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CLASSIFICATION OF KILLED ONE-DIMENSIONAL DIFFUSIONS1

BY SERVET MARTÍNEZ AND JAIME SAN MARTÍN

Universidad de Chile

We show necessary and sufficient conditions for R-recurrence and
R-positivity of one-dimensional diffusions killed at the origin. These con-
ditions are stated in terms of the bottom eigenvalue function.

1. Introduction and notation. We give necessary and sufficient conditions in
order that a one-dimensional diffusion X killed at 0 is R-positive. This means that
the processes Y , whose law is the conditional law of X to never hit the origin, is
positive recurrent. Our conditions are stated in terms of the function λ, where λ(z)

is the bottom of the spectrum of the eigenvalue problem associated to the diffusion
killed at z.

Let us introduce precise notation. Consider the generator Lu = 1
2 ∂2

xu − α ∂xu.
We shall assume that α is locally bounded and measurable. The results of [5], [1]
and [6], although stated for α ∈ C1, can be easily generalized to our setting. We
denote by X the diffusion whose infinitesimal generator is L, or in other words
the solution of the SDE

dXt = dBt − α(Xt) dt, X0 = x > 0,

where B is a standard Brownian motion. Thus, −α is the drift of X.
Let Tz = inf{t > 0 :Xt = z} be the hitting time of z. We are mainly interested in

the case z = 0 and we denote T = T0. As usual XT corresponds to X killed at 0.
The transition density of XT on (0,∞), is given by p(t, x, y) dy = Px(Xt ∈ dy,

T > t), x, y > 0. Under some extra conditions on α this transition density can be
computed using the Girsanov theorem by

p(t, x, y) dy = exp
(
−

∫ y

x
α(ξ) dξ

)

(1)

× Ex

(
exp

(
−1/2

∫ t

0
α2(Bs) − α′(Bs) ds

)
, Bt ∈ dy, T > t

)
,

where as customary we put Ex(f (B), A) = Ex(f (B)1A), for an integrable
function f and a measurable set A.

Most of the functions and parameters we consider in this work will depend
on α. To avoid overburdening notation we shall explicit such dependence only if it
is necessary. In this work we will consider the diffusion X killed at different points.
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In this sense it is useful to introduce the notation α(z) which is the restriction of α

to the region [z,∞). Since most of the time we will deal with the process X killed
at 0, we shall use α synonymous to α(0), when there is no possible confusion.

Consider �(x) := ∫ x
0 eγ (ξ) dξ , where γ (ξ) := 2

∫ ξ
0 α(η) dη. We shall assume

that α(0) verifies the following hypotheses:

H.
∫ ∞

0
∫ x

0 eγ (ξ) dξ e−γ (x) dx = ∫ ∞
0

∫ x
0 e−γ (ξ ) dξ eγ (x) dx = ∞.

H1. �(∞) = ∞.

Hypothesis H is that infinity is the natural boundary of the process XT , in particular
it implies limx→∞ Px(T > s) = 1 for any s > 0. Hypothesis H1 is equivalent to
Px(T < ∞) = 1 for all (or equivalently for some) x > 0. We observe that α(z) also
verifies H and H1.

Fix z ∈ R. The eigenvalue problem 1
2v′′(x) − α(x)v′(x) = −λv(x), v(z) = 0,

v′(z) = 1, has a unique solution in [z,∞) denoted by uz,λ;α. When there is no
possible confusion about α, we shall use the simple notation uz,λ. This unique
solution is C1 with an absolutely continuous derivative and it verifies, for x ≥ z,

u′
z,λ(x) = eγ (x)−γ (z)

(
1 − 2λ

∫ x

0
uz,λ(ξ)eγ (z)−γ (ξ ) dξ

)
,

(2)

uz,λ(x) =
∫ x

0
eγ (y)−γ (z)

(
1 − 2λ

∫ y

0
uz,λ(ξ)eγ (z)−γ (ξ ) dξ

)
dy.

The functions uz,λ(x), u′
z,λ(x) are continuous on (z, λ, x).

We denote by λα(z), or simply by λ(z), if there is no possible confusion, the
value given by

λ(z) = sup{λ :uz,λ is positive in (z,∞)}.
As proved in [6], λ(z) is characterized by λ(z) = sup{λ :uz,λ is increasing on
[z,∞)}. In both cases the supremum is attained (for the former case see [5]; for
the latter see [6]). From (2) once uz,λ is increasing, then necessarily it has to be
strictly increasing. In particular uz,λ(z) is strictly increasing.

In [1] it was proved that, for x > 0 fixed, the following limit exists and defines
a diffusion Y :

lim
t→∞ Px(Xs ∈ A|T > t) = eλ(0)s

Ex

(
u0,λ(0)(Xs)

u0,λ(0)(x)
,Xs ∈ A,T > s

)

= Px(Ys ∈ A).

The diffusion Y satisfies the SDE

dYt = dBt − φ(Yt ) dt where φ(y) = α(y) − u′
0,λ(0)(y)

u0,λ(0)(y)
(3)
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and it takes values on (0,∞). In fact, it never reaches 0 because its drift is of order
1/x for x near 0. The transition density for Y is

pY (t, x, y) = u0,λ(0)(y)

u0,λ(0)(x)
eλ(0)t p(t, x, y).

From (1) we get, for x > 0, y > 0,

pY (t, x, y) dy = u0,λ(0)(y)

u0,λ(0)(x)
exp

(
−

∫ y

x
α(ξ) dξ

)

× Ex

(
exp

(
−1

2

∫ t

0
hα(Bs) ds

)
, Bt ∈ dy, T > t

)
,

where hα = α2 − α′ − 2λα(0). This function hα will be used in Theorem 5 to
compare the qualitative behavior of the diffusion Y for different drifts.

The following two results give some basic information about the limiting
process Y . Their proofs are left to the Appendix.

THEOREM A. Assume α satisfies H and H1. Then, φ(x) = α(x)−u′
0,λ(0);α(x)/

u0,λ(0);α(x) satisfies H on [z,∞) for all z > 0. This means
∫ ∞
z

e−γ Y (x)
∫ x

z
eγ Y (ξ ) dξ dx =

∫ ∞
z

eγ Y (x)
∫ x

z
e−γ Y (ξ ) dξ dx = ∞,

where γ Y (y) = 2
∫ y
c (α(ξ)−u′

0,λ(0)(ξ)/u0,λ(0)(ξ)) dξ and c > 0 is a fixed constant.

The second result supplies the recurrence classification of Y in terms of
integrability properties of the ground state u0,λ(0).

THEOREM B. Assume α satisfies H. The process Y is:

(i) positive recurrent if and only if
∫ ∞

0 u2
0,λ(0)(x)e−γ (x) dx < ∞;

(ii) null recurrent if and only if
∫ ∞

0
u2

0,λ(0)(x)e−γ (x) dx = ∞ and
∫ ∞
a

u−2
0,λ(0)(x)eγ (x) dx = ∞ for a > 0;

(iii) transient if and only if
∫ ∞
a u−2

0,λ(0)(x)eγ (x) dx < ∞ for a > 0.

The classification of Y induces the R-classification of the killed diffusion XT .

