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We prove a large deviation principle for the finite-dimensional mar-
ginals of the Gibbs distribution of the macroscopic “overlap” parameters
in the Hopfield model in the case where the number of random “patterns”
M, as a function of the system size N, satisfies lim supM�N�/N = 0. In
this case, the rate function is independent of the disorder for almost all
realizations of the patterns.

1. Introduction. Mean field models in statistical mechanics furnish nice
examples for the interpretation of thermodynamics as the theory of large de-
viation for Gibbs measures of microscopically defined statistical mechanics
systems [9]. Roughly speaking, in such models the Hamiltonian is only a func-
tion of (extensive) “macroscopic” quantities (density, magnetization, etc.) of the
system. In the thermodynamic limit, the distribution of these quantities is ex-
pected to be concentrated on a sharp value and to satisfy a large deviation
principle. The corresponding rate functions are then the thermodynamic po-
tentials (free energy, pressure) that govern the macroscopic response of the
system to external (intensive) conditions. The classical paradigm of the the-
ory is that the number of relevant macroscopic variables is excessively small
(order of 10) compared to the number of microscopic variables (order of 1023).

Over the last decade, the formalism of statistical mechanics and thermody-
namics has found increasing applications in systems in which the macroscopic
behaviour is far more complex and described by a “large’ number of variables.
Such systems can be found in biology (heteropolymers, neural networks), but
also in the domain of disordered solids and, in particular, spin glasses. Some
fundamental aspects of these ideas are discussed in an interesting recent pa-
per by Parisi [17]. For such systems, many basic problems are not very well
understood, and many technical aspects defy a mathematical investigation at
the present time. An interesting toy model (that nonetheless also has practi-
cal relevance) where this situation can be studied and for which mathematical
results are available is the Hopfield model [11, 18, 19]. This model is a mean
field spin system in the sense explained above. However, the Hamiltonian,
instead of being a function of a few macroscopic variables is a function of
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macroscopic variables that are random functions of the microscopic ones, and
those number tends to infinity with the size of the system in a controllable
way. More specifically, the model is defined as follows.

Let SN ≡ �−1;1�N denote the set of functions σ : �1; : : : ;N� → �−1;1� and
set S ≡ �−1;1�N. We call σ a spin configuration and denote by σi the value
of σ at i. Let ��;F ;P� be an abstract probability space and let ξµi , i; µ ∈ N,
denote a family of independent identically distributed random variables on
this space. For the purposes of this paper we will assume that P�ξµi = ±1� = 1

2 ,
but more general distributions can be considered. We will write ξµ�ω� for the
N-dimensional random vector whose ith component is given by ξµi �ω� and call
such a vector a pattern. On the other hand, we use the notation ξi�ω� for
the M-dimensional vector with the same components. M will be chosen as a
function of N and the function M�N� is an important parameter of the model.
We will generally set α ≡ α�N� ≡ �M�N��/N. When we write ξ�ω� without
indices, we frequently will consider it as an N×M matrix and we write ξt�ω�
for the transpose of this matrix. Thus, ξt�ω�ξ�ω� is the M×M matrix whose
elements are

∑N
i=1 ξ

µ
i �ω�ξνi �ω�. With this in mind, we will use throughout the

paper a vector notation with �·; ·� standing for the scalar product in whatever
space the argument may lie. For example, the expression �y; ξi� stands for∑M
µ=1 ξ

µ
i yµ and so forth.

We define random maps mµ
N�ω�: SN → �−1;1� through

m
µ
N�ω��σ� ≡

1
N

N∑
i=1

ξ
µ
i �ω�σi:(1.1)

(We will make the dependence of random quantities on the random parame-
ter ω explicit by an added �ω� whenever we want to stress it; otherwise, we
will frequently drop the reference to ω to simplify the notation.) Naturally,
these maps “compare” the configuration σ globally to the random configura-
tion ξµ�ω�. A Hamiltonian is now defined as the simplest negative function of
these variables, namely,

HN�ω��σ� ≡ −
N

2

M�N�∑
µ=1

(
m
µ
N�ω��σ�

)2
;(1.2)

where M�N� is some, generally increasing, function that crucially influences
the properties of the model. With � · �2 denoting the l2-norm in RM, (1.2) can
be written in the compact form

HN�ω��σ� = −
N

2
�mN�ω��σ��22 :(1.3)

Through this Hamiltonian we define, in a natural way, finite volume Gibbs
measures on SN via

µN;β�ω��σ� ≡
1

ZN;β�ω�
exp�−βHN�ω��σ��(1.4)
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and the induced distribution of the overlap parameters via

QN;β�ω� ≡ µN;β�ω� ◦mN�ω�−1:(1.5)

The normalizing factor ZN;β�ω�, given by

ZN;β�ω� ≡ 2−N
∑
σ∈SN

exp�−βHN�ω��σ�� ≡ Eσ exp�−βHN�ω��σ��;(1.6)

is called the partition function.
This model has been studied very heavily in the physics literature. As a ba-

sic introduction to what is commonly believed about its properties, we refer to
the seminal paper by Amit, Gutfreund and Sompolinsky [1]. Over the last few
years, a considerable amount of mathematically rigorous results on these mea-
sures has been established [3–6, 10, 12–14, 16, 20, 22]. It is known that under
the hypothesis that lim supN↑∞M�N�/N = 0, weak limits can be constructed
for which the QN converge to Dirac measures in R∞ [4]. Disjoint weak limits
have also been constructed in the case where lim supN↑∞M�N�/N = α > 0,
for small α in [6]. In this note we restrict our attention to the case α = 0 and
the question to what extent a large deviation principle (LDP) for the distribu-
tion of the macroscopic overlaps can be proven.

A first step in this direction had been taken already in [5]. There, a LDP
was proven, but only under the restrictive assumption M�N� < lnN/ ln 2,
while only a weaker result concerning the existence of the convex hull of the
rate function was proven in the general case α = 0 in a rather indirect way.
The first LDP in the Hopfield model was proven earlier by Comets [7] for the
case of a finite number of patterns. Here we prove a LDP under more natural,
and probably optimal, assumptions.

Since the overlap parameters form a vector in a space of unbounded dimen-
sion, the most natural setting for a LDP is to consider the finite-dimensional
marginals. Let I ⊂ N be a finite set of integers, let RI ⊂ RN denote the cor-
responding subspace and, finally, let 5I denote the canonical projection from
RJ onto RI for all J ⊂ N such that I ⊂ J. Without loss of generality, we can
and will assume in the sequel that I = �1; : : : ; �I��. Let us introduce the maps
np: �−1;1�2p → �−1;1�p through

np�y� ≡ 2−p
2p∑
γ=1

eγyγ;(1.7)

where eγ, γ = 1; : : : ;2p, is some enumeration of all 2p vectors in Rp whose
components take values ±1 only. Given I ⊂ N, we define the set D�I� as the
set

D�I� ≡ �m ∈ R�I� � ∃y ∈ �−1;+1�2�I� : n�I��y� =m�:(1.8)

Theorem 1. Assume that lim supN↑∞�M/N� = 0. Then for any finite I ⊂ N
and for all 0 < β < ∞; the family of distributions QN;β�ω� ◦ 5−1

I satisfies a
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LDP for almost all ω ∈ � with rate function FI
β given by

FI
β�m̃� = − sup

p∈N
sup

y∈�−1;1�2p
5Inp�y�=m̃

[
1
2�np�y��22 − β−12−p

2p∑
γ=1

I�yγ�
]

+ sup
y∈R

( 1
2y

2 − β−1I�y�
)
;

(1.9)

where

I�y� ≡





1+ y
2

ln�1+ y� + 1− y
2

ln�1− y�; if �y� ≤ 1;

+∞; otherwise;

(1.10)

FI
β is lower semicontinuous, Lipshitz continuous on the interior of D�I�,

bounded on D�I� and equal to +∞ on Dc
�I�.

Remark. Note that FI
β is not convex in general.

To prove Theorem 1 we will define, for m̃ ∈ RI,

FI
N;β; ε�m̃� ≡ −

1
βN

lnµN;β�ω���5ImN�σ� − m̃�2 ≤ ε�(1.11)

and show that (i) if m̃ ∈ D�I�, then

lim
ε↓0

lim
N↑∞

FI
N;β; ε�m̃� = FI

β�m̃�(1.12)

almost surely and (ii) if m̃ ∈ Dc
�I�, then

lim
ε↓0

lim
N↑∞

FI
N;β; ε�m̃� = +∞(1.13)

almost surely.
From these two equations it follows from standard arguments (see, e.g., [8])

that for almost all ω, for all Borel sets A ⊂ B�RI�,

− inf
m̃∈int A

FI
β�m̃� ≤ lim inf

N↑∞
1
βN

ln QN;β�ω� ◦5−1
I �A �

≤ lim sup
N↑∞

1
βN

ln QN;β�ω� ◦5−1
I �A � ≤ − inf

m̃∈cl A
FI
β�m̃�;

(1.14)

where int A and cl A denote the interior and the closure of the set A , respec-
tively. The properties of the rate function will be established directly from its
explicit form (1.9).

