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We present a new method to prove existence and uniform a priori esti-
mates for Euclidean Gibbs measures corresponding to quantum anharmonic
crystals. It is based first on the alternative characterization of Gibbs measures
in terms of their logarithmic derivatives through integration by parts formu-
las, and second on the choice of appropriate Lyapunov functionals.

1. Introduction. This paper is concerned with models of quantum anhar-
monic lattice systems. In statistical physics they are commonly viewed as models
for quantum crystals (see, e.g., [3, 29, 34, 39, 54]). A mathematical description
of equilibrium properties of quantum systems might be given in terms of their
Gibbs states defined on proper algebras of observables (cf. [22]). However, in the
realization of this general concept for the considered quantum models there occur
principal difficulties (see, e.g., the discussion in [3]). In order to overcome these
difficulties we shall take the Euclidean (or path space) approach, which is con-
ceptually analogous to the well-known Euclidean strategy in quantum field theory
(see, e.g., [34, 39, 64]). This analogy was pointed out and first implemented to
quantum lattice systems in [1]; for the recent developments see the review arti-
cles [3, 15] and the bibliography therein. More precisely, the Euclidean approach
transforms the problem of constructing quantum Gibbs states Gβ as functionals on
the algebra of observables into the problem of studying certain Euclidean Gibbs
measures µ on the loop lattice �β := [C(Sβ → R

d)]Zd
(cf. Section 2.1 for de-

tails). Here β := 1/T > 0 is the inverse (absolute) temperature and Sβ
∼= [0, β] is

a circle of length β. As a consequence, various probabilistic techniques become
available for investigating equilibrium properties of quantum infinite-particle sys-
tems. But, as compared with classical lattice systems, the situation with Euclid-
ean Gibbs measures is much more involved, since now the spin (i.e., loop) spaces
themselves are infinite-dimensional and their topological features should be taken
into account carefully. Also, as is typical for noncompact spin spaces, we have to
restrict ourselves to the set Gt

β of tempered Gibbs measures µ, which we specify
by some natural support condition [cf. (2.7) and (2.15)].
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The aim of this paper is to establish a new method for proving existence and a
priori estimates for tempered Euclidean Gibbs measures. We obtain improvements
and generalizations of essentially all corresponding existence results known so far
in the literature (see the discussion in Section 2.4). Moreover, this method seems
to be quite universal for lattice models and gives structural insight. It had been first
implemented for classical lattice systems in [13, 14]. But the concrete technique
suggested in those papers does not apply to loop spaces, so that a proper (highly
nontrivial) modification for the quantum case is necessary (see Section 4).

One basic idea of our method is to use an alternative characterization of Gibbs
measures via integration by parts (instead of the usual one in terms of local
specifications through the Dobrushin–Lanford–Ruelle equations). Let us note that
such alternative descriptions of Gibbs measures via integration by parts (for short,
IbP) formulas or via their Radon–Nikodym derivatives w.r.t. shift transformations
of the underlying configuration spaces ( flow characterization) have long been
known for a number of specific models in statistical mechanics and field theory
(see, e.g., [26, 32–35, 43–45, 52, 60–62]). But for the quantum lattice systems
under consideration, a complete characterization of the measures µ ∈ Gt

β in terms
of their Radon–Nikodym derivatives was first proved in [10], Theorem 4.6 (cf.
also its extension in Proposition 1). Assuming that the interaction potentials are
differentiable, we further show that this flow characterization of Gibbs measures
is equivalent to their characterization as differentiable measures satisfying (IbP)-
formulas with prescribed logarithmic derivatives (cf. Proposition 2).

Relying on this characterization of µ ∈ Gt
β , in a direct analytical way we then

prove the two main results of the paper: the existence of tempered Euclidean
Gibbs measures (Theorem 1) and a priori estimates on their moments in terms of
parameters of the interaction (Theorem 2). The essential ingredient of the proofs
is that by the characterization of Gibbs measures via integration by parts we can
deal with them as solutions of an infinite system of first-order PDEs [cf. (3.13)].
This enables us to employ the Lyapunov function method (in a similar way, as
in finite-dimensional PDEs) in order to get a priori moment estimates on µ ∈ Gt

β .
The local Gibbs specifications also satisfy the same (IbP)-formulas, from which we
deduce moment estimates uniformly in volume. The latter is crucial for our proof
of existence for Euclidean Gibbs measures µ, that is, that Gt

β �= ∅. In addition,
from the a priori estimates we obtain precise information on support properties of
all tempered Euclidean Gibbs measures.

Some results on the existence of Euclidean Gibbs measures, concerning special
classes of anharmonic interactions and based on various other techniques, have
been already known before (see Section 2.4 for the references and a more
detailed discussion). But we emphasize that our tools are completely different
and rather elementary, provided one has the (IbP)-description of Gibbs measures.
To demonstrate our method and present the main ideas, we analyze a class of
concrete lattice models given by a system of d-dimensional quantum anharmonic
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oscillators interacting via potentials of superquadratic growth [cf. (2.2)]. Trying to
keep the exposition more transparent, in the main body of the paper we restrict
ourselves further to the case of translation invariant pair interactions between
nearest neighbors only. However, our method can be easily extended to general
(not necessarily translation invariant) many-particle interactions of unbounded
order and infinite range, not covered at all by any previous work. This extension
will be briefly described in Section 5. For a detailed exposition of the latter case
we also refer to the forthcoming paper [7].

Finally, let us notice that the method proposed here can be also modified to
apply to the more difficult and less studied case of zero absolute temperature, that
is, β = ∞, and corresponding Gibbs measures (so-called Euclidean ground states,
cf. [49, 53, 54]) on the “path lattice” �∞ := C(R)Zd

. This case is under present
investigation.

The organization of this paper is as follows. Section 2 is devoted to general
aspects of the theory of Euclidean Gibbs measures. Here we introduce the
models of quantum lattice systems (“anharmonic crystals”). We recall details
on the corresponding Gibbsian formalism for Euclidean Gibbs measures µ on
the loop lattice �β. The transform from quantum Gibbs states to Euclidean
Gibbs measures, however, is described in more detail in the Appendix. Then we
formulate our main Theorems 1 (resp. 2) on the existence, respectively, a priori
estimates for tempered Euclidean Gibbs measures µ ∈ Gt

β and compare them
with previous results obtained by other methods. In Section 3 we discuss the
above mentioned alternative description of µ ∈ Gβ in terms of their shift-Radon–
Nikodym derivatives and (its infinitesimal form) in terms of their logarithmic
derivatives via the (IbP)-formulas. In Section 4 we give complete proofs of our
main Theorems 1 and 2, which we divide into several sequential steps formulated
as Lemmas 2–5. In Section 5 we outline some possible generalizations of our
method.

Finally, we mention that the results of this paper have been announced in
[5, 6] and presented in various talks since December 2000 during seminars or
conferences, among others, in Berlin, Kiev, Moscow, Oberwolfach and Pisa.

2. Euclidean Gibbs measures on loop spaces. We begin this section with
the description of a model of interacting multidimensional quantum anharmonic
oscillators on a lattice (so-called “quantum crystals”). For simplicity of the
exposition, we concentrate on a specific case of translation invariant systems
with pair interactions of nearest neighbor type and with isotropic self-interaction.
Then we give a rigorous definition of the corresponding Euclidean Gibbs measures
as classical Gibbs measures but with infinite-dimensional single spin (i.e., loop)
spaces. We close the section with the formulation of our main results on the
existence and a priori estimates for tempered Gibbs measures on loop lattices.
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2.1. A model of quantum anharmonic crystals. Consider the Euclidean space
Rd, d ∈ N, with distance | · | = (·, ·)1/2 and basis (eα)dα=1, and let Zd be the
integer lattice in Rd . We study a translation invariant system of interacting
quantum particles performing d-dimensional oscillations around their equilibrium
positions at points k ∈ Zd . Each particle individually is described by the quantum
mechanical Hamiltonian

Hk := − 1

2m
� + a2

2
|qk|2 + V (qk)(2.1)

acting in the (physical) Hilbert state space Hk := L2(Rd, dqk). Here � is the usual
Laplacian on Rd, m > 0 is the (reduced) particle mass, a2 > 0 is their rigidity
w.r.t. the harmonic oscillations, and V : Rd→ R is an anharmonic self-interaction
potential. Next, we add a nearest neighbor interaction between the particles, given
by a symmetric potential W : Rd × Rd → R and taken over all (unordered) pairs
〈k, k′〉 ⊂ Zd such that |k − k′| = 1. The whole system is then described by the
heuristic Hamiltonian of the form

H := ∑
k∈Zd

Hk + ∑
〈k,k′〉⊂Zd

W(qk, qk′).(2.2)

The infinite-volume Hamiltonian (2.2) cannot be defined directly as a mathemati-
cal object and is represented by the local (i.e., indexed by finite-volumes � ⊂ Zd)

Hamiltonians

H� := ∑
k∈�

Hk + ∑
〈k,k′〉⊂�

W(qk, qk′)(2.3)

acting in the Hilbert spaces H� := ⊗k∈�Hk .
Concerning the interaction potentials, we shall suppose that they are twice

continuously differentiable, that is,

V ∈ C2(Rd→ R), W ∈ C2(Rd × R
d → R).

By ∇(l)V (q), ∇(l)
q W(q, q ′) ∈ Rdl

, we shall denote their lth derivative, l = 0,1,2,
w.r.t. the coordinate q ∈ Rd . Moreover, we impose the following bounds on the
asymptotic behavior of the interaction potentials at the infinity:

ASSUMPTION. There exist some constants P > R ≥ 2 and CV ,CW > 0 such
that:

(V) V (q) = v(|q|), q ∈ Rd, and a function v : R+ → R satisfies, for all s ≥ s0,

C−1
V sP−l ≤ v(l)(s) ≤ CV sP−l , l = 0,1,2.

(W) For all q, q ′ ∈ Rd, min{|q|, |q ′|} ≥ s0, holds∣∣∇(l)
q W(q, q ′)

∣∣≤ CW(|q|R−l + |q ′|R−l), l = 0,1,2.
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EXAMPLE. Typical potentials satisfying Assumptions (V) and (W) are the
polynomials

V (q) :=
p∑

n=0

b2n|q|2n, W(q, q ′) := (
S(q − q ′), q − q ′)r ,(2.4)

where S is a symmetric d × d matrix, p, r ∈ N, p > r and b2p > 0.

NOTATION. For a set � ⊂ Zd , by |�| we denote its cardinality, by �c :=
Z

d \� its complement, and by ∂� := {k′ ∈ �c | ∃k ∈ �, |k−k′| = 1} its boundary.
In particular, ∂k := {k′ ∈ Zd | |k − k′| = 1} is the set of all neighbors of k

consisting of 2d points. We write � � Zd whenever 1 ≤ |�| < ∞. As usual,
� ↗ Zd means the limit as N → ∞ along any increasing sequence of volumes
�(N) ⊂ �(N+1) � Zd such that

⋃
N∈N �(N) = Zd .

As was already mentioned in the Introduction, we take the Euclidean approach
to study the quantum lattice system (2.2). Such approach involves intricate
relations between quantum statistical mechanics and stochastic processes, which
for convenience of the nonexpert reader we shall briefly discuss in the Appendix. In
Sections 2.2 and 2.3 we proceed with the rigorous description of the corresponding
Gibbsian Euclidean formalism.