DEFINITION. The process XT , or equivalently α, is said to be R-positive
(resp. R-recurrent, R-null, R-transient) if the process Y is positive recurrent (resp.
recurrent, null recurrent, transient).
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Under H and H1, we proved in [6] that the following equivalence is verified:

λ(0) > 0 ⇐⇒
∫ ∞

0
u0,λ(0)(x)e−γ (x) dx < ∞.(4)

Using that u0,λ(0) is an increasing function we deduce that λ(0) > 0 is a necessary
condition for R-positivity. Moreover, whenever XT is R-positive it holds∫ ∞

0
e−γ (x) dx < ∞.(5)

The probabilistic meaning of (5) is that the process Z whose drift in R is −α(|x|),
is positive recurrent. In fact, the invariant probability measure of Z has a density
proportional to e−γ (|x|).

In [6] it was shown that under H and H1,

λ(z) = lim
t→∞− log Px(Tz > t)

t
for any x > z,(6)

that is, λ(z) is the exponential rate at which the process X is killed at z. We observe
that if H1 fails, the right-hand side of (6) vanishes, while λ(z) could be strictly
positive.

Since Py(Tz > t) ≤ Py(Tx > t) for x < z < y, the function λ is increasing. We
point out that a simple coupling argument shows that λα is increasing also in α;
that is, if α ≥ β on [z,∞) and both functions satisfy hypotheses H and H1 then
λα(z) ≥ λβ(z) (see Corollary 1 in [6]). The study of the function λ is one of the
main objects of this paper. In this direction we make the following definition.

DEFINITION. α has a gap at x with respect to y < x, if λ(x) > λ(y).

We are mainly interested in gaps with respect to y = 0, in which case we just
say that α has a gap at x. We notice that if α has a gap at x so it does at any z > x.

We shall state necessary and sufficient conditions for α to be R-positive in
terms of the function λ. In particular we will prove that if there exists some gap
then the diffusion is R-positive. We point out that an analogous condition was
already used in [2] to show R-positivy of Markov chains in countable spaces. The
notion of R-positivity for diffusions extends the standard definition of R-positivity
introduced by Vere-Jones (see [8]) for nonnegative matrices, which in terms of
the Perron–Frobenius theory reduces to the fact that the inner product of the left
and right positive eigenvectors is finite (see [7], Theorem 6.4). Hence, this notion
turns out to be nontrivial only for processes taking values on infinite spaces. In the
context of one-dimensional statistical mechanics with an infinite number of states,
R-positivity of the transfer matrix associated to the Hamiltonian was shown to be
a necessary and sufficient condition for the existence of a unique Gibbs state [4].

In the following section we establish the main results, whose proofs are given
in Section 3. In Section 4 we give examples concerning the “last” point of increase
for λ.
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Throughout the paper we shall use some basic facts about the constant drift case.
If α is a nonnegative constant a, then a simple computation gives λ(x) = a2/2 and
α is R-transient.

2. Main results. In our results we shall assume the drifts involved verify
hypotheses H and H1.

THEOREM 1.

(i) If α has a gap at some z > 0 then α is R-positive and α has a gap at any
x > 0.

(ii) If for some z > 0 the function α(z) is R-positive then α(y) is R-positive for
0 ≤ y ≤ z and λ is strictly increasing on [0, z]. In particular, α has a gap at z.

(iii) If α does not have a gap then α(z) is R-transient for any z > 0.

We consider λ(∞) = limx→∞ λ(x) and x̄ = inf{x ≥ 0 :λ(x) = λ(∞)} ≤ ∞.
We notice that if λ(∞) = ∞ then α has necessarily a gap which implies that α is
R-positive. We also point out that if α is R-transient then x̄ = 0 and λ(0) = λ(∞).

THEOREM 2. The function λ is strictly increasing on [0, x̄), and α(x) is
R-positive for x ∈ [0, x̄). λ is constant on [x̄,∞) and α(x) is R-transient on
(x̄,∞). λ is continuous in [0,∞); it is C1 on [0,∞) except perhaps at x̄.
Moreover, λ′ satisfies, for x ∈ [0, x̄),∫ ∞

x
u2

x,λ(x)(y) exp
(
−2

∫ y

x
α(ξ) dξ

)
dy = 1

2λ′(x)
.(7)

In particular, λ′(x) > 0 on [0, x̄).
Finally, when 0 < x̄ < ∞ we have α(x̄) is R-recurrent. It is R-null if and only if

λ′(x̄−) = 0 and it is R-positive if and only if λ′(x̄−) > 0 (i.e., if λ′ is discontinuous
at x̄).

It is worth noticing that a formula similar to (7) holds for λ(x)∫ ∞
x

ux,λ(x)(y) exp
(
−2

∫ y

x
α(ξ) dξ

)
dy = 1

2λ(x)
.

This is a particular case of the relation (13) in [6], established for any λ ∈ (0, λ(x)].
The R-classification already obtained for α(x), x > 0, can be put in terms of

points of increase from the left for the function λ. In fact, α(x) is R-recurrent (resp.
R-transient) if and only if x is a point of increase (resp. constancy) from the left
for λ. The distinction between R-null and R-positive is done by the left derivative.
Thus, in order to obtain the R-classification of α(0) we rely on extensions of α(0)

to the left of 0. Clearly the classification of α(0) does not depend on the chosen
extension. To fix notations, α̃ is said to be an extension of α(0) if α̃ is defined
on [−ε,∞) for some ε > 0 and α̃(0) = α(0). From Theorems 1 and 2 we obtain
directly the following characterization.
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THEOREM 3. (i) α(0) is R-transient if and only if for some (any) extension α̃,
0 is a point of constancy for λα̃ .

(ii) α(0) is R-positive if and only if for some (any) extension α̃ it holds
λ′

α̃
(0−) > 0.
As a matter of completeness:

(iii) α(0) is R-null if and only if for some (any) extension α̃, 0 is a point of
increase for λα̃ and λ′

α̃
(0−) = 0.

As a corollary, we get that α is R-transient whenever it is periodic and satisfies
H and H1. A slight generalization is the following one. Consider a subperiodic
function α in [0,∞), that is, α(x + a) ≤ α(x) for some a > 0 and for all x ≥ 0.
We also assume α satisfies H and H1. A simple comparison argument gives
λ(a) ≤ λ(0); thus λ is a constant function. Take α̃ any subperiodic extension of α.
Again a comparison argument shows that 0 is a point of constancy for λα̃ , implying
that α is R-transient.

Let us fix x > 0 and consider the process X killed at x. The associated limiting
process Y x has a drift given by [see (3)]

−φx(y) = u′
x,λ(x)(y)

ux,λ(x)(y)
− α(y) for y > x.

A direct computation yields the following relation between the eigenfunctions for
Y x killed at z > x and the eigenfunctions for X killed at x and z. For any λ ∈ R it
holds

uz,λ−λ(x);φx (y) = uz,λ;α(y)ux,λ(x);α(z)

ux,λ(x);α(y)
,(8)

where we have put λ(x) = λα(x). From this relation we get λφx
(z) = λα(z) −

λα(x). Furthermore, the following result is verified.