An important feature is that the rate function is nonrandom. This means
that under the conditions of the theorem, the thermodynamics of this dis-
ordered system is described in terms of completely deterministic potentials.
From the thermodynamic point of view discussed above, this is an extremely
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satisfactory result. Namely, in these terms it means that although the Hamil-
tonian of our model is a function of an unbounded number of random macro-
scopic quantities, we may select any finite subset of these in which we may be
interested and can be assured that there will exist, with probability 1, in the
infinite volume limit, thermodynamic potentials that are functions of these
variables only and which are, moreover, completely deterministic. The sole
condition for this to hold is that the number of macroscopic variables goes to
infinity with a sublinear rate.

In the remainder of this article we will present the proof of Theorem 1.
There will be three important steps. First, we prove large deviation estimates
for the mass of small balls in RM, using fairly standard techniques. The result-
ing bounds are expressed in terms of a certain random function. The crucial
step is to show that in a strong sense this function is “self-averaging.” The proof
of this fact uses the Yurinskii [24] martingale representation and exponential
estimates. These are finally combined to obtain deterministic estimates on
cylinder events from which the convergence result (1.12) then follows rather
easily.

2. The basic large deviation estimates. In this section we recall expo-
nential upper and lower bounds that have already been derived in [5]. They
provide the starting point of our analysis. Let us consider the quantities

ZN;β; ρ�ω��m� ≡ µN;β�ω���mN�σ� −m�2 ≤ ρ�ZN;β�ω�:(2.1)

We first prove a large deviation upper bound.

Lemma 2.1.

1
βN

lnZN;β; ρ�m� ≤ 8N;β�m� + ρ
(
�t∗�2 + �m�2 +

ρ

2

)
;(2.2)

where

8N;β�m� ≡ inf
t∈RM

9N;β�m; t�(2.3)

with

9N;β�m; t� ≡ −�m; t� +
1
2
�m�22 +

1
βN

N∑
i=1

ln coshβ�ξi; t�(2.4)

and t∗ ≡ t∗�m� is defined through 9N;β�m; t∗�m�� = inf t∈RM 9N;β�m; t�, if
such a t∗ exists, while otherwise �t∗� ≡ ∞.

Proof. Note that for arbitrary t ∈ RM,

|��mN�σ�−m�2≤ρ� ≤ |��mN�σ�−m�2≤ρ� exp�βN�t; �mN�σ� −m�� + ρβN�t�2�:(2.5)
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Thus

ZN;β; ρ�m� = Eσ exp
(
βN

2
�mN�σ��22

)
|��mN�σ�−m�2≤ρ�

≤ inf
t∈RM

Eσ exp
(
βN

1
2
��m�22 + 2ρ�m�2 + ρ2�

)

× exp�βN�t; �mN�σ� −m�� + βNρ�t�2�

≤ inf
t∈RM

exp
(
βN

[
1
2
�m�22 − �m; t� +

1
βN

N∑
i=1

ln cosh�β�ξi; t��
])

× exp
(
βNρ

(
�m�2 + �t�2 +

ρ

2

))
:

(2.6)

This gives immediately the bound of Lemma 2.1. 2

Remark. Note that if a finite t∗�m� exists, then it is the solution of the
system of equations

mµ = 1
N

N∑
i=1

ξ
µ
i tanhβ�ξi; t�:(2.7)

Next we prove a corresponding lower bound.

Lemma 2.2. For ρ ≥
√

2�M/N�, we have that

1
βN

lnZN;β; ρ�m� ≥ 8N;β�m� − ρ
(
�m�2 + �t∗�m��2 −

ρ

2

)
− ln 2
βN

;(2.8)

where the notations are the same as in Lemma 2.1.

Proof. The technique to prove this bound is the standard one to prove a
Cramér-type lower bound (see, e.g., [23]). It is of course enough to consider
the case where �t∗�2 <∞. We define, for t∗ ∈ RM, the probability measures P̃
on �−1;1�N through their expectation Ẽσ , given by

Ẽσ�·� ≡
Eσ exp�βN�t∗;mN�σ����·�
Eσ exp�βN�t∗;mN�σ���

:(2.9)
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We have obviously that

ZN;β; ρ�m� = Ẽσ exp
(
βN

2
�mN�σ��22 − βN�t∗;mN�σ��

)
|��mN�σ�−m�2≤ρ�

× Eσ exp�βN�t∗;mN�σ���

≥ exp
(
−βN�t∗;m� − βN

(
ρ�t∗�2 −

1
2
�m�22 + ρ�m�2 −

ρ2

2

))

× Eσ exp�βN�t∗;mN�σ���Ẽσ|��mN�σ�−m�2≤ρ�

= exp
(
βN

(
1
2
�m�22 − �t∗;m� +

1
βN

N∑
i=1

ln coshβ�ξi; t∗�
))

× exp
(
−βNρ

(
�t∗�2 + �m�2 −

ρ

2

))
P̃σ ��mN�σ� −m�2 ≤ ρ�;

(2.10)

but, using Chebychev’s inequality, we have that

P̃σ ��mN�σ� −m�2 ≤ ρ� = 1− P̃σ ��mN�σ� −m�2 ≥ ρ�

≥ 1− 1
ρ2
Ẽσ�mN�σ� −m�22:

(2.11)

We choose t∗�m� that satisfies (2.7). Then it is easy to compute

Ẽ�mN�σ� −m�22 =
M

N

(
1− 1

N

N∑
i=1

tanh2�β�ξi; t∗�m���
)
;(2.12)

from which the lemma follows. 2

In the following lemma we collect a few properties of 8N;β�m� that arise
from convexity. We set 0 ≡ �m ∈ RM � �t∗�m��2 <∞�, where t∗�m� is defined
in Lemma 2.1, D ≡ �m ∈ RM � 8N;β�m� > −∞�, and we denote by riD
the relative interior of D (see, e.g., [21], page 44). We moreover denote by
I�x� ≡ supt∈R�tx− ln cosh t� the Legendre transform of the function ln cosh t.
A simple computation shows that I�x� coincides with the function defined in
(1.10).

Lemma 2.3. (i)

8N;β�m� =
1
2
�m�22 − inf

y∈RN:mN�y�=m

1
βN

N∑
i=1

I�yi�;(2.13)

where for each m ∈ RM the infimum is attained or is +∞ vacuously.

(ii)

D = �m ∈ RM � ∃y ∈ �−1;1�N s.t. mN�y� =m�:(2.14)

(iii) 8N;β�m� is continuous relative to riD.
(iv) 0 = int D if det �ξtξ/N� 6= 0.
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(v) If t∗ is defined as in Lemma 2.1 and y∗ realizes the infimum in (2.13),
then

β2
(
t∗;

ξtξ

N
t∗
)
= 1
N

N∑
i=1

�I′�y∗i��2:(2.15)

Remark. Note that Lemma 2.3(i) provides an alternative formula for the
variational formula (2.3).

Remark. Under the condition det �ξtξ/N� 6= 0, the relative interior in
(iii) can be replaced by the interior. In the situation where we want to ap-
ply the lemma, this condition is satisfied with probability greater than 1 −
exp�−cN1/6�.

Proof of Lemma 2.3. Note that the function

g�t� ≡ 1/�βN��
N∑
i=1

ln coshβ�ξi; t�

is a proper convex function on RM. Denoting by h�m� ≡ supt∈RM��m; t�−g�t��
its Legendre transform, it follows from standard results of convex analysis (cf.
[21], page 142, Theorem 16.3 and, in particular, the second illustration of that
theorem on page 144) that h�m� is a proper convex function on RM and that

h�m� = inf
y∈RN:mN�y�=m

1
βN

N∑
i=1

I�yi�;(2.16)

where for each m ∈ RM the infimum is either attained or is +∞. This imme-
diately yields (i). Denoting by domh ≡ �x ∈ RM � h�m� < +∞� the effective
domain of h, we have, by (1.10), that domh equals the right-hand side of
(2.14), and since �m�22 ≥ 0, (ii) is proven. Part (iii) simply follows from the fact
that h being convex, it is continuous relative to ri�domh� ([21], page 82, The-
orem 10.1). Finally, to prove (iv), note first that the condition det �ξtξ/N� 6= 0
implies that intD 6= \. Thus we can make use of the following two results of
convex analysis ([21], page 218, Theorem 23.5): First, the subgradient of h at
m, ∂h�m�, is a nonempty set if and only if m belongs to the interior of domh,
that is,m ∈ intD. Moreover, ∂h�m� is a bounded convex set. Next, �m; t�−g�t�
achieves its supremum at t∗ ≡ t∗�m� if and only if t∗ ∈ ∂h�m�. To prove (v) we
only have to consider the case where t∗ exists and, consequently, �y∗i � < 1 for
all i. To prove (2.15), introduce Lagrange multipliers t ∈ RM for the constraint
variational problem in (2.13). The corresponding Euler equations are then

1
β
I′�yi� = �ξi; t�; i = 1; : : : ;N;

m
µ
N�y� =mµ; µ = 1; : : : ;M:

(2.17)
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Using the fact that I′�x� = tanh−1�x�, one sees that the t∗ that solves these
equations is identical to the solution of (2.7); from this, formula (2.15) follows
immediately. This concludes the proof of the lemma. 2

We see that as long as ρ can be chosen as a function of N that tends to
zero as N goes to infinity, Lemmas 2.1 and 2.2 seem to provide asymptotically
coinciding upper and lower bounds, at least for such m for which t∗�m� is
bounded. The unpleasant feature in these bounds is that 9N;β is a rather
complicated random function and that the 8N;β is defined through an infimum
of such a function. In the next section we analyse this problem and show that
this function is essentially nonrandom.