2.2. Loop spaces. Let us fix some β > 0 having the meaning of inverse
(absolute) temperature. Let Sβ

∼= [0, β] be a circle of length β [considered as a
compact Riemannian manifold with Lebesgue measure dτ as a volume element
and distance ρ(τ, τ ′) := min(|τ − τ ′|, β − |τ − τ ′|), τ, τ ′ ∈ Sβ ]. For each k ∈ Zd,

denote by

L
r
β := Lr(Sβ → R

d, dτ ), r ≥ 1,

C
n+η
β := Cn+η(Sβ → R

d), n ∈ N ∪ {0}, η ∈ (0,1),

the Banach spaces of all integrable, respectively, (Hölder) continuous functions
(i.e., loops) ωk = (ωk,α)dα=1 :Sβ → Rd with the norms

|ωk|Lr
β

:=
[∫

Sβ

|ωk(τ )|r dτ

]1/r

,

|ωk|Cn+η
β

:=
n∑

l=0

sup
τ∈Sβ

∣∣ω(l)
k

∣∣
Cβ

+ sup
τ,τ ′∈Sβ, τ �=τ ′

|ω(n)
k (τ ) − ω

(n)
k (τ ′)|

ρη(τ, τ ′)
.

(2.5)

If d = 1, we simply write Lr
β := L

r
β and C

n+η
β := C

n+η
β . In particular, Cβ with

the sup-norm | · |Cβ
will be treated as the single spin space, whereas, L

2
β with the

inner product (·, ·)
L

2
β

:= | · |2
L2

β

as the Hilbert space tangent to Cβ .
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As the configuration space for the infinite-volume system we define the space
of all loop sequences over Zd

�β := [Cβ ]Zd = {
ω = (ωk)k∈Zd

∣∣ ω :Sβ → R
Zd

,ωk ∈ Cβ

}
.(2.6)

We endow �β with the product topology (i.e., the weakest topology on �β such
that all finite-volume projections

�β � ω �→ P�ω := ω� := (ωk)k∈� ∈ [Cβ ]� =: �β,�, � � Z
d,

are continuous) and with the corresponding Borel σ -algebra B(�β), which
coincides with the σ -algebra generated by all cylinder sets

{ω ∈ �β |ω� ∈ ��}, �� ∈ B(�β,�), � � Z
d .

Let M(�β) denote the set of all probability measures on (�β,B(�β)). Next, we
define the subset of (exponentially) tempered configurations

�t
β :=

{
ω ∈ �β

∣∣∣ ∀ δ ∈ (0,1) :‖ω‖δ :=
[ ∑

k∈Zd

e−δ|k||ωk|R
L

R
β

]1/R

< ∞
}
,(2.7)

where the parameter R ≥ 2 describes a possible order of polynomial growth of the
pair potential W(q,q ′) [cf. Assumption (W)]. In the context below, �t

β ∈ B(�β)

will always be viewed as a locally convex Polish space with the topology induced
by the system of norms (‖ω‖δ, |ωk|Cβ

)δ>0,k∈Zd . Correspondingly, we specify the
subset of tempered measures as those supported by �t

β , that is,

Mt
β := {µ ∈ M(�β)|µ(�t

β) = 1}.(2.8)

REMARK 1. Our definition of temperedness (as well as its modification to
the classical case with |qk| substituting |ωk|LR

β
) is more extended (and simpler) as

those usually used in the literature (cf., see, e.g., [17, 25]). So, �t
β contains all

(slowly increasing) configurations ω ∈ �β , for which

∃p = p(ω) > 0 :
∑
k∈Zd

(1 + |k|)−2p|ωk|LR
β

< ∞.

Moreover, Mt
β contains all measures µ ∈ M(�β) satisfying the following

condition in terms of their moment sequence:

∃p = p(µ) > 0 :
∑
k∈Zd

(1 + |k|)−2pEµ|ωk|LR
β

< ∞,

in particular, those having the so-called Ruelle support (see Section 5). Here and
further on, we write Eµf := ∫

f dµ for any µ-integrable f.
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2.3. Definition of Euclidean Gibbs measures. Heuristically, the Euclidean
Gibbs measures µ we are interested in have the following representation:

dµ(ω) := Z−1 exp{−E(ω)} ∏
k∈Zd

dγ (ωk).(2.9)

Here Z is the normalization factor and the map

�β � ω �→ E(ω) :=
∫
Sβ

[ ∑
k∈Zd

V (ωk) + ∑
<k,k′>⊂Zd

W(ωk,ωk′)

]
dτ

might be viewed as a potential energy functional describing an interacting system
of loops ωk ∈ Cβ indexed by k ∈ Zd, whereas every single spin space Cβ is
equipped with the Gaussian measure γ canonically generated by the oscillator
bridge process of length β . A rigorous meaning to µ as probability measures on
(�β,B(�β)) can be given by the Dobrushin–Lanford–Ruelle (DLR) formalism
(cf. [28, 38, 56]). Namely, we define µ as random fields on Zd with a prescribed
family of local specifications {π�}��Zd as follows.

We first need to construct a measure ×k∈Zd dγ (ωk) on (�β,B(�β)) corre-
sponding to V = W = 0 and the harmonic system (2.2) without interaction. With
this aim, in the Hilbert space L2

β := L2(Sβ → R), we consider the shifted Laplace–

Beltrami operator A := −md2/dτ 2 + a21 on its maximal domain D(A) [which
is the closure of C2

β := C2(Sβ → R) for the norm |ϕ|
W

2,2
β

:= |Aϕ|L2
β
]. It is well

known that the operator A is self-adjoint with the resolvent of trace class, that is,
TrL2

β
A−1 < ∞. Respectively, in the Hilbert space L

2
β := L2(Sβ → Rd) we con-

sider the operator A := A ⊗ Id, where Id is the identity matrix in Rd . Let now γ

be a Gaussian measure on (Cβ, B(Cβ)) with correlation operator A−1, which is
uniquely determined by its Fourier transform∫

L2
β

exp i(φ,ωk)L2
β
dγ (ωk) = exp

{−1
2 (A−1φ,φ)

L2
β

}
, φ ∈ L

2
β.(2.10)

Actually, γ is supported by the Hölder continuous loops, that is, γ (C
η
β) = 1,

∀η ∈ [0, 1
2 ) and has finite moments Eγ |ωk|Q

C
η
β

< ∞ ∀Q ≥ 1 (see, e.g., [65]).

For every � � Zd, we then define a probability kernel

B(�β) × �β � (�, ξ) → π�(�|ξ) ∈ [0,1]
by

π�(�|ξ) := Z−1
� (ξ)

∫
�β,�

exp{−E�(ω|ξ)}1�(ω�, ξ�c)k∈� dγ (ωk)(2.11)
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(where 1� denotes the indicator on �). Here Z�(ξ) is the normalization factor,
and

E�(ω|ξ) :=
∫
Sβ

[∑
k∈�

V (ωk)

(2.12)

+ ∑
<k,k′>⊂�

W(ωk,ωk′) + ∑
k∈�,k′∈�c

W(ωk, ξk′)

]
dτ

is the interaction in the volume � under the boundary condition ξ�c := (ξk′)k′∈�c.

Due to Assumptions (V) and (W)

inf
ω∈�β

E�(ω|ξ) > −∞ ∀� � Z
d, ∀ ξ ∈ �β,(2.13)

and, thus, the right-hand side in (2.12) makes sense. Moreover, the additive
structure of the functional E�(ω|ξ) yields the consistency property for {π�}��Zd :
for all � ⊂ �′ � Zd, ξ ∈ �β and � ∈ B(�β)

(π�′π�)(�|ξ) :=
∫
�β

π�′(dω|ξ)π�(�|ω) = π�′(�|ξ).

DEFINITION 1. A probability measure µ on (�β,B(�β)) is called Euclidean
Gibbs measure for the specification {π�}��Zd [corresponding to the quantum
lattice system (2.2) at inverse temperature β > 0] if it satisfies the DLR equilibrium
equations: for all � � Zd and � ∈ B(�β),

µπ�(�) :=
∫
�β

µ(dω)π�(�|ω) = µ(�).(2.14)

Fixing β > 0, let Gβ denote the set of all such measures µ. We shall mostly be
concerned with the subset Gt

β of tempered Gibbs measures supported by �t
β, that

is,

Gt
β := Gβ ∩ Mt

β = {µ ∈ Gβ |µ(�t
β) = 1}.(2.15)

2.4. Formulation of the main results: Theorems 1 and 2. Now we present our
results on the existence and a priori estimates for Euclidean Gibbs states:

THEOREM 1 (Existence of tempered Gibbs states). Let Assumptions (V) and
(W) on the potentials V and W be fulfilled. Then for all values of the mass m > 0
and the inverse temperature β > 0,

Gt
β �= ∅.
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THEOREM 2 (A priori estimates on tempered Gibbs states). Under the
assumptions of Theorem 1, every µ ∈ Gt

β is supported by the set of Hölder loops⋂
0≤η<1/2[Cη

β ]Zd
. Moreover, for all Q ≥ 1 and η ∈ [0, 1

2 ),

sup
µ∈Gt

β

sup
k∈Zd

∫
�β

|ωk|Q
C

η
β

dµ(ω) < ∞.(2.16)

COROLLARY 1. Under the assumptions of Theorems 1 and 2 above, the set
Gt

β is compact w.r.t. the topology of weak convergence of measures on the Polish
space �t

β.

Let us make some comments on Theorems 1 and 2. As is typical for systems
with noncompact (in our case, even infinite-dimensional) spin spaces, the existence
of µ ∈ Gt

β stated by Theorem 1 is not evident at all. Depending on the specific class
of quantum lattice models one considers, this problem has been examined in the
literature by the following main methods:

(i) General Dobrushin’s criterion for existence of Gibbs distributions: So
far, no technical means are available to verify the sufficient conditions of the
Dobrushin existence theorem [28] in the case of Euclidean Gibbs measures with
single spin spaces L

r
β or Cβ (in contrast with classical lattice systems with spins

in Rd successfully dealt with, e.g., in [17, 25]).
(ii) Ruelle’s technique of superstability estimates: This technique (cf. the

original papers [50, 63] and resp. [57] for its modification to the quantum case)
otherwise requires that the interaction is translation invariant and the many-
particle potentials are of at most quadratic growth [i.e., (W) holds with R = 2].

(iii) Cluster expansions is one of the most powerful methods to study µ ∈ Gt
β

in a perturbative regime, that is, when an effective parameter of the interaction is
small (see, e.g., [8, 36, 53, 54, 58] and references therein).

(iv) Method of correlation inequalities involves more detailed information
about the structure of the interaction potentials (for instance, whether they are
ferromagnetic or convex). A number of correlation inequalities (such as FKG,
GKS, Lebowitz, Brascamp-Lieb, etc.) commonly known for classical lattice
systems can be extended also to the quantum case (see, e.g., [1–4, 40, 55]).

(v) Method of reflection positivity [as a part of (iv)] applies to translation
invariant systems of type (2.2) with nearest-neighbor pair interactions and gives
the existence of so-called periodic Gibbs states, at least under the assumptions on
the potentials V,W imposed in Section 2.1 (cf. [18]).