PROPOSITION 4. Let x ≥ 0 and assume α(x) is R-positive. Then, for any z > x

the function φx satisfies hypotheses H and H1 on [z,∞). Moreover, α has a gap
at y with respect to z if and only if φx has a gap at y with respect to z, where
y > z > x. This last condition ensures Y x killed at z is R-positive, in particular
λφx

(z) > 0.

We now establish a comparison criteria to study R-positivity.

THEOREM 5. Assume the functions α, β satisfy any one of the following three
conditions:

(C1) α,β are C1 and hα = α2 −α′ −2λα(0) ≥ hβ = β2 −β ′ −2λβ(0) on [0,∞);
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(C2) α ≥ β and λα(∞) = λβ(∞);
(C3) α ≤ β and λα(0) = λβ(0).

Then the following properties hold:

(i) if β is R-transient then α is R-transient;
(ii) if α is R-positive then β is R-positive.

We remark that among the conditions of Theorem 5, (C2) is the easiest one to
verify. The other two conditions depend on λα(0), λβ(0) which in general are not
simple to compute. Two special cases are studied in the following result.

COROLLARY 6. (i) Assume that

α(∞) := lim inf
x→∞ α(x) >

√
2λ(0)(9)

then the process XT is R-positive. A sufficient condition for (9) to hold is

α(∞) ≥ ((
sup{α(x) :x ∈ [0, b]})2 + (π/b)2)1/2 for some b > 0.(10)

In particular the condition limx→∞ α(x) = ∞ implies XT is R-positive.
(ii) Assume the following limit exists: α(∞) := limx→∞ α(x) ≥ 0. If α(∞) ≤

α(x) for all x ≥ 0 then λ(0) = α(∞)2/2, and the process XT is R-transient. In
particular this holds whenever α is a nonnegative decreasing function.

One is tempted to believe that α is R-positive whenever it is increasing,
nonconstant, and eventually positive. This is the case when α is unbounded, but
in the bounded case α is not in general R-positive. In this direction the following
result gives a sufficient integral condition in order that XT is R-transient.

PROPOSITION 7. Assume that α is bounded on [0,∞) and satisfies α(∞) =
limy→∞ α(y) ≥ α(x) for all x ≥ 0. Also we assume that α(∞) > 0. If

∫ ∞
0

(
α(∞) − α(x)

)(
α(∞)x + 1

)
dx <

1

2e
,

then XT is R-transient.

Let α(x) = 1 − K/(1 + x)3. From condition (10) in Corollary 6, it follows that
for large values of K , α is R-positive. In an opposite way, from Proposition 7, we
find that for small values of K , α is R-transient.

We now study the eventually constant case where further explicit computations
can be made. The setting is α(x) = θ for all x ≥ , for some  ≥ 0. When θ > 0,
conditions H, H1 and (5) hold.
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PROPOSITION 8. Assume α is eventually constant with θ > 0. Then, there
exists θ = θ() such that XT is R-positive if and only if θ > θ , XT is R-null if and
only if θ = θ and XT is R-transient if and only if θ < θ . The value θ is the unique
solution of

u′
0,θ2/2

()

u0,θ2/2()
= θ.

The condition θ > θ is equivalent to λ(0) < θ2/2. Moreover, λ(0) admits the
following representation:

λ(0) = sup
{
λ ≤ min

(
λ̂(), θ2/2

)
:
u′

0,λ()

u0,λ()
+

√
θ2 − 2λ ≥ θ

}
,

where λ̂() = sup{λ :u0,λ is increasing on [0, ]}.
In the special case α(x) = θ01{x<} + θ1{x≥} with θ > θ0, the critical value θ

is given by the formula θ = θ0 + χ cot(χ), where χ is uniquely determined by
θ0 = −χ cot(2χ) and χ ∈ [π/4,π/2).

In the latter special case the dependence of θ on , θ0, verifies the homogeneity
condition

θ(, θ0) = θ(1, θ0)


.

It can be proved easily that θ is increasing on θ0 and decreasing on , with
asymptotic values

lim
→0

θ(, θ0) = ∞, lim
→∞ θ(, θ0) = θ0,

lim
θ0→0

θ(, θ0) = π/4, lim
θ0→∞ θ(, θ0) = ∞.

Moreover, using the inequality π ≤ 4x cot(x)(1 − 2x cot(2x)) ≤ π2 for x ∈
[π/4, π/2), we obtain

θ0 + π

4(1 + 2θ0)
≤ θ ≤ θ0 + π2

4(1 + 2θ0)
.

If  = 0, that is, the drift is constant on [0,∞), the process XT is R-transient. We
observe that the above criterion gives θ = ∞.

3. Proofs of the main results. In the sequel we shall need some extra
properties about the eigenfunctions uz,λ. A useful tool will be supplied by the
Wronskian W [f,g], between two C1 functions f and g, which is given by
W [f,g](x) = f ′(x)g(x) − f (x)g′(x). Once f and g are fixed, we shall simply
write W(x) instead of W [f,g](x).
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LEMMA 9. For any a > 0 there exists λ̃ > λ(0) such that u0,λ is strictly
increasing on [0, a] for any λ ∈ [λ(0), λ̃].

PROOF. The result follows from the facts that u′
0,λ(x) is jointly continuous

and u0,λ(0) is strictly increasing on [0,∞). �

LEMMA 10. Assume u0,λ is increasing on [0, a]. Then, for all µ ≤ λ the
function u0,µ is also increasing on [0, a]. Moreover, for x ∈ (0, a] it holds:
u0,µ(x) > u0,λ(x); u′

0,µ(x) > u′
0,λ(x) and the ratio u′

0,µ(x)/u0,µ(x) is a strictly
decreasing continuous function of µ on the region (−∞, λ]. In particular, the
above properties hold for λ = λ(0) on (0,∞).

PROOF. We first notice that if u0,λ is increasing on [0, a] then it is strictly
increasing in the same interval. In fact, from (2) we conclude that u′

0,λ > 0 on
[0, a). Consider the Wronskian W(x) = W [u0,λ, u0,µ](x). A direct computation
shows that W(0) = 0 and

W ′ = 2αW − 2(λ − µ)u0,λu0,µ,

or equivalently,

W(x) = −2(λ − µ)eγ (x)
∫ x

0
e−γ (ξ )u0,λ(ξ)u0,µ(ξ) dξ.

If u0,λ, u0,µ are increasing on [0, b] then W(x) < 0 on this interval and therefore

u′
0,λ(x)

u0,λ(x)
<

u′
0,µ(x)

u0,µ(x)
for x ∈ (0, b].

This implies that u0,µ is increasing in [0, a] (otherwise take the first x∗ < a where
u′

0,µ(x∗) = 0 to arrive at a contradiction). We deduce

u′
0,λ(x)

u0,λ(x)
<

u′
0,µ(x)

u0,µ(x)
for x ∈ (0, a].(11)

Moreover, by integrating (11), we get for any ε > 0,

u0,λ(x) <
u0,λ(ε)

u0,µ(ε)
u0,µ(x).