3. Self-averaging. We show now that the random upper and lower
bounds derived in the last section are actually, with large probability, inde-
pendent of the realization of the randomness. In fact we will prove this under
the restriction that m should be such that, at least on a subspace of full mea-
sure, t∗�m� has a uniformly bounded l2-norm. With this in mind, the result
will follow from the next proposition. In the sequel, let �1 ⊂ � denote the
subspace for which �ξt�ω�ξ�ω�/N� = �ξ�ω�ξt�ω�/N� ≤ �1+√α�2�1+ ε� holds
for some fixed small ε (ε = 1 will be a suitable choice). Recall that α ≡M/N.
By Theorem 2.4 of [4] (see also [3] and [22]), P��1� ≥ 1− 4N exp�−εN1/6�.

Proposition 3.1. For any R <∞ there exists 0 < δ < 1/2 and a set �2 ⊂ �
with P��2� ≥ 1− exp�−Nα1−2δ/R�, such that for all ω ∈ �1 ∩�2,

sup
t: �t�2≤R

∣∣9�ω��m; t� − E9�m; t�
∣∣ ≤ α1/2−δ�6+ 2�m�2�:(3.1)

Remark. The subspace �2 does not depend on m.

Note that an immediate corollary to Proposition 3.1 is that, under its as-
sumptions,

∣∣∣ inf
t: �t�2≤R

9�ω��m; t� − inf
t: �t�2≤R

E9�m; t�
∣∣∣ ≤ α1/2−δ�6+ 2�m�2�:(3.2)

Remark. An obvious consequence of (3.2) is the observation that ifm ∈ RM
and ω ∈ �1 ∩�2 are such that

inf
t∈RM

9�ω��m; t� = inf
t: �t�2≤R

9�ω��m; t�(3.3)

and

inf
t∈RM

E9�m; t� = inf
t: �t�2≤R

E9�ω��m; t�;(3.4)

then
∣∣∣8�ω��m� − inf

t
E9�m; t�

∣∣∣ ≤ cα1/2−δ:(3.5)
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Proof of Proposition 3.1. The proof of the proposition follows from the
fact that for bounded values of t, 9�m; t� differs uniformly only little from its
expectation. This will be proven by first controlling a lattice supremum and
then using some a priori Lipshitz bound on 9�m; t�. We prove the Lipshitz
bound first.

Lemma 3.2. Assume that ω ∈ �1. Then

�9�ω��m; t� −9�ω��m;s�� ≤ ��1+√α��1+ ε� + �m�2��t− s�2:(3.6)

Proof. Note that

�9�m; t� −9�m;s��

≤
∣∣∣∣−�m; t− s� +

1
βN

∑
i

�ln cosh�β�ξi; t�� − ln cosh�β�ξi; s���
∣∣∣∣

≤ �m�2�t− s�2 +
∣∣∣∣

1
βN

∑
i

�ln cosh�β�ξi; t�� − ln cosh�β�ξi; s���
∣∣∣∣:

(3.7)

On the other hand, by the mean-value theorem, there exists t̃ such that
∣∣∣∣

1
βN

∑
i

�ln cosh�β�ξi; t�� − ln cosh�β�ξi; s���
∣∣∣∣

=
∣∣∣∣
(
t− s; 1

N

∑
i

ξi tanh�β�ξi; t̃��
)∣∣∣∣

=
∣∣∣∣

1
N

∑
i

�t− s; ξi� tanh�β�ξi; t̃��
∣∣∣∣:

(3.8)

Using the Schwarz inequality, we have that
∣∣∣∣

1
N

∑
i

�t− s; ξi� tanh�β�ξi; t̃��
∣∣∣∣ ≤

1
N

√∑
i

�t− s; ξi�2
√∑

i

tanh2�β�ξi; t̃��

≤
√((

s− t;
∑
i

ξtiξi
N
�s− t�

))

≤
√∥∥∥∥

ξtξ

N

∥∥∥∥�t− s�2;

(3.9)

But this implies the lemma. 2

Let us now introduce a lattice WN;M with spacing 1/
√
N in RM. We also

denote by WN;M�R� the intersection of this lattice with the ball of radius R.
The point is that first, for any t ∈ RM, there exists a lattice point s ∈ WN;M

such that �s− t�2 ≤
√
α, while on the other hand,

�WN;M�R�� ≤ exp�αN�ln�R/α���:(3.10)
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Lemma 3.3.

P
[

sup
t∈WN;M�R�

�9�m; t� − E9�m; t�� > x
]

≤ exp
(
−N

(
x2

R

(
1− 1

2
ex/R

)
− α ln

(
R

α

)))
:

(3.11)

Proof. Clearly we only have to prove that for all t ∈ WN;M�R�,

P��9�m; t� − E9�m; t�� > x� ≤ exp
(
−Nx2

R

(
1− 1

2
ex/R

))
:(3.12)

To do this we write 9�m; t�−E9�m; t� as a sum of martingale differences and
use an exponential Markov inequality for martingales. Note first that

9�m; t� − E9�m; t� = 1
βN

N∑
i=1

�ln cosh�β�ξi; t�� − E ln cosh�β�ξi; t���:(3.13)

We introduce the decreasing sequence of sigma algebras Fk; κ that are gen-

erated by the random variables �ξµi �
1≤µ≤M
i≥k+1 ∪ �ξ

µ
k�µ≥κ. We set

f̃
�k; κ�
N ≡ E

[
β−1∑

i

ln cosh�β�ξi; t��
∣∣Fk; κ

]

− E
[
β−1∑

i

ln cosh�β�ξi; t��
∣∣F +

k; κ

]
;

(3.14)

where for notational convenience we have set

F +
k; κ =

{
Fk; κ+1; if κ < M;

Fk+1;1; if κ =M:
(3.15)

Notice that we have the identity

9�m; t� − E9�m; t� ≡ 1
N

N∑
k=1

M∑
κ=1

f̃
�k; κ�
N :(3.16)

Our aim is to use an exponential Markov inequality for martingales. This
requires, in particular, bounds on the conditional Laplace transforms of the
martingale differences (see, e.g., [15], Chapter 1.3, Lemma 1.5). Namely,

P
[∣∣∣∣

N∑
k=1

M∑
κ=1

f̃
�k; κ�
N

∣∣∣∣ ≥Nx
]

≤ 2 inf
u∈R

exp�−�u�Nx�E exp
{
u

N∑
k=1

M∑
κ=1

f̃
�k; κ�
N

}

= 2 inf
u∈R

exp�−�u�Nx�E
[
E
[
: : :E

[
exp

(
uf̃
�1;1�
N

)∣∣F +
1;1

]

× exp
(
uf̃
�1;2�
N

)∣∣F +
1;2

]
: : : exp

(
uf̃
�N;M�
N

)∣∣F +
N;M

]
;

(3.17)
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where the first inequality is nothing but the exponential Markov inequality.
Now notice that

f̃
�k; κ�
N = E

[
β−1∑

i

ln cosh�β�ξi; t���Fk; κ

]
− E

[
β−1∑

i

ln cosh�β�ξi; t���F +
k; κ

]

= E
[
β−1 ln cosh�β�ξk; t���Fk; κ

]
− E

[
β−1 ln cosh�β�ξk; t���F +

k;κm
]

= E
[
β−1 ln cosh

(
β

( ∑
µ6=κ

ξ
µ
ktµ + ξκktκ

))∣∣∣Fk; κ

]

− E
[
β−1 ln cosh

(
β

( ∑
µ6=κ

ξ
µ
ktµ + ξκktκ

))∣∣∣F +
k; κ

]

= 1
2β
−1E

[
ln cosh

(
β

( ∑
µ6=κ

ξ
µ
ktµ + ξκktκ

))

− ln cosh
(
β

( ∑
µ6=κ

ξ
µ
ktµ − ξκktκ

))∣∣∣Fk; κ

]
:

(3.18)

Now we use the fact that

cosh�a+ b�
cosh�a− b� =

1+ tanha tanh b
1− tanha tanh b

≤ 1+ tanh �b�
1− tanh �b� ≤ e

2�b�(3.19)

to deduce from (3.18) that

�f̃�k; κ�N � ≤ �tκ�:(3.20)

Using the standard inequalities ex ≤ 1+x+ �x2/2�e�x� and 1+y ≤ ey, we get,
therefore,

