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SHARP ERROR TERMS AND NECCESARY CONDITIONS FOR
EXPONENTIAL HITTING TIMES IN MIXING PROCESSES1

BY MIGUEL ABADI

University of São Paulo

We prove an upper bound for the error in the exponential approximation
of the hitting time law of a rare event in α-mixing processes with exponential
decay, φ-mixing processes with a summable function φ and for general
ψ-mixing processes with a finite alphabet. In the first case the bound is
uniform as a function of the measure of the event. In the last two cases
the bound depends also on the time scale t . This allows us to get further
statistical properties as the ratio convergence of the expected hitting time and
the expected return time. A uniform bound is a consequence. We present
an example that shows that this bound is sharp. We also prove that second
moments are not necessary for having the exponential law. Moreover, we
prove a necessary condition for having the exponential limit law.

1. Introduction. This paper proves an upper bound for the difference be-
tween the exponential law and the law of the first occurrence of a long string
of symbols in a stochastic process with a finite alphabet. Our result stands for
α-mixing processes with exponential decay, φ-mixing processes with a summable
function φ and for general ψ-mixing processes.

We prove that for any n-cylinder set A, the law of its hitting time, suitably
rescaled, can be uniformly approximated by a mean one exponential law. The error
in the approximation of this law is bounded from above by infx{xP{A} + ∗(x)} ×
(t ∨ 1)e−t , where P{A} is the measure of the cylinder, ∗ stands for φ or ψ ,
according to the assumed mixing properties of the process and t is the time scale.

We recall that an irreducible and aperiodic finite state Markov chain is ψ-mixing
with exponential decay. Moreover, Gibbs states with a Hölder continuous potential
are exponentially ψ-mixing. See Bowen (1975) for definitions and properties.
Also, chains with complete connections, as defined in Bressaud, Fernandez and
Galves (1999) are exponentially ψ-mixing. We refer to Doukhan (1995) for
examples and references of α-mixing processes that are not φ-mixing, φ-mixing
processes that are not ψ-mixing and ψ-mixing processes decaying at any rate.

The question of finding the limit law for the first occurrence of an event of small
probability has a long history. The pioneer in this area was Doeblin (1940), who
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studied the Poisson approximation for the Gauss transformation. In the context
of Markov chains, the convergence of the occurrence time of a rare event to the
exponential law was first studied by Bellman and Harris (1951) and Harris (1953).

In the nineties several authors presented uniform upper bounds for this
approximation for processes with mixing dynamics. Among them Galves and
Schmitt (1997), Hirata, Saussol and Vaienti (1999), Collet, Galves and Schmitt
(1999) and Abadi (2001). For a detailed review on these works we refer the reader
to Abadi and Galves (2001). Haydn (1999) proves the exponential approximation
for rational maps. All those papers present uniform upper bounds, say δ(A), for
the exponential approximation to the hitting time law of a cylinder set A.

Our technique is a modification of that in Galves and Schmitt (1997), but
essential new ideas are introduced. One of them allows us to present a new point
of view of the problem. We do not prove a uniform bound, but rather a bound that
depends also on the time scale t .

This result gives a bound for the decay of the tail of the distribution. Our
time-dependent bound is relevant for t of order t < 1/ε(A), with ε(A) defined
in Theorem 1, while the previous uniform bounds, as a way of estimating
the distribution, are interesting only for values of t of order t � log(1/δ(A)).
Moreover, it tourns out that ε(A) � δ(A).

Another important application of this nonuniform bound is the estimation of the
expected hitting time. Kac’s lemma [Kac (1947)] states that the expected return
time is the inverse of the measure. So the right scaling factor for return times
is P{A}. There is no similar result for hitting time. We show that the scaling
factor for hitting times can be written as ξAP{A}, where ξA is bounded below and
above by two strictly positive constants �1 and �2, respectively, independent of A,
n and t . Moreover, the bound as a function of t allow us to prove the convergence
to 1/ξA of the ratio between the expected hitting time and the expected return
time. We recall that in Abadi (2001) we presented an example in which ξA �= 1.
Also, in Asselah and Dai Pra (1997a, b) the same was shown to hold for the
symmetric simple exclusion process and for the independent spin flip system on Z.
A real computable estimate for the parameter ξA was proven in Abadi (2001).
This estimate also says that ξA is smaller than or equal to one. This proves that
in general hitting times are longer than return times [see, e.g., Shields (1996)].
Therefore, this approximation is a powerful tool for computing the expected value
of a hitting time. We emphasize that this holds for any kind of n-cylinder, even for
those which can recur very fast.

A uniform upper bound, strictly sharper than those presented in the previously
mentioned works, can be immediately obtained from our result. This leads us to
an important old question: what is the exact uniform rate of convergence to the
exponential law. In order to answer this question it should be presented as a lower
bound for the difference between hitting and exponential laws. A lower bound
of order P{A} was proven in Abadi (2001). This order is reached asymptotically
by the upper bound. However, we are interested in the finite approximation. We



HITTING TIMES IN MIXING PROCESSES 245

present an example which shows that the exact rate of convergence is the one
given by the uniform upper bound.

A common point in several works such as Chen (1975), Galves and Schmitt
(1997) and Abadi (2001), is the control of the second moment of the function N ,
where N is the number of occurrences of the rare event. We prove that this is not
necessary. Moreover, we provide a weaker condition for the convergence to the
exponential law.

In the last section we consider the problem of the exponential limit law for
α-mixing processes. Loosely speaking, we prove that this limit holds if the tail of
the coefficients α decays faster than the measure of the cylinders [see condition
(22)]. So, these kind of processes present a substantial difference with respect to
that of ψ and φ: the exponential does not hold for all the cylinders, but only for
those which satisfy this condition.

