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MIXING PROPERTIES AND EXPONENTIAL DECAY
FOR LATTICE SYSTEMS IN FINITE VOLUMES1

BY KENNETH S. ALEXANDER

University of Southern California

An infinite-volume mixing or exponential-decay property in a spin
system or percolation model reflects the inability of the influence of the
configuration in one region to propagate to distant regions, but in some
circumstances where such properties hold, propagation can nonetheless occur
in finite volumes endowed with boundary conditions. We establish the
absense of such propagation, particularly in two dimensions in finite volumes
which are simply connected, under a variety of conditions, mainly for the
Potts model and the Fortuin–Kasteleyn (FK) random cluster model, allowing
external fields. For example, for the FK model in two dimensions we show
that exponential decay of connectivity in infinite volume implies exponential
decay in simply connected finite volumes, uniformly over all such volumes
and all boundary conditions, and implies a strong mixing property for such
volumes with certain types of boundary conditions. For the Potts model in
two dimensions we show that exponential decay of correlations in infinite
volume implies a strong mixing property in simply connected finite volumes,
which includes exponential decay of correlations in simply connected finite
volumes, uniformly over all such volumes and all boundary conditions.

1. Introduction and preliminaries. Many models encountered in statistical
mechanics exhibit exponential decay of the two-point function at sufficiently high
temperatures. Typical spin systems exhibit exponential decay of correlations, and
many standard percolation models are known or believed to have exponential
decay of connectivities for those noncritical parameter values at which there is
no percolation. In particular, this can be said for many random cluster models
(graphical representations) corresponding to spin systems. Such exponential decay
is by its nature an infinite-volume property, but it does have a finite-volume analog
which has apparently been little studied. Let R be a bounded subset of Rn. For a
spin system on the lattice Zn, we consider the truncated correlation (covariance)
〈δ{σx=i}; δ{σy=j }〉β�,η for the system on � = R ∩ Zn at inverse temperature β under
boundary condition η; here δA denotes the indicator function of the event A. For
a percolation model we consider the probability PB,ρ(x ↔ y) of the event x ↔ y

that there exists a path of open bonds from x to y, for the model on the set B of
all bonds contained in R, under boundary condition ρ. We may ask, do there exist

Received October 2001; revised February 2002.
1Supported by NSF Grant DMS-98-02368.
AMS 2000 subject classifications. Primary 60K35; secondary 82B20.
Key words and phrases. Exponential decay of correlations, exponential decay of connectivities,

FK model, Potts model, weak mixing, strong mixing.

441



442 K. S. ALEXANDER

constants C and λ, not depending on the region R or on the boundary condition,
such that for all x, y ∈ � this finite-volume correlation or connectivity is bounded
above by C exp(−λd(x, y))? There are two natural choices for the metric d here:
the Euclidean metric d2 and the restricted-path metric

dR(x, y) = min{n ≥ 0 : there exists a lattice path of length n in R from x to y}.
When such C, λ exist we say there is uniform exponential decay of finite-
volume correlations or connectivities. When the uniformity is only over some
limited class C of regions, or regions with boundary conditions, we refer to the
uniform exponential decay as being for the class C. If the metric is not clear
from the context, we refer to the decay as being in the Euclidean metric or in
the restricted-path metrics. We will establish here sufficient conditions for such
uniform exponential decay in two dimensions, in both metrics.

What makes the study of correlations, and analogously connectivities, under a
boundary condition difficult is that the influence of one spin might in principle
propagate (in part) along the boundary to affect distant spins much more than
would occur in infinite volume. Such propagation was studied by Martinelli,
Olivieri and Schonmann [24] in showing that in two dimensions, weak mixing
implies a form of strong mixing. But these authors restricted attention to very
regular regions �, specifically large squares or unions of large squares; we will
consider more general regions here. We will not, however, consider spin systems
as general as those in [24].

The region � cannot be completely arbitrary. The examples ([23], pages 458
and 459), one due to Schonmann, show that when � is so irregular that the
boundary ∂� permeates through the bulk of �, the influence of a single spin
can propagate much more than is the case in infinite volume. The hypothesis we
will make on � is a lattice version of simple connectedness, which we will see is
enough to avoid this problem.

The main percolation model of interest to us is the Fortuin–Kasteleyn random
cluster model (briefly, the FK model) of [13–15], including the version with
external fields. The FK model is a graphical representation of the Potts model.
When possible, however, we will state results for more general models.

In two dimensions one can also consider decay of dual connectivities in finite
volumes, and here the effect of boundary conditions can be dramatic. For example,
the FK model corresponding to an Ising model at subcritical temperature exhibits
exponential decay of dual connectivity in infinite volume, but for a large square
with Dobrushin boundary conditions (plus on the top half, minus on the bottom
half ), a long dual connection is forced to exist, meaning the exponential decay is
destroyed.

For the Ising model in finite volume with boundary condition in which all
boundary spins are plus or 0 (free), as observed by Pfister [26], the boundary
condition may be viewed as an infinite external field applied to the boundary
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plus spins, together with the “turning off” of the couplings for all bonds with
an endpoint at a boundary 0 spin. Standard symmetry inequalities then show
that the truncated correlation in finite volume is bounded above by the infinite-
volume truncated correlation, so exponential decay of correlations implies at least
a weaker form of uniform exponential decay of finite-volume connectivities, in
which we restrict the allowed boundary conditions. But symmetry inequalities
tell us nothing here under Ising-model boundary conditions which mix plus
and minus spins. And for other models of interest, such as the Potts model,
symmetry inequalities are not even available. Instead, our techniques involve
first establishing uniform exponential decay of finite-volume connectivities in
percolation models, then transferring these results to some spin systems using
random cluster representations.

Beyond exponential decay of the two-point function, we consider mixing
properties. Consider finite regions 	 ⊂ � with boundary condition on �c.
Roughly, weak mixing is the property that the maximum influence (measured
additively) of the boundary condition on the probability of any event occuring
in any fixed 	 decays to 0 exponentially in d2(	,�c) as ∂� recedes to infinity,
and ratio weak mixing is a similar but stronger property with influence measured
multiplicatively. In strong mixing, the maximum (additive) influence of a change
made in the boundary condition 
 ⊂ �c on the probability of any event occurring
in any subset 	 of � decays, roughly speaking, exponentially in d2(	,
). Thus
weak mixing allows the influence of a region 
 ⊂ �c to propagate along the
boundary, but strong mixing does not allow this. In [2] the following facts are
proved. For bond percolation models in two dimensions, under mild hypotheses
(satisfied, e.g., by the FK model), exponential decay of connectivities implies
weak mixing. In any dimension, under additional hypotheses satisfied by the
FK model, weak mixing and exponential decay of connectivity imply ratio weak
mixing. For the Potts model without external fields above the critical temperature
in two dimensions, exponential decay of correlations implies weak mixing, and in
arbitrary dimension, weak mixing implies ratio weak mixing. Further, in [24] it is
shown that in two dimensions, weak mixing is equivalent to a restricted version of
strong mixing in which � is required to be a union of large squares. We consider
here uniform versions of these results in finite volumes.

The condition in [24] that � be a union of large squares is more restrictive than
it might first appear, for the following reason. It is often of interest to take two
subsets 	,� ⊂ � and, under a boundary condition specified on ∂�, consider the
influence of an event or configuration on � on the probabilities of events occuring
on 	. One can hope to apply the results of [24] in this situation by treating � as
part of the boundary, but this requires that �\� be a union of large squares, which
is not generally natural.

Turning to formalities, a bond, denoted 〈xy〉, is an unordered pair of nearest
neighbor sites of Zn. When convenient we view bonds as being closed line
segments in the plane; this should be clear from the context. In particular
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for R ⊂ Rn, B(R) denotes the set of all bonds for which the corresponding closed
line segments are contained in R, and when we refer to distances between sets of
bonds, we mean distances between the corresponding sets of line segments. The
exception is for � ⊂ Zn, for which we set B(�) = {〈xy〉 :x, y ∈ �}. (Again, this
should be clear from the context.) For a set D of bonds we let V (D) denote the
set of all endpoints of bonds in D and

∂D = {〈xy〉 :x ∈ V (D), y /∈ V (D)}, D = D ∪ ∂D .

We write B(�) for B(�), and D ⊂⊂ B means D is a finite subset of B .
A bond configuration is an element ω ∈ {0,1}B(Zn). A bond e is open in the
configuration ω if ωe = 1 and closed if ωe = 0.

For n = 2, the dual lattice is the translation of the integer lattice by (1/2,1/2);
we write x∗ for x + (1/2,1/2). To each (regular) bond e of the lattice there
corresponds a dual bond e∗ which is its perpendicular bisector; the dual bond is
defined to be open in a configuration ω precisely when the regular bond is closed,
and the corresponding configuration of dual bonds is denoted ω∗. We write (Z2)∗
for {x∗ :x ∈ Z2}.

A cluster in a given configuration is a connected component of the graph with
site set Zn and all open bonds; for n = 2, dual clusters are defined analogously
for open dual bonds. (In contexts where there is a boundary condition consisting
of a configuration on the complement Bc for some set B of bonds, a cluster may
include bonds in Bc.) For a configuration on B(�) for some finite �, a boundary
cluster is a cluster which intersects ∂� and a nonboundary cluster is one which
does not.

Given a set D of bonds, we write D∗ for {e∗ : e ∈ D}. The set of all endpoints
of bonds in D∗ is denoted V ∗(D) or V ∗(D∗).

For � ⊂ Zn or � ⊂ (Z2)∗ we define

∂� = {x /∈ � :x adjacent to �}, ∂in� = {x ∈ � :x adjacent to �c},
where adjacency is in the appropriate lattice Zn or (Z2)∗.

A (dual ) path is a sequence γ = (x0, 〈x0x1〉, x1, . . . , xn−1, 〈xn−1xn〉, xn) of
alternating (dual) sites and bonds. The sequence γ is self-avoiding if all sites are
distinct. We write x ↔ y (x

∗↔y) in ω if there is a path of open (dual) bonds from x

to y in ω.
By a bond percolation model we mean a probability measure P on {0,1}B(Zn).

The finite-volume distribution for the model P under boundary condition ρ ∈
{0,1}Bc

is

PB,ρ = P (·|ωe = ρe for all e ∈ Bc),

where B ⊂⊂ B(Zn). We write ρi for the all-i boundary condition. We say a bond
percolation model P has bounded energy if there exists p0 > 0 such that

1 − p0 > P(ωe = 1|ωb, b 
= e) > p0 for all {ωb, b 
= e},(1.1)



DECAY IN FINITE VOLUMES 445

and semibounded energy if the first inequality in (1.1) holds. Write ωD for
{ωe : e ∈ D} and let GD denote the σ -algebra generated by ωD . The model P

has the weak mixing property if for some C,λ > 0, for all finite sets D , E with
D ⊂ E ,

sup
{
Var

(
PE,ρ(ωD ∈ ·),PE,ρ′(ωD ∈ ·)) :ρ,ρ′ ∈ {0,1}Ec}

≤ C
∑

x∈V (D),y∈V (Ec)

e−λ|x−y|,

where Var(·, ·) denotes total variation distance between measures and | · | denotes
the Euclidean norm. Roughly, the influence of the boundary condition on a finite
region decays exponentially with distance from that region. Equivalently, for some
C,λ > 0, for all sets E ,F ⊂ B(Z2) with E finite,

sup
{|P (E|F) − P (E)| :E ∈ GE ,F ∈ GF ,P (F ) > 0

}
≤ C

∑
x∈V (E),y∈V (F )

e−λ|x−y|.(1.2)

The model P has the ratio weak mixing property if for some C,λ > 0, for all sets
E ,F ⊂ B(Z2) with E finite,

sup
{∣∣∣∣ P (E ∩ F)

P (E)P (F )
− 1

∣∣∣∣ :E ∈ GE ,F ∈ GF ,P (E)P (F ) > 0
}

≤ C
∑

x∈V (E),y∈V (F )

e−λ|x−y|,
(1.3)

whenever the right-hand side of (1.3) is less than 1. Note that in weak mixing the
influence of the event F on the probability of E is measured additively, but in ratio
weak mixing it is measured multiplicatively—F can alter the probability of E

by at most a factor near 1. A multiplicative result is much stronger when dealing
with events E of probability much smaller than the additive constant, that is, the
right-hand side of (1.2).

The finite-volume analog of weak mixing is strong mixing, as studied for spin
systems in [24] and elsewhere, sometimes under other names. We say P has the
strong mixing property (for a class C of finite regions and boundary conditions, in
the metric d) if for some C,λ > 0, for all (B, ρ) ∈ C and all E ,F ⊂ B ,

sup
{|PB,ρ(E|F) − PB,ρ(E)| :E ∈ GE ,F ∈ GF ,PB,ρ(F ) > 0

}
≤ C

∑
x∈V (E),y∈V (F )

e−λd(x,y).(1.4)

The ratio strong mixing property is defined similarly with (1.4) replaced by

sup
{∣∣∣∣ PB,ρ(E ∩ F)

PB,ρ(E)PB,ρ(F )
− 1

∣∣∣∣ :E ∈ GE ,F ∈ GF ,PB,ρ(E)PB,ρ(F ) > 0
}

≤ C
∑

x∈V (E),y∈V (F )

e−λd(x,y).
(1.5)
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Here d is either d2 or the restricted-path metric dB . As we will see (Remark 1.4),
in contrast to the situation for spin systems, for bond percolation models these
properties are not always quite the right ones to consider, as influence may be
transmitted, in effect, through the boundary configuration ρ. Hence later, for the
FK model we will be restricting E ,F in (1.4) and (1.5) in a manner depending
on ρ.

Given ρ ∈ {0,1}B(�)c we define (ω,ρ) to be the bond configuration on the full
lattice which coincides with ω on B(�) and with ρ on B(�)c.

Let us use “≤” to denote the coordinatewise partial ordering on {0,1}B . An
event A is called increasing if ω ∈ A, ω ≤ ω′ imply ω′ ∈ A, and decreasing if its
complement is increasing. A probability measure P on {0,1}B is said to have the
FKG property if

P (A ∩ B) ≥ P (A)P (B) for all increasing events A,B;
P is said to satisfy the FKG lattice condition if

P (ω ∨ ω′)P (ω ∧ ω′) ≥ P (ω)P (ω′) for all ω,ω′.(1.6)

As proved in [16], the FKG lattice condition implies the FKG property. For
P1 and P2 probability measures on {0,1}B , we say P1 dominates P2 (in the FKG
sense) if P1(A) ≥ P2(A) for all increasing events A.

We say that an (infinite-volume) bond percolation model P has exponential
decay of connectivities if there exist C,λ > 0 such that for all x and y,

P (x ↔ y) ≤ Ce−λ|y−x|.