E
[
exp

(
uf̃
�k; κ�
N �m̃�

)∣∣F +
k; κ

]
≤ exp

(
u2

2
t2κ exp��u��tκ��

)
:(3.21)

From this and (3.17), we get now

P��9�m; t� − E9�m; t�� > x�

≤ 2 inf
u

exp
(
−uNx+ u

2

2
N�t�22 exp��u��t�∞�

)

≤





2 exp
(
−N x2

�t�22

(
1− 1

2
exp�x/�t�2�

))
; if �t�2 ≥ 1;

2 exp
(
−Nx2

(
1− 1

2
ex
))
; if �t�2 < 1;

(3.22)

where the last inequality is obtained by choosing u = x/�t�22 in the first and
u = x/�t�2 in the second case. This gives the lemma. 2
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We can now continue the proof of Proposition 3.1. Choose 0 < δ < 1/2 and
define �2 to be the set of ω ∈ � for which

sup
t∈WN;M�R�

�9�m; t� − E9�m; t�� ≤ α1/2−δ:(3.23)

By Lemma 3.3,

P��2� ≥ 1− exp
(
−Nα1−2δ

R

(
1− 1

2
exp

(
α1/2−δ

R

))
+Nα ln

(
R

α

))

= 1− exp
(
−NO

(
α1−2δ

R

))
:

(3.24)

Combining Lemma 3.2 with (3.23) and taking into account the remark pre-
ceding Lemma 3.3, we see that on �1 ∩�2,

sup
t: �t�2≤R

�9�m; t� − E9�m; t�� ≤ α1/2−δ + 2
√
α��m�2 + �1+

√
α��1+ ε��

≤ α1/2−δ�6+ �m�2�
(3.25)

for α small, which proves Proposition 3.1. 2

4. Proof of Theorem 1. The results of Sections 2.1 and 3.1 can now be
combined to get a large deviation principle in the product topology. The point
here is that, apart from the possibility that t∗�m� may become unbounded, the
estimates in Lemmas 2.1 and 2.2 together with Proposition 3.1 tell us that,
up to corrections that tend to zero with N, the quantity �βN�−1 lnZN;β; ρ�m�
is given by the infimum over t of the completely nonrandom function
E9N;β�m; t�. We will first prove that, for all m̃ ∈ D�I�, (1.12) holds. The main
step in the proof of this fact is the following theorem.

Theorem 4.1. Assume that lim supN↑∞�M�N�/N� = 0 and that 0 < β <

∞. Then there exists a set �̃ ⊂ � with P��̃� = 1 such that, for all finite subsets
I ⊂ N and for all m̃ ∈ �−1;1�I such that, for all ε > 0, there exists c = c�m̃; ε� <
∞, ∃N0 ≤ ∞, ∀N ≥N0,

sup
m: �5Im−m̃�2≤ε

inf
t∈RM

E9N;β�m; t� = sup
m: �5Im−m̃�2≤ε

inf
t∈RM: �t�2≤c

E9N;β�m; t�;(4.1)

it holds that, for all ω ∈ �̃;

lim
ε↓0

lim
N↑∞

FI
N;β; ε�ω��m̃� = − sup

p∈N
sup

y∈�−1;1�2p
5Inp�y�=m̃

[
1
2�np�y��22 − β−12−p

2p∑
γ=1

I�yγ�
]

+ sup
y∈R

( 1
2y

2 − β−1I�y�
)
:

(4.2)
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Remark. The assumption in Theorem 4.1 looks horrible at first glance.
The reader will observe that it is made in order to allow us to apply the self-
averaging results from the last section. We will show later, however, that the
set of values m̃ for which it is satisfied can be constructed explicitly and is
nothing other than D�I�.

Proof of Theorem 4.1. We will first establish an upper bound for the
quantity

ZI
N;β; ε�ω��m̃� ≡ µN;β�ω���5ImN�σ� − m̃�2 ≤ ε�ZN;β�ω�:(4.3)

To do so, notice that on �1, �mN�σ��2 ≤ �1 +
√
α�
√
�1+ ε� < 2 for all σ . We

may cover the ball of radius 2 with balls of radius ρ >
√
α, centered at the

lattice points in WN;M�2�. We then have that on �1,

ZI
N;β; ε�ω��m̃� ≤

∑

m∈WN;M�2�
�5Im−m̃�2≤ε

ZN;β; ρ�ω��m�

≤ sup
m∈WN;M�2�
�5Im−m̃�2≤ε

ZN;β; ρ�ω��m�
∑

m∈WN;M�2�
�5Im−m̃�2≤ε

1

≤ sup
m: �m�2<2
�5Im−m̃�2≤ε

ZN;β; ρ�ω��m� exp�αN�ln 2/α��:

(4.4)

As long as α ↓ 0, the factor exp�αN�ln 2/α�� in the upper bound is irrelevant
for the exponential asymptotic, as is the difference between ε and ε−ρ. Using
the estimates used in the proof of Lemma 2.1, we can replace ZN;β; ρ�ω��m�
in (4.4) by its upper bound in terms of the function 9. Namely,

1
βN

lnZI
N;β; ε�ω��m̃�

≤ sup
m: �m�2<2
�5Im−m̃�2≤ε

inf
t∈RM
�t�2≤c

9N�ω��m; t� + ρ
(
c+ 2+ ρ

2

)
+ β−1α ln

2
α
:

(4.5)

Finally, combining (4.5) with (3.2), we get that, for ω ∈ �1 ∩�2 and for any c,

1
βN

lnZI
N;β; ε�ω��m̃� ≤ sup

m: �5Im−m̃�2≤ε
inf
t∈RM
�t�2≤c

E9N�m; t� + 10α1/2−δ

+ ρ
(
c+ 2+ ρ

2

)
+ β−1α ln

2
α
:

(4.6)

By assumption, there exists a value c <∞, such that the true minimax over
E9N�m; t� is taken for a value of t with norm bounded uniformly in N by
some constant c. The constant c in (4.6) is then chosen as this same constant,
and then the restriction �t�2 ≤ c is actually void, and the minimax is taken for
some values �m∗; t∗� which depend only on m̃ and ε. This is already essentially
the desired form of the upper bound.
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We now turn to the more subtle problem of obtaining the corresponding
form of the lower bound. Trivially,

ZI
N;β; ε+ρ�ω��m̃� ≥ ZN;β; ρ�ω��m∗�:(4.7)

We will modify slightly the derivation of the lower bound for ZN;β; ρ�ω��m∗�.
Namely, instead of defining the shifted measure P̃ with respect to the random
value of t that realizes the infimum of 9N�ω��m∗; t�, we do this with the
deterministic value t∗ that realizes the infimum of E9N�m∗; t�. This changes
nothing in the computations in (2.10) and (2.11). What changes, however, is
the estimate on Ẽσ�mN�σ�−m∗�22, since t∗ does not satisfy (2.7), but is instead
a solution of the equations

m∗µ = Eξ
µ
1 tanh�β�ξ1; t

∗��:(4.8)

Thus, in place of (2.12) we get

Ẽσ�mN�σ� −m∗�22

= Eσ
N∏
i=1

exp�β�t∗; ξiσi��

×
∑
ν

(
N−2 ∑

j; k

ξνjξ
ν
kσjσk − 2m∗νN

−1∑
j

ξνjσj + �m∗ν�2
)

×
[ N∏
i=1

coshβ�ξi; t∗�
]−1

= 1
N2

∑
ν

∑
j

1+ 1
N2

∑
ν

∑
j6=k

tanh�β�t∗; ξj�� tanh�β�t∗; ξk��ξνjξνk

− 2
1
N

∑
j

∑
ν

m∗ν tanh�β�t∗; ξj��ξνj +
∑
ν

�m∗ν�2

= M
N

(
1− 1

N

∑
i

tanh2�β�t∗; ξi��
)

+
∑
ν

(
1
N

∑
i

ξνi tanh�β�t∗; ξi�� −m∗ν
)2

:

(4.9)

The first summand in (4.9) is bounded by α and we have to control the second.
To do so we use (4.8) to write

∑
ν

(
1
N

∑
i

ξνi tanh�β�t∗; ξi�� −m∗ν
)2

=
∑
ν

(
1
N

∑
i

ξνi tanh�β�t∗; ξi�� − Eξν1 tanh�β�ξ1; t
∗��
)2

=
∑
ν

(
1
N

∑
i

ξνi tanh�β�t∗; ξi�� − E
1
N

∑
i

ξνi tanh�β�t∗; ξi��
)2

≡ GN�t∗�:

(4.10)
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We will now prove, in analogy to Proposition 3.1, that GN�t� is actually small
with large probability. This will be slightly more complicated than in Propo-
sition 3.1 and will, in fact, consist of two steps. The first step is a fairly crude
bound on GN�t� that will be used in a second step to obtain a refined bound.