This paper is organized as follows. In Section 2 we establish our framework.
In Section 3 we state and prove the exponential approximation theorem for
ψ-mixing and φ-mixing processes. In Section 4 we present an example that shows
the sharpness of the upper bound. In Section 5 we prove the convergence of the
ratio between the expected hitting time and the expected return time. In Section 6
we prove that the second moment of N is not necessary for having an exponential
law and we present a necessary and sufficient condition for it. In Section 7 we
prove the uniformly mixing case.

2. The framework. Let E be a finite set. Put � = EZ. For each n ∈ Z, let
Xn :� → E be the nth coordinate projection. We denote by T :� → � the one-
step-left shift operator.

We denote by F the σ -algebra over � generated by cylinders. Moreover, we
denote by FI the σ -algebra generated by cylinders with coordinates in I , I ⊆ Z.

For a subset A ⊆ � we say that A ∈ Cn if and only if,

A = {X0 = a0, . . . ,Xn−1 = an−1},
with ai ∈ E , i = 1, . . . , n.

We consider a stationary probability measure P over F . We shall assume that
there are no singletons of probability 0.

Let α = (α(l))l≥0, φ = (φ(l))l≥0 and ψ = (ψ(l))l≥0 be three decreasing
sequences of positive real numbers converging to zero. We shall say that the
process {Xm}m∈Z is α-mixing or uniform mixing if, for all integers n ≥ 1 and
l ≥ 0, the following holds:

sup
n∈N,B∈F{0,...,n},C∈F{n≥0}

∣∣P{
B ∩ T −(n+l+1)C

} − P{B}P{C}∣∣ = α(l),

φ-mixing if

sup
n∈N,B∈F{0,...,n},C∈F{n≥0}

|P{B ∩ T −(n+l+1)C} − P{B}P{C}|
P{B} = φ(l),
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and ψ-mixing if

sup
n∈N,B∈F{0,...,n},C∈F{n≥0}

|P{B ∩ T −(n+l+1)C} − P{B}P{C}|
P{B}P{C} = ψ(l),

where in the above expressions the supremum is taken over the sets B and C, such
that P{B} > 0 in the second case and such that P{B}P{C} > 0 in the third one.

Given A ∈ Cn, we define the entrance time τA :� → N ∪ {∞} as the following
random variable defined on the probability space (�,F ,P). For any ω ∈ �,

τA(ω) = inf{k ≥ 1 :T k(ω) ∈ A}.
Clearly, ψ-mixing implies φ-mixing that implies α-mixing. We recall that

mixing implies ergodicity, and ergodicity ensures that τA is P-almost surely finite
provided that P{A} > 0, [see, e.g., Cornfeld, Fomin and Sinai (1982)].

We shall use the classical probabilistic shorthand notation for events de-
fined through random variables. We shall write {τA = m} instead of {ω ∈ � :
τA(ω) = m}, T −k(A) = {ω ∈ � :T k(ω) ∈ A} and {Xs

r = xs
r } = {Xr = xr, . . . ,

Xs = xs}. Also we write for two measurable subsets A and B of �, the condi-
tional probability of B given A as P{B |A} = PA{B} = P{B ∩ A}/P{A}.

As usual, the mean of a random variable X will be denoted by E(X). Wherever
it is not ambiguous we will write C and c for different positive constants, even in
the same sequence of equalities/inequalities. Where a property holds for φ and ψ

processes we shall replace φ or ψ by a ∗.

3. Hitting times for ψ-mixing and φ-mixing processes. In this section we
derive an upper bound for the difference between the rescaled hitting time law
and the mean one exponential law. Up to the present, the convergence to the
exponential law was proved first without any rate of convergence and after with
bounds depending on the event A but uniform on the time scale t .

We prove an exponential bound not uniform, but depending also on t and derive
further statistical properties from this fact.

3.1. Results.

THEOREM 1. Let {Xm}m∈Z be ψ-mixing or φ-mixing with φ summable.
Then, there exist constants C > 0, 0 < �1 < 1 < �2 < ∞, such that for all n ∈ N,
A ∈ Cn and t > 0, there exists ξA ∈ [�1,�2], for which the following inequality
holds: ∣∣∣∣P

{
τA >

t

ξAP{A}
}

− e−t

∣∣∣∣ ≤ Cε(A)e−t (t ∨ 1),(1)

where ε(A) := infn≤�≤1/P{A}[�P{A} + ∗(�)].
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� is the time the process needs to lose memory. This time must be large enough
to allow the process to lose memory. On the other hand, it must be small relative
to the measure of A. The factor ε(A) in the upper bound shows that the rate of
convergence to the exponential law is given by a trade off between the length of
this time and the velocity of losing memory of the process.

REMARKS. First, we emphasize the fact that the theorem holds for all
cylinders A ∈ Cn. Second, we remark the fact that the constants �1 and �2 are
independent of n,A and t .

There is an immediate corollary that states a uniform bound for the velocity of
convergence of the law of τA to the exponential law.

COROLLARY 2. Under the above conditions, the following inequality holds:

sup
t>0

∣∣∣∣P
{
τA >

t

ξAP{A}
}

− e−t

∣∣∣∣ ≤ Cε(A).

PROOF. The maximum with respect to t of the upper bound in (1) is attained
in t = 0, and its value is Cε(A). �

DEFINITION 3. The limit order of convergence of the hitting time distribution
to the exponential law is defined as

β(ω) = lim
n→0

log d(n,ω)

logP{An(ω)} ,

(provided that the limit exists) where

d(n,ω) = sup
t≥0

∣∣∣∣P
{
τAn(w) >

t

ξAn(ω)P{An(ω)}
}

− e−t

∣∣∣∣,
and where An(ω) is the n-cylinder {Xn−1

0 = ωn−1
0 }.