Theorem 2 contributes to the fundamental problem of getting uniform estimates
on correlation functionals of Gibbs measures µ ∈ Gt

β in terms of parameters of
the interaction. This problem was initially posed for classical lattice systems in
[17, 25] and is closely related with the compactness of the set of tempered Gibbs
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states (cf. Corollary 1). To the best of our knowledge, all previous results on a
priori integrability of Gibbs measures on path spaces were based on the method
of stochastic dynamics (also referred to in mathematical physics as “stochastic
quantization”); see, for example, [15, 30, 35] and the related bibliography therein.
Since in this method the Gibbs measures are treated as invariant distributions for
the so-called Langevin stochastic dynamics, it requires additional restrictions on
the interaction (among them at most quadratic growth of the pair potential W )
to ensure the solvability of the corresponding stochastic equations in infinite
dimensions (not to mention the extremely difficult ergodicity problem for them).
Besides, a priori information about the finiteness of the moments of the measures
µ ∈ Gt

β is also needed for the study of Gibbs measures by means of the associated
Dirichlet operators in the spaces Lp(µ), p ≥ 1, (this is known as the Holley–
Stroock approach [9, 10, 43]).

As already mentioned in the Introduction, in order to prove Theorems 1 and 2
we shall propose a new technique, which completely differs from those listed
under (i)–(v) and relies on the alternative description of µ ∈ Gβ via integration
by parts. Moreover, this technique obviously extends (cf. Section 5) to general
many-particle interactions (not necessarily translation invariant and possibly
having superquadratic growth, unbounded order and infinite range), which were
not covered at all by any previous work. On the other hand, our approach is
conceptually more straightforward and technically easier in comparison to the
stochastic dynamics method mentioned above. This alternative approach was
first realized in [13, 14], however, in the much simpler situation of classical
lattice systems with finite-dimensional spins. In contrast with those papers, in
the quantum case we have to do not only a “lattice analysis” (depending on
the properties of the interaction potentials V , W ), but also an additional “single
spin space analysis” (taking into account the spectral properties of the elliptic
operator A). It should also be mentioned, that in the recent preprint [42] some
(deterministic) version of integration by parts for local specifications has been
used to prove existence of Gibbs measures relative to Brownian motion on the
path space C(R → R

d). The study of such Gibbsian (in general non-Markovian)
processes has been initiated in [55]. As a special case they include the so-called
P (ϕ)1-processes as Gibbs distributions corresponding to a single quantum particle
at zero temperature, that is, β = ∞ (see, e.g., [19, 44]).

Finally, let us note that sufficient conditions implying uniqueness of tempered
Euclidean Gibbs measures for quantum lattice systems like (2.2) have been proved
in [2–4, 11, 12], whereas the possibility of phase transitions in such models has
been discussed in [8, 18, 29, 41].

3. Flow and (IbP)-characterization of Euclidean Gibbs measures. In this
section we give an alternative description of Euclidean Gibbs measures (cf.
Propositions 1 and 2). These are the following: first, the flow characterization of
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µ ∈ Gβ in terms of their Radon–Nikodym derivatives w.r.t. shift transformations
of the configuration space �β ; second, the characterization (resulting from
the previous one) in terms of their logarithmic derivatives via corresponding
(IbP)-formulas. If the interaction potentials are differentiable (as they are in our
case), both characterizations are equivalent. Also, we observe that the local Gibbs
specifications π�, � � Zd, also satisfy the same flow and (IbP)-descriptions,
which later will be crucial for our proof of the existence of µ ∈ Gt

β .

3.1. Flow description of Euclidean Gibbs measures. We start with the flow
description of µ ∈ Gβ in terms of their “shift”-Radon–Nikodym derivatives aθhi

,

θ ∈ R, along some set of admissible directions hi , i ∈ I, whose linear span is
dense in �β.

With this aim, we shall consider the Hilbert space

Hβ :=
{
ω = (ωk)k∈Zd ∈ [L2

β ]Zd
∣∣∣ ‖ω‖2

β := ∑
k∈Zd

|ωk|2
L

2
β

< ∞
}

(3.1)

with the inner product 〈ω,ω〉β := ‖ω‖2
β as tangent space to �β. For the remainder

of this paper, we fix an orthonormal basis in Hβ consisting of the vectors

hi := (δk−k′δα−α′ϕn)k′∈Zd ,1≤α′≤d

(3.2)
indexed by i = (k, n,α) ∈ Zd × Z×{1, . . . , d} =: I,

where ϕn are the eigenvectors of the operator A in L2
β, that is, Aϕn = λnϕn. Recall

that the operator A has discrete spectrum

λn :=
(

2π

β
n

)2

m + a2, n ∈ Z,(3.3)

and a complete orthonormal system of trigonometric functions

ϕn(τ ) :=




√
1

β
, n = 0,

√
2

β
cos

2π

β
nτ, n = 1,2, . . . ,

−
√

2

β
sin

2π

β
nτ, n = −1,−2, . . . .

(3.4)

Moreover, the set of all trigonometric polynomials

Tβ := lin.span{ϕn}n∈Z

is a domain of essential self-adjointness for A. Respectively, φ(n,α) :=
(δα−α′ϕn)

d
α′=1 are the eigenvectors of the operator A in L

2
β, that is, Aφ(n,α) =

λnφ(n,α).
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PROPOSITION 1 (Flow description of µ ∈ Gβ ). For a given direction hi, i ∈ I,
let Ma,hi

denote the set of all probability measures µ on (�β,B(�β)) which
are quasi-invariant w.r.t. the shifts ω �→ ω + θhi , θ ∈ R, with Radon–Nikodym
derivatives

aθhi
(ω) := dµ(ω + θhi)

dµ(ω)

= exp
{
−θ

(
Aφ(n,α),ωk

)
L2

β
− θ2

2

(
Aφ(n,α), φ(n,α)

)
L2

β

}
(3.5)

× exp
∫
Sβ

{
V (ωk) − V

(
ωk + θφ(n,α)

)

+ ∑
k′∈∂k

[
W(ωk,ωk′) − W

(
ωk + θφ(n,α),ωk′

)]}
dτ.

Then

Gβ = ⋂
i∈I

Ma,hi
=: Ma.(3.6)

PROOF. Proposition 1 extends the analogous result of Theorem 4.6 in [10],
where (for simplicity only) the particular case of harmonic pair interactions was
treated. Thus, here we sketch the proof very roughly; for missing details, as well
as possible generalizations, we also refer to [7].

(i) Gβ ⊆ Ma: this inclusion obviously follows from the DLR equations (2.14)
and the quasi-invariance of the probability kernels π�(dω|ξ).

(ii) Ma ⊆ Gβ : Keeping the notation of Section 2, for every k ∈ Zd define
�k := {k}, �c

k := Zd \ {k} and ω�c
k

:= P�c
k
ω ∈ �β,�c

k
. Let us disintegrate any

µ ∈ Ma w.r.t. its projection µ�c
k
:= µP

−1
�c

k
onto �β,�c

k
:

µ
(
dωk, dω�c

k

)= νω�c
k
(dωk)µ�c

k

(
dω�c

k

)
,

here νω�c
k
(dωk) are some probability measures (= regular conditional distributions

given ω�c
k
) on (Cβ,B(Cβ)). Moreover, one can verify (cf. [60], Proposition 3)

the quasi-invariance of the measures νω�c
k

in the following sense: There exists a

Borel subset ��c
k

⊆ �β,�c
k

such that µ�c
k
(��c

k
) = 1 and for every ω�c

k
∈ ��c

k
,

hi := (δk−k′φ(n,α))k′∈Zd and θ ∈ R:

dνω�c
k
(ωk + θφ(n,α))

dνω�c
k
(dωk)

= aθhi

(
ωk,ω�c

k

)
, ωk ∈ Cβ

(
modνω�c

k

)
.(3.7)

From now on fix any ξ�c
k
∈ ��c

k
, and let us show that (3.7) implies

νξ�c
k
(dωk) = Z−1 exp

{
−
∫
Sβ

[
V (ωk) + ∑

k′∈∂k

W(ωk, ξk′)

]
dτ

}
γ (dωk).(3.8)
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However, ν := νξ�c
k
(dωk) is the unique probability measure on (Cβ,B(Cβ))

which satisfies the flow description

dν(ωk + φ)

dν(ωk)
= aφ (ωk), ωk ∈ Cβ(modν),(3.9)

for all φ ∈ lin.span{φ(n,α)} with the cocycle

aφ(ωk) := exp
{−(Aφ,ωk)L2

β
− 1

2(Aφ,φ)
L2

β

}

× exp
∫
Sβ

{
V (ωk) − V (ωk + φ)(3.10)

+ ∑
k′∈∂k

[W(ωk, ξk′) − W(ωk + φ, ξk′)]
}

dτ.

To check this, let us introduce the new measure

σ(dωk) := exp

{∫
Sβ

[
V (ωk) + ∑

k′∈∂k

W(ωk, ξk′)

]
dτ

}
ν(dωk),(3.11)

which (due to our assumptions on the potentials V and W ) is at least σ -finite
on (Cβ,B(Cβ)). By (3.9)–(3.11) we have that

dσ (ωk + φ)

dσ (ωk)
= exp

{
−(Aφ,ωk)L

2
β

− 1

2
(Aφ,φ)

L
2
β

}
.(3.12)

But, as it is well known and could be straightforwardly verified (see, e.g.,
[60], Proposition 4), (3.12) implies σ(Cβ) < ∞ and σ(dωk) = const · γ (dωk).

Consequently, combining (3.8) and (3.11), we deduce that ν(dωk) = const ·
νξ�c

k
(dωk) and, since both are probability measures, they coincide. And finally,

noting that Gβ is fully determined by {π�k
}k∈Zd (cf. [38], Theorem 1.33), we get

the desired inclusion µ ∈ Gβ. �

Actually, (3.6) is true under minimal assumptions on the potentials V,W ,
which guarantee (besides the well-definedness of the local specifications πβ,�)
continuity and local boundedness of the functions R×�β � (θ,ω) �→ aθhi

(ω) ∈ R

for all i ∈ I. However, in applications it is more convenient to use not the flow
characterization (3.6) itself, but its infinitesimal form which we describe in the
next section.

3.2. (IbP)-formula for Euclidean Gibbs measures. We shall show that the
above flow characterization of µ ∈ Gβ is equivalent to their characterization as
differentiable measures satisfying the (IbP)-formulas

∂hi
µ(dω) = bhi

(ω)µ(dω) ∀ i ∈ I,(3.13)
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with the given logarithmic derivatives bhi
along basis vectors hi. More precisely,

for the basis vector hi = (δk−k′φ(n,α))k′∈Zd , i = (k, n,α) ∈ I, we define the
function bhi

:�β → R by

bhi
(ω) := ∂

∂θ
aθhi

(ω)

∣∣∣∣
θ=0

= −(Aφ(n,α),ωk

)
L

2
β

− (
Fk,α(ω),φ(n,α)

)
L

2
β
,(3.14)

where Fk = (Fk,α)dα=1 :�β → Cβ is the nonlinear Nemytskii-type operator acting
by

Fk(ω) := ∇V (ωk) + ∑
k′∈∂k

∇qW(q, q ′)|q=ωk,q
′=ωk′ .(3.15)

We stress that the main difficulty in dealing with the (IbP)-formulas (3.13) is that
we do not know in advance (until Theorem 2) whether bhi

∈ L1(�β,µ). Thus, we
first have to introduce proper classes of differentiable functions on �β to which
we can correctly apply the distributional identity (3.13).