Lemma 4.2. For all ω ∈ �1,

GN�ω��t� ≤ 6:(4.11)

Proof. For notational simplicity, let us set Ti ≡ tanh�β�ξi; t��. We have
that

GN�t� ≤ 2
M∑
µ=1

([
1
N

∑
i

ξ
µ
i Ti

]2

+
[

1
N

∑
i

Eξµi Ti
]2)

= 2
N2

M∑
µ=1

∑
i; j

�ξµi ξ
µ
jTiTj + E�ξ

µ
i Ti�E�ξ

µ
jTj��:

(4.12)

For the first term, we can use simply that

2
N2

M∑
µ=1

∑
i; j

ξ
µ
i ξ

µ
jTiTj ≤ 2

∥∥∥∥
ξξt

N

∥∥∥∥
(

1
N

∑
i

T2
i

)
≤ 2

∥∥∥∥
ξξt

N

∥∥∥∥;(4.13)

but on �1, the norm in the last term is bounded by �1+√α�2�1+ε�. To bound
the second term in (4.12), we use the independence of both ξ

µ
i and Ti for

different indices i to write

2
N2

M∑
µ=1

∑
i; j

E�ξµi Ti�E�ξ
µ
jTj�

= 2
N2

M∑
µ=1

∑
i; j

E�ξµi Tiξ
µ
jTj� +

2
N2

M∑
µ=1

∑
i

��Eξµi Ti�2 − E�Ti�2�

≤ 2E
∥∥∥∥
ξξt

N

∥∥∥∥+
2M
N

≤ 2α+ 2�1+√α�2�1+ ε�:

(4.14)

Combining these two bounds we get (4.11). 2

Lemma 4.2 tells us that GN�t� is bounded, but not yet that it is small. To
do this, we observe first that its mean value is small.

Lemma 4.3.

0 ≤ EGN�t� ≤ α:(4.15)
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Proof.

EGN�t� =
M∑
ν=1

E
[

1
N

∑
i

ξνi tanh�β�t; ξi�� − E
1
N

∑
i

ξνi tanh�β�t; ξi��
]2

=
M∑
ν=1

(
E
[

1
N

∑
i

ξνi tanh�β�t; ξi��
]2

−
[

1
N

∑
i

Eξνi tanh�β�t; ξi��
]2)

=
M∑
ν=1

(
1
N2

∑
i

E tanh2�β�t; ξi�� −
1
N2

∑
i

�Eξνi tanh�β�t; ξi���2
)
;

≤ M
N
;

(4.16)

where we have used the independence of the summands for different in-
dices i. 2

In the sequel we will need that the mean value of GN�t� does not differ
much from its conditional expectation relative to �1. Namely,

�EGN�t� − E�GN�t���1�� ≤ 2M exp�−εN1/6�(4.17)

is arbitrarily small.
Finally, we will show that on �1, with large probability, GN�t� differs only

little from its conditional expectation relative to �1.

Lemma 4.4. Assume that x� �lnN�/
√
N. Then

P��GN�t� − E�GN�t���1�� ≥ x
∣∣�1� ≤ exp�−b

√
Nx�(4.18)

for some positive constant b.

Proof. Basically the proof of this lemma relies on the same technique as
that of Proposition 3.1. However, a number of details are modified. In par-
ticular, we use a coarser filtration of F to define our martingale differences.
Namely, we denote by Fk the sigma algebra generated by the random vari-
ables �ξµi �

µ∈N
i≥k . We also introduce the trace sigma algebra F̃ ≡ F ∩�1 and by

F̃k ≡ Fk ∩�1 the corresponding filtration of the trace sigma algebra. We set

f
�k�
N ≡ E�GN�t��F̃k� − E�GN�t��F̃k+1�:(4.19)

Obviously, we have, for ω ∈ �1,

GN�ω��t� − E�GN�t���1� =
N∑
k=1

f
�k�
N :(4.20)

Thus the lemma will be proven if we can prove an estimate of the form (4.18)
for the sum of the f�k�N . This goes just as in the proof of Proposition 3.1, that
is, it relies on uniform bounds on the conditional Laplace transforms

E
[
exp

(
uf
�k�
N

)∣∣F̃k+1

]
:(4.21)
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The strategy to get the uniform bounds is very similar to the strategy used in
[6] and [2]. We introduce

G
�k�
N �t; z� ≡

∑
µ

(
1
N

∑
i6=k
ξ
µ
i Ti − E

1
N

∑
i

ξ
µ
i Ti +

z

N
ξ
µ
kTk

)2

(4.22)

and set

gk�z� ≡ G
�k�
N �t; z� −G

�k�
N �t;0�:(4.23)

We then have that

f
�k�
N = E�gk�1��F̃k� − E�gk�1��F̃k+1�(4.24)

since G�k�N �t;0� is independent of the random variables ξk. On the other hand,

gk�1� =
∫ 1

0
dzg′k�z�(4.25)

and

g′k�z� = 2
M∑
ν=1

[
1
N

∑
i6=k
ξνiTi − E

1
N

∑
i

ξνiTi +
z

N
ξνkTk

]
1
N
ξνkTk:(4.26)

Let us first get a uniform bound on �f�k�N � on �1. From the formulas above it
follows clearly that

�f�k�N � ≤ 2 sup
z
�g′k�z��;(4.27)

but, using the Schwarz inequality,

�g′k�z�� ≤
2
N

∑
µ

∣∣∣∣
1
N

∑
i6=k
ξνiTi − E

1
N

∑
i

ξνiTi +
z

N
ξ
µ
kTk

∣∣∣∣

≤ 2
N

√
M

√√√√∑
µ

[
1
N

∑
i6=k
ξνiTi − E

1
N

∑
i

ξνiTi +
z

N
ξ
µ
kTk

]2

= 2
√
M

N

√
G
�k�
N �t; z� :

(4.28)

However, on �1 it is trivial to check that G�k�N �t; z� satisfies, for z ∈ �0;1�, the
same bound as GN�t�, so that on �1,

�g′k�z�� ≤
12
√
M

N
:(4.29)

Now we turn to the estimation of the conditional Laplace transform. Using
the standard inequality

ex ≤ 1+ x+ 1
2x

2e�x�;(4.30)
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we get

E
[
exp

(
uf
�k�
N

)∣∣F̃k+1

]
≤ 1+ 1

2
u2E

[(
f
�k�
N

)2
exp

(
�u��f�k�N �

)∣∣F̃k+1

]

≤ 1+ 1
2
u2 exp

(
�u�12

√
M

N

)
E
[(
f
�k�
N

)2∣∣F̃k+1

]
:

(4.31)

A simple computation (see [6]) shows that

E
[(
f
�k�
N

)2∣∣F̃k+1

]
≤ E

[
�gk�1��2�F̃k+1

]

= E
[(∫ 1

0
dzg′k�z�

)2∣∣∣F̃k+1

]

≤ E
[∫ 1

0
dz �g′k�z��2

∣∣∣F̃k+1

]

≤ sup
0≤z≤1

E
[
�g′k�z��2�F̃k+1

]
:

(4.32)

Let us write

g′k�z� = 2
M∑
ν=1

[
1
N

∑
i

ξνiTi − E
1
N

∑
i

ξνiTi

]
1
N
ξνkTk

+ 2
M∑
ν=1

z− 1
N2

T2
k:

(4.33)

Thus

�g′k�z��2 ≤ 8
( M∑
ν=1

[
1
N

∑
i

ξνiTi − E
1
N

∑
i

ξνiTi

]
1
N
ξνkTk

)2

+ 8T4
k�z− 1�2M

2

N4
:

(4.34)

Let us abbreviate the two summands in (4.34) by (I) and (II). The term (II) is
of order α2N−2 and thus can simply be bounded uniformly. We have to work
a little more to control the conditional expectation of the first summand. We
write

E��I��F̃k+1� =
8
N2

E
[∑
µ; ν

ξ
µ
kξ

ν
kT

2
k

[
1
N

∑
i

ξ
µ
i Ti − E

1
N

∑
i

ξ
µ
i Ti

]

×
[

1
N

∑
i

ξνiTi − E
1
N

∑
i

ξνiTi

]∣∣∣F̃k+1

]
:

(4.35)

We observe that under the expectation conditioned on F̃k+1 we may inter-
change the indices of 1 ≤ j ≤ k and use this to symmetrize the expression
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(4.35). [Notice that this is the reason why we separated the z-dependent con-
tribution in (4.34).] This gives

E��I��F̃k+1� =
8
N2

E
[∑
µ; ν

k∑
j=1

ξ
µ
jξ

ν
j

k
T2
j

[
1
N

∑
i

ξ
µ
i Ti − E

1
N

∑
i

ξ
µ
i Ti

]

×
[

1
N

∑
i

ξνiTi − E
1
N

∑
i

ξνiTi

]∣∣∣F̃k+1

]

≤ 8
N2

E
[∥∥∥∥

k∑
j=1

ξjξ
t
j

k
T2
j

∥∥∥∥
M∑
µ=1

[
1
N

∑
i

ξ
µ
i Ti − E

1
N

∑
i

ξ
µ
i Ti

]2∣∣∣F̃k+1

]
:

(4.36)