The theorem and corollary stated above establish error bounds for the finite
approximation of the hitting time to the exponential law. We could be interested in
the limit order of convergence to the exponential law. In Saussol (2001) it was
proved that this limit order is 1 almost everywhere for return times for Gibbs
measures with Hölder continuous potential. As an easy corollary of Theorem 1
we obtain that the same holds for the limit order of convergence of hitting times
to the exponential law. The result holds for any exponentially φ-mixing process.
In particular it holds for irreducible and aperiodic finite-state Markov chains and
Gibbs measure with Hölder continuous potential. Moreover, in this case the result
holds for every point.
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COROLLARY 4. If the process {Xm}m∈Z is exponentially φ-mixing, then the
limit order of convergence of the hitting time distribution to the exponential law
exists and β ≡ 1.

PROOF. By hypothesis φ(n) = Ce−cn, for some positive constants C,c. We
take

x = − log P{An(ω)}
c

.

By Corollary 2, d(n,ω) ≤ ε(An(ω)) ≤ xP{An(ω)} + φ(x). Then β(ω) ≥ 1 for
every ω. By Theorem 3 in Abadi (2001), β(ω) ≤ 1. The corollary follows. �

3.2. Basic bounds on the measure of cylinders. For easy reference to the
reader we quote in this section some lemmas that are proven in Abadi (2001) and
that will be used in the proof of Theorem 1.

LEMMA 5. Under the conditions of Theorem 1, there exist strictly positive
constants C and �, such that for any fixed positive integer n and any A ∈ Cn, the
following inequality holds:

P{A} ≤ Ce−�n.

LEMMA 6. Under the conditions of Theorem 1, there exists a strictly positive
constant C′, such that for any fixed positive integer n and any A ∈ Cn, the following
inequality holds:

n∑
k=1

P{A ∩ T −kA} ≤ C′
P{A}.

LEMMA 7. Let {Xm}m∈Z be any stationary process. For any real number
f ≥ 1 the following inequality holds:

P{τA ≤ f } ≤ f P{A}.(2)

For any positive integer f let us define,

Nf (ω) =
f∑

l=1

1T −l (A)(ω),

where 1A is the indicator function of the set A. For any ω ∈ �, Nf (ω) is the
number of times the process visits A, during the first f steps. We remark that

{τA ≤ f } = {Nf ≥ 1}.
By the Schwarz inequality,

(E(Nf ))2 = (
E

(
Nf 1{Nf ≥1}

))2 ≤ E(N2
f )E

(
12{Nf ≥1}

) = E(N2
f )P{τA ≤ f }.(3)
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LEMMA 8. Under the conditions of Theorem 1, for any positive integer n, any
cylinder A ∈ Cn, and any f > 0, the following inequality holds:

(E(Nf ))2

E(N2
f )

≥ ([f ]P{A})2

C(f P{A})2 + Kf P{A} ,(4)

where C > 0 and K > 0 are constants independent of n, A and f .

For any cylinder set A and f > 0 define

λA,f = − log P{τA > f }
f P{A} .

LEMMA 9. Under the conditions of Theorem 1, there exist two constants
�1,�2, with 0 < �1 ≤ 1 ≤ �2 < ∞, and a positive integer n0, such that, for
all n ≥ n0, all A ∈ Cn and f ≤ 1/(2P{A}), the following inequalities hold:

�1 ≤ λA,f ≤ �2,

where �1 and �2 are independent of n, A and f .

3.3. The independence property.

LEMMA 10. Let {Xm}m∈Z be a φ-mixing process (with any decay rate). Let
A ∈ Cn and t, s ∈ N, such that t > n. For all � ∈ N, with n ≤ 2� ≤ t , the following
inequality holds:

|P{τA > t + s} − P{τA > t}P{τA > s}|
≤ 3P{τA > t − 2�}(P{τA ≤ �} + φ(�)}.

PROOF. We use the triangle inequality

|P{τA > t + s} − P{τA > t}P{τA > s}|
≤ |P{τA > t + s} − P{τA > t − � ∩ τA ◦ T t > s}|

+ |P{τA > t − � ∩ τA ◦ T t > s} − P{τA > t − �}P{τA > s}|
+ |P{τA > t − �}P{τA > s} − P{τA > t}P{τA > s}|.

The first term can be computed and then bounded from above using the mixing
property

P{τA > t − � ∩ τA ◦ T t−� ≤ � ∩ τA ◦ T t > s}
≤ P{τA > t − 2� ∩ τA ◦ T t−� ≤ �}
≤ P{τA > t − 2�}(P{τA ≤ �} + φ(�)}.

We use the mixing property to bound the second term by P{τA > t −�}φ(�). The
third one is bounded as the first one. This ends the proof of the lemma. �

The following proposition is an iterated version of the previous lemma.
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PROPOSITION 11. Let {Xm}m∈Z be a φ-mixing process. There exists a finite
constant C > 0, such that for any n, A ∈ Cn and any f ∈ (4n,1/(2P{A})), such
that

φ(f/4) ≤ P{τA ≤ f/4 ∩ τA ◦ T f/4 > f/2}.(5)

There exists a � > 0, with n < � ≤ f/4, such that for all positive integers k, the
following inequalities hold:∣∣P{τA > kf } − P{τA > f − 2�}k∣∣ ≤ Cε(A)kP{τA > f − 2�}k(6)

and ∣∣P{τA > kf } − P{τA > f }k∣∣ ≤ Cε(A)kP{τA > f − 2�}k.(7)

We recall the definition of ε(A) in Theorem 1.

REMARK 1. Both inequalities provide an approximation between the hitting
time law and a geometric law for t = kf . The difference between them is that in
the first one, the geometric inside the modulus is the same as in the upper bound,
while in the second one, the geometric inside the modulus is larger than the one
in the upper bound, that is, the second one gives a larger error. On the other hand
it is technically clearer (since both quantities inside the modulus are in terms of f

rather than f − 2�). We will use both in the proof of Theorem 1.