For this purpose it is helpful to recall some facts from convex analysis (cf., e.g.,
[27]): Let X be a locally convex space, and let � :X → R. The partial derivatives
on the right, respectively, left in the direction h ∈ X of the function � at a point
x ∈ X are defined by

∂+
h �(x) := lim

θ→+0

�(x + θh) − �(x)

θ
,

∂−
h �(x) := lim

θ→−0

�(x + θh) − �(x)

θ
.

(3.16)

If the right and left limits in (3.16) coincide, one says that there exists the derivative
∂h�(x) in the direction h. By C1(X;h) [resp. C1

b,loc(X;h) or C1
b(X;h)] we denote

the spaces of all functions � :X → R which are continuous (and, moreover, locally
or globally bounded) together with their partial derivatives ∂h� :X → R. Actually,
the existence either or both of ∂+

h � and ∂−
h � along some total set of h ∈ X will

be quite enough for our applications, so we do not discuss here the more involved
notions of Gâteaux or Fréchet differentiability. On the other hand, later we shall
also need to consider X := Cβ , for which, as is well known, the norm-function
| · |Cβ

is not (Gâteaux) differentiable everywhere on Cβ \ {0}: indeed,

∃ ∂h|x|Cβ
= ∂±

h |x|Cβ
for x,h ∈ Cβ iff

h(τ ) = ±h(τ ′) for all τ, τ ′ ∈ Sβ such that(3.17)

x(τ ) = ±x(τ ′) = |x|Cβ
.

In general, for any Banach space (X, | · |X) and all x,h ∈ X, there exist both
∂−
h |x|X and ∂+

h |x|X, which are uniformly bounded by

−|h|X ≤ ∂−
h |x|X ≤ ∂+

h |x|X ≤ |h|X(3.18)

and, which for fixed h ∈ X, are semicontinuous (above resp. below) functions
of x ∈ X.
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REMARK 2. Under the assumptions on the potentials V, W imposed in Sec-
tion 2.1, we have that aθhi

, bhi
∈ C1(�β;hi) for all θ ∈ R and i = (k, n,α) ∈ I.

Moreover, the functions aθhi
, bhi

, as well as their partial derivatives ∂hi
aθhi

,
∂hi

bhi
, are bounded on the cylinder sets

B�,ρ := {ω ∈ �β | |ωk′ |Cβ
≤ ρ,∀ k′ ∈ �} where � ⊇ {k} ∪ ∂k,ρ ∈ (0,∞).

Further, by a straightforward calculation,

∂hi
aθhi

(ω) = aθhi
(ω)

[
bhi

(ω + θhi) − bhi
(ω)

]
,

(3.19)
∂

∂θ
aθhi

(ω) = aθhi
(ω)bhi

(ω + θhi),

and thus one can recover aθhi
from bhi

by

aθhi
(ω) = exp

∫ θ

0
bhi

(ω + ϑhi) dϑ.(3.20)

DEFINITION 2. Fixing a basis vector hi, i = (k, n,α) ∈ I, by C1
dec(�β;hi)

we denote the set of all functions f ∈ C1
b(�β ;hi), which satisfy the extra decay

condition

sup
ω∈�β

∣∣f (ω)
(
1 + |ωk|L1

β
+ |Fk(ω)|

L1
β

)∣∣< ∞.(3.21)

Below we shall need a simple approximation lemma (true even in a more general
setting on locally convex spaces) in order to justify the (IbP)-formula (3.13) for all
f ∈ C1

dec(�β ;hi).

LEMMA 1. (i) For any given � � Zd and h ∈ �β, there exists a sequence
{ψ(N)}N∈N ⊂ C1

b(�β;h) approximating ψ ≡ 1 in the following sense:

0 ≤ ψ(N)(ω) := ψ(N)(ω�) ≤ 1, suppψ(N) ⊂ B�,ρ(N) , ρ(N) ∈ (0,∞),

ψ(N) → 1, ∂hψ
(N) → 0(3.22)

as N → ∞ and sup
N∈N

∥∥∂hψ
(N)

∥∥
Cb(�β) < ∞.

(ii) For each µ ∈ M(�β) and hi, i ∈ I, the set C1
dec(�β;hi) is dense in all

spaces Lr(�β,µ), 1 ≤ r < ∞.

PROOF. (i) Let us first take any cut-off sequence {χN }N∈N ⊂ C1
0(R+) with the

properties:

χN(s) = 1 for s ∈ [0,N ], χN(s) = 0 for s ∈ [N + 1,∞),

0 ≤ χN+1(s + 1) = χN(s) ≤ 1 for every s ≥ 0.
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Next, for each k ∈ Zd define the boundedly supported functions on Cβ ,

ψ
(N)
k (ωk) := N

∫ 1/N

0
χN

(|(ω + θh)k|Cβ

)
dθ,

and calculate their derivatives,

∂hψ
(N)
k (ωk) = N

[
χN

(∣∣∣∣
(
ω + 1

N
h

)
k

∣∣∣∣
Cβ

)
− χN

(|ωk|Cβ

)]
.

Then it is easy to check that ψ(N) :=∏
k∈� ψ

(N)
k → 1, as N → ∞, in the sense

of (3.22).
(ii) By the regularity property of any µ ∈ M(�β) (considered as a Borel

measure on the product space [L2
β ]Zd

), the set C1
b(�β;hi) (as such containing

smooth cylinder functions w.r.t. the base {hi}i∈I) is dense in every Lr(�β,µ),

1 ≤ r < ∞. Now let us fix h := hi , � ⊇ {k} ∪ ∂k, and let ψ(N) → 1, N → ∞,

as in (3.22). Then, by Lebesgue’s dominated convergence theorem, each f ∈
C1

b(�β;hi) can be approximated in Lr(�β,µ) by the corresponding sequence
f (N) := f ψ(N) ∈ C1

dec(�β;hi), N ∈ N. �

PROPOSITION 2 [(IbP)-description of µ ∈ Gβ]. Given any direction hi, i ∈ I,
let Mb,hi

denote the set of all probability measures µ on (�β,B(�β)) which
satisfy the (IbP)-formula∫

�β

∂hi
f (ω)dµ(ω) = −

∫
�β

f (ω)bhi
(ω) dµ(ω)(3.23)

for all functions f ∈ C1
dec(�β;hi). Then

∀ i ∈ I :Mb,hi
= Ma,hi

, and thus, Gβ = Ma = ⋂
i∈I

Mb,hi
=: Mb.(3.24)

PROOF. The line of reasoning is close to the proof in [16, 31] of the
well-known fact that every probability measure µ on a vector space X, which
is differentiable along some direction h ∈ X with corresponding logarithmic
derivative bh ∈ L1(µ), is for sure also quasi-invariant w.r.t. all shifts x �→ x + θh.
The new difficulty and the principal difference compared with the above mentioned
papers is that no assumptions on the global integrability of the logarithmic
derivatives bhi

are imposed here. Instead, we shall crucially use the approximation
procedure given by Lemma 1 and the observation that aθhi

, bhi
are continuous

locally bounded functions on �β [and hence, by Remark 2 for all θ ∈ R, there
exist ∂θaθhi

, ∂hi
aθhi

∈ Cb,loc(�β)].

(i) Ma,hi
⊂ Mb,hi

: By Proposition 1, for each µ ∈ Ma,hi
and f ∈ C1

dec(�β;hi),∫
�β

f (ω)aθhi
(ω) dµ(ω) =

∫
�β

f (ω − θhi) dµ(ω),(3.25)
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and thus, for all θ �= 0,∫
�β

f (ω)
aθhi

(ω) − 1

θ
dµ(ω) =

∫
�β

f (ω − θhi) − f (ω)

θ
dµ(ω).(3.26)

Let again f (N) := fψ(N) and {ψ(N)}N∈N be the cut-off sequence constructed in
Lemma 1 for h := hi and � ⊇ {k} ∪ ∂k. Hence, combining (3.19) and (3.22), for
all N ∈ N,

sup
0<|θ |≤1,ω∈�β

∣∣∣∣f (N)(ω + θhi) − f (N)(ω)

θ

∣∣∣∣
≤ sup

ω∈�β

|∂hi
f (N)(ω)| < ∞,

sup
0<|θ |≤1,ω∈�β

∣∣∣∣f (N)(ω)
aθhi

(ω) − 1

θ

∣∣∣∣
≤ ‖f ‖Cb(�β) sup

0<|θ |≤1,ω∈B
�,ρ(N)

∣∣∣∣ ∂

∂θ
aθhi

(ω�)

∣∣∣∣< ∞.

Thus, in order to get the (IbP)-formula (3.23), by Lebesgue’s dominated conver-
gence theorem one can pass to the limit, first θ → ±0 and thereafter N → ∞, in
both sides of (3.26) with f (N) replacing f.

(ii) Ma,hi
⊃ Mb,hi

: We claim that each µ ∈ Mb,hi
is quasi-invariant w.r.t. the

shifts ω �→ ω + θhi, θ ∈ R, with the Radon–Nikodym derivatives

dµ(ω + θhi)

dµ(ω)
= exp

∫ θ

0
bi(ω + ϑhi) dϑ.(3.27)

By Remark 2 this readily implies that µ ∈ Ma,hi
.

So, given as before any f ∈ C1
dec(�β;hi) and its approximations f (N) :=

fψ(N), N ∈ N, let us define a family of functions indexed by θ ∈ R,

f (N)(θ, ·) ∈ C1
dec(�β ;hi), f (N)(θ,ω) := f (N)(ω + θhi)aθhi

(ω).(3.28)

Moreover, one can check by a direct calculation that

d

dθ

∫
�β

f (N)(θ,ω) dµ(ω)

=
∫
�β

[
∂hi

f (N)(ω + θhi)(3.29)

+ f (N)(ω + θhi)bhi
(ω + θhi)

]
aθhi

(ω) dµ(ω).

Substituting the exact expression (3.19) for ∂hi
aθhi

(ω) in (3.29) and then applying
the (IbP)-formula (3.23) to f (N)(θ, ·), we find that

d

dθ

∫
�β

f (N)(θ,ω) dµ(ω) = 0 ∀ θ ∈ R.
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Due to the continuity of θ �→ Eµf (N)(θ, ·), the latter yields∫
�β

f (N)(ω + θhi)aθhi
(ω) dµ(ω) =

∫
�β

f (N)(ω)dµ(ω) ∀ θ ∈ R.

Herefrom, letting N → ∞, by Fatou’s lemma and Lemma 1 we conclude
that the description via “shift”-Radon–Nikodym derivatives (3.27) holds for all
f ∈ L1(�β,µ). �

REMARK 3. We briefly discuss here some useful modifications and corollaries
of Proposition 2:

(i) Denote by C
1,±
dec (�β;hi) the set of all continuous functions f ∈ Cb(�β)

which satisfy the decay condition (3.21) and have globally bounded (but not nec-
essarily continuous) right and left derivatives ∂+

hi
f and ∂−

hi
f along the direction hi .