However, by Lemma 4.2, on �1,
M∑
µ=1

[
1
N

∑
i

ξ
µ
i Ti − E

1
N

∑
i

ξ
µ
i Ti

]2

= GN�t� ≤ 6(4.37)

and since
∥∥∥∥
k∑
j=1

ξjξ
t
j

k
T2
j

∥∥∥∥ ≤
∥∥∥∥
k∑
j=1

ξjξ
t
j

k

∥∥∥∥ ≡ �B�k��;(4.38)

we get that

E��I��F̃k+1� ≤
48
N2

E��B�k�� ��1� ≤
48
N2

E�B�k��
P��1�

:(4.39)

It is easy to show (see [2]) that

E�B�k�� ≤ c
(
1+

√
M/k

)2
(4.40)

for some constant 2 > c > 1. Collecting our estimates and using that 1+x ≤ ex,
we arrive at

E
[
exp

(
uf
�k�
N

)∣∣F̃k+1

]

≤ exp
( 1

2u
2 exp

(
�u�12

√
M/N

)
N−2[8α2 + 76

(
1+

√
M/k

)2])
:

(4.41)

Since
N∑
k=1

(
1+

√
M/k

)2 =N+
√
MN+M lnN =N

(
1+ 4

√
α+ α lnN

)
;(4.42)

this yields that

P
[ N∑
k=1

f
�k�
N ≥ x

∣∣�1

]

≤ inf
u

exp
(
−ux+ u2

2N
exp

( �u�12
√
M

N

)

×
[
8α2 + 76+ 304

√
α+ 76α lnN

])
:

(4.43)
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In order to perform the infimum over u in (4.43), we must distinguish two
cases. First, if α ≤ 1/ lnN, we may chose u =

√
N, which yields

P
[ N∑
k=1

f
�k�
N ≥ x

]
≤ exp�−

√
Nx+ c1�(4.44)

for some positive constant c1. If now α goes to zero with N more slowly than
1/ lnN, a good estimate of the infimum is obtained by choosing u =N/12

√
M.

This gives

P
[ N∑
k=1

f
�k�
N ≥ x

]
≤ exp

(
−
√
N

x

12
√
α

)
exp

{
e

36

[
α+ 12

α
+ 48√

α
+ 2 lnN

]}

≤ exp
( −

√
Nx

12+ c2 lnN

)(4.45)

for some positive constant c2. From here the lemma follows immediately. 2

Corollary 4.5. There exists a set �3�t∗�⊂�1 with P��1\�3�≤exp�−bN1/4�
such that, for all ω ∈ �3�t∗�,

P̃σ ��mN�σ� −m∗�2 ≤ �2�2α+N−1/4��1/2� ≥ 1
2 :(4.46)

Proof. This follows from combining (4.9) and (4.10) with Lemmas 4.2, 4.3
and 4.4 and choosing x =N−1/4 in the latter. 2

To be able to use Corollary 4.5, we will choose from now on ρ > �2�2α +
N−1/4��1/2.

Now except on a subspace �c4 of probability smaller than 4Ne−cN
1/6 �ξtξ/N−

|� ≤ √α�2+√α��1+ c� (see the appendix of [4]) which implies in particular
that on O4, det ξtξ/N 6= 0. Thus on �4, Lemma 2.3(iv) implies that if �t∗�2
is bounded, then m∗ ∈ int D, that is, there exists y∗ ∈ �−1;1�N such that
m∗ = mN�y∗�. However, �mN�y∗��22 ≤ �ξtξ/N��y∗�22/N ≤ �ξtξ/N�. Since by
assumption �t∗�2 < c, we see that on �1 ∩ �4, �m∗�2 ≤ 2. As a consequence,
putting together Proposition 3.1, Corollary 4.5 and (2.10), we find that on
�3�t∗�,

1
βN

lnZI
N;β; ε+ρ�ω��m̃�

≥ E9N�m∗; t∗� − 10α1/2−δ − ρ
(
c+ 2− ρ

2

)
− ln 2
βN

;

(4.47)

which is the desired form of the lower bound.
Finally, by a simple Borel–Cantelli argument, it follows from the estimates

on the probabilities of the sets �1, �2 and �3�t∗� that there exits a set �̃ of
measure 1 on which

lim sup
N↑∞

1
βN

lnZI
N;β; ε�ω��m̃� ≤ lim sup

N↑∞
sup

m: �5Im−m̃�2≤ε
inf
t∈RM

E9N�m; t�(4.48)
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and

lim inf
N↑∞

1
βN

lnZI
N;β; ε�ω��m̃� ≥ lim inf

N↑∞
sup

m: �5Im−m̃�2≤ε−ρ
inf
t∈RM

E9N�m; t�:(4.49)

It remains to show that the lim sups and the lim infs on the right-hand sides of
(4.48) and (4.49) coincide. From here on there is no difference to the procedure
in the case M < lnN/ ln 2 that was treated in [5]. We repeat the outline for
the convenience of the reader. We write E9N�m; t� in its explicit form as

E9N�m; t� = 1
2�m�22 − �m; t� + β−12−M

2M∑
γ=1

ln cosh�β�eγ; t��;(4.50)

where the vectors eγ, γ = 1; : : : ;2M, form a complete enumeration of all vectors
with components ±1 in RM. They can be conveniently chosen as

eµγ = �−1��γ21−µ�;(4.51)

where �x� denotes the smaller integer greater than or equal to x. Note that
E9N�m; t� depends onN only throughM�N�. We may use Lemma 2.3 to show
that

inf
t∈RM

E9N�m; t� = 1
2�m�22 − inf

y∈R2M :nM�y�=m
β−12−M

2M∑
γ=1

I�yγ�(4.52)

and hence

sup
m: �5Im−m̃�2≤ε

inf
t∈RM

E9N�m; t�

= sup
y∈R2M : �5InM�y�−m̃�2≤ε

1
2�nM�y��22 − β−12−M

2M∑
γ=1

I�yγ�:
(4.53)

To prove that this expression converges as N (or rather M) tends to infinity,
we define, for any integers d;p with d ≤ p, the sets

A
p
d ≡

{
y ∈ �−1;1�2p �yγ = yγ+2d

}
:(4.54)

Obviously,

A
p

0 ⊂ A
p

1 ⊂ · · · ⊂ A
p
p−1 ⊂ A p

p = �−1;1�2p :(4.55)

The definition of these sets implies the following fact: If y ∈ A
p
d with d < p,

then (i) nνp�y� = 0 if ν > d and (ii) nµp�y� = nµd�y� if µ ≤ d.
Let us set

2p�y� = 1
2�np�y��22 − β−12−p

2p∑
γ=1

I�yγ�(4.56)

and

ϒp; ε�m̃� = sup
y∈A p

p

�5Inp�y�−m̃�2≤ε

2p�y�:(4.57)
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Therefore, for y ∈ A
p
d , 2p�y� = 2d�y�, while at the same time the constraint

in the sup is satisfied simultaneously w.r.t. np or nd, as soon as d is large
enough such that I ⊂ �1; : : : ; d�. Therefore,

ϒp; ε�m̃� ≥ sup
y∈A p

d

�5Inp�y�−m̃�2≤ε

2p�y� = sup
y∈A d

d

�5Ind�y�−m̃�2≤ε

2d�y� = ϒd; ε�m̃�:(4.58)

Hence ϒp; ε�m̃� is an increasing sequence in p. Moreover, ϒp; ε�m̃� ≤
supy∈A p

p ; �5Inp�y�−m̃�2≤ε
1
2�np�y��22 ≤ 1 and so because it is bounded from

above, it converges. Thus

lim
N↑∞

sup
m: �5Im−m̃�2≤ε

inf
t∈RM

E9N�m; t� = lim
N↑∞

ϒM;ε�m̃�

= sup
p
ϒp; ε�m̃�:

(4.59)

It remains to consider the limit ε ↓ 0. It is clear that supp ϒp; ε�m̃� converges
to a lower-semicontinuous function and that

lim
ε↓0

sup
p
ϒp; ε�m̃� = lim

ε↓0
sup

m: �5Im−m̃�2≤ε
sup
p
ϒp;0�m�:(4.60)

Thus if supp ϒp;0�m̃� is continuous in a neighborhood of m̃, we get

lim
ε↓0

sup
p
ϒp;ε�m̃� = sup

p
ϒp;0�m̃�(4.61)

as desired. However, as was shown in [5], from the explicit form of ϒ, one
shows easily that supp ϒp;0�m̃� is Lipshitz continuous in the interior of the
set on which it is bounded. This proves Theorem 4.1. 2

We will show next that a sufficient condition for condition (4.1) to hold is
that m̃ belongs toD�I�. While this appears intuitively “clear,” the rigorous proof
is surprisingly tedious. Let us first introduce some notation and results.