REMARK 2. Loosely speaking,

P{τA ≤ f/4 ∩ τA ◦ T f/4 > f/2} ≈ P{τA ≤ f/4}P{τA ◦ T f/4 > f/2}
≈ Cf P{A}.

The first approximation follows by a similar argument to the proof of Lemma 10.
The second one follows by Lemma 9. So, for f = 1/(2P{A}), the left-hand side
of (5) is small while the right-hand side is of order of a constant. Therefore,
an f satisfying (5) exists.

PROOF OF PROPOSITION 11. For k = 1 (7) is obvious. Let us fix � = �f ∈
[n,f/4] such that,

φ(�) = P{τA ≤ � ∩ τA ◦ T � > f − 2�}.(8)

We notice that the left-hand side of the above equality is decreasing on �, while
the right-hand side is increasing on �. Then, such a � exists by condition (5).
Moreover,

φ(�) ≤ P{τA ≤ �} ≤ �P{A}.
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We denote by �m the x that realizes infx[xP{A}+φ(x)]. In other words, φ(�m) =
�mP{A}. Since, φ(x) is decreasing on x and xP{A} is increasing on x, we have
φ(�) ≤ φ(�m) ≤ ε(A). Therefore, by stationarity, for k = 1, (6) is

P{τA > f − 2�} − P{τA > f }
= P{τA ≤ 2� ∩ τA ◦ T 2� > f − 2�}
= P{τA ≤ � ∩ τA ◦ T � > f − 2�} + P{τA ≤ � ∩ τA ◦ T � > f − �}(9)

≤ 2P{τA ≤ � ∩ τA ◦ T � > f − 2�}
= 2φ(�) ≤ ε(A).

Suppose k ≥ 2. For each nonnegative integer i and for j = 1,2, we write for a
short-hand notation

N i
j = {τA ◦ T if +j� > f − j�}.

We also write for the sake of simplicity

N = {τA > f − 2�}.
First, we note that, by stationarity, P{N } = P{N i

2 } for all nonnegative integers i.
We now look at (6). By the triangle inequality,∣∣P{τA > kf } − P{N }k∣∣(10)

≤
k−2∑
j=0

P{N }j ∣∣P{τA > (k − j)f } − P{τA > (k − j − 1)f ∩ N
k−j−1
2 }∣∣(11)

+
k−2∑
j=0

P{N }j ∣∣P{τA > (k − j − 1)f ∩ N
k−j−1

2 }
(12) − P{τA > (k − j − 1)f }P{N 0

2 }∣∣
+ P{N }k−1|P{τA > f } − P{N }|.(13)

The idea of the proof is to iterate the proof of Lemma 10. In the rightmost term
of (11) we introduced a gap (of length 2�). In the rightmost term of (13) we
factored the measure on the left-hand side in the modulus. Term (13) is just a small
technical correction.

The rightmost factor in term (13) is

P{N ∩ τA ◦ T f −2� ≤ 2�}.
We can bound the rightmost factor in the sum (11) by

P

{k−j−2⋂
i=0

N i
1 ∩ (

τA ◦ T (k−j−1)f ≤ 2�
) ∩ N

k−j−1
2

}
.(14)
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Similarly, we bound the rightmost factor in the sum (13) by

P

{k−j−2⋂
i=0

N i
1

}
φ(2� − n) ≤ P

{k−j−2⋂
i=0

N i
1 ∩ �

}
φ(�).(15)

Finally, we iterate the φ-mixing property to get the bound

P

{
�⋂

i=0

N i
1 ∩ B

}
≤ P

{
�−1⋂
i=0

N i
1 ∩ B

}

(16)
≤

�−1∏
i=1

[P{N i
1 } + φ(�)][P{B} + φ(�)]

= [P{N 0
1 } + φ(�)]�−1[P{B} + φ(�)],

for any measurable B ∈ F{(�+1)fA,(�+2)f +n−1}. Furthermore, note that

P{N } = P{τA > f − 2�}
= P{τA > f − �} + P{τA ≤ � ∩ τA ◦ T � > f − 2�}
= P{N 0

1 } + φ(�).

Thus, we apply the above equality to (16) and we obtain that

P

{
�⋂

i=0

N i
1 ∩ B

}
≤ P{N }�−1[P{B} + φ(�)]

= P{N }�+1[P{B} + φ(�)] 1

P{N }2
(17)

≤ C P{N }�+1[P{B} + φ(�)],
where the last inequality follows since

P{N } ≥ P{τA > f } ≥ P

{
τA >

1

2P{A}
}

≥ 1/2.

On the other hand,

P{B} + φ(�) = P{τA ≤ 2� ∩ N 0
2 } + φ(�)

= P{τA ≤ � ∩ N 0
1 } + P{τA ◦ T � ≤ � ∩ N 0

2 } + φ(�)

≤ 3φ(�) ≤ ε(A).

Therefore, we have the inequality

P

{
�⋂

i=0

N i
1 ∩ B

}
≤ P{N }�−1ε(A).(18)
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Now, we apply (18) to (15) with B = �, and to (14) with

B = {
τA ◦ T (k−j−1)f ≤ 2� ∩ N

k−j−1
2

}
.

To obtain the rightmost factor on the right-hand side of (6) we just need to sum
over-k. This concludes the proof of the upper bound (6).

Inequality (7) follows by the mean value theorem and (9).∣∣P{τA > f − 2�}k − P{τA > f }k∣∣ ≤ kε(A)P{τA > f − 2�}k−1.

This ends the proof of the proposition. �

3.4. Proof of Theorem 1. Let us fix f = fA = 1/(2P{A}) and � = �A,fA
=

�A given by Proposition 11. We define

ξA = − logP{τA > f − 2�}
f P{A} .

We note that

ξA = λA,f −2�

f − 2�

f
.(19)

So, ξA ∈ [�1/2,�2], where �1, �2, are given in Lemma 9. Thus, we define
�1 = �1/2 and �2 = �2.