If P has the FKG property, then −logP (0∗ ↔ x∗) is a subadditive function of x,
and therefore the limit

τ (x) = lim
k→∞−1

k
logP (0 ↔ kx)(1.7)

exists for x ∈ Qn, provided we take the limit through values of k for which
kx ∈ Zn. This definition extends to Rn by continuity (see [4]); the resulting τ is
a norm on Rn. It follows from axis symmetry that, letting ei denote the ith unit
coordinate vector, we have

1√
2
τ (e1) ≤ τ (x)

|x| ≤ √
2τ (e1) for all x 
= 0.(1.8)

By standard subadditivity results, the limit in (1.7) is approached from above, so
that, for θ = x/|x|,

P (0 ↔ x) ≤ e−τ(x) = e−τ(θ)|x| for all x.(1.9)

For � ⊂ Zn finite, ρ ∈ {0,1}B(�c), and � ⊂ �c finite, we call B(�) a
controlling region for B(�) and ρ if for every ρ′ ∈ {0,1}B(�c) such that ρ = ρ′
on B(�), we have P�,ρ = P�,ρ′ . We say P has exponentially bounded controlling
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regions if there exist constants C,λ > 0 such that for every choice of disjoint finite
sets � and �,

P
({

ρ ∈ {0,1}B(�c) :B(�) is not a controlling region for B(�) and ρ
})

≤ C
∑

x∈�,y∈�c\�
e−λ|x−y|.(1.10)

Note that when P (E) is much smaller than the right-hand side of (1.2), the
weak mixing condition (1.2) allows P (E|F) to be many times larger than P (E),
but the ratio weak mixing condition (1.3) does not allow this. Nonetheless, it is
proved in [2] that if P is translation invariant and has exponentially bounded
controlling regions and the weak mixing property, then P has the ratio weak
mixing property. (The hypothesis of translation invariance should have been
included in the statement of this result in [2].)

We call D ⊂ B(Z2) simply lattice-connected if D and (B(Z2) \ D)∗ are
connected. We call � ⊂ Z2 simply lattice-connected if B(�) has that property.

We can now state our first main result for percolation models, essentially that
when open paths do not propagate far in infinite volume, neither can they propagate
in finite volumes, along the boundary or through the bulk, provided the model has
the weak mixing property in infinite volume. The statement is given for the square
lattice for ease of exposition, but the result is valid for any planar lattice, as all
cited results used in the proof similarly so extend. We defer all proofs to Section 2.

THEOREM 1.1. Let P be a translation-invariant bond percolation model
on B(Z2) having semibounded energy, exponential decay of connectivities and
the weak mixing property. Then P has uniform exponential decay of finite-volume
connectivities for the class of all simply lattice-connected subsets of B(Z2) with
arbitrary bond boundary conditions, for both the Euclidean and restricted-path
metrics.

This result for the restricted-path metric clearly implies the result for the
Euclidean metric, so the last phrase is really just for emphasis. The same applies
to the other results of this paper.

We do not know whether the rate of exponential decay in infinite volume and the
uniform rate of exponential decay in finite volumes are the same in Theorem 1.1.

For p ∈ [0,1], q > 0 and B ⊂⊂ B(Zn), the FK model P
p,q
�,f on the graph

(V (B),B) with parameters (p, q) and free boundary condition is defined by the
weights

W(ω) = p|ω|(1 − p)|B|−|ω|qK(ω).(1.11)

Here |ω| means the number of open bonds in ω and K(ω) denotes the number of
open clusters in ω. More generally, let K(ω|ρ) be the number of open clusters of
(ω,ρ) which intersect V (B). The FK model P p,q

�,ρ with bond boundary condition ρ
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is given by the weights in (1.11) with K(ω) replaced by K(ω|ρ). The boundary
condition ρ1 is also called the wired boundary condition and we write Kw(ω) for
K(ω|ρ1); the corresponding weights are

Ww(ω) = p|ω|(1 − p)|B|−|ω|qKw(ω).(1.12)

Alternatively, we consider site boundary conditions. For notational convenience
we allow an additional spin value 0 at boundary sites, that is, η ∈ {0,1, . . . , q}�;
taking ηx = 0 makes the boundary condition free at x. Specifically, suppose
B = B(�) for some finite � ⊂ Zn; given η ∈ {0,1, . . . , q}∂� define

J (�,η) = {
ω ∈ {0,1}B(�) :ηx = ηy for every x, y ∈ ∂�

for which x ↔ y in ω,ωe = 0(1.13)

for all e ∈ {〈xy〉 :x ∈ �,y ∈ ∂�,ηy = 0}}.
Here x ↔ y means there is a path of open bonds connecting x to y. The FK
model P

p,q

B(�),η
with site boundary condition η is given by the weights in (1.12),

multiplied by δJ (�,η)(ω). We write ηi for the all-i site boundary condition. Taking
η = η0 gives the FK model with free boundary condition. Let

B+(�,η) = B(�) ∪ {〈xy〉 :x ∈ �,y ∈ ∂�,ηy 
= 0}.
Generally η is understood from the context and we suppress it in the notation,
writing B+(�). The the model on B(�) with boundary condition η is equivalent
to the model on B+(�) with site boundary condition defined only on {y ∈
∂� :ηy 
= 0}. We call η a single-species boundary condition if for some i, ηx ∈
{0, i} for all x. For a summary of basic properties of the FK model, see [17].
In particular, since we are in two dimensions, for p 
= √

q/(1 + √
q ) there is a

unique infinite-volume FK measure on B(Z2), which can be obtained as the limit
of P

p,q

B(�),w
as � ↗ Z2; we denote this measure P p,q and we say that random-

cluster uniqueness holds for the FK model at (p, q). For q ≥ 1, the FK model
satisfies the FKG lattice condition, under any bond or single-species site boundary
condition.

For the FK model with external fields hi , i = 1, . . . , q , and free boundary, the
factor qK(ω) in the weight W(ω) is replaced by∏

C∈C(ω)

(
(1 − p)h1s(C) + (1 − p)h2s(C) + · · · + (1 − p)hqs(C)),(1.14)

where C(ω) is the set of clusters in (�,B(�)) in the configuration ω and s(C)

denotes the number of sites in the cluster C. The parameters are then (p, q, {hi});
q must be an integer, and we may omit {hi} when all external fields are 0. We
need only consider 0 = h1 ≥ h2 ≥ · · · ≥ hq , so we henceforth assume this in our
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notation. Species i is called stable if hi is maximal, that is, hi = h1 = 0. For bond
boundary conditions ρ we replace (1.14) with∏

C∈C(ω|ρ)

(
(1 − p)h1s(C) + (1 − p)h2s(C) + · · · + (1 − p)hqs(C)

)
,(1.15)

where C(ω|ρ) is the set of open clusters of (ω,ρ) which intersect V (B).
If B(Zn) \ B is connected then for stable i the wired boundary condition is
equivalent to the site boundary condition ηi ; we therefore refer to ηi as the i-wired
boundary condition. For general site boundary conditions η for the model on B(�)

the factor (1.14) is replaced by∏
C∈Cint(ω)

(
(1 − p)h1s(C) + (1 − p)h2s(C) + · · · + (1 − p)hqs(C))

× ∏
C∈C∂ (ω)

(1 − p)hi(C)s(C) × δJ (�,η)(ω),
(1.16)

where C∂ (ω) [resp. Cint(ω)] is the set of clusters in the configuration ω which
do (resp. do not) intersect ∂� and i(C) is the species for which ηx = i for all
i ∈ ∂� ∩ C. [The existence of such an i is forced by the event J (�,η).] We call η

a single-stable-species boundary condition if for some stable i, ηx ∈ {0, i} for all x.
For q ≥ 1, the FK model with external fields satisfies the FKG lattice condition,
under any bond or single-stable-species site boundary condition. It should be
noted that a single-stable-species site boundary condition η is equivalent to a bond
boundary condition in which all sites x ∈ ∂� where ηx 
= 0 are part of a single
infinite cluster in the boundary B(�)c.

Let pc(q,n, {hi}) denote the percolation critical point of the FK model on Zn;
we omit the {hi} when there are no external fields. The following facts are known
for n = 2. For q = 1, q = 2 and q ≥ 25.72, we have pc(q,2) = √

q/(1+√
q ) [22],

and the connectivity decays exponentially for all p < pc(q,2) [18]. This is
believed to be true for all q; for 2 < q < 25.72 the connectivity is known to decay
exponentially at least for all p <

√
q − 1/(1 + √

q − 1 ), and analogous results
hold for other planar lattices [3]. For general q ≥ 1, if the connectivity decays
exponentially then the model has the ratio weak mixing property [2]. (This result is
actually given assuming a nonnegative external field applied to at most one species,
but the proof carries over without change to arbitrary external fields; the necessary
FKG property is proved in [7].) From this and Theorem 1.1 we immediately get
the following.

THEOREM 1.2. Let P = P p,q,{hi} be an FK model on B(Z2) with p <

pc(q,2, {hi}), and suppose P has exponential decay of connectivities. Then P has
uniform exponential decay of finite-volume connectivities for the class of all
simply lattice-connected subsets of B(Z2) with arbitrary (site or bond ) boundary
condition, for both the Euclidean and restricted-path metrics.
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Theorem 1.2 is implicitly stated here, and later proved, for q an integer, but in
the absense of external fields it is valid for noninteger q as well. The proof requires
only minor modifications. Similar considerations hold for all our other results.

When long paths of open bonds exist for subcritical p, the standard heuristic
picture is that the path has a “string of beads” structure, meaning that “blobs” of
open bonds, containing many double connections between pairs of sites and having
a linear scale on the order of the correlation length, are connected by short single
paths of open bonds. Such a picture has been made rigorous in [9] and [10] for
Bernoulli percolation. The next corollary establishes a small part of such a picture
for the FK model in two dimensions, by showing that long double connections
have an exponential cost over and above the cost of a single connection.

COROLLARY 1.3. Let P = P p,q,2,{hi} be an FK model on B(Z2) with p <

pc(q,2, {hi}), and suppose P has exponential decay of connectivities. Then there
exists ε > 0 such that for all x ∈ Z2, for θ = x/|x|,

P (there exist two bond-disjoint open paths 0 ↔ x) ≤ e−(τ(θ)+ε)|x|.

REMARK 1.4. For a bond percolation model on a finite set B of bonds under
bond boundary condition ρ, influence can propagate not only along the boundary
inside B but also through the exterior via ρ. For example, for the FK model,
suppose 〈uv〉, 〈xy〉 ∈ B and in ρ there are open paths from u to x and from v

to y, and these two paths are in different clusters of the configuration ρ. That
is, the two paths form a tunnel from 〈uv〉 to 〈xy〉. It is then straightforward
to show that the events that 〈uv〉 and 〈xy〉 are open can have a correlation
bounded away from 0 uniformly in the length of the tunnel. Tunnels of dual bonds
can cause similar problems and effectively can exist even under site boundary
conditions (see Example 1.5). Nonetheless, restricting some of our results to site
boundary conditions makes tunneling a manageable problem. As we have noted,
single-stable-species site boundary conditions are equivalent to bond boundary
conditions, and are thus effectively a natural class of bond boundary conditions
which do not allow the tunneling phenomenon to be a problem. The results we state
under such boundary conditions can be generalized to some other bond boundary
conditions for which tunneling does not occur in such a way as to be a problem.

For x ∈ Rn and l > 0 let Ql(x) denote the closed cube of side 2l centered at x.
Write Q(x) for Q1/2(x), and for � ⊂ Zn let Q(�) = ⋃

x∈� Q(x).

EXAMPLE 1.5. Define bonds of the square lattice

b+
n = 〈(n,0), (n + 1,0)〉, b−

n = 〈(−n − 1,0), (−n,0)〉
and consider the FK model on B(Qn(0)), without external fields, at (1 − ε, q),
where ε > 0 and q > 1, with site boundary condition ηx = 1 if x = (n + 1,0)
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or x = (−n − 1,0), ηx = 0 otherwise. It is straightforward to verify the following
statements:

P
(
(−n,0) ↔ (n,0)

)
= 1 − O(ε3);

P
(
b+
n is closed|(−n,0) ↔ (n,0)

)
= P

(
b−
n is closed|(−n,0) ↔ (n,0)

)
= ε + O(ε2);

P
(
b+
n and b−

n are closed|(−n,0) ↔ (n,0)
)

= qε2 + O(ε3).

In all cases the O(·) is uniform in n. The first statement implies that the last
two are true without the conditioning on {(−n,0) ↔ (n,0)}. It follows that
when ε is sufficiently small, the correlation between the events {b+

n is closed}
and {b−

n is closed} does not decay to 0 as n → ∞. The boundary condition η

is equivalent to a bond boundary condition in which an open path connects
(−n − 1,0) to (n + 1,0) outside B(Qn(0)). Thus strong mixing fails for bond
and for single-species-site boundary conditions, although exponential decay of
dual connectivity and weak mixing both hold in infinite volume, and uniform
exponential decay of finite-volume dual connectivities holds, by Theorem 1.2.

This same phenomenon persists in the presence of external fields, provided there
is more than one stable species. In Theorem 1.6 we will see that when there is a
unique stable species, we do obtain strong mixing.

Replacing regular bonds with dual bonds throughout this example (in the case of
no external fields), including in the bond form of the boundary condition, we obtain
an example in which there is exponential decay of connectivity and weak mixing
in infinite volume, and uniform exponential decay of finite-volume connectivities,
but strong mixing for general bond boundary conditions fails. This is an example
of the tunneling phenomenon of Remark 1.4.

Given a metric d we call a class C of subsets of B(Zn) inheriting with respect
to d if for all B ∈ C, x ∈ V (B) and r > 0, the connected component of x in
{e ∈ B :d(e, x) ≤ r} is in C. The class of all simply lattice-connected subsets
of B(Z2) is clearly inheriting, with respect to the Euclidean and restricted-path
metrics.

We define a closure subset of B(Zn) to be a subset of form B(�) for some
finite �. These are the subsets which can take site boundary conditions. If
E = B(�) is a simply lattice-connected closure subset of B(Zn), then Ex,r =
E ∩ {e ∈ B(Zn) :d(e, x) ≤ r} is simply lattice-connected but is not typically a
closure subset, so strictly speaking the class of all simply lattice-connected closure
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subsets of B(Zn) is not inheriting. However we can add a few bonds to Ex,r—
specifically, those in ∂Ex,r \ ∂B(�)—to create a closure subset. Classes which are
“almost” inheriting in this sense work perfectly well in our proofs, so we tacitly
treat them as if they were inheriting in what follows.

The next result, for the FK model in general dimension, says in effect that when
paths cannot propagate in any of a class of finite regions, then neither can influence
(of one event on another distant one) so propagate, under site boundary conditions,
even when this influence is measured multiplicatively. This result is not restricted
to two dimensions. The underlying idea for establishing mixing from uniform
exponential decay occurs in [6] and [25], though without the “ratio” aspect, which
appears in [2].

