Mc.
In view of the previous lemma, it is enough to show that

lim inf
T →∞

logT

T
log Pα,T [µ̄T ∈ G] ≥ −Iα(µ)

for every µ in M∗ ∩ G. Fix such µ and denote its density by γ , which belongs to
C2(R+, α) by assumption. Let Aγ = {µ̄T ∈ G} and denote by P

A
T,γ the probability

PT,γ conditioned on Aγ . With this notation we may write

Pα[µ̄T ∈ G] ≥ ET,γ

[
dPα

dPT,γ

1{Aγ }
]

= E
A
T,γ

[
dPα

dPT,γ

]
PT,γ [Aγ ].

By the law of large numbers stated in Lemma 6.1, limT →∞ PT,γ [Aγ ] = 1. Hence,
by Jensen inequality,

lim inf
T →∞

logT

T
log Pα[µ̄T ∈ G]

≥ lim inf
T →∞

logT

T
logE

A
T,γ

[
dPα

dPT,γ

]

≥ lim inf
T →∞

logT

T
E

A
T,γ

[
log

dPα

dPT,γ

]

= lim inf
T →∞

log T

T
ET,γ

[
log

dPα

dPT,γ

1{Aγ }
]
.

We showed in the proof of Corollary 4.3 that the Radon–Nikodym derivative dPα/

dPT,γ is absolutely bounded by exp{C0T/ logT }. In particular, by Lemma 6.1, the
last term is equal to

lim inf
T →∞

logT

T
ET,γ

[
log

dPα

dPT,γ

]
,
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which is, up to a sign, the entropy of PT,γ with respect to Pα . In view of
formula (5.7) for the Radon–Nikodym derivative dPT,γ /dPα, the previous limit
is equal to

lim inf
T →∞ ET,γ

[
1

2

∫ 1

0
ds〈〈�′′ + [�′]2,µT

s 〉〉
]

− lim sup
T →∞

ET,γ

[∫ 1

0
ds

1

2 logT

×∑
x

2∑
j=1

ηs(x)ηs(x + ej )[�′(σT (x))]2 1

|x|2
(x · ej )

2

|x|2
]
.

Since νT,γ is a stationary state, these expectations are easily computed. Recall (5.1)
to show that the limit is equal to

π

∫ 1/2

0
dr {�′′(r)γ (r) + [�′(r)]2F(γ (r))}

= π

4

∫ 1/2

0
dr

[γ ′]2

γ (1 − γ )
= Iα(µ)

because � = (1/2) logγ/(1 − γ ) + C vanishes at the boundary. This proves the
lower bound.

7. Large deviations for occupation times. We prove Theorem 2.1 in this
section. The idea of the proof is simple. In view of the definition (3.9) of the polar
empirical measure µ̄T , Corollary 3.2 may be restated as follows. For every δ > 0,

lim sup
ε→0

lim sup
T →∞

logT

T
log Pα

[∣∣∣∣
∫ 1

0
ds ηs(0) − 〈〈�ε, µ̄

T 〉〉
∣∣∣∣> δ

]
= −∞,(7.1)

where �ε(r) = ε−11{[0, ε]}. In particular, a large deviations principle for the
occupation time follows from a large deviations principle for the polar empirical
measure µ̄T , which has been proved in the previous two sections.

The proof relies also on the following simple identity. Recall the definition
of the rate function ϒα given in the statement of Theorem 2.1. An elementary
computation shows that for every 0 ≤ a < 1/2,

inf
m∈C2(R+,α)

m(a)=β

m(1/2)=α

Iα(µ) = 1

1 − 2a
ϒα(β).(7.2)
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Proof of the upper bound. Consider a closed subset F of [0,1]. Fix δ > 0 and
let F δ = {β, d(β,F ) ≤ δ}. In view of (7.1),

lim sup
T →∞

logT

T
logPα

[∫ 1

0
ds ηs(0) ∈ F

]

≤ lim sup
ε→0

lim sup
T →∞

log T

T
log Pα[〈〈�ε, µ̄

T 〉〉 ∈ F δ].

By the large deviations principle stated in Theorem 3.3, the previous expression is
bounded above by

− lim inf
ε→0

inf
µ,〈〈�ε,µ〉〉∈F δ

Iα(µ) = − lim inf
ε→0

inf
β∈F δ

inf
µ,〈〈�ε,µ〉〉=β

Iα(µ).

By Lemma 6.3, we may restrict the last infimum to measures µ(dr) = m(r) dr

whose density belongs to C2(R+, α). In such a case, m(·) being continuous and
such that ε−1 ∫ ε

0 m(r) dr = β , there must exist r ′ in [0, ε] such that m(r ′) = β .
In particular,

inf
µ∈C2(R+,α)

〈〈�ε,µ〉〉=β

Iα(µ) ≥ inf
a∈[0,ε] inf

µ∈C2(R+,α)

m(a)=β

Iα(µ).

By (7.2) and taking a density which is constant on the interval [0, a],
inf

a∈[0,ε] inf
µ∈C2(R+,α)

m(a)=β

Iα(µ) = inf
a∈[0,ε]

1

1 − 2a
ϒα(β) = ϒα(β).

Recollecting all previous estimates, we obtain that

lim sup
T →∞

logT

T
log Pα

[∫ 1

0
ds ηs(0) ∈ F

]
≤ − inf

β∈F δ
ϒα(β).

To conclude the proof of the upper bound, it remains to let δ ↓ 0 and recall that⋂
δ>0 F δ = F because F is closed.

Proof of the lower bound. Consider an open subset G of [0,1]. Fix δ > 0 and
let Gδ = {β, d(β,Gc) > δ}, where Gc stands for the complement of G. By similar
arguments to those used to prove the upper bound,

lim inf
T →∞

log T

T
logPα

[∫ 1

0
ds ηs(0) ∈ G

]

≥ lim inf
ε→0

lim inf
T →∞

log T

T
log Pα[〈〈�ε, µ̄

T 〉〉 ∈ Gδ].
By Theorem 3.3, the previous expression is bounded below by

− lim sup
ε→0

inf
µ,〈〈�ε,µ〉〉∈Gδ

Iα(µ) = − lim sup
ε→0

inf
β∈Gδ

inf
µ,〈〈�ε,µ〉〉=β

Iα(µ).
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Again, we may restrict the last infimum to the set of measures µ(dr) = m(r) dr

whose density is in C2(R+, α). The previous infimum is bounded above by the
infimum in which we require m(r) = β for 0 ≤ r ≤ ε. By (7.2), the previous limit
is thus bounded below by

− lim sup
ε→0

inf
β∈Gδ

inf
µ,m(r)=β

0≤r≤ε

Iα(µ) = − lim sup
ε→0

1

1 − 2ε
inf

β∈Gδ

ϒα(β)

= − inf
β∈Gδ

ϒα(β).

Recollecting the previous estimates, we get that

lim inf
T →∞

log T

T
log Pα

[∫ 1

0
ds ηs(0) ∈ G

]
≥ − inf

β∈Gδ

ϒα(β).

To conclude the proof of the lower bound, it remains to let δ ↓ 0 because⋃
δ>0 Gδ = G.
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