The structure of the proof of (1) has three steps. First, we prove for t of
the form t = kf with k a positive integer. This is basically Proposition 11. So
we go straightforward to the second step. There we prove for t of the form
t = (k + p/q)f with k,p positive integers and 1 ≤ p ≤ q with q := 1/(2ε(A)).
The basic tools are the mean value theorem and Proposition 11. Finally, we prove
for the remaining t’s. Basically, we approximate such a t by one of the form
(k + p/q)f .

PROOF [t’s of the form t = (k + p/q)f ]. Let t = (k + (p/q))f , with k,p, q

as was just told. Put r = (p/q)f :∣∣P{τA > t} − e−ξAP{A}t ∣∣
= ∣∣P{τA > kf + r} − P{τA > f − 2�}k+ r/f

∣∣
≤ |P{τA > kf + r} − P{τA > kf }P{τA > r}|

+ ∣∣P{τA > kf } − P{τA > f − 2�}k∣∣P{τA > r}
+ ∣∣P{τA > r} − P{τA > f − 2�}r/f ∣∣P{τA > f − 2�}k.
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The first term on the right-hand side of the above inequality is bounded using
Lemma 10 and (6). The last one can be used since, by Remark 2 on page 9,
f = 1/(2P{A}) satisfies condition (5).

|P{τA > kf + r} − P{τA > kf }P{τA > r}|
≤ ε(A)P{τA > kf − 2�}
≤ ε(A)P{τA > (k − 1)f }
≤ ε(A)e−ξAP{A}t .

The last inequality follows by (17) with B = �.
The second term is bounded by (6) with f = 1/(2P{A}),∣∣P{τA > kf } − P{τA > f − 2�}k∣∣P{τA > r}

≤ ε(A)kP{τA > f − 2�}kP{τA > r}
≤ ε(A)P{A}te−ξAP{A}t .

The leftmost factor of the third term is bounded using the mean value theorem
applied to the function h(x) = x1/q ,∣∣P{τA > r} − P{τA > f − 2�}r/f ∣∣

=
∣∣∣∣P

{
τA > f

p

q

}q

− P{τA > f − 2�}p
∣∣∣∣ 1

q
ω1/q−1

≤
∣∣∣∣P

{
τA > f

p

q

}q

− P{τA > f − 2�}p
∣∣∣∣(20)

× 1

q
min

{
P

{
τA > f

p

q

}q

;P{τA > f − 2�}p
}1/q−1

= |b − a|
a

1

q
a1/q,

where b and a are the maximum and minimum, respectively, of the difference (20)
and ω ∈ (min{a, b},max{a, b}). We have that a1/q ≤ 1, and

|b − a|
a

1

q
≤ |b − c|

a

1

q
+ |c − a|

a

1

q
,

for every c, real positive. We choose c = P{τA > pf }.
Consider now two cases. (i) When a is the rightmost term of the difference (20).

(ii) When a is the leftmost term of the difference (20).

Proof of case (i). By (6) with k = p and f = 1/(2P{A}),
|c − a|

a

1

q
≤ ε(A)pa

a

1

q
≤ ε(A).
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Now we want to use (7) with k = q and f = p/(2P{A}q). Notice that to do this,
we just need to verify that there exists a � = �p,q ∈ [n,p/(2P{A}q)] that verifies
condition (8). We observe that the term in the right-hand side of (8) is actually a
family function parametrized by fA. Moreover, they are decreasing as a function
of f . Then, such �p,q exists and �m < �1,q < �2,q < · · · < �q,q = �1/(2P{A}).
Furthermore, φ(�p,q) ≤ ε(A). This inequality follows in the same way as was
proved that φ(�f ) ≤ ε(A) at the beginning of the proof of Proposition 11, where
�m was defined.

So, we use (7) twice. Finally, we use (6) with k = p and with f = 1/(2P{A}):
|b − c|

a

1

q
≤ ε(A)qb

a

1

q
≤ ε(A)

a

c

1 − ε(A)q

≤ ε(A)

a

1 + ε(A)p

1 − ε(A)q
a ≤ ε(A).

Case (ii) is treated in the same way. This proves that the third term is bounded
from above by

Cε(A)P{τA > f − 2�}k ≤ Cε(A)e−ξAP{A}t .

Proof (A general t). Now, let t be any positive real. We write t = kf + r ,
with k a positive integer and r such that 0 ≤ r < f . We can choose a t̄ such that
t̄ < t and t̄ = (k + (p/q))fA with p,q as before.∣∣P{τA > t} − e−ξAP{A}t ∣∣ ≤ |P{τA > t} − P{τA > t̄}|

+ ∣∣P{τA > t̄ } − e−ξAP{A}t̄ ∣∣
+ ∣∣e−ξAP{A}t̄ − e−ξAP{A}t ∣∣.

The first term on the right-hand side of the above inequality is bounded
applying (18),

|P{τA > t} − P{τA > t̄ }| = P
{
τA > t̄ ∩ τA ◦ T t̄ ≤ t − t̄

}
≤ P

{
τA > kf ∩ τA ◦ T t̄ ≤ �

}
≤ Cε(A)e−ξAP{A}t .

The upper bound for the third term is obtained using the mean value theorem,

∣∣e−ξAP{A}t̄ − e−ξAP{A}t ∣∣ ≤ ξAP{A}
(
r − p

q
f

)
e−ξAP{A}t̄

≤ �2 ε(A) e−ξAP{A}t .

Finally, the second term is bounded as in the first part of the proof. This, together
with (19), ends the proof of the theorem. �
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4. Lower bound: an example of sharpness. Now we present an example
that shows that the uniform bound established by Corollary 2 is sharp. For such
an example, we must present a process, a rare event and a time t , for which the
inequality actually is an equality.

Suppose that {Xm}m∈Z is a Markov chain with state space E = {0,1} and
transition matrix Q = Q(i, j) with i = 0,1, j = 0,1; given by

Q =
[

1 − p p

q 1 − q

]
.