THEOREM 1.6. Let P = P p,q,{hi} be the FK model at (p, q, {hi}) on B(Zn)

and suppose random-cluster uniqueness holds. Let d be either the Euclidean or
restricted-path metric and let C be a class of closure subsets of B(Zn) which is
inheriting with respect to d . Suppose P has uniform exponential decay of finite-
volume connectivities for the class C with wired boundary conditions, for the
metric d . Then P has the ratio strong mixing property for the class C and arbitrary
site boundary conditions, for the metric d .

For dimension n = 2, as in Theorem 1.2 we need not assume uniformity of the
exponential decay to draw a similar conclusion. Specifically, we will prove the
following.

THEOREM 1.7. Let P = P p,q,{hi} be the FK model at (p, q, {hi}) on B(Z2),
and let C be the class of all simply lattice-connected closure subsets of B(Z2).
Suppose random-cluster uniqueness holds at (p, q, {hi}). Let d be either the
Euclidean or the restricted-path metric.

(i) Suppose P has exponential decay of connectivities. Then P has the ratio
strong mixing property for the class C with arbitrary site boundary conditions.

(ii) Suppose P has exponential decay of dual connectivities. Then P has
the ratio strong mixing property for the class C with free and wired boundary
conditions.

(iii) Suppose there is a unique stable species and P has exponential decay of
dual connectivities. Then P has the ratio strong mixing property for the class C

with arbitrary site boundary conditions.

From Theorem 1.7(i) we see that for the FK model on B(Z2), exponential
decay of connectivity in infinite volume is enough to ensure that in finite regions,
influence cannot propagate along the boundary or through the bulk, under site
boundary conditions.

Example 1.5 shows that significantly more general boundary conditions cannot
be allowed in Theorem 1.7(ii), in contrast to Theorem 1.7(iii).
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From [7], the assumption of random-cluster uniqueness in Theorem 1.7 is
satisfied except possibly at the (unique) percolation critical point, which we denote
pc(q,2, {hi}).

We turn our attention now to spin systems. We restrict attention mainly to the
q-state Potts model (with possible external fields), which is the spin system with
single-spin space S = {1, . . . , q} and Hamiltonian

H�,η(σ�) = − ∑
〈xy〉∈B(�)

δ{(σ,η)�(x)=(σ,η)�(y)} −
q∑

i=1

∑
x∈�

hiδ{σx=i}

for the model on � with boundary condition η; the corresponding finite-volume
Gibbs distribution at inverse temperature β is given by

µ
β,{hi}
�,η (σ�) = 1

Z
β,{hi}
�,η

e−βH�,η(σ�), σ� ∈ S�,

where Z
β,{hi}
�,η is the partition function. We denote the critical inverse temperature

of the model on Zn, without external fields, by βc(q,n).
As shown by Edwards and Sokal [12], for β given by p = 1 − e−β ,

a configuration of the q-state Potts model (without external fields) on �

with boundary condition η at inverse temperature β can be obtained from a
configuration ω of the FK model at (p, q) with site boundary condition η, by
choosing a label for each nonboundary cluster of ω independently and uniformly
from {1, . . . , q}. For a cluster intersecting {x ∈ ∂� :σx = i} (which can happen
for at most one i), all sites are labeled i. This cluster-labeling construction yields
a joint site-bond configuration, which we call an Edwards–Sokal configuration,
in which the sites are a Potts model and the bonds are an FK model. When the
parameters are related in this way, we call the Potts and FK models corresponding.
Alternatively, if one selects a Potts configuration σ� and does independent
percolation at density p on the set of bonds

{〈xy〉 ∈ B(�) : (σ, η)x = (σ, η)y},
the resulting bond configuration is a realization of the corresponding FK model.
We call this the percolation construction of the FK model. For the q-state Potts
model (without external fields) at inverse temperature β < βc(q,n), for p =
1 − e−β and the FK model at (p, q), the covariance in the Potts model and the
connectivity in the FK model are related by

q2 cov
(
δ{σ0=i}, δ{σx=i}

) = (q − 1)P (0 ↔ x), i = 1, . . . , q;(1.17)

see [1] or [17]. Thus exponential decay of connectivities in the FK model is
equivalent to exponential decay of correlations in the corresponding Potts model.
Further, we have

pc(q,n) = 1 − e−βc(q,n);(1.18)
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again see [1] or [17]. When external fields are present, we can take (1.18) as the
definition of an inverse temperature βc(q,n, {hi}), that is,

pc(q,n, {hi}) = 1 − e−βc(q,n,{hi}).(1.19)

This βc(q,n, {hi}) is not necessarily a true critical point, however, if there is a
unique stable species.

Under external fields {hi}, the cluster-labeling construction is modified as
follows. Let s(C) denote the number of sites in a cluster C. For nonboundary
clusters C, the spin i is chosen for the cluster C with probability proportional
to eβhis(C).

The (ratio) weak mixing and (ratio) strong mixing properties extend straight-
forwardly to spin systems. We do not write out a separate definition explicitly;
see [3].

The following is the Potts-model analog of Theorem 1.7.

THEOREM 1.8. Let µβ,q,{hi} be the q-state Potts model at (β, {hi}) on Z2.
Let C be the class of all finite simply lattice-connected subsets of Z2 with arbitrary
boundary condition, and let d be either the Euclidean or the restricted-path
metric.

(i) If there are multiple stable species, β < βc(q,2, {hi}) and µβ,q,{hi} has
exponential decay of correlations, then it has the ratio strong mixing property for
the class C.

(ii) If β < βc(q,2, {hi}) and the corresponding FK model has exponential
decay of connectivities, then µβ,q,{hi} has the ratio strong mixing property for the
class C.

(iii) If there is a unique stable species, β > βc(q,2, {hi}) and the correspond-
ing FK model has exponential decay of dual connectivities, then µβ,q,{hi} has the
ratio strong mixing property for the class C.

Note that in Theorem 1.8 we are implicitly viewing C as a class of pairs
consisting of a set and a boundary condition on that set, rather than just as a class
of sets. We will use each meaning of C at various times; which one we are using
should be clear from the context.

From the relation (1.18) and the remarks preceding Theorem 1.2, we see that
the hypothesis in Theorem 1.8(i) of exponential decay of correlations is known
to be satisfied whenever eβ < eβc = 1 + √

q if q = 2 or q ≥ 26, and whenever
eβ < 1 + √

q − 1 if 3 ≤ q ≤ 25, in the absense of external fields.
The Potts-model analog of Theorem 1.6 is contained in the following theorem.

THEOREM 1.9. Consider the q-state Potts model µβ,q,{hi} on Zn at inverse
temperature β with external fields hi . Let d be either the Euclidean or the re-
stricted path metric and let D be a class of finite subsets of Zn such that the
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class C = {B(�) :� ∈ D} is inheriting with respect to d . Suppose that the corre-
sponding FK model has uniform exponential decay of finite-volume connectivities
for the class C and wired boundary condition, for the metric d . Then µβ,q,{hi} has
the ratio strong mixing property for the class D and arbitrary boundary condi-
tions, for the same metric.

REMARK 1.10. The notion of a “corresponding random cluster model” makes
sense in the context of any random cluster representation of any spin system.
The analog of Theorem 1.9 will be valid for a nearest-neighbor spin system
provided the following conditions are satisfied. (1) There exists a bond percolation
model P on Zn such that for every finite �, PB(�),w FKG-dominates the random
cluster representation on B(�) with arbitrary spin boundary condition, and P has
uniform exponential decay of finite-volume connectivities. (In Theorem 1.9, P is
the FK model itself.) (2) The joint site-bond configuration obtained in the cluster-
labeling construction has the following Markov property for open dual surfaces:
for every 	 ⊂ �, every boundary condition η on ∂�, and every configuration σ	

on 	, given σ	 and given that all bonds in B(�) ∩ ∂B(	) are closed, the
configuration σ�\	 has distribution corresponding to the boundary condition on
∂(� \ 	) which is given by ηx for x ∈ ∂(� \ 	) ∩ ∂�, free for x ∈ ∂(� \ 	) ∩ �.
Condition (2) is valid provided that there is no interaction between clusters in the
random cluster representation, that is, the weight assigned to a bond configuration
is a product of weights assigned to clusters. This is true for the FK model (with or
without external fields) and for the random cluster representations of the models
given studied in [6], which are given as follows: the single-spin space S is a
compact group, E :S → R is a function, and the Hamiltonian is

H�,η(σ�) = −1
2

∑
〈xy〉∈B(�)

E(σ−1
x σy).(1.20)

This includes the Potts model without external fields.

2. Proof of uniform exponential decay. Throughout the paper c1, c2, . . . and
ε1, ε2, . . . represent positive constants; which depend only on the infinite-volume
model under discussion, with εi used for “sufficiently small” constants; dp denotes
the lp metric.

We begin with a result needed for the proof of Theorem 1.1. For B ⊂ B(Zn)

and r > 0, let

Br = {
e ∈ B :d2

(
e,B(Zn \ B)

) ≥ r
}
.

Recall that Ql(x) denotes the cube of side 2l centered at x. By a chain of l-cubes
(from x1 to xk) we mean a finite sequence Ql(x1), . . . ,Ql(xk) of cubes with
disjoint interiors, with xi ∈ lZn for all i ≤ k and d∞(xi, xi+1) = 2l for all i ≤ k−1.
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PROPOSITION 2.1. Let P be a translation-invariant bond percolation model
on Zn having exponential decay of connectivities and the weak mixing property.
Then for each sufficiently large r there exist Cr,λr > 0 such that for all B ⊂
B(Zn), all x, y ∈ V (Br ) and every boundary condition ρ ∈ {0,1}Bc

r ,

PB,ρ(x ↔ y via a path in Br) ≤ Cre
−λrd2(x,y).

PROOF. From the weak mixing property, there exist c1, c2, ε1, ε2 > 0 such that
if z ∈ Zn and r ∈ Z is sufficiently large, then for every boundary condition θ on
(B ∩ B(Q2r(z)))

c,

PB∩B(Q2r (z)),θ

(
there is an open path in Br from u to v

for some u, v with u ∈ Qr(x) and d2(u, v) ≥ r/2
)

≤ P
(
there is an open path in Br from u to v(2.1)

for some u, v with u ∈ Qr(x) and d2(u, v) ≥ r/2
) + c1e

−ε1r

≤ c2e
−ε2r .

For fixed r we call a cube Q2r (z) bad if the event on the left-hand side of (2.1)
occurs. By (2.1), the probability for all 2r-cubes in a given chain of length k to be
bad is at most (c2e

−ε2r)k .
If d2(x, y) ≥ r/2 and x ↔ y via a path in Br , it is easy to see that there

exist w,z ∈ 2rZn such that x ∈ Qr(w), y ∈ Q3r (z), and there is a chain of bad
2r-cubes from w to z. In fact, letting γ be an open path in Br from x to y,
we first make a “pre-chain” as follows. Start with any Q2r (w) with w ∈ 2rZn

such that x ∈ Qr(w), then follow γ from x until it reaches some cube Qr(w
′)

with w′ ∈ 2rZn and Qr(w
′) ∩ Q2r (w) = ∅; see Figure 1. (Note there are 5n − 3n

possible w′.) We then designate Q2r (w
′) as the second cube in the pre-chain. We

then follow γ until it reaches some cube Qr(w
′′) disjoint from Q2r (w)∪Q2r(w

′),
and designate Q2r (w

′′) as the third cube in the pre-chain. We continue in this
manner until there is a cube Q2r (z) in the pre-chain with y ∈ Q3r(z). The cubes in
the pre-chain necessarily form a connected set and have disjoint interiors. We then

FIG. 1. A chain of bad 2r-cubes obtained from a path starting at x. The spacing of the grid is 2r .
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discard as many cubes as possible from the pre-chain subject to the constraints that
Q2r (w) and Q2r (z) are not discarded, and the undiscarded cubes form a connected
set. It is easy to see that, after appropriate numbering, the undiscarded cubes form
the desired chain of bad 2r-cubes from w to z.

The number of chains of 2r-cubes from w to z of length k is at most 5nk, so the
probability there is a chain of length k of bad 2r-cubes starting from a given w is
bounded above for large r by (c2e

−ε2r5n)k ≤ 2−k . Since the minimal length k of
chain required to reach z with y ∈ Q3r (z) is at least proportional to d2(x, y), the
proposition now follows easily. �

The next lemma establishes a weaker analog of Theorem 1.1, which we will
later bootstrap using renormalization. The lemma removes the restriction imposed
in Proposition 2.1 that paths stay away from the boundary.

LEMMA 2.2. Let P be a translation-invariant bond percolation model on
B(Z2) having semibounded energy, exponential decay of connectivities and the
weak mixing property. Let C be the class of all finite simply lattice-connected
subsets of B(Z2). There exist constants ci, ε3 such that for all B ∈ C, all boundary
conditions ρ and all x, y ∈ V (B) with d2(x, y) ≥ c3,

PB,ρ(x ↔ y) ≤ c4e
−ε3d2(x,y)/ logd2(x,y).

PROOF. Let r,Cr, λr be as in Proposition 2.1, and fix x, y,B with B ∈ C,
d2(x, y) ≥ 30r and x, y ∈ V (B). Let γ be the lattice dual circuit which is the
outer boundary of Q(V (B)). Let x′, y′ be the dual sites in γ closest to x and y,
respectively (breaking ties arbitrarily), and let γR and γL denote the segments of γ

from x′ to y′ (counterclockwise) and from y′ to x′, respectively. Let ε > 0.

CASE 1. Either d2(x, γ ) ≥ 1
10d2(x, y) or d2(y, γ ) ≥ 1

10d2(x, y); we may
assume the former. Then by Proposition 2.1, if d2(x, y) is sufficiently large
(depending on r), then for every boundary condition ρ,

PB,ρ(x ↔ y) ≤ PB,ρ

(
x ↔ z via a path in Br for some z

(2.2)
with d2(x, z) ≥ 1

20d2(x, y)
)

≤ c5d2(x, y)Cre
−λrd2(x,y)/20.

CASE 2.

max
(
d2(x, γ ), d2(y, γ )

)
< 1

10d2(x, y).

Let S denote the set of bonds in Bc which are surrounded by γ . Since B is
simply lattice-connected, every dual bond in S∗ must be connected to exactly one



458 K. S. ALEXANDER

of γL, γR, by a path in S∗. This partitions S∗ into two subsets, call them S∗
L and S∗

R,
and we define γ̃L = γL ∪ S∗

L, γ̃R = γR ∪ S∗
R. For k ≥ 1 let

�k = {
z ∈ V (B) : (k − 1)c6 logd2(x, y) < d2(z, x

′) ≤ kc6 logd2(x, y)
}
,

where c6 = c6(r) is a (large) constant to be specified, and let

Dk = {〈uv〉 ∈ B :u ∈ �k,v ∈ �k+1}.
We may assume x, y satisfy

logd2(x, y) >
4r

c6
.