Since limε↓0 u0,λ(ε)/u0,µ(ε) = 1 we obtain

u0,λ(x) ≤ u0,µ(x) ∀x ∈ (0, a],
which together with (11), imply u′

0,λ(x) < u′
0,µ(x). Finally, the ratio u′

0,µ(x)/

u0,µ(x) is clearly continuous on µ for any x ∈ (0, a]. �
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Let z ≥ x ≥ 0 be fixed. Consider the Wronskian W = W [ux,λ, uz,µ] in the
region [z,∞), which is given by W(y) = u′

x,λ(y)uz,µ(y) − ux,λ(y)u′
z,µ(y). One

has W(z) = −ux,λ(z) and W ′ = 2αW + 2(µ − λ)ux,λuz,µ. Therefore, for y ≥ z,

W(y) = exp
(

2
∫ y

z
α(ξ) dξ

)

×
(
W(z) + 2(µ − λ)

∫ y

z
ux,λ(η)uz,µ(η) exp

(
−2

∫ η

z
α(ξ) dξ

)
dη

)

(12)

= exp
(

2
∫ y

z
α(ξ) dξ

)

×
(
−ux,λ(z) + 2(µ − λ)

∫ y

z
ux,λ(η)uz,µ(η) exp

(
−2

∫ η

z
α(ξ) dξ

)
dη

)
.

LEMMA 11. Assume that for x < z fixed, λ(x) < λ(z) is verified. Then, for
µ ∈ ( λ(x), λ(z)] and y ∈ [z,∞) we have

W
[
ux,λ(x), uz,µ

]
(y) < 0.(13)

In particular, for y ∈ [z,∞),

u′
x,λ(x)(y)

ux,λ(x)(y)
≤ u′

z,λ(z)(y)

uz,λ(z)(y)
.(14)

Furthermore,

2
(
λ(z) − λ(x)

) ∫ ∞
z

ux,λ(x)(η)uz,λ(z)(η) exp
(
−2

∫ η

z
α(ξ) dξ

)
dη

(15)
= ux,λ(x)(z).

PROOF. Let λ(x) < µ ≤ λ(z). Assume that (13) does not hold; that is, for
some finite y0 the following strict inequality holds:

2
(
µ − λ(x)

) ∫ y0

z
ux,λ(x)(η)uz,µ(η) exp

(
−2

∫ η

z
α(ξ) dξ

)
dη > ux,λ(x)(z).

By Lemma 9 and continuity, we get the existence of λ̃ ∈ ( λ(x),µ) such that:

(a) u
x,λ̃

is increasing on [x, y0];
(b) 2(µ − λ̃)

∫ y0
z u

x,λ̃
(η)uz,µ(η) exp(−2

∫ η
z α(ξ) dξ) dη > u

x,λ̃
(z).

From (12) we have

W [u
x,λ̃

, uz,µ](y0) = u′
x,λ̃

(y0)uz,µ(y0) − u
x,λ̃

(y0)u
′
z,µ(y0) > 0.

Since uz,µ is increasing (see Lemma 10) we get u′
x,λ̃

(y0) > 0 and therefore u
x,λ̃

is

strictly increasing on a small interval [y0, y0 + δ]. If there exists a point y∗ > y0
such that u′

x,λ̃
(y∗) = 0 we arrive at a contradiction. In fact, consider y∗ the



540 S. MARTÍNEZ AND J. SAN MARTÍN

smallest possible one. From (12) and relation (b) we get W [u
x,λ̃

, uz,µ](y∗) > 0,
and therefore u′

x,λ̃
(y∗) > 0. The conclusion is that ux,λ̃ is strictly increasing on

[x,∞) but this is again a contradiction because λ̃ > λ(x). Therefore,

2
(
µ − λ(x)

) ∫ ∞
z

ux,λ(x)(η)uz,µ(η) exp
(
−2

∫ η

z
α(ξ) dξ

)
dη ≤ ux,λ(x)(z)

holds, and (13) and (14) follow.

Now, let us prove (15). Take a large t0 and find a µ̃ > λ(z), close enough to λ(z),
such that uz,µ̃ is increasing on [z, t0]. Since µ̃ > λ(z) there exists t1 > t0, the
closest value to t0, where u′

z,µ̃
(t1) = 0, then W [ux,λ(x), uz,µ̃](t1) > 0. From (12)

we get

2
(
µ̃ − λ(x)

) ∫ t1

z
ux,λ(x)(η)uz,µ̃(η) exp

(
−2

∫ η

z
α(ξ) dξ

)
dη > ux,λ(x)(z).

Using Lemma 10, the inequality uz,µ̃ ≤ uz,λ(z) holds on [z, t1]. Therefore, we
obtain

2
(
µ̃ − λ(x)

) ∫ ∞
z

ux,λ(x)(η)uz,λ(z)(η) exp
(
−2

∫ η

z
α(ξ) dξ

)
dη > ux,λ(x)(z).

Thus, (15) is proved by passing to the limit µ̃ → λ(z). �

PROOF OF THEOREM 1. (i) Let us prove the existence of a gap at some z > 0
is sufficient for α to be R-positive. From Lemma 11, by integrating inequality (14)
(where x = 0) we get

u0,λ(0)(y) ≤ u0,λ(0)(y0)

uz,λ(z)(y0)
uz,λ(z)(y) for 0 < z < y0 < y.

From this inequality and (15) we get∫ ∞
y0

u2
0,λ(0)(y)e−γ (y) dy ≤ u0,λ(0)(y0)

uz,λ(z)(y0)

∫ ∞
y0

u0,λ(0)(y)uz,λ(z)(y)e−γ (y) dy

≤ u0,λ(0)(y0)

uz,λ(z)(y0)

u0,λ(0)(z)

2( λ(z) − λ(0))
e−γ (z) < ∞.

This shows that α is R-positive.
Now we prove that if α has a gap at z > 0 then it has a gap at any x > 0.

Without loss of generality we can assume that x < z. If there is not a gap at x we
have λ(0) = λ(x). For the sake of simplicity we denote λ = λ(0). Using (12), the
Wronskian W = W [u0,λ, ux,λ] is

W(y) = u′
0,λ(y)ux,λ(y) − u0,λ(y)u′

x,λ(y)

= −u0,λ(x) exp
(

2
∫ y

x
α(ξ) dξ

)
for x ≤ y.
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Therefore, we get
(

u0,λ

ux,λ

)′
(y) = W(y)

u2
x,λ(y)

= −u0,λ(x)
exp(2

∫ y
x α(ξ) dξ)

u2
x,λ(y)

.

Consider x < y0 and integrate the above equality on [y0, y] to obtain

u0,λ(y) = ux,λ(y)

(
u0,λ(y0)

ux,λ(y0)
− u0,λ(x)

∫ y

y0

exp(2
∫ η
x α(ξ) dξ)

u2
x,λ(η)

dη

)
.(16)

The assumption of having a gap at z > x and the assumption λ(0) = λ(x),
ensure that λ(z) > λ(x) and α(x) has a gap at z with respect to x. Therefore, using
the part of the theorem already proved, α(x) is R-positive. So far we have the
statement

α(x) is R-positive and λ(x) = λ(0).(17)

We shall prove this leads to a contradiction. We first remark that the following
integral is finite: ∫ ∞

x
u2

x,λ(x)(η) exp
(
−2

∫ η

x
α(ξ) dξ

)
dη < ∞,

which implies
∫ ∞
y0

exp(2
∫ η
x α(ξ) dξ)

u2
x,λ(x)(η)

dη = ∞.