If µ ∈ Mb,hi
, then the (IbP)-formula (3.23) extends to all f ∈ C

1,±
dec (�β;hi) by∫

�β

∂±
hi

f (ω)dµ(ω) = −
∫
�β

f (ω)bhi
(ω) dµ(ω).(3.30)

To this end, it suffices to repeat the proof of part (i) of Proposition 2, recalling
definition (3.16) of ∂±

hi
f and using the fact that ∂+

hi
aθhi

= ∂−
hi

aθhi
. Respectively,

if µ is tempered (i.e., supported by �t
β), then (3.30) also holds for all

f ∈ C
1,±
dec (�t

β;hi), where the set C
1,±
dec (�t

β;hi) is defined just as above, but
with �t

β instead of �β. Namely, in such extended form (3.30) the (IbP)-formula
will be applied to proper test functions (among others, depending on |ωk|Cβ

) in the
proofs of Lemmas 2–5.

(ii) Fix i = (k, n,α) ∈ I, and let µ ∈ Mb,hi
. If in the (IbP)-formula (3.30) we

make the special choice of f (ω) := g(ω)|ωk,α|Cβ
with arbitrary g ∈ C1

dec(�β;hi)

such that supp g ⊂ B�,ρ for some � ⊇ {k} ∪ ∂k and ρ ∈ (0,∞), we get that
Eµ(g∂+

hi
|ωk,α|Cβ

) = Eµ(g∂−
hi

|ωk,α|Cβ
). Thus, by Lemma 1(ii),

µ
(
ω ∈ �β

∣∣ ∂+
ϕn

|ωk,α|Cβ
= ∂−

ϕn
|ωk,α|Cβ

)= 1.(3.31)

The last identity might also be derived from a result in [46], Lemma 1.3 on the
so-called stochastic Gâteaux differentiability of Lipshitz continuous functions on
abstract Wiener spaces. Moreover, if µ ∈ Mb, then one can conclude from (3.31)
[using the description of ∂ϕ|ωk,α|Cβ

by (3.17) and taking into account that the
set of trigonometric polynomials Tβ is dense in Cβ ] the uniqueness of the global
extrema for loops ωk,α ∈ Cβ ,

µ
(
ω ∈ �β

∣∣ ∃ unique τ ∈ Sβ : |ωk,α(τ )| = |ωk,α|Cβ

)= 1.(3.32)

This generalizes the well-known property of the oscillator bridge process γ ; see,
for example, [59].
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So, based on Proposition 2, instead of Euclidean Gibbs measures µ ∈ Gβ ini-
tially defined as random fields on the lattice Zd, we can just study probability
measures on �β satisfying the (IbP)-formula (3.23) with the prescribed logarith-
mic derivatives bhi

, i ∈ I. Let us stress that the bhi
only depend on the given

potentials V and W and, hence, are the same for all µ ∈ Gβ associated with the
heuristic Hamiltonian (2.2). Solutions µ ∈ Mb to the (IbP)-formula (3.23) will
also be called symmetrizing measures. For further connections to reversible diffu-
sion processes and Dirichlet operators in infinite dimensions we refer, for example,
to [9, 10, 15, 20, 21].

3.3. (IbP)-formula for the probability kernels of the local specification. As is
immediate to see from definitions (2.11), (2.12) and for classical lattice systems
already mentioned in [61], the following observation is true:

Measures π�(dω|ξ) are quasi-invariant w.r.t. the shifts ω �→ ω + θhi with the
same Radon–Nikodym derivatives as those for the corresponding Gibbs measures
µ ∈ Gβ . More precisely, for every θ ∈ R, ξ ∈ �β, � � Z

d and i = (k, n,α) ∈ I
with k ∈ �,

dπ�(ω + θhi |ξ)

dπ�(ω|ξ)
= aθhi

(ω) ∀ω ∈ �β

(
π�(dω|ξ)-a.e.

)
,(3.33)

or, equivalently, for all f ∈ L1(�β,π�(·|ξ)),∫
�β

f (ω)aθhi
(ω)π�(dω|ξ) =

∫
�β

f (ω − θhi)π�(dω|ξ).(3.34)

A reasoning similar to that used in the proof of Proposition 2 then shows that, for
every ξ ∈ �β, � � Z

d and i = (k, n,α) ∈ I with k ∈ �, the (IbP)-formula∫
�β

∂hi
f (ω)π�(dω|ξ) = −

∫
�β

f (ω)bhi
(ω)π�(dω|ξ)(3.35)

holds for all functions f ∈ C1
dec(�β;hi).

Suppose now that a sequence π�(N)(dω|ξ (N)), N ∈ N, where ξ (N) ∈ �β and
�(N) ↗ Zd as N → ∞, weakly converges on the metric space �β to some
probability measure µ∗ ∈ M(�β). Taking into account that aθhi

, bhi
∈ Cb,loc(�β)

and using the same approximation for f ∈ C1
dec(�β;hi) as in the proof of

Proposition 2, one can also pass to the limit in both sides of (3.34) and (3.35).
So, for any θ ∈ R and any direction hi, i = (k, n,α) ∈ I, we again have the flow
description (3.25) and the (IbP)-formula (3.23), which hold for µ := µ∗ and all
f ∈ C1

dec(�β ;hi). Combining these properties of µ∗ with Propositions 1 and 2,
we have thus proved the following:

PROPOSITION 3 (Thermodynamic limit points are Gibbs). Consider any
sequence of measures π�(N)(dω|ξ (N)), N ∈ N, where ξ (N) ∈ �β and �(N) ↗ Z

d
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as N → ∞. Then each of its accumulation points µ∗ ∈ M(�β) (w.r.t. the topology
of weak convergence of measures on the Polish space �β ), provided such exist, is
Gibbs.

In this way, the alternative characterization of Euclidean Gibbs measures
enables us to study the existence problem for µ ∈ Gβ just by showing the tightness
of the family of their probability kernels.

4. Proof of Theorems 1 and 2. Assumptions (V) and (W) on the asymptotic
behavior of the potentials V ∈ C2(Rd), W ∈ C2(Rd × Rd) imposed in Section 2
obviously imply the following global bounds:

(W∗) There exist R ≥ 2 and J, I ≥ 0 such that for all q, q ′ ∈ Rd holds∣∣∇(l)
q W(q, q ′)

∣∣(1 + |q|l + |q ′|l) ≤ J (|q|R + |q ′|R) + I, l = 0,1,2.

(V∗) The function V and its derivatives are polynomially bounded [i.e., there
exist R′ ≥ R such that

sup
q∈Rd

{∣∣∇(l)V (q)
∣∣(1 + |q|l)−R′}

< ∞, l = 0,1,2]

and, moreover, satisfy the coercivity estimate

(i)
(∇V (q), q

)≥ K−1|q|R + L−1
∑

l=1,2

∣∣∇(l)V (q)
∣∣(1 + |q|l ) − M

with some K,L,M > 0, uniformly for all q ∈ Rd . Additionally, the following
relation between the parameters holds:

(ii) � := 2dJKR < 1 and, hence, also �0 := 4dJK < 1.

Below we shall only use (V∗) and (W∗). So, Theorems 1 and 2, in fact, hold
under these much weaker conditions.

In order to control the properties of the logarithmic derivatives bhi
, we introduce

(conventionally in this paper) the following characteristic of the vector field ∇V .

DEFINITION 3. The functional

Cβ � φ �→ �(φ) := (∇V (φ),φ
)
L2

β
∈ R,(4.1)

is called the coercivity functional corresponding to the vector field Cβ � φ �→
∇V (φ) ∈ Cβ w.r.t. the tangent Hilbert space L

2
β.

Assumption V∗(ii) obviously implies the uniform lower boundedness of �, that
is, that

�̂(φ) := �(φ) + βM ≥ 0 ∀φ ∈ Cβ.(4.2)

Because of the identity Gβ = Mb, it is equivalent to prove the statements of our
main Theorems 1 and 2 for tempered measures µ ∈ Mt

b := Mb ∩ Mt
β. The proof

of Theorems 1 and 2 will be based on Lemmas 2–5.
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4.1. Integrability of LR
β -norms. As a first preliminary result we prove a priori

estimates in the spaces L
R
β .

LEMMA 2. Suppose that the parameters in Assumptions (V∗) and (W∗) satisfy
the following relation:

�0 := 4dJK < 1.(4.3)

Then, for every Q ≥ 1, there exists CQ ∈ (0,∞) such that a priori for all µ ∈ Mt
b,

sup
k∈Zd

∫
�β

|ωk|RQ

LR
β

dµ(ω) ≤ CQ.(4.4)

PROOF. We perform induction on Q ∈ N and, respectively, divide the proof
into several steps.

Step 1. Fix an arbitrary, but small enough δ ∈ (0, 1
2 ) such that

�δ := 2dJK(1 + eδ) + κdδ[1 + 2dK(1 + eδ)] < 1 − 2δ.(4.5)

In view of the definition (2.7) of �t
β , we introduce a sequence of weights γδ,k,

k ∈ Zd ,

γδ,k := exp(−δ|k|), |γδ|l1 := ∑
k∈Zd

γδ,k < ∞.

To get the required estimate (4.4) uniformly in k ∈ Zd , we endow the space �t
β

with the system of (mutually equivalent) norms ‖ · ‖δ,k0, k0 ∈ Zd ,

‖ω‖δ,k0 :=
[ ∑

k∈Zd

γδ,k−k0 |ωk|R
L

R
β

]1/R

≤ (
γδ,k0

)−1/R‖ω‖δ < ∞.(4.6)

Now let us take any measure µ ∈ Mt
b. For given Q ≥ 1, k ∈ Zd and α ∈

{1, . . . , d}, consider the following family of test functions on �t
β :

f (ω) := fτ,σ,ε(ω) := (‖ω‖δ,k0 + σ
)R(Q−1)

Fk,α(ω(τ ))Z−1
σ,ε(ω),

(4.7)
τ ∈ Sβ, σ, ε > 0,

where the mapping Fk,α :�β → Cβ is defined by (3.15). Here we set

Z(ω) := Zσ,ε(ω) := 1 + σ‖ω‖2RQ
δ,k0

+ ε|ωk|2R′Q
Cβ

(4.8)

with a large enough R′ ≥ R from Assumption (V∗). Then f ∈ C
1,±
dec (�t

β;hi) for
each i = (k, n,α) ∈ I. Hence, according to Remark 3 one can correctly apply to
such f and µ the extended version (3.30) of integration by parts in all (e.g., not
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necessarily basis) directions h ∈ �β of the form (3.2) with any 0 �= ϕ ∈ Tβ instead
of ϕn. By the chain rule, for all ω ∈ �t

β ,

∂±
h f (ω) = (‖ω‖δ,k0 + σ

)R(Q−1)[∂hFk,α(ω(τ ))]Z−1(ω)

+ R(Q − 1)
(‖ω‖δ,k0 + σ

)R(Q−1)−1

(4.9)
× [

∂±
h ‖ω‖δ,k0

]
Fk,α(ω(τ ))Z−1(ω)

− (‖ω‖δ,k0 + σ
)R(Q−1)

Fk,α(ω(τ ))[∂±
h Z(ω)]Z−2(ω).