Let kmin −1 and kmax be the smallest and largest integers k, respectively, for which
d2(x

′, x) < kc6 log d2(x, y) < min(d2(x
′, y), d2(x

′, y′)). Then

kmax − kmin ≥ d2(x, y)

2c6 log d2(x, y)
.(2.3)

For each kmin ≤ k ≤ kmax, every path from x to y must pass through the shells
B(�k), and B(�k)

∗ must include bonds of both γ̃ L and γ̃ R. Among the connected
components of D∗

k there is at least one which has one endpoint in γ̃ L and the other
in γ̃ R; let us call such a component k-crossing. Among the k-crossing components
there is one, which we denote E∗

k , with the property that for every path ϕ from
x to y, E∗

k is the last k-crossing crossed by ϕ; see Figure 2. By defining E∗
k

we implicitly define Ek as well. Now E∗
k−1 and E∗

k divide B into 3 pieces, and
we call the middle one Ck ; more precisely, Ck is the connected component of
B \ (Ek−1 ∪ Ek) for which both Ek−1 ⊂ ∂Ck and Ek ⊂ ∂Ck . Thus the crossings E∗

k
form a sequence of barriers which must be crossed in order when traveling from x

to y, and the Ck’s are the regions between these barriers. For t > 0 let

�
L,t
k = {z ∈ V (Ck) :d1(z, γ̃ L) ≤ t}, �

R,t
k = {z ∈ V (Ck) :d1(z, γ̃ R) ≤ t},

	+
k = V (Ck) ∩ V (Ek), 	−

k = V (Ck) ∩ V (Ek−1)

and

Ĉk = Ck−1 ∪ Ek−1 ∪ Ck ∪ Ek ∪ Ck+1;
see Figure 3.

FIG. 2. Diagram showing 2 shells �k−1,�k and corresponding barriers E∗
i .
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FIG. 3. Diagram showing portions of boundary regions �
L,2r
k ,�

R,2r
k and barrier E∗

k−1. F ∗
k is the

segment of E∗
k−1 between g and h.

CASE 2A. �
L,3r
k ∩ �

R,3r
k 
= ∅. Then there is a dual path of length at most 6r

from γ̃L to γ̃R in Ĉ∗
k . If this dual path is open, then there can be no open path

in Ĉk from 	−
k−1 to 	+

k+1. For p0 as in (1.1) we therefore have for all boundary
conditions ρ and all bond configurations θB\Ĉk

:

PB,ρ

(
	−

k−1 ↔ 	+
k+1 via a path in Ĉk|ωB\Ĉk

= θB\Ĉk

) ≤ 1 − p6r
0 .(2.4)

CASE 2B. �
L,3r
k ∩ �

R,3r
k = ∅. Let Ak = Ck \ B(�

L,2r
k ∪ �

R,2r
k ). Then there

exist paths from x to y in B outside B(�
L,2r
k ∪ �

R,2r
k ), and there is a unique

connected component F ∗
k of E∗

k−1 ∩∂Q(V (Ak)) such that all such paths cross F ∗
k .

Necessarily F ∗
k has one endpoint in ∂Q(�

L,2r
k ) and the other in ∂Q(�

R,2r
k ). From

duality, there are two possibilities: either there is an open path from 	−
k to 	+

k

in Ak , or there is an open dual path from ∂Q(�
L,2r
k ) to ∂Q(�

R,2r
k ) in A∗

k . Since
Ak ⊂ Br , it follows from Proposition 2.1 that, provided c6 and then c3 are chosen
large enough, for all boundary conditions ρ and all bond configurations θB\Ĉk

,

PB,ρ

(
∂Q(�

L,2r
k )

∗↔ ∂Q(�
R,2r
k ) via a dual path in A∗

k|ωB\Ĉk
= θB\Ĉk

)
≥ 1 − PB,ρ

(
	−

k ↔ 	+
k via a path in Ak|ωB\Ĉk

= θB\Ĉk

)
≥ 1 − |	−

k | |	+
k |Cre

−λrc6(logd2(x,y))/2(2.5)

≥ 1 − (
c7d2(x, y)

)2
Cre

−λrc6(logd2(x,y))/2

≥ 1
2 .

When there is an open dual path in A∗
k from ∂Q(�

L,2r
k ) to ∂Q(�

R,2r
k ), there is

a unique such path, which we denote αk , which is “closest to F ∗
k ” (analogous to

the “lowest occupied crossing” of, e.g., [20]); see Figure 3. Let Y L
k and Y R

k denote
the (random) initial and final sites, respectively, of αk .



460 K. S. ALEXANDER

For every dual site u in ∂Q(�
L,2r
k )∩V (A∗

k) there is a dual path of length at most
2r + 2 from u to γ̃L outside A∗

k ; we denote this path by βL
u , making an arbitrary

choice of βL
u if more than one is possible. We define βR

u analogously for u in
∂Q(�

R,2r
k ) ∩ V (A∗

k). Conditionally on the connection event on the left-hand side
of (2.5), the probability that βL

Y L
k

and βR
Y R

k

are both open dual paths is at least p4r+4
0 .

Further, when these two dual paths are both open, there is an open dual path in Ĉ∗
k

from γ̃L to γ̃R. From this and (2.5) we conclude that for all boundary conditions
ρ and all bond configurations θB\Ĉk

,

PB,ρ

(
γ̃L

∗↔ γ̃R via a dual path in Ĉ∗
k |ωB\Ĉk

= θB\Ĉk

)
≥ p4r+4

0 PB,ρ

(
∂Q(�L

k )
∗↔ ∂Q(�R

k ) via a dual path

in A∗
k |ωB\Ĉk

= θB\Ĉk

)
≥ 1

2p4r+4
0 .

(2.6)

Using duality again, this shows that, again for all boundary conditions ρ and all
bond configurations θB\Ĉk

,

PB,ρ

(
	−

k ↔ 	+
k via a path in Ĉk|ωB\Ĉk

= θB\Ĉk

) ≤ 1 − 1
2p4r+4

0 .(2.7)

We have shown that provided r is large, in both Cases 2a and 2b,

PB,ρ

(
	−

k−1 ↔ 	+
k+1 via a path in Ĉk|ωB\Ĉk

= θB\Ĉk

) ≤ 1 − p6r
0 .(2.8)

Let Gj denote the event {	−
3j−1 ↔ 	+

3j+1 via a path in Ĉ3j } and let jmin and jmax

be the smallest and largest integers, respectively, in {j ∈ Z :kmin < 3j < kmax}.
From (2.8) we have

PB,ρ

(
Gj |Gjmin ∩ · · · ∩ Gj−1

) ≤ 1 − 1
2p6r

0 for all jmin ≤ j ≤ jmax,

and hence

PB,ρ(x ↔ y) ≤ PB,ρ

( jmax⋂
j=jmin

Gj

)
≤ (

1 − 1
2p6r

0
)jmax−jmin+1

.

From (2.3), provided d2(x, y) is sufficiently large,

jmax − jmin + 1 ≥ 1

3
(kmax − kmin) − 2 ≥ d2(x, y)

7c6 log d2(x, y)
,

and the lemma follows from this and (2.2). �

We call a subset � of Zn l∞-connected if for all x, y ∈ � there is a sequence of
sites x = x1, . . . , xn = y in � with d∞(xi, xi+1) ≤ 1 for all i.
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PROOF OF THEOREM 1.1. From Lemma 2.2 we see that given ε > 0 there
exists l such that for all B ∈ C, all boundary conditions ρ, and all z ∈ Z2,

PB∩B(Ql(z)),ρ

(
u ↔ v for some u, v ∈ Ql(z) with d2(u, v) ≥ l/4

)
≤ ∑

u,v

PB∩B(Ql(z)),ρ(u ↔ v) < ε,
(2.9)

where the sum is over all u, v as in the first event in (2.9). Here we use the fact
that each component of B ∩B(Ql(z)) is simply lattice-connected. Fix B ∈ C. For
z ∈ lZ2 we call Ql(z) bad if the event on the left-hand side of (2.9) occurs. As in
the proof of Proposition 2.1, if x ↔ y for some x, y with d2(x, y) ≥ 8l, then there
is a chain of bad l-cubes from w to z, of length at least d2(x, y)/4l, where w,z are
sites in lZ2 with x ∈ Ql(w), y ∈ Q2l(z). The probability for all l-cubes in a given
chain of length k to be bad is at most εk . Provided ε is sufficiently small, as in the
proof of Proposition 2.1 we obtain that for all boundary conditions θ and all x, y

with d2(x, y) ≥ 8l,

PB,θ (x ↔ y) ≤ c8e
−d2(x,y)/4l.

This proves the theorem for the metric d2.
Next we consider dB . Suppose x ↔ y for some x, y with dB(x, y) ≥ 15l2.

Fix z ∈ lZ2 with x ∈ Ql/2(z) and let A be the connected component of Ql(z) in⋃{Ql(w) :w ∈ lZ2,Ql(w) is bad}. Let


 = {
w ∈ Z2 :Ql(lw) ⊂ A,Ql(lw) is bad

}
.

Note that since any one bond is contained in at most 6 sets Ql(lw) with w ∈ Z2,
there must be a subset f (
) ⊂ 
 with |f (
)| ≥ |
|/6 and {Ql(lw),w ∈ f (
)}
mutually disjoint. Let Cx be the open cluster of x and At = {u ∈ R2 :d2(u,A) ≤ t};
then

Cx ⊂ Al/4, |{bonds in Cx}| ≥ dB(x, y).

There are at most 9l2 bonds in a cube Ql(w), and hence at most 9|
|l2 in B(A)

and at most 15|
|l2 in B(Al/4). Therefore |
| ≥ dB(x, y)/15l2. Now 
 must be
an l∞-connected subset of Z2 with z ∈ 
. The log of the number of possible such
lattice animals 
 with |
| = n is O(n), by the argument of [21], page 85. Thus
provided ε is sufficiently small we have, again by the argument in the proof of
Proposition 2.1,

PB,ρ(x ↔ y) ≤ PB,ρ

(
|
| ≥ dB(x, y)

15l2

)

≤ PB,ρ

(
|f (
)| ≥ dB(x, y)

90l2

)
≤ c9e

−ε4dB(x,y)/90l2,

which proves the theorem for the metric dB . �
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Let Bτ(x, r) denote the τ -ball of radius r centered at x. Consider distinct points
x, y ∈ R2 with |y − x| ≥ 4

√
2. We let S(x, y) denote the closed slab between the

tangent line to ∂Bτ (x, τ (y−x)) at y and the parallel line through x; we call S(x, y)

the natural slab of x and y. (Note the tangent line is not necessarily unique; if it
is not we make some arbitrary choice.) Due to the 8-fold symmetry of the lattice,
S(x, y) makes an angle of not less than 45◦ with y − x. Note that if u, v are on
opposite sides of S(x, y), then

τ (v − u) ≥ τ (y − x).(2.10)

PROOF OF COROLLARY 1.3. Fix x and let R be the closed parallelogram
of which two of the sides are segments of ∂S(0, x) of length 8|x| centered at
0 and x respectively. Note the other two sides are parallel to the line through
0 and x. We denote the sides containing 0 and x by l0 and lx , respectively. We
view l0 as the left side of the parallelogram, which specifies which short side is
the bottom. Let �R denote the lowest open crossing of R from l0 to lx , when an
open crossing exists; see Figure 4. Given a path γ from l0 to lx , we let Uγ denote
the portion of R which is strictly above γ , and let Vγ,0 (resp. Vγ,x) denote the set
of sites in V (B(Uγ )) which are endpoints of bonds intersecting l0 (resp. lx ). By
Theorem 1.2, there exists ε > 0 such that, for each such γ , we have

PB(Uγ ),w(Vγ,0 ↔ Vγ,x) ≤ e−2ε|x|.
If there are 2 bond-disjoint paths from 0 to x, then either at least one of them

crosses S(0, x) at least partly outside R, or the 2 paths contain bond-disjoint paths
from l0 to lx in R. Therefore, provided x is sufficiently large, using (1.8),

P (there exist two bond-disjoint open paths 0 ↔ x)

≤ P (0 ↔ y for some y with |y| ≥ 3|x|)
+ P (there exist two bond-disjoint open paths l0 ↔ lx in R)

≤ c10e
−2τ(θ)|x| + ∑

γ

P (�R = γ ; l0 ↔ lx via an open path in Uγ )

≤ c10e
−2τ(θ)|x| + ∑

γ

P (�R = γ )PB(Uγ ),w(Vγ,0 ↔ Vγ,x)

≤ c10e
−2τ(θ)|x| + e−2ε|x|P (l0 ↔ lx) ≤ c10e

−2τ(θ)|x| + e−(τ(θ)+ε)|x|,

where the third inequality uses the FKG property and the fifth uses (2.10), and the
sums are over all self-avoiding paths γ from l0 to lx . This completes the proof. �

FIG. 4. The parallelogram R and two bond-disjoint paths from 0 to x, crossing R.
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3. Proofs of strong mixing properties. We turn next to the proof of
Theorem 1.6. We first establish strong mixing, and later obtain ratio strong
mixing as a consequence. We need to use certain variants of the Markov property.
A dual plaquette is a face of a hypercube Q(x) for some x ∈ Zn. As with dual
bonds, a dual plaquette is defined to be open precisely when the bond which it
perpendicularly bisects is closed. For a set A of bonds (or dual plaquettes), let
Open(A) denote the event that all bonds (or dual plaquettes) in A are open. By a
dual surface we mean a set of dual plaquettes which is the outer boundary of Q(	)

for some finite 	 ⊂ Zn for which the interior of Q(	) is connected. We say a bond
percolation model P has the Markov property for open dual surfaces if for every
dual surface S, the bond configurations inside and outside S are independent given
the event Open(S). The FK model with arbitrary external fields has this property.
In two dimensions, the Markov property for open circuits (of regular bonds) is
defined analogously; the FK model has this property if and only if there are no
external fields (see [5]). However, we can come close to the Markov property even
under external fields: if P is the infinite-volume k-wired FK model on B(Z2) for
some stable k, then letting ωint and ωext denote the bond configurations inside and
outside γ , respectively, we have (see [5]) for some C,a > 0,

sup
{∣∣∣∣P (ωint ∈ A|Open(γ ),ωext ∈ B)

P (ωint ∈ A|Open(γ ))
− 1

∣∣∣∣ :A ∈ GB(Int(γ )),

B ∈ GB(Ext(γ ))

}

≤ Ce−a|γ | for all γ,

(3.1)

where Int and Ext denote the interior and exterior, respectively. When (3.1) holds
we say P has the near-Markov property for open circuits.