Consider the cylinder A = {X0 = 0}. Denote with P the equilibrium measure of
the chain. Then P{A} = q/(p + q). When q � p, we have P{A} � 1. That is, A is
rare. Then it is fair to ask about the difference between its hitting time law and the
exponential law. We fix t = 1/P{A}. So, the proof of Theorem 1 for this time t

reduces to the proof of Proposition 11 with k = 2 and fA = 1/(2P{A}). We notice
that the difference inside the modulus in (11) and (13) always has negative sign.
Furthermore, a straightforward computation using the Markovian property shows
that both terms are equal, respectively, to C1�P{A} and C2�P{A} for positive
constant C1,C2.

We must see that the difference inside the modulus in (12) is negative too. So,
in this case, the triangle inequality that bounds (10) is actually an equality. This is
equivalent to

P{N k−j−1
2

∣∣τA > (k − j − 1)fA} ≤ P{N 0
2 }.

Using stationarity and the definition of A, this is equivalent to

P
{
X

fA

2�+1 = 1
∣∣X0−(k−j−1)fA

= 1
} ≤ P{XfA

2�+1 = 1}.
But using the Markovian property this is equivalent to

p

p + q
+ (

1 − (p + q)
)2�+1

(
q

p + q

)
= Q2�+1(1,1) ≤ P{X0 = 1} = p

p + q
.

That occurs if and only if p + q ≥ 1. We remark that the computation of Qk for
any positive integer k can be done recursively [see Ferrari and Galves (1997)].
This holds for every �. It follows that in this case the uniform upper bound ε(A),
defined on Theorem 1, is actually an equality.

5. Application: estimate of E(τA). An important result in ergodic theory is
the famous Kac’s lemma that states that for an ergodic system the expected return
time to a measurable set with positive measure is the inverse of the measure of the
event. There is no equivalent result for the case of the expected hitting time.

We present in the next corollary an estimate for the expected hitting time as a
consequence of the nonuniform bound given in Theorem 1. Roughly speaking, if
the hitting time law converges to an exponential law with parameter ξA, we must
have that ξA = 1/E(τA), since the parameter is the inverse of the expected value
for the exponential law.



HITTING TIMES IN MIXING PROCESSES 257

COROLLARY 12. Under the conditions of Theorem 1 the following inequality
holds:

|E(ξAP{A}τA) − 1| ≤ Cε(A),

or equivalently, ∣∣∣∣ E(τA)

EA(τA)
− 1

ξA

∣∣∣∣ ≤ Cε(A),

where ε(A) is the same as in Theorem 1.

PROOF. Using the mean value theorem,

e−(1−ε(A))t − e−t = ε(A)te−(1−χA)t ≥ ε(A)te−t ,

with χA ∈ (1 − ε(A),1). Applying the above inequality to (1) and integrating, we
have

|E(ξAP{A}τA) − 1| ≤ C
[
E

(
exp{1 − ε(A)}) − E(exp{1}) + ε(A)E(exp{1})]

= C

[
1

1 − ε(A)
− 1 + ε(A)

]

≤ Cε(A),

where we denote with exp{ν} an exponential random variable with parameter ν.
This ends the proof of the first inequality. The second one is an immediate
consequence of the previous one together with Kac’s lemma and the fact that ξA is
bounded from below. �

The following theorem proves a computable approximation for ξA. It also shows
that this parameter actually is no larger than 1.

Let us fix s, a positive integer. We denote with PA the conditional probability
measure on the event A. We define

ζA,s := PA

{
τA >

n

s

}
= P

{{
τA >

n

s

}∣∣∣∣A
}
.

THEOREM 13 [Abadi (2001)]. Let {Xm}m∈Z be exponentially φ-mixing. Let s

be a positive integer. Then, there exist strictly positive constants �1,�2,C1 and c,
such that for any n and any A ∈ Cn, ζA,s ∈ [�1,�2], and the following inequality
holds: ∣∣∣∣P

{
τA >

t

ζA,sP{A}
}

− e−t

∣∣∣∣ ≤ C1e
−cn.(21)

REMARK 1. In Galves and Schmitt (1997) it was shown that the limit
E(τAn)/bn exists, where τAn is the first time an exponentially ψ-mixing process
hits an n-cylinder An, for some increasing constants bn. Corollary 12 generalizes
this result to a larger class of processes, specifies values for the sequence bn and
also provides a velocity of convergence for that limit.
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REMARK 2. Theorem 1 says that when ξA is used as a re-scaling factor and
the process is exponentially φ-mixing, the error in the approximation of the hitting
time law is exponential. However, this quantity depends upon a large part of the
process, say X1, . . . ,XfA−2� (and typically fA − 2� ≈ ecn for some positive
constant c). Theorem 13 says that, with a bit larger error, that is, an exponential
error, but with a smaller constant of exponentiation, we can use ζA,s instead
of ξA as a re-scaling factor. We remark that, a priori, ζA,s is an easy value to
compute since it depends on a small number of coordinates of the process, say
1, . . . , n + n/s and on the combinatorial properties of A. For instance, ζA,s = 1
for every nonrecurrent cylinder.

REMARK 3. In Theorem 1 we prove that ξA ∈ [�1,�2] � 1. Theorem 13
proves that ζA,s ∈ [�1,1]. We can deduce that actually ξA ∈ [�1,1 + C2e

−cn],
where C2 and c are the same constants appearing in (21). This, together with
Corollary 12, proves a fact that was already known as a folklore and commented
in Shields (1996). That is, in general, hitting times are longer than return times.