Due to Young’s inequality and Assumptions (V∗) and (W∗), one has the following
bounds in the right-hand side of (4.9):

|ϕ|−1
Cβ

|∂±
h Z(ω)|Z−1(ω)

≤ 2QR′(σβ1/R‖ω‖2RQ−1
δ,k0

+ ε|ωk|2R′Q−1
Cβ

)
Z−1(ω)

(4.10)
≤ 2QR′(σ 1/2RQβ1/R + ε1/2R′Q)=: Zσ,ε =: Z → 0,

σ, ε → +0,

and

max
{|Fk,α(ω)|, |ϕ|−1

Cβ
|∂hFk,α(ω)|}

(4.11)

≤ δ

[ ∑
k′∈∂k

(|ωk|R + |ωk′ |R) + (∇V (ωk),ωk

)+ M

]
+ Iδ =: F̂δ,k(ω)

with some absolute constant Iδ > 0 (which could be calculated explicitly).
Substituting (4.9)–(4.11) into (3.30), we get that∫

�β

(‖ω‖δ,k0 + σ
)R(Q−1)

Fk,α(ω(τ ))(Aϕ,ωk,α)L2
β
Z−1 dµ

≤ |ϕ|Cβ

∫
�β

(‖ω‖δ,k0 + σ
)R(Q−1)−1

× [
(1 + Z)‖ω‖δ,k0 + β1/RR(Q − 1)

]
(4.12)

× F̂δ,k(ω(τ ))Z−1 dµ

−
∫
�β

(‖ω‖δ,k0 + σ
)R(Q−1)

Fk,α(ω(τ ))
(
Fk,α(ω),ϕ

)
L2

β
Z−1 dµ.

The last inequality obviously extends by continuity to arbitrary ϕ ∈ D(A).
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Step 2. Now we would like to replace ϕ in (4.13) by the Green function
Gτ := A−1δτ , τ ∈ Sβ , which is given by the well-known representation

Gτ (τ
′) := (A−1δτ )(τ

′) = ∑
n∈Z

λ−1
n ϕn(τ )ϕn(τ

′)

(4.13)
= κ

2

(
e(−a/

√
m )(β−ρ(τ,τ ′)) + e(−a/

√
m )ρ(τ,τ ′)), τ, τ ′ ∈ Sβ.

Here, for the sake of convenience, we introduce a parameter:

κ := [
2a

√
m
(
1 − e(−a/

√
m )β

)]−1
.(4.14)

Moreover, from (4.13) one easily gets the following regularity properties of
Gτ ∈ D(A1/2) := W

2,1
β to be crucially used below in the proofs of Lemmas 2–5:

|Gτ |Cβ
≤ κ, |Gτ − Gτ ′ |Cβ

≤ κ
a√
m

ρ(τ, τ ′) ∀ τ, τ ′ ∈ Sβ.(4.15)

To this end, we construct the (so-called Yosida) approximation of ϕτ := Gτ by
ϕ

(N)
τ ∈ D(A), N ∈ N,

ϕ(N)
τ := (1 + N−1A)−1

Gτ , lim
N→∞

∣∣ϕ(N)
τ − Gτ

∣∣
Cβ

= 0.(4.16)

Using the fact that A generates a contractive semigroup on Cβ, one can easily
check that for all ω ∈ �β ,

lim
N→∞

(
Aϕ(N)

τ ,ωk,α

)
L2

β
= ωk,α(τ ),

lim
N→∞

(
Fk,α(ω),ϕ(N)

τ

)
L2

β
= (

A−1Fk,α(ω)
)
(τ ),

(4.17)

with the uniform bounds∣∣(Aϕ(N)
τ ,ωk,α

)
L2

β

∣∣≤ |ωk|Cβ
,

∣∣(Fk,α(ω),ϕ(N)
τ

)
L2

β

∣∣≤ κ|Fk(ω)|
L

1
β
.(4.18)

Letting N → ∞ in (4.12) with ϕ
(N)
τ replacing ϕ, by (4.16)–(4.18) and Lebesgue’s

dominated convergence theorem we get that∫
�β

(‖ω‖δ,k0 + σ
)R(Q−1)

Fk,α(ω(τ ))ωk,α(τ )Z−1 dµ

≤ κ

∫
�β

(‖ω‖δ,k0 + σ
)R(Q−1)−1

× [
(1 + Z)‖ω‖δ,k0 + β1/RR(Q − 1)

]
(4.19)

× F̂δ,k(ω(τ ))Z−1 dµ

−
∫
�β

(‖ω‖δ,k0 + σ
)R(Q−1)

Fk,α(ω(τ ))
(
A−1Fk,α(ω)

)
(τ )Z−1 dµ.
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Next, we take the sum of (4.19) over all α and integrate them over τ ∈ Sβ. Simply
dropping the nonnegative term with (A−1Fk(ω),Fk(ω))

L2
β
, we obtain the estimate

∫
�β

(‖ω‖δ,k0 + σ
)R(Q−1)(

Fk(ω),ωk

)
L2

β
Z−1 dµ

≤ κd

∫
�β

(‖ω‖δ,k0 + σ
)R(Q−1)−1

(4.20) × [
(1 + Z)‖ω‖δ,k0 + β1/RR(Q − 1)

]
× |F̂δ,k(ω)|

L1
β
Z−1 dµ.

We note that, because of (4.3) and (4.10), the parameters δ, σ, ε > 0 in (4.20) can
be chosen so small that the following relation holds:

� := �δ,σ,ε := κdδ(1 + Zσ,ε)

< �δ,σ,ε[1 + 2dK(1 + eδ)](4.21)

+ 2dJK(1 + eδ) =: �δ,σ,ε < 1 − 2δ.

Step 3. In particular, for Q = 1, we have from (4.20), (4.21) and Assumptions
(V∗) and (W∗) that∫

�β

|ωk|R
L

R
β

Z−1 dµ ≤ K

∫
�β

�̂(ωk)Z
−1 dµ

≤ K(J + �)(1 − �)−1

(4.22)
×
∫
�β

∑
k′∈∂k

(|ωk|R
LR

β

+ |ωk′ |R
LR

β

)
Z−1 dµ

+ βK(M + 2dI + δ−1Iδ�)(1 − �)−1.

Letting first ε → +0 in (4.22) and then summing with the weights γδ,k−k0 over
k ∈ Zd , by Lebesgue’s dominated convergence theorem we find that∫

�β

‖ω‖R
δ,k0

Z−1
σ,0 dµ ≤ βK(2δ)−1|γδ|l1(M + 2dI + δ−1Iδ + 1) =: C1.(4.23)

Finally, letting σ → +0 in (4.23), by Fatou’s lemma we conclude that

sup
k0∈Zd

∫
�β

∣∣ωk0

∣∣R
LR

β
dµ(ω) ≤ sup

k0∈Zd

∫
�β

‖ω‖R
δ,k0

dµ(ω) ≤ C1(4.24)

and thus, getting back to (4.22),

sup
k0∈Zd

∫
�β

�̂
(
ωk0

)
dµ(ω) ≤ C1(δ

−1K−1 + 1) =: C1(�̂).(4.25)
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Step 4. Let us consider the general case of Q ≥ 2 provided it is already known
that

sup
k0∈Zd

∫
�β

‖ω‖R(Q−1)
δ,k0

dµ(ω) ≤ CQ−1 < ∞(4.26)

[as proved by (4.24) for Q = 2]. Analogously to deriving estimates (4.22)–(4.25),
we reduce (4.20) to∫

�β

‖ω‖R(Q−1)
δ,k0

|ωk|R
L

R
β

Z−1 dµ

≤
∫
�β

K‖ω‖R(Q−1)
δ,k0

�̂(ωk)Z
−1 dµ

≤ K(J + �)(1 − � − δ)−1

(4.27)
×
∫
�β

‖ω‖R(Q−1)
δ,k0

∑
k′∈∂k

(|ωk|R
L

R
β

+ |ωk′ |R
L

R
β

)
Z−1 dµ

+ IQ,δ

∫
�β

[
‖ω‖R(Q−1)

δ,k0

+ ∑
k′∈∂k

(|ωk|RLR
β

+ |ωk′ |R
LR

β

)+ �̂(ωk) + 1

]
dµ

with some constant IQ,δ > 0 which is independent of k, k0 ∈ Z
d . Again, letting

ε → +0 in (4.27) and then summing with the weights γδ,k−k0 over k ∈ Z
d, by

(4.24)–(4.26) and Lebesgue’s dominated convergence theorem we get that∫
�β

‖ω‖RQ
δ,k0

Z−1
σ,0 dµ(ω)

(4.28) ≤ δ−1IQ,δ|γδ|l1 [CQ−1 + 4dC1 + C1(�̂) + 1] =: CQ,δ =: CQ.

Thereafter, letting ε → +0 in (4.28), by Fatou’s lemma we readily obtain that

sup
k0∈Zd

∫
�β

|ωk0 |RQ

LR
β

dµ(ω) ≤ sup
k0∈Zd

∫
�β

‖ω‖RQ
δ,k0

dµ(ω) ≤ CQ.(4.29)

Hence, by induction the required estimate (4.4) is valid for all Q ≥ 1. �

Analogous a priori estimates hold also for the corresponding local Gibbs
specification.

LEMMA 3. Fix any boundary condition

ξ ∈ �t
β with sup

k∈Zd

|ξk|
L

R
β

=: cξ < ∞.(4.30)
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Then, under the assumptions of Lemma 2, for every Q ≥ 1 there exists CQ,ξ ∈
(0,∞) such that uniformly for all � � Zd ,

sup
k∈Zd

∫
�β

|ωk|RQ

L
R
β

π�(dω|ξ) ≤ CQ,ξ .(4.31)

PROOF. Setting µ(dω) := π�(dω|ξ) with arbitrary � � Zd, let us go step
by step through the proof of Lemma 2. Since ω�c = ξ�c (π�(dω|ξ)-a.e.) and
π�(dω|ξ) ∈ Mt

b,hi
provided k ∈ �, all the above formulas (4.19)–(4.21) are still

valid for such k. Now we take in (4.22) [resp. (4.27)] the weighted sum over all
k ∈ � and add the term Eµ(‖ω‖R(Q−1)

δ,k0
‖ξ�c‖δ,k0) to both sides of the resulting

inequality. If Q = 1, in a straightforward way one gets that

sup
k0∈Zd

∫
�β

∣∣ωk0

∣∣R
L

R
β
π�(dω|ξ)

≤ sup
k0∈Zd

∫
�β

‖ω‖R
δ,k0

π�(dω|ξ)(4.32)

≤ (2δ)−1|γδ|l1 [βK(M + 2dI + δ−1Iδ + 1) + cξ ] =: C1,ξ

and, thus,

sup
k0∈�

∫
�β

�̂
(
ωk0

)
π�(dω|ξ) ≤ C1,ξ (δ

−1K−1 + 1) =: C1,ξ (�̂)(4.33)

uniformly for all � � Zd . Thereafter, by induction over Q ∈ N, we conclude that

sup
k0∈Zd

∫
�β

∣∣ωk0

∣∣RQ

L
R
β

π�(dω|ξ)

≤ sup
k0∈Zd

∫
�β

‖ω‖RQ
δ,k0

π�(dω|ξ)

(4.34) ≤ δ−1IQ,δ|γ R
δ |l1

[
CQ−1,ξ + 4dC1,ξ + C1,ξ (�̂) + 1 + cξCQ−1,ξ I

−1
Q,δ

]
=: CQ,ξ ,

as was required. �

4.2. Integrability of the coercivity functional. Next, we strengthen the asser-
tions of Lemmas 1 and 2 by proving a priori integrability estimates for the coer-
civity functional �.