A coupling of two measures P1 and P2 on {0,1}B is a measure P on {0,1}B ×
{0,1}B with marginals P1 and P2 (in order). A standard way of constructing
couplings (see [2, 6, 25]) is via what we call a construction algorithm, which is a
rule specifying for each subset E of B and each pair (ω1

E ,ω2
E ) of configurations

on E a choice of a bond b = b(E ,ω1
E ,ω2

E ) and a choice of a “single-bond”
coupling of P1(ωb = ·|ω1

E ) and P2(ωb = ·|ω2
E ) on {0,1}2. In particular, there is an

initial bond b1 = b(∅) and an initial single-bond coupling on b1. We construct a
coupled pair of configurations by first choosing (ω1

b1
,ω2

b1
) under the initial single-

bond coupling, then applying the rule to determine both the second bond b2 =
b({b1},ω1

b1
,ω2

b1
) and the single-bond coupling on b2, then choosing (ω1

b2
,ω2

b2
)

using this single-bond coupling on b2, and iterating in this manner until the entire
configuration is constructed. We let En denote the (random) set consisting of the
first n bonds chosen. We also consider stopped construction algorithms in which
the construction stops after a random number τ of steps, with τ a stopping time
relative to {Sn}, where Sn is the σ -field generated by the first n steps of the
construction. It is easy to see that, given a set A of bonds or sites, τ may be chosen
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so that Eτ is the closure of the cluster of A; one merely “builds the cluster outwards
from A.”

We will use two particular types of construction algorithms. The first type
are independent (stopped ) construction algorithms, in which ω1

b and ω2
b are

chosen independently of each other in each iteration, that is, the single-bond
coupling is product measure. The second type are FKG (stopped ) construc-
tion algorithms [25] which exist if P1 or P2 satisfies the FKG lattice con-
dition and P1(ω)/P2(ω) is an increasing function of ω. This ensures that
P1(ωEc ∈ ·|ωE = ρE ) dominates P2(ωEc ∈ ·|ωE = ρE ) for all E and ρE . In turn
this means that at each step of the construction, the single-bond coupling can be
chosen so ω1

b ≥ ω2
b, and thus at the end, ω1

Eτ
≥ ω2

Eτ
.

PROPOSITION 3.1. Let P = P p,q,{hi} be the FK model at (p, q, {hi}) on Zn,
let d be either the Euclidean or the restricted path metric and let C be a class
of finite subsets of Zn which is inheriting with respect to d . Suppose P has
uniform exponential decay of finite-volume connectivities for the class C with wired
boundary conditions. Then P has the strong mixing property for the class C and
arbitrary site boundary conditions, for the metric d .

PROOF. Fix B = B(�) ∈ C, a site boundary condition η and E ,F ⊂ B with
E ∩ F = ∅. For a bond configuration ωB\F let

CF (ωB\F ) = ⋃
x∈V (B\F )∩V (F )

Cx(ωB\F ),

where Cx(ωB\F ) is the cluster of x in ωB\F . Note that all bonds in ∂CF (ωB\F )∩
(B \ F ) are closed. Also,

conditionally on the event {CF = A}, the bond configuration on

B \ (A ∪ F ) is the FK model with site boundary condition given by(3.2)

η on V (B \ (A ∪ F )) ∩ ∂�, 0 on V (B \ (A ∪ F )) ∩ �.

(This is a straightforward extension of the Markov property for open dual
surfaces.) Further, since PB,w has the strong FKG property, the measure PB\F ,w

FKG-dominates PB,η(ωB\F ∈ ·|ωF = θF ) for all θF . From these observations,
as in [25] and [6], we see that for each pair of configurations θF , θ ′

F it is possible,
using an FKG construction algorithm, to construct a coupling measure P on
({0,1}B\F )3 such that:

(i) the marginals of P are (in order) PB,η(ωB\F ∈ ·|ωF = θF ),
PB,η(ωB\F ∈ ·|ωF = θ ′

F ) and PB\F ,w;
(ii) with P-probability 1, the configuration (ω,ω′,ω′′) ∈ ({0,1}B\F )3 satisfies

ω ≤ ω′′, ω′ ≤ ω′′, ωB\(F ∪CF (ω′′
B\F )) = ω′

B\(F ∪CF (ω′′
B\F ))

.
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That is, the first 2 configurations agree outside the cluster of F in the largest
configuration ω′′. Then for E ∈ GE ,∣∣PB,η(E|ωF = θF ) − PB,η(E|ωF = θ ′

F )
∣∣

≤ P(ω 
= ω′)
≤ PB\F ,w

(
CF (ωB\F ) ∩ E 
= φ

)
= PB\F ,w

(
x ↔ y for some x ∈ V (F ), y ∈ V (E)

)
.

(3.3)

We claim that for some c11, ε5 (not depending on B,E ,F ), the right-hand side
of (3.3) is bounded above by ∑

x∈V (E),y∈V (F )

c11e
−ε5d(x,y).(3.4)

(This is not immediate from the uniform exponential decay assumption because
we do not assume B \ F ∈ C.) Let F + = {x ∈ Zn :d(x,F ) ≤ d(x,E)}.
For z ∈ ∂F + ∩ � let Uz be the connected component of z in the “ball”
Wz = {e ∈ B :d(z, e) ≤ 1

2d(z,F )}. Then from the uniform exponential decay
of connectivities, the FKG property and the inheriting property of C, for some
ci and ε6,

PB\F ,w

(
x ↔ y for some x ∈ V (E), y ∈ V (F )

)
≤ PB\F ,w

(
z ↔ V (B \ Wz) for some z ∈ ∂F +)

≤ ∑
z∈∂F +

PUz,w

(
z ↔ V (B \ Wz)

)

≤ ∑
z∈∂F +

c12d(z,F )n−1e−ε6d(z,F )

≤ ∑
z∈∂F +

c13e
−ε6d(z,F )/2.

(3.5)

For each z ∈ ∂F + let f (z) be the site in V (F ) which is closest to z (in the
metric d , breaking ties arbitrarily). Then for x ∈ V (F ) and z ∈ f −1(x), from the
definition of F +,

d(x,E) ≤ d(x, z) + d(z,E) ≤ d(x, z) + d(z,F ) = 2d(x, z).

Therefore, ∑
z∈∂F +

e−ε6d(z,F )/2

≤ ∑
x∈V (F )

∑
z∈f −1(x)

e−ε6d(z,x)/2

≤ ∑
x∈V (F )

∑
z∈Zn : d(z,x)≥ 1

2 d(x,E)

e−ε6d(z,x)/2(3.6)
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≤ ∑
x∈V (F )

c16e
−ε6d(x,E)/8

≤ ∑
x∈V (F ),y∈V (E)

c16e
−ε6d(x,y)/8.

This and (3.5) prove the claim of the bound (3.4). Combining the claim with (3.3),
and averaging over θF and then over θ ′

F shows that

|PB,η(E|F) − PB,η(E)| ≤ ∑
x∈V (F ),y∈V (E)

c17e
−ε6d(x,y)/4,

which proves the proposition. �

The next two results form the analog of the last proposition for dual connectiv-
ity. The proof does not carry over, due to the fact that, under external fields, the FK
model has only the near-Markov property for open circuits, not the full Markov
property for open circuits, and the extension (3.2) of the Markov property breaks
down completely. We evade this difficulty by using the asymmetric random clus-
ter (ARC) model of [3]. For q > 0,Q ≥ 1 and pr,pg ∈ [0,1], the ARC model on
(�,B(�)) with parameters (pr ,pg, q,Q) is given by the weights

W(ωr,ωg) = p|ωr |
r (1 − pr)

|B(�)|−|ωr |

×p
|ωg|
g (1 − pg)

|B(�)|−|ωg |qK(ωr )QI (ωr∨ωg),

(3.7)

assigned to configurations (ωr,ωg) ∈ {0,1}B(�) × {0,1}B(�). Here I (ω) denotes
the number of isolated sites (singleton open clusters) in � in the configuration ω,
and ωr ∨ ωg denotes the coordinatewise maximum. Bonds in ωr are called red
bonds and bonds in ωg are called green bonds. The black configuration is defined
to be ωb = ωr ∨ ωg , the bondwise maximum. The ARC model is a graphical
representation of the q-state Potts lattice gas, and hence, as a special case, of the
(q + 1)-state Potts model on � ⊂ Zn at inverse temperature β with an external
field applied to one species only, say h1 applied to species 1, when we take

pr = pg = 1 − e−β, Q = 1 + eβ(2d+h1)

q
.(3.8)

Under site boundary conditions η with the property that, for some i ∈ {2, . . . ,

q + 1}, ηx ∈ {0,1, i} for all x ∈ ∂�, the ARC model satisfies the FKG lattice
condition [3].

It should be noted here that in [3], the species for the (q + 1)-state Potts model
were given as 0,1, . . . , q instead of 1,2, . . . , q + 1, and the external field was
applied to species 0. Here we instead retain the meaning of 0 as a free boundary
condition.
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As with the FK model, for integer q it is straightforward in the ARC model to
allow external fields applied to all species, by replacing the factor qK(ωr ) in the
ARC weight (3.7) with the weight∏

C∈C(ωr )

(
(1 − p)h2s(C) + (1 − p)h3s(C) + · · · + (1 − p)hq+1s(C)

)
as in (1.14) under free boundary conditions, with modifications analogous
to (1.15); (1.16) for bond and site boundary conditions. It is readily checked that
the FKG lattice condition still holds under all bond boundary conditions and under
site boundary conditions with ηx ∈ {0,1, i} for all x, where i ∈ {2, . . . , q}. The
parameters are (pr ,pg, q,Q, {hi}). In the ARC model with external fields we need
not require that h1 ≥ h2 ≥ · · · ≥ hq+1 but rather only that h2 ≥ · · · ≥ hq+1; the
position of h1 relative to the other hi’s is arbitrary. To make the model a graphical
representation of the Potts model with external fields, one should replace q in (3.8)
with

eβh2 + · · · + eβhq+1 .

For parameters as in (3.8) (modified as above for external fields, if necessary),
the cluster-labeling construction of the Potts model from the ARC model works as
follows [3]. Each nonboundary cluster C of ωr which is not a single isolated site
in ωb is independently given label i, 2 ≤ i ≤ q + 1, with probability proportional
to eβhis(C); no such cluster is ever given label i = 1. In each boundary cluster
of ωr intersecting {x ∈ ∂� :σx = i}, all sites are labeled i. Each site in � which is
isolated in ωb is independently given label i with probability proportional to eβhi

for 2 ≤ i ≤ q + 1 and proportional to eβ(2d+hi) for i = 1. [Note the resulting
probability for label 1 is (Q − 1)/Q.] Thus in the Edwards–Sokal-type joint
construction, sites with species 1 are always isolated in the black configuration ωb.

In certain contexts it is useful to consider the model obtained from the ARC
model when only a portion of the cluster labeling is done. Specifically, given
an ARC-model configuration with parameters as in (3.8) we can independently
label each isolated site as being of species 1 with probability (Q − 1)/Q, leaving
all other sites unlabeled. As in [3] we call the resulting measure on site/bond
configurations the particle-bond form of the ARC model. Given a realization of
the particle-bond ARC model on some set B(�), with red-bond configuration ωr ,
we can enlarge the set of open red bonds by doing independent percolation,
with red bonds, at density pr on the set of bonds {〈xy〉 :σx = σy = 1} (noting
that such x and y are necessarily isolated in ωr ). The resulting enlarged red
configuration is a realization of the FK model on B(�) at (pr , q, {hi}) [3]. We
call this the ARC-based percolation construction of the FK model.

We say that a q-state Potts model µ (in infinite volume) has exponential decay
of non-1 connectivities if there exists C,λ > 0 such that for all x, y,

µ(there exists a lattice path from x to y in which every site z has σz 
= 1)

≤ Ce−λ|y−x|.
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We say that Gibbs uniqueness holds at (β, {hi}) if there is a unique infinite-
volume Gibbs distribution for the Potts model with those parameters. If Gibbs
uniqueness holds and β > βc(q,n, {hi}), then there must be a unique stable
species. Conversely, if there is a unique stable species and the dimension n = 2,
then random-cluster uniqueness holds for the corresponding FK model except
possibly at p = pc(q,2, {hi}) [7], and it follows readily from the cluster-labeling
construction that Gibbs uniqueness holds for the Potts model except possibly at
β = βc(q,2, {hi}). This exception is a real one, at least for large q and small
fields—the existence of a unique stable species need not imply Gibbs uniqueness
at βc(q,2, {hi}) [11].

PROPOSITION 3.2. Let µβ,q,{hi} be the q-state Potts model at (β, {hi}) on Z2.
Suppose Gibbs uniqueness holds. Let d be either the Euclidean or the restricted
path metric. Suppose one of the following holds:

(i) the corresponding FK model has exponential decay of connectivities;
(ii) the Potts model µβ,q,{hi} has exponential decay of non-1 connectivities;

(iii) the corresponding FK model has exponential decay of dual connectivities;
(iv) the corresponding ARC model black configuration has exponential decay

of connectivities.

Then µβ,q,{hi} (resp. the corresponding FK and ARC models) has the strong
mixing property for the class of all finite simply lattice-connected subsets of Z2

[resp. of B(Z2)] and arbitrary site boundary conditions, for the metric d .

By the remarks preceding Proposition 3.2, if (ii) or (iii) (and Gibbs uniqueness)
hold, then there must be a unique stable species, but (i) and (iv) allow multiple
stable species if the temperature is supercritical. Also, (i) can only be valid at high
temperatures [β < βc(q,2, {hi})] and (iii) can only be valid at low temperatures
[β > βc(q,2, {hi})] but (ii) and (iv) may be valid at arbitrary temperatures.

Gibbs uniqueness in the Potts model implies random-cluster uniqueness in
the corresponding FK and ARC models, as is apparent from the percolation
construction, so (i), (iii) and (iv) are not ambiguous.

PROOF OF PROPOSITION 3.2. Suppose (iii) holds. For the corresponding
Potts model define

�1 = {x :σx = 1},
�u = {

x :σx ∈ {2, . . . , q}}.
Consider a joint Potts–FK–ARC configuration. In infinite volume, every connected
component of B(�u) in the Potts configuration must be finite, and must be
surrounded by an open dual circuit in the FK configuration. It follows that (ii)
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holds. Since all x with σx = 1 are isolated sites in the ARC model, (ii) implies (iv).
Thus, except under (i), we may assume (iv).