REMARK 4. In Abadi (2001) it was presented as an example of a process
and a cylinder A such that ξA < 1. Moreover, a process as a cylinder A can
be constructed such that ξA < δ < 1, for all 0 < δ < 1. In Asselah and Dai Pra
(1997a, b) the same was shown to hold for the symmetric simple exclusion process
and for the spin flip system on Z with no interactions, when τA is the first time the
empirical density in a large box exceeds its equilibrium value. In both cases ξA �= 1.

6. Second moments are not necessary. The proof of Lemma 9 shows that
the uniform lower bound �1 for the parameter λA,f , depends on the control of
the second moment of the function Nf . We recall that Nf counts the number of
occurrences of the event A up to time f . The finiteness of this quantity is sufficient
to prove the uniform lower bound. We prove in the next proposition a weaker
condition for the convergence to the exponential law. Roughly speaking, it says
that the moment that must be controlled is that of order “log plus one.” So, second
moments are not necessary.

PROPOSITION 14. Let {Xm}m∈Z be a stationary stochastic process. Let t be
a positive integer. Denote N = Nt . Then,

P{τA ≤ t} ≥ exp
{
−E

(
N

tP{A} log
N

tP{A}
)}

,

where we adopt the convention 0 log 0 = 0.

PROOF. By Hölder’s inequality with p and q conjugate, we have

EN = E
(
N1{N≥1}

) ≤ E(Np)1/p
P{N ≥ 1}1/q.
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Now, since by definition EN = tP{A}, by a straightforward computation, we
have

P{τA ≤ t} = P{N ≥ 1}
≥ lim

p→1

1

(E(N/(tP{A}))p)1/(p−1)
= 1

exp{E(N/(tP{A}) log N/(tP{A}))} .
This ends the proof of the proposition. �

COROLLARY 15. Let {Xm}m∈Z be a stationary process. Let ξA be defined
as above. Let us denote N = N1/(2P{A}). There exists �1 > 0, such that �1 ≤ ξA

for all A ∈ Cn, if there exists a positive constant C such that E(N log N) ≤ C.
Moreover, in this case,

�1 = inf
A

exp {−E(N logN)}.

PROOF. We just need to notice that there is a positive constant C such that

CP

{
τA ≤ 1

2P{A}
}

≤ 1 − e−ξA

2
≤ ξA ≤ 1 − e−ξA ≤ P

{
τA ≤ 1

2P{A}
}
.

Then ξA remains bounded if and only if P{τA ≤ 1/(2P{A})} does. Lemma 7 and
the above proposition end the proof of the corollary. �

7. Uniformly mixing processes. When the function α decays fast enough and
the cylinder does not recur very fast we still can prove, with exponential rate, the
convergence to the exponential law.

We need the following definition of recurrence.

DEFINITION 16. Let s ∈ N. For 1 ≤ j ≤ n/s, define Bn,j as the set of
A ∈ Cn which recur exactly at time j . Namely, A ∈ Bn,j , if A ∩ T −jA �= ∅ and
A ∩ T −iA = ∅, for all 1 ≤ i < j . Define also Bn(s) = ⋃

1≤j≤n/s Bn,j .

For each positive integer s, define

Fs =
{
A ∈ Cn

∣∣∣∣
∞∑

j=n/(2s)

α(j) ≤ P{A}
}
.(22)

THEOREM 17. Let {Xm}m∈Z be an α-mixing process with function α. Assume
that α(j) ≤ 1/j4, for all j ∈ N. There exist strictly positive constants �1,�2 and
C, such that for any n ∈ N and any A ∈ (En\Bn(s))∩Fs , for which n2√

P{A} ≤ 1,
there exists a λA ∈ [�1,�2], such that the following inequality holds:

sup
t≥0

∣∣∣∣P
{
τA >

t

λAP{A}
}

− e−t

∣∣∣∣ ≤ Cn
√

P{A}.(23)
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One important difference between the exponential law for α-mixing processes
at one hand and φ-mixing and ψ-mixing processes at the other is that in this
case, we do not get upper bounds in function of t , as in the φ-mixing and
ψ-mixing cases, but instead uniform upper bounds.

Another important difference between them is that in the latter cases the
convergence of the hitting time law to the exponential law holds for all cylinders,
while in the first case it holds for those cylinders A ∈ (En \ Bn(s)) ∩ Fs .

Loosely speaking, if h > 0 is the entropy of process, one has typically
P{A} ≈ e−hn. Then

√
P{A}n2 < 1. Moreover, if A ∈ Fs , one has that α actually

decays exponentially fast. Hence, α(j) ≤ 1/j4. Therefore, the two constraints
of the theorem are not restrictive. Moreover, if α decays exponentially fast with
constant c, then

∑
j≥n/s α(j) ≈ Ce−cn/s . So, (22) means c/s > h.

On the other hand,

#Bn(s) =
n/s∑
j=1

#Bn,j ≤
n/s∑
j=1

|E |j = |E |n/s +1 − 1

|E | − 1
.

Thus, we have

P

{ ⋃
B∈Bn(s)

B

}
≤ ∑

B∈Bn(s)

P{B} ≈ exp{−n[h − (log |E |)/s]}
|E | − 1

.

So, if hM/s < h, then P{⋃B∈Bn(s) B} → 0 as n → ∞, where hM = log |E | is the
maximum entropy the process could have. That is, we have an almost sure result
if there is a positive real s such that hM < h s < c.

We prove the uniform subexponential decay of the cylinders.

LEMMA 18. Let {Xm}m∈Z be an α-mixing process. There exist strictly
positive constants C and � such that, for all positive integer n and for all A ∈ Cn,
the following inequality holds:

P{A} ≤ C
[
e−� 3√n + α

(
3
√

n
)]

.

PROOF. Let us write A = {Xn−1
0 = an−1

0 }. We note that n = [√n ]2 + r , with
0 ≤ r ≤ 2n. We have

P{Xn−1
0 = an−1

0 } ≤ P
{
X0 = a0,X[√n ] = a[√n ],X2[√n ] = a2[√n ], . . .

}
.