This is a contradiction with (16), because at some large y we obtain

u0,λ(x)

∫ y

y0

exp(2
∫ η
x α(ξ) dξ)

u2
x,λ(η)

dη >
u0,λ(y0)

ux,λ(y0)

and therefore u0,λ(0)(y) < 0. Thus, we have proved that α has a gap at x.
(ii) Take y < z. If α(z) is R-positive and λ(z) = λ(y) we get a contradiction as

we have done for (17). Thus, λ(z) > λ(y), so α(y) has a gap at z with respect to y,
which implies that α(y) is R-positive, and λ is strictly increasing on [0, z].

(iii) We notice that α does not have a gap at any x > 0 and therefore λ(0) =
λ(x). From (16) we find

∫ ∞
y0

exp(2
∫ η
x α(ξ) dξ)

u2
x,λ(0)(η)

dη < ∞.

Therefore, α(x) is R-transient. �

LEMMA 12. Assume that α is R-transient. Then there exists ε > 0 such that
any solution of the problem v′′ − 2αv′ = −2λ(0)v whose initial conditions satisfy
0 ≤ v(0) ≤ ε, |v′(0) − 1| ≤ ε, is positive on (0,∞).
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PROOF. We begin by fixing some constants used in the proof. Let a1 > 1 be
the smallest solution of log(a1)/a1 = (4e)−1 and a∗ > a1 the smallest solution
of log(a∗)/a∗ = (2e)−1. We notice that a∗ < e, and for any a∗ < a < e we have
(2e)−1 < log(a)/a < e−1.

We denote by w = u0,λ(0). We choose ε > 0 small enough such that the
following conditions are satisfied: v is positive on (0,1]; max{w(1)/v(1), v(1)/

w(1)} ≤ a1 and ε
∫ ∞

1 w−2(x)eγ (x) dx ≤ (4e)−1.
For a ∈ (a∗, e) we shall prove that v(x) > w(x)/a on [1,∞). Suppose the

contrary. Since v(1)/w(1) ≥ 1/a1 > 1/a we obtain that

1 < x(a) := inf{x > 1 :v(x) ≤ w(x)/a} < ∞.

Consider the Wronskian W = W [w,v]. It is direct to prove that W(x) = v(0)eγ (x).
Since v is positive on the interval [1, x(a)] we obtain

w(x) = w(1)

v(1)
v(x) exp

(∫ x

1

W(y)

w(y)v(y)
dy

)
for x ∈ [1, x(a)].

Using the relations w(x(a)) = v(x(a))a > 0 and v(x) ≥ w(x)/a on [1, x(a)], we
obtain

av(x(a)) ≤ w(1)

v(1)
v(x(a)) exp

(
v(0)a

∫ x(a)

1

eγ (y)

w2(y)
dy

)
.

Therefore,

log(a)

a
≤ log(w(1)/v(1))

a
+ ε

∫ ∞
1

eγ (y)

w2(y)
dy ≤ (2e)−1,

which is a contradiction. Thus, we have proved v ≥ w/a∗ on [1,∞); in particular
v is positive. �

COROLLARY 13. Assume that α(0) is R-transient and α̃ is an extension
of α(0). Then there is δ > 0 such that λα̃(x) = λα(0) for x ∈ [−δ,0].

PROOF. Consider ε > 0 given by Lemma 12. If δ > 0 is sufficiently small we
have, for fixed x ∈ [−δ,0), v = ux,λα(0);α̃ satisfies 0 ≤ v(0) ≤ ε, |v′(0) − 1| ≤ ε

and v is positive on (x,0]. Therefore, from the previous lemma, v is positive on
(x,∞), which implies that λα̃(x) ≥ λα(0). The opposite inequality follows from
the fact that λα̃ is an increasing function. �

PROOF OF THEOREM 2. From Theorem 1 it follows that λ is strictly
increasing on [0, x̄), and in the same interval α(x) is R-positive. Also α(x) is
R-transient in the region (x̄,∞).

Now let us prove that λ is continuous on [0,∞). We use the continuity of
ux,λ(y) on x,λ, y. Consider x ∈ [0, x̄). As z decreases to x, the right-hand side
of (15) converges to 0 and the integral on the left-hand side stays bounded away
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from zero. Therefore, we deduce the right continuity of λ at x. For x ∈ (0, x̄] we
obtain the left continuity of λ in the same way. The only thing left to prove is the
right continuity at x̄. If λ(x̄) < λ(∞) we would get a contradiction with (15) by
letting z decreases to x̄, because for all z > x̄ we have λ(∞) = λ(z).

An application of the dominated convergence theorem lead us to conclude
from (15) that ∫ ∞

x
u2

x,λ(x)(y) exp
(
−2

∫ y

x
α(ξ) dξ

)
dy = 1

2λ′(x)
,(18)

and we deduce λ is C1 on [0, x̄).
Let 0 < x̄ < ∞. From the definition of x̄ we have λ(y) < λ(x̄) for any y < x̄,

and according to Corollary 13, we obtain that α(x̄) is R-recurrent.
From (14) if x < z < x̄ < y0 ≤ y we have

u2
x,λ(x)(y)

u2
x,λ(x)(y0)

≤ u2
z,λ(z)(y)

u2
z,λ(z)(y0)

.

Using the monotone convergence theorem in (18) we can pass to the limit to x̄ and
conclude that ∫ ∞

x̄
u2

x̄,λ(x̄)(y) exp
(
−2

∫ y

x̄
α(ξ) dξ

)
dy = lim

x↑x̄

1

2λ′(x)
.

Therefore, α(x̄) is R-positive if and only if limx↑x̄ λ′(x) > 0. �

PROOF OF PROPOSITION 4. From Theorem A the function φx satisfies
hypothesis H in the region [z,∞), for z > x. Hypothesis H1 for φx in [z,∞)

follows from equalities∫ ∞
z

exp
(

2
∫ y

z
φx(ξ) dξ

)
dy = u2

x,λ(x)(z)

∫ ∞
z

exp(2
∫ y
z α(ξ) dξ)

u2
x,λ(x)(y)

dy = ∞.

The last equality follows from the hypothesis that α(x) is R-positive. The rest of
the proof follows immediately from relation (8). �

PROOF OF THEOREM 5. We first assume α and β verify condition (C1). We
denote by λ = λα(0), µ = λβ(0), v = u0,λ;α and w = u0,µ;β . Now, consider the
function H = v′w − vw′ − (α − β)vw. A simple computation yields

H ′ = (α + β)H + vw
(
α2 − α′ − 2λ − (β2 − β ′ − 2µ)

)
= (α + β)H + vw(hα − hβ).

By hypothesis, the function hα − hβ is nonnegative, which implies

H(x) = exp
(∫ x

0

(
α(ξ) + β(ξ)

)
dξ

)

×
∫ x

0
v(y)w(y)

(
hα(y) − hβ(y)

)
exp

(
−

∫ y

0

(
α(z) + β(z)

)
dz

)
dy ≥ 0.
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Therefore, we get v′/v − α ≥ w′/w − β on (0,∞). Integrating this inequality and
using the relation limε↓0 v(ε)/w(ε) = 1, we obtain

w2(x) exp
(
−2

∫ x

0
β(z) dz

)
≤ v2(x) exp

(
−2

∫ x

0
α(z) dz

)
.