The ARC model then has the weak mixing property, by Theorem 3.1 of [2].
(Strictly speaking, that theorem is stated for a single configuration whereas the
ARC model has separate red and green configurations, but the extension is
trivial.) The ARC model is easily seen to have semibounded energy; therefore
by Theorem 1.1, the ARC model has uniform exponential decay of connectivities
for the class of all simply lattice-connected subsets of B(Z2), with arbitrary site
or bond boundary conditions. The proof of Proposition 3.1 then goes through
[with 0 replaced by 1 in (3.2)] to show that the ARC model has the strong
mixing property for the class of all simply lattice-connected subsets of B(Z2)

with arbitrary site boundary conditions.
In fact, the proof of Proposition 3.1 shows more. Consider the joint Potts–

ARC configuration under a site boundary condition η on ∂�, and let ω = (ωr,ωg)

denote a generic ARC model configuration. Let 	,� ⊂ � with 	∩� = ∅ and let
ξ�, ξ ′

� be Potts-model configurations on �. Define the ARC-model cluster of � by

C�

(
ωB(�)\B(�)

) = ⋃
x∈�

Cx

(
ωB(�)\B(�)

)
,

where Cx(ωB(�)\B(�)) is the cluster of x in the ARC model black configuration
(ωB(�)\B(�))b. Analogously to (3.2), conditionally on the event {C� = A}, the
site configuration on � \ V (A) is the Potts model with site boundary condition
given by η on ∂(� \ V (A)) ∩ ∂�, 0 on ∂(� \ V (A)) ∩ �. Observe that the ARC
model measures on B(�) \ B(�) with site boundary conditions η on ∂� and ξ�

or ξ ′
� on � are both FKG-dominated by the wired measure on B(�) \ B(�),

and the latter has the FKG property. Therefore these three ARC-model measures
can be coupled so that the configurations agree outside the cluster of � in
the largest (wired) configuration. Then via the cluster-labeling construction, the
corresponding three Potts configurations can be coupled so that they agree outside
this same cluster of �. As in (3.3)–(3.6) this shows that for any event E ∈ G	,∣∣µβ,q,{hi}

�,η (E|σ� = ξ�) − µ
β,q,{hi}
�,η (E|σ� = ξ ′

�)
∣∣

≤ PB(�),w(x ↔ y for some x ∈ �,y ∈ 	)

≤ ∑
x∈�,y∈�

c18e
−ε7d(x,y),

where PB(�),w is the wired ARC model. This proves that µβ,q,{hi} has the desired
strong mixing property.

Under (i), essentially the same proof works, with the FK model substituted for
the ARC model, to yield that µβ,q,{hi} has the desired strong mixing property.

Given � ⊂ � and a joint Potts–FK configuration (ξ�,ρB(�)) on (�,B(�)), it is
easy to see that conditioning on both ξ� and ρB(�) is the same as conditioning
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only on ξ� . As in the proof of [2], Theorem 6.1(i), this observation and the
percolation and cluster-labeling constructions of the FK model can be used to show
that whenever the Potts model has the stated strong mixing property, so does the
corresponding FK model. �

Proposition 3.2 does not cover the case in which there are multiple stable
species and the FK model has exponential decay of dual connectivities. Of
course, in that case the Potts model itself will not satisfy Gibbs uniqueness
so will not have any reasonable sort of mixing property, but the corresponding
FK model still may. The next proposition, like Theorem 1.6(iii), removes the
assumption, in Proposition 3.2(iii), of Gibbs uniqueness in the corresponding Potts
model, allowing multiple stable species, at the expense of great restriction on the
boundary condition. The proof, which will follow some preliminary lemmas, is
also significantly more complex.

PROPOSITION 3.3. Let P = P p,q,{hi} be the FK model at (p, q, {hi}) on Z2.
Suppose random-cluster uniqueness holds and P has exponential decay of dual
connectivities. Let d be either the Euclidean or restricted path metric. Then
P p,q,{hi} has the strong mixing property for the class of all finite simply lattice-
connected closure subsets of B(Z2) with free and wired boundary conditions, for
the metric d .

Since, under the assumptions of Proposition 3.3, there is not necesssarily Gibbs
uniqueness in the corresponding Potts and ARC models, (iii) and especially (iv)
in Proposition 3.2 become potentially ambiguous statements and thus the proof
of Proposition 3.2 does not carry over. Instead we will make use of the following.
Consider a q-state Potts model at (β, {hi}) on a finite � with stable species 1, . . . , k

and unstable species k+1, . . . , q . Starting from the corresponding Edwards–Sokal
joint Potts–FK model, with p = 1 − e−β , as in [3] we color each site x yellow if
σx is stable, white if σx is unstable, and designate each open bond to have the color
of its (necessarily matching) endpoints. We call the corresponding configuration
of colored bonds and sites (without the values σx ) the bicolored FK model. When
necessary for clarity, we call the usual FK model the uncolored FK model. Using
the Edwards–Sokal joint Potts–FK model, we see that in either the bicolored or
uncolored FK model, one can have bond boundary conditions ρ ∈ {0,1}B(�)c for
which each cluster is designated to be one of 3 types: yellow, white, or uncolored
(see Remark 3.5). Note that the yellow-wired boundary condition is the same
as the uncolored wired boundary condition, since infinite clusters can only be
yellow. The configuration of open yellow bonds {δ{b open and yellow} :b ∈ B(�)} (or
its distribution, in a harmless abuse of terminology) is called the stable partial
FK model, or briefly the SPFK model, with parameters (p, q, k, {hi}), and its
distribution is denoted P

(p,q,k,{hi})
SPFK,B(�),ρ

. For the SPFK model we can think of all open
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bonds, including those in the boundary condition, as being yellow. Define

I(ω,�) = {x ∈ � :x is an isolated site of ω},
I (ω,�) = |I(ω,�)|,

rn = rn(p,hk+1, . . . , hq) =
q∑

i=k+1

(1 − p)−nhi .

It is easily calculated (see [3]) that the weight associated to an SPFK
configuration ω under a bond boundary condition ρ is

WSPFK(ω) = p|ω|(1 − p)|B(�)|−|ω|kK(ω|ρ)G(ω),

where

G(ω) = k−I ((ω,ρ),�)
∑

ωw∈{0,1}B(I((ω,ρ),�))∩B(�)

(
p

1 − p

)|ωw|( ∏
C∈C(ωw)

r|C|
)

×
(

k + r1

r1

)I ((ω∨ωw,ρ),�)

.

Here the configurations ωw correspond to white configurations in the bicolored
FK model. Given a bond configuration ω and a bond e, we let ω ∨ e denote the
configuration obtained by adding the bond e to ω (i.e., by declaring e to be open).

REMARK 3.4. The reason for interest in the SPFK model is as follows.
Consider a circuit γ and let � be the set of sites surrounded by γ , with boundary
condition in which all bonds of γ are open. The FK model with external fields
lacks the Markov property for open dual circuits because the weight attached to
the boundary cluster in B(�) depends on the number of sites outside γ in that
cluster, hence is affected by the bond configuration outside γ . In the SPFK model,
this same boundary cluster gets weight k in all configurations, so it is easy to see
that the Markov property for open circuits does hold.

REMARK 3.5. A boundary condition ρ for the SPFK model can be viewed
as a boundary condition for the full FK model, with all nonsingleton clusters
of ρ conditioned to be be labeled with stable species in the cluster-labeling
construction, and with the label types (stable/unstable) for singleton clusters not
specified. This idea can be extended to allow boundary conditions ρ for the SPFK
model which are bond configurations for the full FK model, with stable/unstable
labels specified for some clusters, with both singleton and nonsingleton clusters
of ρ allowed to have specified or unspecified labels. We call such a ρ a partly
labeled bond boundary condition.
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Consider an unlabeled nonsingleton boundary cluster C in a partly labeled bond
boundary condition ρ, with C ∩ ∂� 
= ∅. The effect of the presence of C is to
identify the sites C ∩ ∂� into a single “condensed site” which should be treated as
one site in determining the set I((·, ρ),�) of isolated sites in the formula for G(ω).
However, if the condensed site is isolated the weight associated to it in the FK
model is k + rs(C), not k + r1, so the factor (k + r1)/r1 associated to such an
isolated condensed site should be replaced by (k + rs(C))/rs(C). Similarly, if the
condensed site C consists of j original sites and is not isolated, all j must be
counted in calculating the size s(·) of the cluster containing C.

The proofs of Lemmas 3.6 and 3.7 are both valid for partly labeled bond
boundary conditions, with no significant modifications.

LEMMA 3.6. For every finite �, every (p, q, k, {hi}) and every bond bound-
ary condition ρ, the SPFK model P

p,q,k,{hi}
SPFK,B(�),ρ

satisfies the FKG lattice condition.

PROOF. As is standard, it is sufficient to show that, for every bond e,
WSPFK(ω ∨ e)/WSPFK(ω) is an increasing function of ω. Thus fix e = 〈xy〉 ∈
B(�). Since K(ω ∨ e|ρ) − K(ω|ρ) is increasing, it is sufficient to show that
G(ω ∨ e)/G(ω) is increasing. We proceed as in the proof of [3], Proposi-
tion 4.16. Let F(ω) = kI ((ω,ρ),�)G(ω) denote the sum in G(ω) and let D(ω) =
B(I((ω,ρ),�)) ∩ B(�) denote the set of bonds on which the configura-
tions ωw exist. Note F(ω) is the partition function of the ARC model on D(ω)

at (p,0, q − k,
k+r1
r1

, {hk+1, . . . , hq}) with free boundary; we denote this model

by P ARC
ω . Let

	(ω) = I
(
(ω,ρ),�

) − I
(
(ω ∨ e, ρ),�

) = ∣∣{x, y} ∩ I
(
(ω,ρ),�

)∣∣.
Terms in the sum F(ω ∨ e), each multiplied by (k + r1)

	(ω), correspond precisely
to those configurations ωw of this ARC model in which {x, y} ∩ I((ω,ρ),�) ⊂
I((ω ∨ ωw,ρ),� ), or equivalently, in which all bonds in D(ω) ∩ {e} are closed.
It follows that

F(ω ∨ e)

F (ω)
= (k+r1)

−	(ω)P ARC
ω

({
ωw : all bonds in D(ω) ∩ {e} are closed in ωw

})
and then that

G(ω ∨ e)

G(ω)
=

(
k

k + r1

)	(ω)

×P ARC
ω

({
ωw : all bonds in D(ω) ∩ {e} are closed in ωw

})
.

(3.9)

It is easy to see that ( k
k+r1

)	(ω) is an increasing function of ω. It is proved
in [3] that the ARC model without external fields satisfies the FKG lattice
condition. With external fields the proof is similar except that one must establish
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the straightforward fact that rn+m/rnrm is an increasing function of m and n.
Thus P ARC

ω satisfies the FKG lattice condition. Let b = 〈uv〉 be a bond which
is closed in ω ∨ e. Then

P ARC
ω∨b (·) = P ARC

ω

(
(ωw)D(ω∨b) ∈ ·|all bonds in D(ω) ∩ {b} are closed in ωw

)
and the conditioning here is on a decreasing event. Therefore,

P ARC
ω∨b

({
ωw : all bonds in D(ω ∨ b) ∩ {e} are closed in ωw

})
= P ARC

ω

(
all bonds in D(ω ∨ b) ∩ {e} are closed in ωw

|all bonds in D(ω) ∩ {b} are closed in ωw

)
≥ P ARC

ω

(
all bonds in D(ω) ∩ {e} are closed in ωw

)
,

(3.10)

so G(ω ∨ e)/G(ω) is increasing, as desired. �

It follows from Lemma 3.6 that the free- and wired-boundary SPFK models
have infinite-volume limits, and there is a unique infinite-volume limit if and only
if the free and wired models are equal.

LEMMA 3.7. Let P = P p,q,{hi} be the FK model at (p, q, {hi}) on Z2.
Suppose random-cluster uniqueness holds and P has exponential decay of dual
connectivities. Then the corresponding SPFK model has the weak mixing property
and has uniform exponential decay of finite-volume dual connectivities for the
class of all finite simply lattice-connected subsets of B(Z2) with arbitrary bond
boundary condition, for both the Euclidean and restricted-path metrics.

PROOF. It is clear that the SPFK model also satisfies random-cluster unique-
ness. Further, in the infinite-volume FK model there is with probability 1 a unique
infinite cluster with finite “holes” defined by exterior open dual circuits, with an
exponentially decreasing tail for the distribution of hole sizes. In the Edwards–
Sokal joint construction the infinite cluster is stable with probability 1, so the same
infinite cluster with the same holes is present in the SPFK configuration. It follows
that the SPFK model has exponential decay of dual connectivities.

Let γn be the dual circuit forming the boundary of [−n − 1
2 , n + 1

2 ]2 and let
�n = [−n,n]2 ∩Z2. Let k be the number of stable species. Given a bond boundary
condition ρ on B(�n)

c , by Lemma 3.6 and the Markov property for open circuits

(see Remark 3.4), there exists a coupling of the measures P
p,q,k,{hi}
SPFK,B(�n),ρ

and

P
p,q,k,{hi}
SPFK,B(�n),f

with the property that the respective configurations ω,ωf on B(�)

agree outside the set {
b ∈ B(�n) :b∗ ∗↔γn in (ωf )∗

}
.
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(Such couplings can be made using an FKG construction algorithm—see [2], [6]
or [25].) Therefore by [2], Theorem 3.1, the SPFK model has the weak mixing
property. It is easily seen that it also has bounded energy (note this property may
fail for the FK model with external fields). The uniform exponential decay now
follows from Theorem 1.1. �

The next lemma controls the size of the portion of the FK-model boundary
cluster which is attached to boundary sites occupied by unstable species.

LEMMA 3.8. Let P = P p,q,{hi} be an FK model on B(Z2), and let d be the
Euclidean or restricted-path metric. There exist constants C,λ such that for every
finite � ⊂ Z2, every site boundary condition η, every x ∈ � and every unstable
species j , for (∂�)j = {y ∈ ∂� :ηy = j},

P�,η

(
x ↔ (∂�)j

) ≤ Ce−λd(x,(∂�)j ).

PROOF. We will do the proof for the Euclidean metric; the modifications for
the restricted-path metric are minor. Fix �,η and x ∈ �. Let k be the number of
stable species. Recall that Qr(x) denotes the closed square of side 2r centered at x

and let Dm denote the set of all bonds which cross ∂Qm+1/2(x). Let

mmin = ⌊ 1
3d

(
x, (∂�)j

)⌋
,

mmax = ⌊ 2
3d

(
x, (∂�)j

)⌋
,

where �·� denotes the integer part. Let Cx denote the open cluster of x, fix
mmin ≤ m ≤ mmax and define events

B
 = {x ↔ (∂�)j ,Cx ∩ Dm = 
}
for 
 ⊂ Dm. We fix such a 
 and write bond configurations ω as (ωB(�)\
,ω
).
Thus we define

B̃
 = {
ωB(�)\
 :

(
ωB(�)\
,ρ1




) ∈ B


}
,

where, as will be recalled, ρi

 denotes the all-i configuration on 
.