Let Ep be the 2p × p matrix whose rows are given by the vectors eγ,
γ = 1; : : : ;2p, which, for convenience, are ordered according to (4.51). We will
denote by eµ, µ = 1; : : : ; p, the column vectors of Ep and by Et

p its transpose.
It can easily be verified that

2−p�eµ; eν� =
{

1; if µ = ν;
0; otherwise:(4.62)

Thus, the 2p×2p matrix 2−pEpE
t
p is a projector that projects on the subspace

spanned by the orthogonal vectors �eµ�pµ=1, and 2−pEt
pEp is the identity in

Rp. Given a linear transformation A from Rp to Rq, we define

AC = �Ax � x ∈ C� for C ⊂ Rp:(4.63)
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With this notations the vector np�y� and the set Dp, defined in (1.7) and (1.8),
can be rewritten as

np�y� = 2−pEt
py;

Dp = 2−pEt
p�−1;1�2p :

(4.64)

Moreover, for any set I ⊂ �1; : : : ; p�, we have the property

5IDp = D�I�:(4.65)

Finally, let us remark that, of course, the statements of Lemma 2.3 ap-
ply also to the deterministic function inf t∈RM E9N;β�m; t�. All references to
Lemma 2.3 in the sequel are to be understood as referring to properties of
this latter function, that is given explicitly in (4.52).

By Lemma 2.3, the condition (4.1) of Theorem 4.1 is satisfied if and only if
the supremum in the l.h.s of (4.1) is taken on at a point m in intDM. More
precisely, by (2.15), this condition is equivalent to demanding that for all ε > 0
and all p, the supremum over y s.t. �5Inp�y� − m̃�2 ≤ ε of 2p�y� is taken on
at a point y∗ such that

2−p
2p∑
γ=1

�I′�y∗γ��2 ≤ c:(4.66)

We set

Aε�m̃� ≡
{
y ∈ �−1;1�2M : �5InM�y� − m̃�2 ≤ ε

}
:(4.67)

Lemma 4.6. Assume that 0 < β < ∞. Then, for all m̃ ∈ D�I� and ε > 0,
there exists c�m̃; ε� <∞ such that, for all p ≥ �I�,

sup
y∈�−1;1�2p

5Inp�y�∈Bε�m̃�

2p�y� = 2p�y∗�;(4.68)

where

Tp�y∗� ≡ 2−p
2p∑
γ=1

[
I′�y∗γ�

]2 ≤ c�m̃; ε�:(4.69)

Proof. The proof proceeds by showing that if y does not satisfy condition
(4.69), then we can find a δy such that y+δy ∈ Aε�m̃� and2p�y+δy� > 2p�y�,
so that y cannot be the desired y∗. Let us first note that

2p�y+ δy� −2p�y� = 1
2 ��np�y+ δy��22 − �np�y��22�

+ 2−pβ−1
2p∑
γ=1

�I�yγ� − I�yγ + δyγ��:
(4.70)
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Using the properties of the matrix Ep and the fact that y ∈ �−1;1�2p we can
bound the difference of the quadratic terms as

�np�y+ δy��22 − �np�y��22 = �np�δy��22 + 2−p+1�δy;2−pEpE
T
py�

≥ −2−p/2+1�δy�2:
(4.71)

Thus we can show that 2p�y+ δy� > 2p�y� holds by showing that

2−pβ−1
2p∑
γ=1

�I�yγ� − I�yγ + δyγ�� > 2−p/2�δy�2:(4.72)

Define the map Y from �−1;1�2p to �−1;1�2�I� by

Yγ�y� ≡ 2−p+�I�
2p−�I�−1∑
γ̃=0

yγ+γ̃2�I� γ = 1; : : : ;2�I�:(4.73)

Using (4.64) we get that

5�I�np�y� = 2−�I�Et
�I�

(
2−p+�I�

2p−�I�∑
γ=1

5��γ−1�2�I�+1;:::;γ2�I��y

)

= 2−�I�Et
�I�Y�y�:

(4.74)

Therefore, the property that y ∈ Aε�m̃� depends only on the quantity Y�y�.
Notice that if m̃ ∈ D�I� and ε > 0, then there exists X ∈ �−1;1�2�I� such

that �nI�X� − m̃�2 ≤ ε. This implies that for any p, the vector x ∈ R2p with
components xγ ≡Xγ mod 2�I� lies also in Aε�m̃�. Moreover,

max
γ
�xγ� = max

γ
�Xγ� ≡ 1− d < 1(4.75)

and, therefore,

Tp�x� ≤ �I′�1− d��2(4.76)

is some finite p-independent constant. We will use this fact to construct our
δy. We may of course choose an optimalX, that is, one for which d is maximal.
In the sequel, X and x will refer to this vector. Let now y be a vector in Aε�m̃�
for which Tp�y� > c for some large constant c. We will show that this cannot
minimize 2p. We will distinguish two cases:

Case 1. Let us introduce two parameters, 0 < η � d and 0 < λ < 1, that
will be appropriately chosen later. In this first case we assume that y is such
that

2p∑
γ=1

|��yγ �≥1−η� ≥ �1− λ�2p−�I�(4.77)

and we choose

δy ≡ ρ�x− y�;(4.78)
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where 0 < ρ < 1 will be determined later. It then trivially follows from the
definition of x and the convexity of the set Aε that y+ρ�x−y� ∈ Aε and that
y+ ρ�x−y� ∈ �−1+ ρd;1− ρd�2p . Thus, if we can show that with this choice,
and with a ρ such that ρd > η, (4.72) holds, we can exclude that the infimum
is taken on for such a y.

Let us first consider components yγ such that �yγ� > 1−d. Since �xγ� ≤ 1−d,
we have, for those components, sgn δyγ = −sgnyγ and thus I�yγ� − I��y +
δy�γ� > 0. This fact together with (4.77) entails

2−p
2p∑
γ=1

�I�yγ� − I��y+ δy�γ��|��yγ �≥1−d�

≥ 2−p
2p∑
γ=1

�I�yγ� − I��y+ δy�γ��|��yγ �≥1−η�

≥ inf
�yγ �≥1−η
�xγ �≤1−d

�1− λ�2−�I��I�yγ� − I��y+ δy�γ��:

(4.79)

Note that I�z� is symmetric with respect to zero and is a strictly increasing
function of z for z > 0. Thus I��y + δy�γ� is maximized over �xγ� ≤ 1 − d for
xγ = �1− d�sgnyγ. From this we get

inf
�xγ �≤1−d

�I�yγ� − I��y+ δy�γ��

≥ �I�yγ� − I��yγ� + ρ��1− d� − �yγ����
(4.80)

and the infimum over �yγ� ≥ 1 − η in the r.h.s. of (4.80) is easily seen to be
taken on for �yγ� = 1− η. Thus

inf
�yγ �≥1−η
�xγ �≤1−d

�1− λ�2−�I��I�yγ� − I��y+ δy�γ��

≥ �1− λ�2−�I��I�1− η� − I�1− η− ρ�d− η���

≥ �1− λ�2−�I�ρ�d− η�I′�1− η− ρ�d− η��

≥ �1− λ�2−�I�ρ�d− η� 1
2 ln�η+ ρ�d− η���;

(4.81)

where we have used the convexity of I and the bound I′�1 − x� ≥ 1
2 � lnx� for

0 < x < 1.
We now have to consider the components yγ with �yγ� ≤ 1 − d. Here the

entropy difference I�yγ�−I��y+δy�γ� can of course be negative. To get a lower
bound on this difference, we use (4.80) and perform the change of variable



1470 A. BOVIER AND V. GAYRARD

�yγ� = �1− d� − zγ to write

inf
�yγ �≤1−d
�xγ �≤1−d

�I�yγ� − I��y+ δy�γ��

= inf
0≤zγ≤1−d

I��1− d� − zγ + ρzγ� − I��1− d� − zγ�

≥ inf
0≤zγ≤1−d

−ρzγI′��1− d� − zγ + ρzγ�

= inf
0≤zγ≤1−d

−ρzγ
1
2

ln
(

2− d− zγ + ρzγ
d+ zγ − ρzγ

)

≥ −ρ�1− d�1
2

ln
(

2− d
d

)

≥ −ρ
2

ln
2
d
;

(4.82)

and putting together (4.82) and (4.77) yields

2−p
2p∑
γ=1

�I�yγ� − I��y+ δy�γ��|��yγ �<1−d�

≥ −�1− �1− λ�2−�I��ρ
2

ln
(

2
d

)
:

(4.83)

Therefore, (4.83) together with (4.79) and (4.81) gives

β−12−p
2p∑
γ=1

�I�yγ� − I��y+ δy�γ��

≥ β−1ρ

{
�1− λ�2−�I��d− η�1

2
� ln�η+ ρ�d− η���

− �1− �1− λ�2−�I��1
2

ln
(

2
d

)}
:

(4.84)

On the other hand, we have

2−p/2�δy�2 ≤ 2ρ:(4.85)

Consequently, (4.72) holds if we can choose λ, η, and ρ so that the following
inequality holds,

β−1
{
�1− λ�2−�I��d− η�1

2
� ln�η+ ρ�d− η���

− �1− �1− λ�2−�I��1
2

ln
(

2
d

)}
> 2:

(4.86)
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However, this is always possible by taking, for example, λ < 1, η ≡ ρd/2 and
ρ ≡ dK, where K ≡K�d; �I�; λ� > 1 is chosen sufficiently large as to satisfy

�1− λ�2−�I�d
(

1− dK
2

)
K+ 1

2
� lnd� > 4+ 1

2
� lnd�:(4.87)

Case 2. We will assume that λ < 1 and that η and ρ are chosen as in Case 1.
We can then assume that

2p∑
γ=1

|��yγ �≥1−η� < �1− λ�2p−�I�:(4.88)

We assume further that

Tp�y� > c(4.89)

for c sufficiently large to be chosen later. Here we will choose δy such that

Y�δy� ≡ 0;(4.90)

so that trivially y+δy ∈ Aε�m̃�. Let us introduce a parameter 0 < ζ < η, that
we will choose appropriately later, and let us set, for γ ∈ �1; : : : ;2�I��,

K +
γ ≡ �γ̃ ∈ �1; : : : ;2p−�I��

∣∣ �yγ+�γ̃−1�2�I� � ≥ 1− ζ�(4.91)

and

K −
γ ≡ �γ̃ ∈ �1; : : : ;2p−�I��

∣∣ �yγ+�γ̃−1�2�I� � ≤ 1− η�:

For all indices γ such that K +
γ = \, we simply set δyγ+�γ̃−1�2�I� ≡ 0 for all

γ̃ ∈ �1; : : : ;2p−�I��. If K +
γ were empty for all γ, then Tp�y� ≤ �I′�1 − ζ��2,

which contradicts our assumption (4.89), for suitably large c (depending only
on ζ). Thus we consider now the remaining indices γ for which K +

γ 6= \.
First note that (4.88) implies that �K +

γ � < �1 − λ�2p−�I� and that K −
γ >

λ2p−�I�, so that choosing 1 > λ > 1
2 , we have �K +

γ � < �K −
γ �. Our strategy will

be to find δy in such a way as to decrease the moduli of the components in
K +
γ at the expense of possibly increasing them on K −

γ in such a way as to
leave Y�y+ δy� = Y�y�.

In the sequel, we will consider the case where there is only one index γ,
for example, γ = 1, for which K +

γ is nonempty. The general case is treated
essentially by iterating the same procedure. We will use the simplified notation
y1+2�I�γ̃ ≡ yγ̃ and δy1+2�I�γ̃ ≡ δyγ̃ and also set K ±

1 ≡ K ±. We will assume,
moreover, that all components yγ̃ are positive, as this is the worst situation.
We will chose δy such that δyγ̃ = 0 if γ̃ ∈ �K + ∪ K −�c and δyγ̃ < 0 if
γ̃ ∈ K +. For each γ̃ ∈ K + we will choose a unique and distinct γ̃′ ∈ K − and
set δyγ̃′ = −δyγ̃. This ensures that Y�δy� = 0. We will also make sure that
for all γ̃, �δyγ̃� ≤ η/2− ζ.
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We have to construct δyγ̃ for γ̃ ∈ K +. In this process we have to consider
the following three functionals:

1. The change in the quadratic term of 2p. This is bounded by

δE�δy� ≡ 2−p/2+1
√

2
∑
γ̃∈K +

δy2
γ̃ :(4.92)

2. The change in the entropy term,

δI�δy� ≡ 2−p
∑
γ̃∈K +

(
I�yγ̃ + δyγ̃� − I�yγ̃�

)

+ 2−p
∑
γ̃∈K −

(
I�yγ̃ + δyγ̃� − I�yγ̃�

)

≥ 2−p
∑
γ̃∈K +

�δyγ̃�I′�yγ̃ + δyγ̃� − 2−p
∑
γ̃∈K −

δyγ̃� lnη�/2

= 2−p
∑
γ̃∈K +

�δyγ̃�
(
I′�yγ̃ + δyγ̃� − � lnη�/2

)

≥ 2−p−1 ∑
γ̃∈K +

�δyγ̃�I′�yγ̃ + δyγ̃�;

(4.93)

where we have used that for 1 ≥ �x� � �y� � 0:9, I�x�−I�y� ≈ �x−y�� ln�1−
y�� and that, under our assumption, for γ̃ ∈K +, yγ̃ + δyγ̃ ≥ 1− η/2.

3. Finally, we have that

Tp�y+ δy� ≤ 2−p
∑
γ 6∈K +
�I′�yγ̃ + δyγ̃��2 + 2−p

∑
γ̃∈K +
�I′�yγ̃ + δyγ̃��2

≤ �I′�1− η/2��2 + 2−p
∑
γ̃∈K +
�I′�yγ̃ + δyγ̃��2:

(4.94)

Looking at these three functionals suggests choosing δyγ̃ for γ̃ ∈K + as the
solution of the equation

− δyγ̃ = τI′�yγ̃ + δyγ̃�:(4.95)

The point is that with this choice, (4.94) yields [we set for simplicity
δE�δy�τ�� ≡ δE�τ�, etc.]

δI�τ� ≥ 1
8τ
�δE�τ��2(4.96)

while

Tp�τ� ≤ �I′�1− ζ��2 + τ−2�δE�τ��2:(4.97)

Thus we can ensure that the entropy gain dominates the potential loss in the
quadratic term provided we can choose τ < δE�τ�/8. However, we know that



LARGE DEVIATION FOR THE HOPFIELD MODEL 1473

Tp�τ� is a continuous function of t and Tp�0� ≥ c. Thus there exists τ0 > 0
such that for all τ ≤ τ0, Tp�τ� ≥ c/2, and so by (4.97),

τ−1δE�τ� ≥
√
c/2− �I′�1− ζ��2;(4.98)

which inserted into (4.97) yields that

δI�τ� ≥ �ln 2/4�
√
c/2− �I′�1− ζ��2δE�τ�:(4.99)

It is clear that if c is chosen large enough (“large” depending only on ζ), this
gives δI�t� > δE�t�, as desired. Finally, it is easy to see that �δyγ̃� is bounded
from above by the solution of the equation

x = τI′�1− x�;(4.100)

which is of the order of x ≈ τ� ln τ�. If ζ is chosen, for example, ζ = η/4, we see
from this that for small enough τ, �δyγ̃� ≤ η/2 − ζ, so that all our conditions
can be satisfied. Thus, there exist c <∞ depending only on η (which in turn
depends only on m̃ and ε) such that any y that satisfies the assumptions of
Case 2 with this choice of c in (4.89) cannot realize the infimum of 2p. The
two cases combined prove the lemma. 2

To conclude the proof of Theorem 1 we show that, for m̃ ∈ Dc
I, (1.13) holds.

This turns out to be rather simple. The main idea is that if m̃ ∈ Dc
�I�, then on

a subset of � of probability 1, for N large enough and ε small enough, the set
�σ ∈ SN � �5ImN�σ� − m̃�2 ≤ ε� is empty.

To do so we will first show that uniformly in the configurations σ , the vector
5ImN�σ� can be rewritten as the sum of a vector in D�I� and a vector whose
norm goes to zero as N goes to infinity. Let eγ, γ = 1; : : : ;2�I�, be the column
vectors of the matrix Et

�I�. We set

vγ ≡ �i ∈ �1; : : : ;N� � ξµi = eµγ ; ∀µ ∈ I�:(4.101)

These sets are random sets, depending on the realization of the random vari-
ables ξµi . Their cardinality, however, remains very close to their mean value.
More precisely, let λγ denote the fluctuation of �vγ� about its mean:

λγ ≡ 2�I�N−1��vγ� − 2−�I�N�:(4.102)

There exists a subset �4 ∈ � of probability 1 and a function δN, tending to
zero as N tends to infinity, such that, for all but a finite number of indices,

�λγ� < δN; γ = 1; : : : ;2�I�:(4.103)

This fact has been proven in [10]. Using (4.101), 5ImN�σ� can be rewritten
as

5ImN�σ� = 2−�I�Et
�I��X�σ� + δX�σ��;(4.104)
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where X�σ� and �δX��σ� are, respectively, the vectors with components
Xγ�σ� ≡ �vγ�−1∑

i∈vγ σi ∈ �−1;1�, �δX�γ�σ� ≡ λγXγ�σ�, γ = 1; : : : ;2�I�. It then
follows from the properties of the matrix Et

�I� and (4.103) that, on �4,

�5ImN�σ� − n�I��X�σ���2 < δN:(4.105)

Now, by assumption, m̃ ∈ Dc
�I�, that is, there exists ε̃ > 0 such that �x ∈

R�I� � �x − m̃�2 ≤ ε̃� ⊂ �D�I��c. Therefore, since n�I��X�σ�� ∈ D�I�, we have
�n�I��X�σ��−m̃�2 > ε̃. From this and (4.105) it follows that on �4, �5ImN�σ�−
m̃�2 > ε̃− δN. Finally, for N large enough and ε small enough, we get

�σ ∈ SN � �5ImN�σ� − m̃�2 ≤ ε� = \:(4.106)

From this, (1.13) easily follows. This concludes the proof of Theorem 1. 2
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