Then properties (i) and (ii) follow from the criteria given in Theorem B.
Now we assume (C2) holds. Let β̃ and α̃ be any pair of extensions of β and α,

respectively, defined on [−ε,∞) for some ε > 0 and satisfying β̃ ≤ α̃. By
comparison we have the inequality λ

β̃
(x) ≤ λα̃(x), valid for all x ≥ −ε.

Let us prove relation (i). Since β is R-transient we have λ
β̃
(x) = λβ(0) =

λβ(∞), for all x < 0 closed enough to 0. By hypothesis and comparison we get

λα(∞) = λβ(∞) = λβ̃(x) ≤ λα̃(x) ≤ λα(∞),

which implies that 0 is a point of constancy for λα̃ proving that α is R-transient.
Now let us prove (ii). If β has a gap then it is R-positive. So for the rest of

the proof, we can assume that λβ(0) = λβ(∞). By hypothesis and comparison
we have λα(∞) = λβ(∞) = λβ(0) ≤ λα(0) ≤ λα(∞), so λβ(0) = λα(0). Since
λα(0) = λα(∞) and α is assumed to be R-positive, Theorem 3(ii) implies that
λ′

α̃
(0−) > 0. From λβ̃(x) ≤ λα̃(x) we get λ′

β̃
(0−) ≥ λ′

α̃
(0−) > 0. By using again

Theorem 3(ii) we conclude β is R-positive.
The proof that (C3) implies (i) and (ii) is similar to the previous one. �

LEMMA 14. Let b > 0 and consider λ̂(b) = sup{λ :u0,λ is increasing on
[0, b]}. Then

λ(0) < λ̂(b) <
(
D2 + (π/b)2)/2 where D = sup{α(x) :x ∈ [0, b]}.(19)

PROOF. The first inequality in (19) follows from Lemma 9. For proving the
second inequality, consider the function g(x) = eDx sin(πx/b). Function g is
positive on (0, b); it verifies g(0) = g(b) = 0 and the equation g′′ −2Dg′ = −2λg,
where λ = (D2 + (π/b)2)/2. Assume that v = u0,λ is increasing on [0, b]. Using
the Wronskian W = W [v, g] we deduce that W ′ = 2DW + 2v′g(α − D) and
therefore

0 < W(b) = −g′(b)v(b) = 2e2Db
∫ b

0
e−2Dxv′(x)g(x)

(
α(x) − D

)
dx ≤ 0,

which is a contradiction. Therefore, u0,λ cannot be increasing on [0, b], proving
that λ̂(b) < (D2 + (π/b)2)/2. �

PROOF OF COROLLARY 6. The proof is based on a comparison (see [6]) with
the constant drift case. For proving (i), we notice that (9) implies λ(x) > λ(0) for
any large enough x. Therefore, α has a gap, which ensures that α is R-positive.



KILLED ONE-DIMENSIONAL DIFFUSIONS 545

The fact that condition (10) is sufficient for (9) follows from property (19) in
Lemma 14.

Now we prove (ii). For any ε > 0 there exists x0 large enough, such that
λ(x) ≤ (α(∞) + ε)2/2 for x ≥ x0, proving that λ(∞) ≤ α(∞)2/2. On the other
hand the condition 0 ≤ α(∞) ≤ α(x) for all x ≥ 0, ensures that λ(0) ≥ α(∞)2/2,
proving that λ(x) = α(∞)2/2 for all x ≥ 0. The rest of the proof is based on
Theorem 5. Indeed, take β the constant function α(∞). The condition (C2) in
Theorem 5 is satisfied and since β is R-transient we get α is also R-transient. �

PROOF OF PROPOSITION 7. Consider the nonnegative function f (x) =
α(∞) − α(x). Let β be the constant function β = α(∞). Denote by µ = λβ(0)

the bottom of its spectrum, which is µ = α(∞)2/2. We shall prove λα(0) = µ.
Put v = u0,µ;α and w = u0,µ;β . We notice that w(x) = xeβx . At this point we do
not know if v is nonnegative.

From w′′ − 2βw′ = −2µw and v′′ − 2(β − f (x))v′ = −2µv we deduce that
the Wronskian W = W [w,v] is given by

W(x) = 2 exp
(

2βx − 2
∫ x

0
f (y) dy

)

×
∫ x

0
f (z)w′(z)v(z) exp

(
−2βz + 2

∫ z

0
f (y) dy

)
dz.

Since w′ and f are nonnegative, if v is positive on some interval (0, x0], then
W is nonnegative in that interval. This implies the inequality v(x) ≤ w(x) for all
x ∈ [0, x0]. Hence, using the explicit form for w, we obtain the following upper
bound for W :

W(x) ≤ 2e2βx
∫ x

0
f (z)w′(z)w(z)e−2βz dz = 2e2βx

∫ x

0
f (z)z(βz + 1) dz.(20)

On the other hand, for x ∈ (0, x0] we have the equality

w(x) = v(x) exp
(∫ x

0

W(y)

w(y)v(y)
dy

)
.

Now consider the function g(a) = log(a)/(2a), which is nonnegative for
a ≥ 1 and attains its maximum at a = e, with g(e) = 1/(2e). Moreover, g is
strictly increasing on [1, e) and strictly decreasing on (e,∞]. From the hypothesis∫ ∞

0 f (z)(βz + 1) dz < 1/(2e), there exists a unique ā ∈ [1, e) such that∫ ∞
0

f (z)(βz + 1) dz = log(ā)

2ā
.

We shall prove that v ≥ w/ā. For this purpose take any a > ā, sufficiently close
to ā in order to have g(a) > g(ā). Assume that x(a) := inf{x > 0 :v(x) < w(x)/a}
is finite. Notice that x(a) > 0. Since v is strictly positive on (0, x(a)] we have

av(x(a)) = w(x(a)) = v(x(a)) exp
(∫ x(a)

0

W(y)

w(y)v(y)
dy

)
.
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Therefore, since v(x) ≥ w(x)/a on [0, x(a)] we get from (20)

log(a) =
∫ x(a)

0

W(y)

w(y)v(y)
dy

≤ a

∫ x(a)

0

W(y)

w2(y)
dy

≤ 2a

∫ x(a)

0

e2βy

w2(y)

∫ y

0
f (z)z(βz + 1) dz

≤ 2a

∫ ∞
0

1

y2

∫ y

0
f (z)z(βz + 1) dz

= 2a

∫ ∞
0

f (z)(βz + 1) dz.

This implies that

g(a) = log(a)

2a
≤

∫ ∞
0

f (z)(βz + 1) dz = g(ā),

obtaining a contradiction. Thus, x(a) = ∞.
We have proved that u0,α(∞)2/2;α ≥ w/ā, implying that u0,α(∞)2/2;α is nonneg-

ative. Hence, λα(0) ≥ α(∞)2/2. The opposite inequality follows from a compari-
son with the constant case α(∞). Thus, v = u0,λ(0);α ≥ w/ā.