LEMMA 4. For fixed k ∈ Z
d, suppose that µ is a measure satisfying the (IbP)-

formula (3.30) along all directions hi, i = (k, n,α) with n ∈ Z and 1 ≤ α ≤ d, that
is,

µ ∈ ⋂
n∈Z,1≤α≤d

Mb,hi
,
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and, moreover, obeys the moment estimate

sup
k′∈{k}∪∂k

∫
�β

|ωk′ |RQ

LR
β

dµ(ω) ≤ CQ(4.35)

with some given Q ≥ 1 and CQ ∈ (0,∞). Under Assumptions (V∗) and (W∗),
(4.35) then implies the (even stronger) integrability property∫

�β

|�(ωk)|Q dµ(ω) ≤ CQ(�)(4.36)

with a uniform (i.e., independent of µ and k) constant CQ(�) ∈ (0,∞).

PROOF. We proceed in much the same way as in the proof of Lemma 2 and
keep all the notation used there. For 1 ≤ α ≤ d and 0 �= ϕ ∈ Tβ, let us perform
integration by parts w.r.t. µ along the corresponding direction h ∈ �β, but for a
suitable family of test functions g on �t

β, namely those of type,

g(ω) := gτ,ε(ω) := (
�̂(ωk) + ε

)Q−1
Fk,α(ω(τ ))Z−1

ε (ω),

(4.37)
τ ∈ Sβ, ε > 0.

Since |ωk|QR

L
R
β

∈ L1(µ), in definition (4.8) one can already set σ = 0 so that

Z(ωk) := Zε(ωk) := 1 + ε|ωk|2R′Q
Cβ

and

|ϕ|−1
Cβ

|∂±
h Z(ωk)|Z−1(ωk) ≤ 2ε1/(2R′Q)R′Q =: Zε := Z → 0,(4.38)

ε → +0.

Next, we choose small enough δ, ε ∈ (0,1) so that

� := �δ,ε := κdδ[1 + L(Q − 1) + Zε] < 1 − δ.(4.39)

The corresponding derivatives

∂±
h g(ω) = (

�̂(ωk) + ε
)Q−1[∂hFk,α(ω(τ ))]Z−1(ωk)

+ (Q − 1)
(
�̂(ωk) + ε

)Q−2[∂h�̂(ωk)]Fk,α(ω(τ ))Z−1(ωk)(4.40)

− (
�̂(ωk) + ε

)Q−1
Fk,α(ω(τ ))[∂±

h Z(ωk)]Z−2(ωk)

can be obviously estimated by means of (4.11), (4.38) and the following bound in
the right-hand side of (4.40):

|ϕ|−1
Cβ

|∂h�̂(ωk)| ≤ |∇V (ωk)|L1
β

+ ∣∣(∇(2)V (ωk)
)
ωk

∣∣
L1

β
≤ L�̂(ωk).
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Hence, the (IbP)-formula (3.30) implies that∫
�β

(
�̂(ωk) + ε

)Q−1
Fk,α(ω(τ ))(Aϕ,ωk,α)L2

β
Z−1 dµ

≤ |ϕ|Cβ
[1 + L(Q − 1) + Z]

∫
�β

(
�̂(ωk) + ε

)Q−1
F̂δ,k(ω(τ ))Z−1 dµ

−
∫
�β

(
�̂(ωk) + ε

)Q−1
Fk,α(ω(τ ))

(
Fk,α(ω),ϕ

)
L2

β
Z−1 dµ.

Taking for ϕ the Green function Gτ := A−1δτ and integrating over τ ∈ Sβ [cf. the
arguments (4.16)–(4.20)], we arrive at the estimate

(1 − �)

∫
�β

(
�̂(ωk) + ε

)Q
Z−1 dµ

≤ (J + �)

∫
�β

(
�̂(ωk) + ε

)Q−1 ∑
k′∈∂k

(|ωk|RLR
β

+ |ωk′ |R
LR

β

)
Z−1 dµ

+ β(M + 2dI + δ−1Iδ� + ε)

∫
�β

(
�̂(ωk) + ε

)Q−1
Z−1 dµ.

Then by Hölder’s inequality it immediately follows that

(1 − �)

{∫
�β

(
�̂(ωk) + ε

)Q
Z−1 dµ

}1/Q

≤ (J + �)

{∫
�β

[ ∑
k′∈∂k

(|ωk|R
L

R
β

+ |ωk′ |R
L

R
β

)]Q

dµ

}1/Q

+ β(M + 2dI + δ−1Iδ� + ε).

Letting ε → +0, we conclude by (4.39) and Fatou’s lemma that

sup
k∈Zd

∫
�β

[�̂(ωk)]Q dµ(ω)

≤ δ−Q[4dC
1/Q
Q (J + 1) + β(M + 2dI + δ−1Iδ)

]Q =: CQ(�̂),

(4.41)

which in turn yields the required estimate (4.36). �

COROLLARY 2. Under the assumptions of Lemma 4,∫
�β

|Fk(ωk)|Q
L

1
β

dµ(ω) ≤ CQ(F ) < ∞.(4.42)

PROOF. The statement follows immediately from (4.35), (4.36) and Assump-
tions (V∗) and (W∗). �
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4.3. Kolmogorov type moment estimates. This is the crucial step toward the
proof of Theorems 1 and 2.

LEMMA 5. For given k ∈ Z
d , let the measure

µ ∈ ⋂
n∈N,1≤α≤d

Mb,hi
, i = (k, n,α) ∈ I,

be such that ∫
�β

|Fk(ωk)|2Q

L
1
β

dµ(ω) ≤ C2Q(F )(4.43)

with some fixed Q ∈ N and C2Q(F ) ∈ (0,∞). Then (4.43) implies the moment
estimates ∫

�β

|ωk(τ ) − ωk(τ
′)|2Q dµ(ω) ≤ �K2Q · ρQ(τ, τ ′),(4.44)

∫
�β

|ωk(τ )|2Q dµ(ω) ≤ K2Q(4.45)

for all τ, τ ′ ∈ Sβ and with uniform (i.e., independent of µ and k) constants �K2Q,

K2Q ∈ (0,∞).

PROOF. The proof of Lemma 5 follows the same pattern as in Lemmas 2–4. In
order to prove (4.44), let us consider the following family of test functions on �t

β :

f (ω) := fτ,τ ′,ε(ω) := [�ωk,α]2Q−1Z−1(ωk), τ, τ ′ ∈ Sβ, ε > 0,(4.46)

where we set

�ωk := �ωk(τ, τ ′) := ωk(τ ) − ωk(τ
′),

Z(ωk) := Zε(ωk) := 1 + ε|ωk|2Q
Cβ

.

Since we already know that |Fk|L1
β

∈ L1(µ), one can apply the (IbP)-formula

(3.30) to such f in all directions, h ∈ �β of the form (3.2) with any ϕ ∈ Tβ ,
instead of the basis vectors ϕn. The partial derivatives

∂±
h f (ω) = (2Q − 1)|�ωk,α|2Q−2[ϕ(τ ) − ϕ(τ ′)]Z−1(ωk)

− 2εQ[�ωk,α]2Q−1|ωk|2Q−1
Cβ

[
∂±
ϕ |ωk,α|Cβ

]
Z−2(ωk)

can be uniformly estimated for all ε > 0 by

|∂±
h f (ω)| ≤ 8Q|ϕ|Cβ

|�ωk,α|2Q−2Z−1(ωk).(4.47)
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Thus, combining (3.18), (4.46) and (4.47), we get that∫
�β

[�ωk,α]2Q−1(Aϕ,ωk,α)
L2

β

Z−1 dµ

(4.48)
≤ |ϕ|Cβ

∫
�β

[
8Q|�ωk,α|2Q−2 + |�ωk,α|2Q−1|Fk(ω)|

L1
β

]
Z−1 dµ.

Substituting �ϕτ,τ ′ := Gτ − Gτ ′ for ϕ in (4.48), we find that∫
�β

|�ωk,α|2QZ−1 dµ

≤ |Gτ − Gτ ′ |Cβ

∫
�β

[
8Q|�ωk,α|2Q−2 + |�ωk,α|2Q−1|Fk(ω)|

L
1
β

]
Z−1 dµ.

Therefore, by Hölder’s inequality,(∫
�β

|�ωk,α|2QZ−1 dµ

)1/Q

≤ |Gτ − Gτ ′ |Cβ

[
8Q + C

1/Q
2Q (F ) +

(∫
�β

|�ωk,α|2QZ−1 dµ

)1/2Q]
,

which obviously implies(∫
�β

|�ωk|2QZ−1 dµ

)1/2Q

≤ d|Gτ − Gτ ′ |1/2
Cβ

[
(8Q)1/2 + |Gτ − Gτ ′ |1/2

Cβ
[C2Q(F )]1/2Q].

Finally, letting ε → +0 and using the Lipschitz-continuity of the Green func-
tion Gτ [cf. (4.15)], we obtain the required estimate∫

�β

|�ωk(τ, τ ′)|2Q dµ ≤ �K2Q · ρQ(τ, τ ′)

with the constant

�K2Q :=
(

4d2k
a√
m

)Q[
(8Q)Q +

(
βκ

a√
m

)Q

C2Q(F )

]
.(4.49)

The proof of estimate (4.45) is analogous except that one should start from the
test functions

g(ω) := gτ,ε(ω) := [ωk,α(τ )]2Q−1Z−1(ωk), τ ∈ Sβ, ε > 0.(4.50)

After integrating by parts with these test functions and substituting Gτ for ϕ, we
get that∫

�β

|ωk,α(τ )|2QZ−1 dµ

≤ |Gτ |Cβ

∫
�β

[
4Q|ωk,α(τ )|2Q−2 + |Fk(ω)|

L
1
β
|ωα

k (τ )|2Q−1]Z−1 dµ.
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Letting ε → +0 by Fatou’s lemma the latter implies the required estimate, that is,∫
�β

|ωk(τ )|2Q dµ ≤ (4d2κ)Q
[
(4Q)Q + κQC2Q(F )

]=: K2Q.(4.51) �

REMARK 4. Contrary to the previous Lemmas 2–4, the coercivity property
of ∇V is no more needed for the proof of Lemma 5. In fact, the result only depends
on the regularity properties of the Green function Gτ of the elliptic operator A.

4.4. Proofs of Theorems 1 and 2. Having shown for µ ∈ Mt
b the a priori

estimates from the lemmas above, we are able to prove immediately the main
Theorems 1 and 2.