Using the mixing property,

P{A} ≤ ρ[√n ] + α
([√

n
] − 1

)1 − ρ[√n ]

1 − ρ
,

where ρ := sup{P{ai} :ai ∈ E} < 1 since the process is ergodic. Now, it is enough
to note that 3

√
n ≤ [√n ] − 1 for all n > n0. This ends the proof of the lemma. �
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For any cylinder set A define

λA = − log P{τA > 1/
√

P{A} }√
P{A} .

LEMMA 19. Under the conditions of Theorem 17, there exist two constants
�1,�2, with 0 < �1 ≤ 1 ≤ �2 < ∞, and a positive integer n0, such that, for any
n ≥ n0 and any A ∈ (En \ Bn(s)) ∩ Fs , for which n2

√
P{A} ≤ 1, the following

inequalities hold:

�1 ≤ λA ≤ �2.

We remark that �1 and �2 are independent of n and A.

PROOF OF LEMMA 19. By Taylor’s expansion,

1 − e−x ≤ x ≤ 1 − e−x + 2(1 − e−x)2,(24)

for 0 ≤ x ≤ log 3. Applying it to x = − log P{τA > 1/
√

P{A} }, together with
Lemma 7, we have that

λA ≤ 1 + 2
√

P{A},
and we can take �2 = 3.

In what follows let us write N for N1/
√

P{A}. To obtain the lower bound for λA

we first compute

E(N2) =
[1/

√
P{A} ]∑

�=1

E
(
12

T −�(A)

)

+ #2
n/s∑
�=1

([
1√

P{A}
]

− �

)
E

(
1A1T −�(A)

)

+ #2
2n∑

�=n/s+1

([
1√

P{A}
]

− �

)
E

(
1A1T −�(A)

)

+ #2
[1/

√
P{A} ]∑

�=2n+1

([
1√

P{A}
]

− �

)
E

(
1A1T −�(A)

)
.

By definition the first term in the above decomposition is bounded from above
by

√
P{A}. The second term, by hypothesis, is zero. The remaining terms are

bounded using the mixing property. Denote by A(k) the cylinder defined by the
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last k (k ≤ n) letters of A. The third term is bounded by

2
2n∑

�=n/s+1

([
1√

P{A}
]

− �

)[
P{A}P{

A(n/2s)
} + α

(
� − n

2s

)]

≤ 4n
√

P{A}P{
A(n/2s)

} + 2√
P{A}

2n−n/(2s)∑
j=n/2s

α(j).

By Lemma 18 and the polinomial decay of α, one has that for n large enough,
nP(A(n/2s)) < 1.

Finally, the last term is bounded by

2
[1/

√
P{A} ]∑

�=2n+1

([
1√

P{A}
]

− �

)
[P{A}2 + α(� − n)]

≤ 2P{A} + 2√
P{A}

[1/
√

P{A} ]∑
j=n+1

α(j).

With the above inequalities we have

E(N2) ≤ 7
√

P{A} + 4√
P{A}

[1/
√

P{A} ]∑
j=n/(2s)

α(j) ≤ 11
√

P{A}.

The last inequality follows by condition (22). Therefore, we have that

λA ≥ P{τA ≤ 1/
√

P{A} }√
P{A} ≥ (E(N))2

√
P{A} E(N2)

≥ 1

11
.(25)

The first inequality follows by (24). The second one follows by (3). This ends the
proof of the lemma. �

PROOF OF THEOREM 17. Without loss of generality we can assume that
n is large. For proving inequality (23), we follow the triangle inequality (10),
emphasizing that it holds for � = n and f = 1/

√
P{A} without assuming (5).

In such case P{N } = P{τA > 1/
√

P{A} − 2n}. By stationarity and Lemma 7,

P{N } − P
{
τA > 1/

√
P{A} } ≤ P{τA ≤ 2n} ≤ 2nP{A}.

By (25) we have

1 − P{N } ≥ 1
11

√
P{A} − 2nP{A}.

For n large enough, 0 <
√

P{A}/11 − 2nP{A} ≤ 1/2. So, we bound the sum (11)
by

∞∑
j=0

P{N }j nP{A} = nP{A}
1 − P{N } ≤ 2 n

√
P{A}.(26)
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Similarly, we bound the sum (12) by
∞∑

j=0

P{N }jα(n) ≤ α(n)

1 − P{N } ≤ 2
√

P{A},

where the last inequality follows by condition (22). Finally, we bound term (13)
by nP{A}.

Write t = k 1√
P{A} + r , with k and r integers, 0 ≤ r < 1√

P{A} . We have

∣∣P{τA > t} − e−λAP{A}t ∣∣
≤

∣∣∣∣P
{
τA > k

1√
P{A} + r

}
− P

{
τA > k

1√
P{A}

}∣∣∣∣
+

∣∣∣∣P
{
τA > k

1√
P{A}

}
− P{N }k

∣∣∣∣
+

∣∣∣∣P{N }k − P

{
τA >

1√
P{A}

}k∣∣∣∣
+ ∣∣e−λAP{A}k/

√
P{A} − e−λAP{A}t ∣∣.

The first term is bounded using stationarity and (2),∣∣∣∣P
{
τA > k

1√
P{A} + r

}
− P

{
τA > k

1√
P{A}

}∣∣∣∣ ≤ √
P{A}.(27)

Bounds for the third and fourth terms are obtained using the mean value
theorem,∣∣∣∣P{τA > N }k − P

{
τA >

1√
P{A}

}k∣∣∣∣ ≤ k2nP{A}P{τA > N }k−1 ≤ 2nP{A},
∣∣e−λAP{A}k/

√
P{A} − e−λAP{A}t ∣∣ ≤ λAP{A}re−λAP{A}k/

√
P{A} ≤ �2

√
P{A}.

The sum of the above bounds proves (23). Lemma 19 ends the proof of the
theorem. �
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