Finally, since α ≤ α(∞) we get

u0,λ(0);α(x)−2 exp
(

2
∫ x

0
α(ξ) dξ

)
≤ ā2w(x)−2e2α(∞)x = (ā/x)2,

and α is R-transient from Theorem B(iii). �

PROOF OF PROPOSITION 8. Since for a constant drift −θ the bottom of the
spectrum is θ2/2 we get λ() = θ2/2 and a simple computation yields u,λ()(x) =
(x − )eθ(x−). In particular u−2

,λ()(x)e2θ(x−) = (x − )−2, which is integrable

near ∞. Therefore, α() is R-transient, and the result follows when  = 0. In the
sequel we shall assume that  > 0. We observe that λ(0) ≤ θ2/2.

We denote by λ̂ = λ̂() = sup{λ :u0,λ is increasing on [0, ]}. From Lemma 14
we have

λ(0) < λ̂ <
(
D2 + (π/)2)/2 where D = sup{α(x) :x ∈ [0, ]}.

We notice that u′
0,λ̂

() = 0; otherwise for some λ > λ̂ we would have that u0,λ is

increasing on [0, ], contradicting the maximality of λ̂.
The mapping u′

0,µ2/2
()/u0,µ2/2() − µ, as a function of µ, is continuous and

strictly decreasing on [0,
√

2λ̂ ], positive at 0 and negative at
√

2λ̂. Therefore, there
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exists a unique root of this function, in (0,
√

2λ̂ ), which we denote by θ . This root
verifies

u′
0,θ2/2

()

u0,θ2/2()
= θ and

[
θ ≤ θ ⇐⇒

(u′
0,θ2/2()

u0,θ2/2()
≥ θ and θ ≤

√
2λ̂

)]
.

Let us take

λ∗ = sup
{
λ ≤ min(λ̂, θ2/2) :

u′
0,λ()

u0,λ()
+

√
θ2 − 2λ ≥ θ

}
.

As before, one can easily prove that λ∗ satisfies 0 < λ∗ < λ̂.
The equivalence θ > θ ⇔ λ∗ < θ2/2 plays an important role in the sequel, and

it follows from

λ∗ = θ2

2
⇐⇒

(u′
0,θ2/2

()

u0,θ2/2()
≥ θ and θ ≤

√
2λ̂

)
⇐⇒ θ ≤ θ.(21)

We shall now prove that λ∗ = λ(0). Take any λ ≤ min(λ̂, θ2/2). The func-
tion u0,λ is increasing on [0, ]. The question is to determine the values of λ for
which u0,λ is increasing in (,∞). For this purpose consider the solution of

1
2f ′′(x) − θf ′(x) = −λf (x), x ∈ [,∞),

with boundary conditions f () = u0,λ(), f ′() = u′
0,λ(). Obviously f = u0,λ

on [,∞). For the analysis of this solution we consider two possible cases. When
ρ = √

θ2 − 2λ > 0 the solution is given by

f (x) = eθ(x−)
(
A sinh

(
ρ(x − )

) + B cosh
(
ρ(x − )

))
.

From the boundary conditions we obtain

0 < f () = u0,λ() = B, f ′() = u′
0,λ() = θB + ρA.

The condition for having an increasing (positive solution) is equivalent to A ≥ −B ,
that is, to u′

0,λ() ≥ (θ − √
θ2 − 2λ )u0,λ(). In other words it is equivalent to

u′
0,λ()

u0,λ()
+

√
θ2 − 2λ ≥ θ.

On the other hand, in the case λ = θ2/2 (then necessarily θ2/2 ≤ λ̂), the solution
is

f (x) = (
C(x − ) + B

)
eθ(x−),

where B = u0,θ2/2() > 0 and C = u′
0,θ2/2

() − θu0,θ2/2(). The condition for
having a positive solution is C ≥ 0 which is equivalent to

u′
0,θ2/2

()

u0,θ2/2()
≥ θ.
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In summary, we have shown that f is positive if and only if λ ≤ λ∗. In particular
u0,λ∗ is positive on [0,∞) proving that λ∗ ≤ λ(0). On the other hand, since
u0,λ(0) is positive and λ(0) ≤ min(λ̂, θ2/2), the argument given above allows us
to conclude the equality λ∗ = λ(0).

Thus, in the case λ(0) < θ2/2, from (21) one gets

u′
0,λ(0)()

u0,λ(0)()
+

√
θ2 − 2λ(0) = θ,

which in the previous notation amounts to A = −B . Therefore, the solution u0,λ(0)

is, for x > ,

u0,λ(0)(x) = u0,λ(0)()e
(θ−

√
θ2−2λ(0))(x−).

In particular u2
0,λ(0)(x)e−γ (x) = u2

0,λ(0)()e
−γ ()e−2

√
θ2−2λ(0)(x−) for x > ,

which is integrable and therefore XT is R-positive.
On the other hand, if λ(0) = θ2/2 one has u0,λ(0) = eθ(x−)(C(x − ) + B) for

x ≥ , with B > 0 and C ≥ 0. Then, the function

u2
0,λ(0)(x)e−γ (x) = (

C(x − ) + B
)2

e−γ ()

is not integrable near ∞.
In summary XT is R-positive if and only if λ(0) < θ2/2, which we have proved

to be equivalent to θ > θ .
Now we prove that α is R-transient if and only if θ < θ . Remark that λ(0) =

θ2/2 holds under both conditions of the claimed equivalence. Since u0,θ2/2(x) =
eθ(x−)(C(x − )+ B) for x ≥ , we get that α is R-transient if and only if C > 0,
or equivalently,

θu0,θ2/2() < u′
0,θ2/2(),

which holds if and only if θ < θ .
Finally, we give an explicit formula for θ when α(x) = θ01{x<} + θ1{x≥} and

θ > θ0. In this case, the solution u0,λ for λ > θ2
0 /2, is

u0,λ(x) = eθ0x

χ
sin(χx),

where χ =
√

2λ − θ2
0 , and therefore θ = √

2λ is the unique solution of

√
2λ = u′

0,λ()

u0,λ()
= θ0 + χ cot(χ) =

√
χ2 + θ2

0 .

We obtain the relation θ0 = −χ cot(2χ), from which we get the desired value
of θ . �
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4. Examples.

EXAMPLE A. In the ultimately constant case, if x̄ > 0, α(x̄) is always R-null
(Proposition 8), then the transition from R-positive to R-transient occurs through
a R-null point. We show that this is not always the case; that is, we exhibit an
example where 0 < x̄ < ∞ and α(x̄) is R-positive. Let us construct it. Take a
function g verifying the following conditions:

(i) g > 0 on (0,∞), g(0) = 0 and g′(0) = 1;
(ii)

∫ ∞
0 g2(x) dx < ∞;

(iii) g + g′ > 0, limx→∞ g′′(x)/(g(x) + g′(x)) = 0 and
∫ ∞

0 |g′′(x)/(g(x) +
g′(x))|dx < ∞.