PROOF OF THEOREM 2. Consecutively applying Lemmas 2, 4 and 5 to µ ∈
Gt

β = Mt
b, we get the following uniform estimates with finite �K2Q, K2Q > 0∫

�β

|ωk(τ ) − ωk(τ
′)|2Q dµ(ω) ≤ �K2Q|τ − τ ′|Q,(4.52)

∫
�β

|ωk(τ )|2Q dµ(ω) ≤ K2Q.(4.53)

Now we employ a standard argument related to Kolmogorov’s continuity criterion.
More precisely, using the Garsia–Rodemich–Rumsey lemma (see, e.g., in [23],
Section 3), one can deduce from (4.52) that

sup
µ∈Gt

β

sup
k∈Zd

∫
�β

sup
τ �=τ ′

[ |ωk(τ ) − ωk(τ
′)|

ρη(τ, τ ′)

]Q

dµ(ω) < ∞,(4.54)

for all Q > 2 and η ∈ [0, 1
2 − 1

Q
). When Q → ∞, both (4.53) and (4.54) give us

the required regularity of µ ∈ Gt
β , namely that

µ
([Cη

β]Zd )= 1 and sup
µ∈Gt

β

sup
k∈Zd

∫
�β

|ωk|Q
C

η
β

dµ(ω) < ∞,(4.55)

for all Q ≥ 1 and η ∈ [0, 1
2 ). �

PROOF OF THEOREM 1. Let Q > 2 and η ∈ (0, 1
2 − 1

Q
), and fix any boundary

condition ξ ∈ �t
β with supk∈Zd |ξk|Cη

β
< ∞ (for instance, one can take ξ = 0).

Applying Lemmas 3–5 to the probability kernels π�(dω|ξ) ∈ Mt
b,hi

, provided
i = (k, n,α) ∈ I and k ∈ �, we get the following moment estimates with finite
�K2Q,ξ , K2Q,ξ > 0:∫

�β

|ωk(τ ) − ωk(τ
′)|2Qπ�(dω|ξ) ≤ �K2Q,ξ |τ − τ ′|Q,(4.56)

∫
�β

|ωk(τ )|2Qπ�(dω|ξ) ≤ K2Q,ξ(4.57)
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uniformly for all � � Zd . By the same arguments as those used in the proof of
Theorem 2, (4.56) and (4.57) together imply that

sup
��Zd

sup
k∈Zd

∫
�β

|ωk|Q
C

η
β

π�(dω|ξ) < ∞.(4.58)

From (4.58) we conclude, using Prokhorov’s criterion and the compactness of

the embedding of C
η
β into C

η′
β when 0 ≤ η′ < η, that the family of distributions

{π�(dω|ξ}��Zd is tight on the Polish space �β . So, there exists a sequence
π�(N)(dω|ξ), N ∈ N, which converges weakly on �β , as �(N) ↗ Z

d , to some
probability measure µ∗ ∈ M(�β). This means by Proposition 3 that µ∗ ∈ Mb =
Gβ . But, in fact, by (4.58) supk∈Zd Eµ∗ |ωk|QCβ

< ∞, and thus, by Remark 2

µ∗ ∈ Gt
β. �

PROOF OF COROLLARY 1. The assertion follows from estimates (4.56) and
(4.57) similarly as in the proof of Theorem 1. �

REMARK 5. (i) Coercivity assumptions on potentials like V∗(i) are standardly
used in mathematical physics, especially when one studies stability properties
of dynamical systems (for more concrete applications to the infinite-dimensional
SDEs see, e.g., [24, 30]). If the initial estimate (V) holds with some P > R, then
so does V∗(i) with arbitrary small K > 0. Moreover, it is easy to show that V∗(i)
implies that the potential V grows strongly enough: for any K1 > K there exists
M1 := M1(K1) > 0 such that for all q ∈ Rd ,

V (q) ≥ K−1
1 R−1|q|R − M1.(4.59)

(ii) Roughly speaking, our assumptions mean that the pair interaction is
dominated by the single-particle one (so-called lattice stabilization). At first,
� < 1 guarantees by (4.59) the semiboundedness from below of the interaction
in all finite volumes � � Zd , and thus, the well-definedness of the corresponding
Gibbs specifications π� (cf. Section 2.3). Secondly, V∗(ii) ensures that also
�0 < 1, which was crucial for our proof of the a priori estimates for symmetrizing
measures on loop spaces. In fact, from the potential V one can always extract the

quadratic term a2

2 |qk|2 with a small a2 > 0, so that V∗(ii) is still true.

5. Possible generalizations and concluding remarks.

(i) Existence of superstable Gibbs states. According to its definition (2.15),
Gt

β contains a class Gsst
β of so-called Ruelle type “superstable” Gibbs measures,

which (for the particular case R = 2) has been introduced in [57] as those measures
satisfying the following support condition

sup
N∈N

{
(1 + 2N)−d

∑
|k|≤N

|ωk|2
L

2
β

}
≤ C(ω) < ∞ ∀ω ∈ �β (µ-a.e.).(5.1)
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On the other hand, by an obvious modification of the arguments used in the
proof of Theorem 1, one can also construct periodic Euclidean Gibbs measures
µper ∈ Gt

β which are invariant w.r.t. the group of translations of the lattice Zd . But
for any measure µ ∈ M(�β), which is translation invariant and satisfies the a
priori estimates (2.16), the support condition [even stronger than (5.1)] holds for
all Q ≥ 1 and η ∈ [0, 1

2 ), namely,

sup
N∈N

{
(1 + 2N)−d

∑
|k|≤N

|ωk|Q
C

η
β

}
≤ CQ,η(ω) < ∞ ∀ω ∈ �β (µ-a.e.).(5.2)

The latter follows from the Birkhoff–Khinchin ergodic theorem applied to the
stationary process ωk, k ∈ Zd, on the probability space (�β,B(�β),µ). This
means that we can refine the statement of Theorem 1, claiming the existence of
µ ∈ Gsst

β satisfying the support condition (5.1).
(ii) Generalization to many-particle interactions with possibly infinite range

and infinite order. Our results generalize to quantum lattice systems with (not
necessarily translation-invariant) many-particle interactions. Such systems are
described by the heuristic infinite-dimensional Hamiltonian

H = ∑
k∈Zd

Hk +
N∑

n=2

∑
{k1,...,kn}⊂Zd

W{k1,...,kn}(qk1, . . . , qkn),(5.3)

where the n-particle interaction potentials, taken over all finite sets {k1, . . . , kn} ⊂
Zd with n = 2, . . . ,N and N ∈ N ∪ {+∞}, are given by twice continuously dif-
ferentiable symmetric functions W{k1,...,kn} ∈ C2(Rdn → R). Then the statements
of Theorems 1 and 2 for corresponding Euclidean Gibbs measures still hold under
Assumptions (V) and (W∗∗), where (W∗∗) is the following modification of (W∗):

(W∗) There exist R ≥ 2, I ≥ 0 and symmetric matrices {Jk1,...,kn}(k1,...,kn)∈Znd

with positive entries, such that for all n ≤ N, {k1, . . . , kn} ⊂ Zd and q1, . . . ,qn ∈ Rd ,

(i)

∣∣∇(l)
q1

W{k1,...,kM }(q1, . . . , qn)
∣∣(1 +

n∑
m=1

|qm|l
)

≤ Jk1,...,kn

n∑
m=1

|qm|R + I,

l = 0,1,2.

Moreover, the matrices {Jk1,...,kn}(k1,...,kn)∈Zdn , n = 2, . . . ,N, are exponentially
fastly decreasing, that is, for any δ > 0,

(ii) ‖J‖δ :=
N∑

n=2

nR sup
k1∈Zd

{ ∑
{k2,...,kn}⊂Zd

Jk1,...,kn exp

(
δ

n∑
m=1

|k1 − km|
)}

< ∞.

The proofs are as before (at least in spirit). For details we refer to the forthcoming
paper [7].
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APPENDIX

Here we briefly illustrate the connection between quantum states and measures
on loop spaces following the initial paper [1]; for a more extended discussion we
refer, for example, to [3, 7, 40, 47, 51]. Let us start with the one-particle case.
Due to Assumption (V), for each k ∈ Zd , the Hamiltonian Hk is a self-adjoint
operator with trace class semigroup e−τHk , τ ≥ 0. On the algebra Ak := L(Hk)

of all bounded linear operators in Hk , we may then define the (time-evolution)
authomorphism group αθ,k, θ ∈ R, and the quantum Gibbs state Gβ,k acting,
respectively, by

αθ,k(B) := eiθHkBe−iθHk ,

Gβ,k(B) := Tr
(
Be−βHk

)/
Tr
(
e−βHk

)
, B ∈ Ak.

For any finite set of multiplication operators (Bi)
n
i=1 ∈ L∞(Rd), we construct the

so-called temperature (or Euclidean) Green functions

�
B1,...,Bn

β,k (τ1, . . . , τn) := TrHk

(
n∏

i=1

e−(τi+1−τi)HkBi

)/
Tr
(
e−βHk

)
,

(6.1)
0 ≤ τ1 ≤ · · · ≤ τn ≤ τn+1 := τ1 + β.

These functions have analytic continuations to the complex domain{
(zi := τi + iθi )

n
i=1 ⊂ C

n | 0 < τ1 < · · · < τn < β
}

with the boundary values

�
B1,...,Bn

β,k (−iθ1, . . . ,−iθn) = Gβ,k

(
n∏

i=1

αθi,k(Bi)

)
.(6.2)

Since the algebra spanned by the operators αθi,k(Bi) is dense in Ak, (6.2) fully
determines the Gibbs state Gβ,k. A crucial observation is that the Green functions
(6.1) may be represented (by the Feynman–Kac formula) as the moments

�
B1,...,Bn

β,k (τ1, . . . , τn) = Eµk

(
n∏

i=1

Bi(ωk(τi))

)
(6.3)

of a certain probability measure µk on the loop space

Cβ := {
ωk ∈ C

([0, β] → R
d) ∣∣ ωk(0) = ωk(β)

}
.(6.4)

More precisely (for simplicity putting here m = 1 and a = 0),

dµk(ωk) = 1

Z
E

(x,x)
β

{
− exp

∫ β

0
V (ωk(τ )) dτ

}
dx,(6.5)

where Z is a normalization constant and E
(x,x)
β is the conditional expectation,

given that ωk(0) = ωk(β) = x, w.r.t. the Brownian bridge process of length β
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in Rd (cf. [65]). So, we get a one-to-one correspondence between the quantum
Gibbs state Gβ,k on the algebra Ak , Euclidean Green functions (6.1) and the
measure µk on the loop space Cβ. Moreover, for all local Hamiltonians H�

in volumes � � Zd , relations similar to (6.1)–(6.3) are valid for the associated
Gibbs states Gβ,� on the algebra A� := L(H�) and the measures µ� on the
loop space [Cβ ]�. This gives a possible way to construct the limiting states
when � ↗ Zd, and, hence, motivates us to consider the set Gβ of all Gibbs
measures µ on the “temperature loop lattice” �β := [Cβ ]Zd

, as a natural set of
states which for sure contains all accumulation points for {µ�}��Zd . What is
important, is the nontrivial fact that (analogously to the well-known Osterwalder–
Schrader reconstruction theorem in Euclidean field theory, see, e.g., [34, 39, 64])
from each such Gibbs measure µ it is possible to reconstruct (in a certain sense
even uniquely) the quantum Gibbs state Gβ of the system (2.2) on the algebra of
local observables Aloc :=⋃

��Zd A�. For the above reasons the measures µ ∈ Gβ

are called Euclidean Gibbs states (in the temperature loop space representation)
for the quantum lattice system (2.2).
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