Given a configuration ω ∈ B
, closing all bonds in 
 breaks the cluster Cx into
one or more clusters in Qm(x), and one or more clusters outside the interior of
Qm+1(x). More precisely, the first group is

Ĉx(ωB(�)\
) = {
all clusters of

(
ωB(�)\
,ρ0




)
contained

in Cx

(
ωB(�)\
,ρ1




) ∩ Qm(x)
}
,

and the FK weight assigned to each cluster C in this group is k + r|C| ≥ 1. Let
N(ωB(�)\
) denote the total number of sites in the clusters in Ĉx(ωB(�)\
) and

let W(ω) denote the FK weight of ω. We then have, for ωB(�)\
 ∈ B̃
, that
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N(ωB(�)\
) ≥ m and therefore

P
((

ωB(�)\
,ρ1



)|ωB(�)\

)

≤ W(ωB(�)\
,ρ1

)

W(ωB(�)\
,ρ0

)

(3.11)

≤
(

p

1 − p

)|
|
(1 − p)

−hk+1N(ωB(�)\
)

≤
(

p

1 − p
∨ 1

)|
|
(1 − p)−hk+1m.

Therefore,

P (B
) ≤ max
{
P

((
ωB(�)\
,ρ1




)|ωB(�)\

)

:ωB(�)\
 ∈ B̃θ

}

≤
(

p

1 − p
∨ 1

)|
|
(1 − p)−hk+1m.

Fix M > 0 to be specified. We have

P
(
x ↔ (∂�)j , |Cx ∩ Dm| ≤ M

)
≤ ∑


⊂Dm : |
|≤M

P (B
)

≤ c19|Dm|M
(

p

1 − p
∨ 1

)M

(1 − p)−hk+1m

(3.12)

so that, provided d(x, (∂�)j) is sufficiently large (depending on M),

P
(
x ↔ (∂�)j , |Cx ∩ Dm| ≤ M for some mmin ≤ m ≤ mmax

)
≤ c19d

(
x, (∂�)j

)∣∣Dmmax

∣∣M(
p

1 − p
∨ 1

)M

(1 − p)−hk+1mmin(3.13)

≤ c20(1 − p)−hk+1d(x,(∂�)j )/6.

Next we consider configurations satisfying

x ↔ (∂�)j , |Cx ∩ Dm| > M for all mmin ≤ m ≤ mmax.
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Taking m = mmax and 
 as above, in (3.11) we have for such configurations
N(ωB(�)\
) ≥ Md(x, (∂�)j)/3. Therefore,

P
(
x ↔ (∂�)j , |Cx ∩ Dm| > M for all mmin ≤ m ≤ mmax

)
≤ ∑


⊂Dmmax

P

(
B
 ∩

{
N

(
ωB(�)\


) ≥ 1

3
Md

(
x, (∂�)j

)})

≤ 2|Dmmax |
(

p

1 − p
∨ 1

)|Dmmax |
(1 − p)−hk+1Md(x,(∂�)j)/3

≤ c21(1 − p)−hk+1Md(x,(∂�)j)/6

(3.14)

provided M is sufficiently large. With (3.13) this completes the proof. �

PROOF OF PROPOSITION 3.3. Let � be a finite subset of Z2 and E ,F ⊂
B(�), let η be the free or wired boundary condition on ∂� and let ρE , ρ′

E be bond
configurations on E . We wish to show roughly that PB(�),η(ωF ∈ ·|ωE = ρE ) and
PB(�),η(ωF ∈ ·|ωE = ρ′

E ) differ by an exponentially small amount. Let P denote
the distribution of the Edwards–Sokal joint Potts–FK configuration (σ,ω) on
B(�). Define

U(σ) = {x ∈ V (E) :σx is unstable}
and consider the measures

P
(·|ωE = ρE ,U(σ ) = U0

)
, P

(·|ωE = ρ1
E ,U(σ ) = ∅

)
,

where U0 ⊂ V (E) is compatible with ρE , that is, U0 contains either all or none of
each cluster of ρE . We call the first of these measures the lower measure and the
second the upper measure. It is sufficient to show that for arbitrary compatible U0,
these two measures can be coupled so that the corresponding bond configurations
agree on F , except with an exponentially small probability. Note, that if η is
the wired boundary condition, the Potts model under P is conditioned on the
event that all boundary spins are the same stable species. Also, we may assume
E = B(E) ∩ B(�) for some E ⊂ �. Then B(�) \ E = B(� \ E).

The idea is roughly the following. Let I ⊂ B(�). When as in the proof of
Proposition 3.1 we use the Markov property, or its extension (3.2), to couple two
measures, conditioned on different configurations on I, outside the cluster C of I,
we may view this as using the dual of the cluster boundary, which consists of
open dual bonds, to “wall off” I from the rest of B(�). In the present situation,
we want to first wall off U0 in the lower configuration only, so that the effective
boundary condition on the rest of B(�) does not involve unstable species, and the
SPFK model can thus be used outside the wall. We will let E+ denote E together
with the region behind this first wall. Then, switching to a dual picture, we want
to wall off the dual cluster of E+ in the SPFK model in both the lower and upper
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FIG. 5. A is the closure of the FK cluster, outside E , of the unstable part U0 of E in the lower
configuration. H is the closure of the dual SPFK cluster of (E+)∗ = (E ∪A)∗ and D is the boundary
of that dual cluster.

configurations, with the wall consisting of open regular bonds. For this second wall
we have the Markov property (see Remark 3.4) that allows the configurations to
agree outside it.

In detail, the coupling is constructed as follows. The lower and upper bond
configurations are denoted ωB(�)\E and ω′

B(�)\E , respectively. First we use a

stopped construction algorithm to create CU0(ωB(�)\E ), the closure of the cluster
of U0, in the lower FK configuration ωB(�)\E . Suppose the resulting value of the

cluster closure is CU0(ωB(�)\E ) = A for some A ⊂ B(�) \ E ; see Figure 5.
We then choose the stable part of the upper bond configuration on this same
set A, using the SPFK model, making this choice of upper SPFK configuration
independently of the lower FK configuration we selected on A. Let E+ = E ∪ A.
Note that in the lower configuration, all bonds in ∂CU0(ωB(�)\E ) ∩ B(�) \ E
(the first wall) are closed. We now treat the upper and lower configurations
on A as parts of extended boundary conditions for the remaining upper and
lower configurations on B(�) \ E+. [Here “extended” refers to the fact that these
boundary conditions are configurations on B(�)c ∪ E+, not just on B(�)c.]
Since all of the open bonds relevant to these extended boundary conditions have
stable species at their endpoints, we can treat them as boundary conditions for
the SPFK model, rather than for the full FK model. [Those bonds with unstable
species at their endpoints are irrelevant because they cannot have endpoints in
B(�)\E+.] Let ω̃B(�)\E+ and ω̃′

B(�)\E+
, respectively, denote the lower and upper

SPFK configurations. Note that the extended boundary condition for the upper
configuration is always larger, in the usual ordering, than the extended boundary
condition for the lower configuration. Therefore by Lemma 3.6, the upper SPFK
configuration on B(�) \ E+ FKG-dominates the lower one.

Note that in part of what follows we will use the domain B+(�) instead of
B(�), because for η free we do not want to allow the use of the boundary dual
bonds (∂B(�))∗, which are always open, in forming our dual paths.

We next use another stopped construction algorithm to create C∗
E∗+

(ω̃B+(�)\E+),

the closure of the dual cluster of E∗+ in the lower SPFK configuration ω̃B+(�)\E+ ,
while simultaneously creating the upper SPFK configuration on the same (random)
set of dual bonds. By the FKG domination, this can be done with the upper SPFK
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configuration larger than the lower one. Suppose the resulting values of this dual-
cluster closure and the dual-cluster boundary, or second wall, in B+(�) \ E+ are
C∗

E∗+(ω̃B+(�)\E+) = H∗ and ∂C∗
E∗+(ω̃B+(�)\E+) = D∗ for some D,H ⊂ B+(�) \

E+. Then all (regular) bonds in D are open, in both the upper and lower SPFK
configurations. Let E++ = E+ ∪ H . As before with E+, the upper and lower
SPFK configurations on E++ can each be treated as further-extended boundary
conditions for the corresponding configurations on B(�)\E++. Because all bonds
in D are open, these further-extended boundary conditions are both the same—
wired on each component of D if η is free, and analogously if η is wired. Here
we are using an extension, analogous to (3.2), of the Markov property for open
surfaces valid for the SPFK model—see Remark 3.4—and for η free we are using
simple lattice-connectedness of B(�) to ensure that no two components of D
intersect (i.e., have sites in common with) the same component of B(�) \ E++.
Even when the SPFK configurations we have constructed on portions of E++ are
extended to full FK configurations on the same portions of E++, the boundary
condition for configurations on B(�) \ E++ is not affected. (Here “portions
of E++” means H in the lower configuration and all of E++ in the upper
configuration.) Thus in completing the upper and lower FK configurations we can
choose ωB(�)\E++ and ω′

B(�)\E++
to be equal. The set E++ = E++(ωB(�)\E ) is of

course random, and we have

∣∣P(
F |ωE = ρE ,U(σ ) = U0

) − P
(
F |ωE = ρ1

E ,U(σ ) = ∅
)∣∣

≤ P
(
E++

(
ωB(�)\E

) ∩ F 
= ∅|ωE = ρE ,U(σ ) = U0
)
, F ∈ GF .

(3.15)

For 0 < α < 1 let

�(E , α) =
{
x ∈ � :d(x,E) ≤ α

1 − α
d(x,F )

}
,

�∗(E , α) =
{
x ∈ V ∗(

B(�)
)

:d(x,E) ≤ α

1 − α
d(x,F )

}
.

These are the sites and dual sites which are, roughly speaking, at most α fraction
of the way from E to F . Then

P
(
E++

(
ωB(�)\E

) ∩ F 
= ∅|ωE = ρE ,U(σ ) = U0
)

≤ P
(
E+

(
ωB(�)\E

) ∩ �
(
E , 1

3

)c 
= ∅
∣∣ωE = ρE ,U(σ ) = U0

)
+ P

(
E+

(
ωB(�)\E

) ∩ �
(
E , 1

3

)c = ∅,

E++
(
ωB(�)\E

) ∩ F 
= ∅
∣∣ωE = ρE ,U(σ ) = U0

)
.

(3.16)
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Since conditioning on ωE = ρE ,U(σ ) = U0 is just an average of certain site
boundary conditions, Lemma 3.8 yields that, for some c22, ε8,

P
(
E+

(
ωB(�)\E

) ∩ �
(
E , 1

3

)c 
= ∅
∣∣ωE = ρE ,U(σ ) = U0

)

≤ c22
∑

x∈E,y∈�(E,1/3)c

e−ε8d(x,y)
(3.17)

for some constants ci . As in the proof of [2], Theorem 3.3, we have for some
c23, ε9, ∑

x∈E,y∈�(E, 1
3 )c

e−ε8d(x,y) ≤ c23
∑

x∈E,z∈F

e−ε9d(x,z).(3.18)

Define, for x /∈ E ,

Bx = {
y ∈ R2 :d(x, y) ≤ 1

4d(x,E)
}
,

B+
x = {

y ∈ R2 :d(x, y) ≤ 1
4d(x,E) + 2

}
.

By Lemma 3.7, the SPFK model has uniform exponential decay of finite-volume
dual connectivities for the class of all simply lattice-connected subsets of B(Z2)

with arbitrary bond boundary conditions. With k denoting the number of stable
species, it follows readily that

P
(
E+

(
ωB(�)\E

) ∩ �
(
E , 1

3

)c = ∅,E++
(
ωB(�)\E

) ∩ F 
= ∅

|ωE = ρE ,U(σ ) = U0

)

≤ sup
ρ

P
p,q,k,{hi}
SPFK,B(�)\B(�(E, 1

3 )),ρ

(
there exists an open dual path which

starts within distance 1 of �
(
E , 1

3

)
and ends within distance 1 of F

)
≤ sup

ρ

∑
x∈∂�∗(E,2/3)

P
p,q,k,{hi}
SPFK,B(�)\B(�(E,1/3)),ρ

(x
∗↔Bc

x)

≤ sup
ρ

∑
x∈∂�∗(E,2/3)

P
p,q,k,{hi}
SPFK,B(�)∩B(B+

x ),ρ
(x

∗↔Bc
x)

≤ ∑
x∈∂�∗(E,2/3)

c24e
−ε10d(x,E)/4,

(3.19)

where the sup is over all bond boundary conditions, and where for the last
inequality we use Theorem 1.1 and the fact that each component of B(�)∩B(B+

x )

is simply lattice-connected. Similarly to (3.18), we have∑
x∈∂�∗(E,2/3)

c24e
−ε10d(x,E)/4 ≤ ∑

y∈E,z∈F

c25e
−ε11d(y,z).(3.20)
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Now (3.15)–(3.20) prove that∣∣P(
F |ωE = ρE ,U(σ ) = U0

) − P
(
F |ωE = ρ1

E ,U(σ ) = ∅
)∣∣

≤ c26
∑

x∈E,y∈F

e−ε12d(x,y).
(3.21)

Since U0 is arbitrary, this shows that∣∣PB(�),η(F |ωE = ρE ) − PB(�),η(F |ωE = ρ′
E )

∣∣
(3.22)

≤ c26
∑

x∈E,y∈F

e−ε12d(x,y),

which completes the proof. �

To move from strong mixing to ratio strong mixing in our varied contexts, we
need to extend some definitions and results in [2]. A component partition of a set
E ⊂ B(Zn) is a partition E = E1 ∪ · · · ∪ Em such that each component of E is
contained in some Ei . For a bond percolation model P on B(Zn), for � ⊂ Zn

finite, η a site boundary condition on ∂�, B ⊂ B(�), B(�) \ B = E ∪ F a
component partition, ε > 0, and ρ ∈ {0,1}B(�) we say B is an ε-near blocking
region for E ,F in ρ if for every configuration ρ′ such that ρ = ρ′ on B and every
event A ∈ GE we have

(1 − ε)P�,η(A|ωB∪F = ρ′
B∪F )

≤ P�,η(A|ωB∪F = ρB∪F )

≤ (1 + ε)P�,η(A|ωB∪F = ρ′
B∪F ).