For instance g(x) = x/(1 + x)2 does the job.
Fix some a > 0. Let α be such that α(x) = 1 +g′′(x − a)/(2(g(x − a)+g′(x −

a))) for x ≥ a. Obviously we have λ(∞) = α(∞)2/2 = 1/2. Since the function
v(x) = g(x − a)e(x−a) solves the problem v′′ − 2αv′ = −v on (a,∞) with the
boundary conditions v′(a) = 1, v(a) = 0 and it is positive, we get λ(a) = λ(∞) =
1/2. On the other hand, from (ii) and (iii) it can be checked that α(a) is R-positive.
From Theorem 1(ii) we conclude x̄ = a.

EXAMPLE B. Let us now show that for some bounded drifts we can have
x̄ = ∞. Take a sequence 0 < bn < 1 converging towards 1. Consider x0 = 0,
xn+1 = xn + π/

√
1 − b2

n and define α(x) = bn for x ∈ [xn, xn+1). We have
λ(∞) = 1/2. Let us prove that λ(xn) < 1/2. The solution of v′′ − 2αv′ = −v

with v(xn) = 0, v′(xn) = 1, is given by

v(x) = e(x−xn)√
1 − b2

n

sin
(
(x − xn)

√
1 − b2

n

)
for x ∈ [xn, xn+1).

Since v(xn+1) = 0 we obtain that λ(xn) < 1/2 and therefore x̄ = ∞.

APPENDIX

The proof of Theorem A is based on the following lemma, for which we assume
neither H nor H1.

LEMMA C. Assume α is locally bounded and measurable. Let λ < 0, then the
following two conditions are equivalent:

(i) u0,λ is unbounded;
(ii)

∫ ∞
0 eγ (x)

∫ x
0 e−γ (y) dy dx = ∞.
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PROOF. We denote v = u0,λ. From (2) and the fact that λ < 0 we get that v is
strictly increasing. Moreover we have

v(x) = �(x) − 2λ

∫ x

0
eγ (y)

∫ y

0
v(z)e−γ (z) dz dy.

Hence, if �(∞) = ∞, both conditions (i) and (ii) are satisfied. Therefore, for the
rest of the proof we can assume �(∞) < ∞.

Suppose that (ii) holds. For x > 1, v can be bounded from below by

v(x) ≥ �(x) − 2λ

∫ x

1
eγ (y)

∫ y

1
v(z)e−γ (z) dz dy

≥ �(x) − 2λv(1)

∫ x

1
eγ (y)

∫ y

1
e−γ (z) dz dy

≥ �(x) − 2λv(1)

∫ x

0
eγ (y)

∫ y

0
e−γ (z) dz dy

+ 2λv(1)

(∫ 1

0
eγ (y)

∫ y

0
e−γ (z) dz dy + �(x)

∫ 1

0
e−γ (z) dz

)
.

Then v is unbounded.
Now, assume

∫ ∞
0 eγ (x)

∫ x
0 e−γ (y) dy dx < ∞. We shall prove that v is bounded.

Indeed, take a large x0 such that −2λ
∫ ∞
x0

eγ (y)
∫ y

0 e−γ (z) dz dy ≤ 1/2. For x > x0
we have

v(x) ≤ v(x0) + �(∞) − 2λv(x)

∫ x

x0

eγ (y)
∫ y

0
e−γ (z) dz dy

≤ v(x0) + �(∞) + v(x)/2.

Therefore, v is bounded by 2(v(x0) + �(∞)). �

PROOF OF THEOREM A. We denote v = u0,λ(0). We also recall the notation
γ Y (y) = 2

∫ y
c φ(ξ) dξ = γ (y) − γ (c) − 2 log(v(y)/v(c)), for some c > 0 fixed.

Then ∫ ∞
z

e−γ Y (y)
∫ y

c
eγ Y (ξ ) dξ dy

=
∫ ∞
z

v2(y)

v2(c)
e−γ (y)

∫ y

c

v2(c)

v2(ξ)
eγ (ξ) dξ dy

≥
∫ ∞
z

e−γ (y)
∫ y

c
eγ (ξ ) dξ dy

= ∞,

where we have used the monotonicity of v and hypotheses H and H1 for α.
For the other integral involved in condition H, we consider two different

situations. In the first one we assume λ(0) = 0. In this case v = � and φ =
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α − �′/�. Since d�(y) = eγ (y)dy, an integration by parts yields∫ x

z
eγ Y (y)

∫ y

c
e−γ Y (ξ ) dξ dy

=
∫ x

z

eγ (y)

�2(y)

∫ y

c
�2(ξ)e−γ (ξ ) dξ dy

=
∫ x

c
�(y)e−γ (y)

(
1 − �(y)

�(x)

)
dy.

Since � increases to ∞ we can take xn ↑ ∞ such that �(xn) = �(n)/2. Then∫ ∞
z

eγ Y (y)
∫ y

c
e−γ Y (ξ ) dξ dy

≥
∫ n

c
�(y)e−γ (y)

(
1 − �(y)

�(n)

)
dy

≥ 1

2

∫ xn

c
�(y)e−γ (y) dy,

which converges to infinite because α satisfies H.
We are left with the case λ(0) > 0. Consider w = uz,0;α and v = u0,λ(0);α . By (8)

we have

uz,−λ(0);φ(y) = w(y)v(z)

v(y)
.

From Lemma C, the proof will be finished as soon as we prove w/v is unbounded.
So let us assume w/v ≤ D on [z,∞). Then∫ ∞

z
w(y)e−γ (y) dy ≤ D

∫ ∞
z

v(y)e−γ (y) dy,

which is finite from (4). On the other hand it is direct to check that w(y) =
e−γ (z)(�(y) − �(z)) and therefore∫ ∞

z
w(y)e−γ (y) dy = e−γ (z)

∫ ∞
z

�(y)e−γ (y) dy − �(z)

∫ ∞
z

e−γ (y) dy.

This quantity is infinite because α satisfies H and according to (5),∫ ∞
z

e−γ (y) dy < ∞.

Thus, we arrive at a contradiction and w/v is unbounded. �

PROOF OF THEOREM B. Let v = u0,λ(0);α and consider

�Y (y) =
∫ y

c
eγ Y (z) dz = v2(c)

∫ y

c
v−2(z)eγ (z)−γ (c) dz.

We first notice that �Y(0+) = −∞, because v(x) = x + O(x2) for x near 0. On
the other hand if �Y (∞) = ∞ then Y is recurrent (see 5.5.22 in [3]). In the case
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�Y(∞) < ∞, for any x > 0 it holds

Px

(
lim
t↑S

Yt = ∞
)

= Px

(
inf

0≤t<S
Yt > 0

)
= 1,

where S is the explosion time of Y . In this case the process Y is transient. Hence,
Y is transient if and only if �Y(∞) < ∞, which is equivalent to∫ ∞

c
v−2(z)eγ (z) dz < ∞.

Let T Y
a be the hitting time of a > 0 for the process Y . The process Y is positive

recurrent when Ex(T
Y
a ) < ∞, for any x, a ∈ (0,∞). Using the formulas on

page 353 in [3] and the fact that the speed measure for Y is given by

m(dx) = 2
e−γ (c)

v2(c)
v2(x)e−γ (x) dx,

we deduce Y is positive recurrent if and only if
∫ ∞

0 v2(x)e−γ (x) dx < ∞. �
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