In other words, the configuration on B blocks the configuration on F from
influencing probabilities for events on E by more than a factor of 1 ± ε.
A 0-blocking region is also called a fully blocking region. Blocking regions
are the finite-volume analogs of contolling regions. Let C be a class of subsets
of B(Zn). We say that P has exponentially bounded blocking regions for the
class C and metric d if there exist C,λ such that for every �,η and B ⊂ B(�)

with (B(�), η) ∈ C and every component partition B(�) \ B = E ∪ F , for
ε = C

∑
x∈V (E),y∈V (F ) e

−λd(x,y), we have

PB(�),η(B is not an ε-near blocking region for E ,F ) < ε.(3.23)

We say that P has exponentially bounded fully blocking regions for the metric d if
in place of (3.23) we have

PB(�),η(B is not a fully blocking region for E ,F ) < ε.

Essentially the same definition applies under bond boundary conditions.
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LEMMA 3.9. Let P = P p,q,{hi} be an FK model on B(Zn), let d be the
Euclidean or restricted-path metric and let C be a class of finite closure subsets
of Zn which is inheriting with respect to d .

(i) If P has uniform exponential decay of finite-volume connectivities for the
class C with arbitrary site boundary conditions, then P p,q,{hi} has exponentially
bounded fully blocking regions for the class C with arbitrary site boundary
conditions, in the metric d .

(ii) If n = 2, C is the class of all finite simply lattice-connected closure subsets
and P has exponential decay of connectivities, then P p,q,{hi} has exponentially
bounded fully blocking regions for the class C with arbitrary site boundary
conditions, in the metric d .

(iii) If n = 2 and P has a unique stable species, then P p,q,{hi} has exponentially
bounded blocking regions for the class C with arbitrary single-stable-species site
boundary conditions, in the metric d . If d is the Euclidean metric, then arbitrary
bond boundary conditions can be included as well.

(iv) If n = 2, C is the class of all finite simply lattice-connected subsets
and P p,q,{hi} has exponential decay of dual connectivities, then P p,q,{hi} has
exponentially bounded blocking regions for the class C with free and wired
boundary conditions, in the metric d .

PROOF. Fix � ⊂⊂ Zn, η a site boundary condition on ∂�, B ⊂ B(�) and
B(�) \ B = E ∪ F a component partition.

If in a configuration ω ∈ {0,1}B(�) there is no open path from V (E) to V (F ),
then there exists a collection of dual surfaces which together separate E from F
in B(�), such that none of these dual surfaces is crossed by an open bond. It
therefore follows from a straightforward minor extension of the Markov property
for open dual surfaces [cf. (3.2)] that

PB(�),η(B is not a fully blocking region for E ,F )

≤ PB(�),η

(
x ↔ y for some x ∈ V (E), y ∈ V (F )

)
,

(3.24)

and (i) follows.
Under the assumptions of (ii), it follows from Theorem 1.2 that the assumptions

of (i) are satisfied.
Under the assumptions of (iii), with single-stable-species site boundary con-

dition η, let ρ,ρ′ be configurations such that ρ = ρ′ on B , and let 
 = {x ∈
∂� :ηx 
= 0} be the set of boundary sites where the stable species resides. The dif-
ference between the measures PB(�),η(ωE ∈ ·|ωB∪F = ρB∪F ) and PB(�),η(ωE ∈
·|ωB∪F = ρ′

B∪F ) appears only in the weight assigned to clusters of (ωE , ρB∪F )

which intersect V (E) and V (F ) but not 
. More precisely, considering the
first measure, let C0

E,F (ωE , ρB∪F ) denote the set of all such clusters. Then the
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combined weight assigned to all clusters in C0
E,F (ωE , ρB∪F ) under the measure

PB(�),η(ωE ∈ ·|ωB∪F = ρB∪F ) is [cf. (1.14)–(1.16)]∏
C∈C0

E ,F (ωE ,ρB∪F )

(
1 + (1 − p)−h2s(C) + · · · + (1 − p)−hq+1s(C)

)

≤ ∏
C∈C0

E ,F (ωE ,ρB∪F )

(
1 + q(1 − p)−h2s(C)

)
(3.25)

≤ ∏
x∈V (E)

(
1 + c28e

−ε13d(x,V (F ))
)

since h2 < 0. Let

δ = ∑
x∈V (E)

2c28e
−ε13d(x,V (F ))

and suppose δ ≤ 1. Then by (3.25), the left-hand side of (3.25) is between 1 and
1 + δ, and the same holds with ρB∪F replaced by ρ′

B∪F . It follows that, in every
configuration ωB(�), B is a δ-near blocking region for E ,F . On the other hand,
if δ > 1, then certainly PB(�),η(B is not a δ-near blocking region for E ,F ) < δ.
This proves (iii) for single-stable-species site boundary conditions.

Next, consider (iii) with d Euclidean and a bond boundary condition ρ̃.
We proceed similarly to the site boundary condition case but in place of
C0

E,F (ωE , ρB∪F ) we use the class C1
E,F (ωE , ρB∪F ) consisting of all clusters

of (ωE , ρB∪F , ρ̃) which intersect both V (E) and V (F ). [Such clusters now
need not pass through B and may connect V (E) to V (F ) via the boundary
configuration ρ̃.] As before, the difference between the measures given ρB∪F and
given ρ′

B∪F lies only in the combined weight assigned to such clusters. Since
d is the Euclidean distance, for C ∈ C1

E,F (ωE , ρB∪F ) and x ∈ C ∩ V (E) we have
s(C) ≥ d(x,V (F )). Therefore proceeding as in (3.25) we obtain (iii).

Finally, under the assumptions of (iv), we again consider the class C0
E,F (ωE ,

ρB∪F ). Let k be the number of stable species. Suppose there is no open dual
path from V ∗(E∗) to V ∗(F ∗) in B+(�)∗ ∩ B∗. If η is wired, this means every
cluster intersecting both V (E) and V (F ) must also intersect ∂� in B . This in
turn means C0

E,F (ωE , ρB∪F ) = ∅ and hence PB(�),η(ωE ∈ ·|ωB∪F = ρB∪F ) =
PB(�),η(ωE ∈ ·|ωB∪F = ρ′

B∪F ), so B is a fully blocking region. Thus

PB(�),η(B is not a fully blocking region for E ,F )

≤ PB(�),η

(
V ∗(E∗) ∗↔V ∗(F ∗)

)
≤ ∑

x∈V (E),y∈V (F )

c29e
−ε14d(x,y),

completing the proof for η wired. If instead η is free, the absence of an open dual
path from V ∗(E∗) to V ∗(F ∗) in B+(�)∗ ∩ B∗ means that for each connected



DECAY IN FINITE VOLUMES 483

component Ei of E and each connected component Fj of F , there is at most one
cluster in C0

E,F (ωE , ρB∪F ) which intersects both V (Ei) and V (Fj ). If this cluster,
call it Cij , exists, the weight assigned to it is

k + (1 − p)−hk+1s(Cij ) + · · · + (1 − p)−hq+1s(Cij ),

which is between k and k + qe−ε15d(Ei ,Fj ), uniformly in ωB(�). This means
that B is an ε-near blocking region for E ,F , for ε given by

1 + ε = ∏
i,j

(
1 + qe−ε15d(Ei ,Fj )

)
.

We need only consider ε ≤ 1 [otherwise (3.23) is vacuous] and then we have

ε ≤ ∑
x∈V (E),y∈V (F )

2qe−ε15d(x,y).

Thus

PB(�),η(B is not an ε-near blocking region for E ,F )

≤ PB(�),η

(
V ∗(E∗) ∗↔V ∗(F ∗)

)
(3.26)

≤ ∑
x∈V (E),y∈V (F )

c30e
−ε15d(x,y),

from which the result for η free readily follows. �

The weak-mixing analog of the following theorem is [2], Theorem 3.3. The
proof for strong mixing is essentially the same so we do not include it here.

THEOREM 3.10. Let P be a bond percolation model on B(Zn), let C be a
class of finite subsets of B(Zn) together with (site or bond ) boundary conditions
and let d be the Euclidean or restricted-path metric. Suppose P has the strong
mixing property for the class C in the metric d , and suppose P has exponentially
bounded blocking regions. Then P has the ratio strong mixing property for the
class C in the metric d .

REMARK 3.11. The obvious spin-system analog of Theorem 3.10 is also
valid. In particular, nearest-neighbor systems such as the Potts model always have
exponentially bounded blocking regions, so that for such systems, strong mixing
implies ratio strong mixing, for any class C.

Write x
f↔y for the event {x ↔ y, x /↔ ∞} (if the context is infinite volume) or

the event {x ↔ y, x /↔ ∂�} (if the context is a finite volume �). Let ei denote the
ith unit coordinate vector. The following lemma was proved in [8] in the absence of
external fields. The proof there also works under external fields, but it is complex
and interwoven with other proofs, so we present a short direct proof here.
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LEMMA 3.12. Consider an FK model P = P p,q,{hi} on B(Z2) with p >

pc(q,2, {hi}). If P (0
f↔x) decays exponentially in |x|, then P has exponential

decay of dual connectivities.

PROOF. Suppose the dual connectivity does not decay exponentially, that
is, τ (x) = 0 for all x. We claim first that the dual connectivity also does not
decay exponentially in halfspaces. Let ε > 0 and let p∞ = P (0 ↔ ∞), Ht =
{(x1, x2) :x2 ≤ t}. Let k0 be large enough so P ((0,0)∗ ∗↔(k,0)∗) ≥ e−εk for all
k ≥ k0. Fix k ≥ max(k0,2/ε), and then t , of form m + 1

2 for some integer m, such
that

P
(
(0,0)∗ ∗↔(k,0)∗ via a dual path in Ht

) ≥ 1
2e−εk > e−2εk.

Then for n ≥ 1, by the FKG property and translation invariance,

P
(
(0,−m)∗ ∗↔(nk,−m)∗ via a dual path in H1/2

)
> e−2εnk,

so that

P
(
(0,0)∗ ∗↔(nk,0)∗ via a dual path in H1/2

)
> e−2εnkP

(
(0,0)∗ ∗↔(0,−m)∗ via a dual path in H1/2

)2
.

Since ε and n are arbitrary, the claim is proved.
Since p 
= pc(q,2, {hi}), random cluster uniqueness holds [7]. Fix l ≥ 1; we

have by the FKG property

P (0 ↔ le1) ≥ P
(|C0| = ∞,

∣∣Cle1

∣∣ = ∞) ≥ p2∞.

Let 
j,r = [−r, j + r]× [−r, r]. By random cluster uniqueness, if r is sufficiently
large (depending on l),

P
l,r ,f (0 ↔ le1 via an open path in 
l,r ) ≥ 1
2p2∞.

From this we obtain, using the FKG property again and choosing r of the form
s + 1/2 for some integer s, that for δ > 0 and r, n sufficiently large,

P
(
0

f↔nle1
)

≥ P
(
0 ↔ nle1via an open path in 
nl,r ,

(−r,−r)
∗↔ (−r, r)

∗↔ (nl + r, r)
∗↔ (nl + r,−r)

∗↔ (−r,−r)

via open dual paths outside 
nl,r

)
≥ e−δ(8r+2nl)P
nl,r ,f (0 ↔ nle1via an open path in 
nl,r )

≥ e−δ(8r+2nl)
n−1∏
k=0

P
nl,r ,f

(
kle1 ↔ (k + 1)le1

)

≥ (1
2p2∞

)n
e−δ(8r+2nl).
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Since δ and l are arbitrary, it follows that P (0
f↔ne1) does not decay exponentially

in n. �

Let µ
β,{hi}
Z2,i

denote the infinite-volume Potts model on Z2 at (β, {hi}) with
species-i boundary condition, for stable i. Part (i) of the next lemma is well known
in the absense of external fields.

LEMMA 3.13. Consider the q-state Potts model µβ,q,{hi} on Z2. Suppose
there are multiple stable species.

(i) Suppose Gibbs uniqueness holds and µβ,q,{hi} has exponential decay
of correlations. Then the corresponding FK model has exponential decay of
connectivities.

(ii) Suppose β > βc(q,2, {hi}) and µ
β,q,{hi}
Z2,1

has exponential decay of correla-
tions. Then the corresponding FK model has exponential decay of dual connectiv-
ities.

PROOF. Suppose there are k stable species, and let P denote the distribution
of the corresponding Edwards–Sokal joint Potts–FK configuration in a finite
volume � with all-1 boundary condition. Under P we have conditional covariance,
given the bond configuration, given by

cov
(
δ{σx=1}, δ{σy=1}|ω)

=



1

k + rn

(
1 − 1

k + rn

)
, if x

f↔y and s(Cx) = s(Cy) = n,

0, otherwise,

≥ 1

k + r1

(
1 − 1

k + r1

)
δ{x f↔y}

and conditional expectation

Mx = E
(
δ{σx=1}|ω) = 1 −

(
1 − 1

k + rs(Cx)

)
δ{x /↔ ∂�}.

Since this conditional expectation is an increasing function of ω, by the FKG
property of the FK model we have cov(Mx,My) ≥ 0 for all x, y. Therefore

cov
(
δ{σx=1}, δ{σy=1}

) ≥ 1

k + r1

(
1 − 1

k + r1

)
P

(
x

f↔y
)
,

where P is the finite-volume FK measure. This same inequality then holds in
infinite volume. [Note the infinite-volume FK measure is necessarily unique under
both (i) and (ii)—see the remarks preceding Proposition 3.2.] It follows that

P (x
f↔y) decays exponentially. This proves (i). Under (ii) there is percolation

in the FK model, so (ii) follows from Lemma 3.12. �
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PROOF OF THEOREM 1.6. The theorem follows from Proposition 3.1,
Lemma 3.9(i) and Theorem 3.10. �

PROOF OF THEOREM 1.7. (i) is an immediate consequence of Theorems
1.2 and 1.6(ii) follows from Proposition 3.3, Lemma 3.9(iv) and Theorem 3.10.
Assertion (iii) follows from Proposition 3.2(iii), Lemma 3.9(iii) and Theorem 3.10.

�

Note that we do not need Proposition 3.3 in the proof of Theorem 1.7 if there
are no external fields, as (ii) then follows from (i) and duality.

PROOF OF THEOREM 1.8. Let P be the corresponding FK model. Under the
hypotheses of (i), by Lemma 3.13(i) P has exponential decay of connectivities.
Hence under (i) or (ii), by Proposition 3.2(i), µβ,q,{hi} has the strong mixing
property for the class C with arbitrary boundary conditions. By Remark 3.11, the
desired ratio strong mixing property holds.

Under (iii), Gibbs uniqueness holds, so by Proposition 3.2(iii), µβ,q,{hi} has the
strong mixing property for the class C with arbitrary boundary conditions. Again
by Remark 3.11, the desired ratio strong mixing property holds. �

PROOF OF THEOREM 1.9. By the method of proof of Proposition 3.2(i)
(noting that, due to our stronger assumption, we do not need Theorem 1.2), using
the FK model, µβ,q,{hi} has the strong mixing property for the class C with
arbitrary boundary conditions. By Remark 3.11, the desired ratio strong mixing
property holds. �
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