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We obtain an integral formula for the density of the maximum of
smooth Gaussian processes. This expression induces explicit nonasymp-
totic lower and upper bounds which are in general asymptotic to the den-
sity. Moreover, these bounds allow us to derive simple asymptotic formulas
for the density with rate of approximation as well as accurate asymptotic
bounds. In particular, in the case of stationary processes, the latter upper
bound improves the well-known bound based on Rice’s formula. In the case
of processes with variance admitting a finite number of maxima, we refine
recent results obtained by Konstant and Piterbarg in a broader context,
producing the rate of approximation for suitable variants of their asymp-
totic formulas. Our constructive approach relies on a geometric represen-
tation of Gaussian processes involving a unit speed parameterized curve
embedded in the unit sphere.

1. Introduction. Let X�t�, t ∈ I = �0;T�, be a real Gaussian process
with mean 0 and continuous sample functions. Numerous papers have been
devoted to the study of

Z = sup
t∈I

X�t�

[see the monographs by Adler (1981, 1990), Berman (1992), Leadbetter, Lind-
gren and Rootzen (1983), Ledoux and Talagrand (1991), and Piterbarg (1996)].
It turns out that the exact distribution of Z is known for the Wiener process,
the Brownian bridge B�t�, B�t� −

∫ 1
0 B�u�du [Darling (1983)], the integrated

Wiener process [see, e.g., Lachal (1991)], a class of sawtooth processes [see,
e.g., Cressie (1980)] and the random cosine wave X�t� = ξ1 cos�t� + ξ2 sin�t�,
where ξ1 and ξ2 are i.i.d. N �0;1�.

Otherwise, two directions have been mainly explored. The first one consists
of deriving, under minimal restrictions, upper and lower bounds for P�Z > a�
for a large enough, or first-order asymptotics for P�Z > a� as a→∞. At this
level of generality, these bounds often involve unknown constants and are
not sharp enough to be used as p-values in statistical tests and stochastic
modelization where precise estimations of P�Z > a�, lying between 0.1 and
0.01, are required. Works of the second category try to obtain precise asymp-
totics for P�Z > a� under more rigid restrictions on the process (stationarity,
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smooth covariance function; : : :). In our approach, we study the nonasymptotic
behavior of the density fZ�b� of Z. We derive an integral representation for
fZ�b� which induces sharp explicit upper and lower bounds for all b > 0. It
appears that these bounds are asymptotic to the density as b → ∞. More-
over, they allow us to derive simple asymptotic formulas for fZ�b� with rate
of approximation as well as specially accurate asymptotic bounds (see, e.g.,
the examples in subsection 2.3). Note that Weber (1985) and Lifshits (1986)
have studied the density of Z in a broader context and they have obtained
bounds involving unknown constants.

In this paper, we consider the class of centered Gaussian processes of the
form

X�t� = τ−1
X �t�

n∑
j=1

ξjgj�t�; 2 ≤ n ≤ ∞;(1)

where ξj, j ≥ 1, are i.i.d. N �0;1�, ∑n
j=1 g

2
j�t� ≡ 1 and the functions τX�t� > 0

and gj�t�, j ≥ 1, are sufficiently smooth.
The existence of the Karhunen–Loève expansion for Gaussian processes

with continuous sample functions ensures that this class is very large [Adler
(1990)]. First, all Gaussian processes with smooth covariance function have
such a representation. Second, more general processes can be approximated
by processes of this class with respect to the uniform norm. Indeed, in the
context of nonsmooth Gaussian processes, a classical approach consists of
working with the regularized version Xδ�t� =

∫∞
−∞X�t − s�ψδ�s�ds, where

ψδ�t� = ψ�t/δ�/δ is a smooth kernel. By letting δ → 0, Xδ�t� converges
to X�t� under weak assumptions [Azaı̈s and Florens-Zmirou (1987)]. Since
P�supt∈I �X�t�−Xδ�t�� > α� is basically controlled by supt∈I Var�X�t�−Xδ�t��,
choosing δ such that supt∈I Var�X�t� −Xδ�t�� is sufficiently small should al-
low us to transform sharp bounds for P�supt∈IXδ�t� > a� into usable bounds
for P�Z > a� with a in a suitable fixed compact subset of �0;∞�. Indeed,
our motivation in undertaking this study was to provide good approximations
for P�Z > a� around practical values of a, that is, around the 0.95 quan-
tile, for smooth processes and processes whose covariance function admits a
Taylor expansion sufficiently close to that of smooth processes in the neigh-
borhood of the diagonal. These approximations are under current research. Of
course, the possibility of such approximations has no direct relation with the
possible divergent first-order asymptotic expansions of the tail distributions
as a → ∞. For stationary Gaussian processes, the truncation of the spectral
measure also leads to the form (1). See also Berman (1988) for stochastic mod-
elizations leading to processes (1), Davies (1977) for a class of statistical tests
and Konakov and Piterbarg (1983) for confidence regions in nonparametric
density estimation involving quantiles of the distribution of the maximum of
smooth Gaussian processes.

Berman (1988) studies the asymptotic behavior of the tail probabilities of
the supremum Z of processes of the form (1) with τX�t� ≡ 1, finite n and
orthogonally invariant joint distribution of �ξ1; : : : ; ξn�. In the normal case,
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his results render the well-known expressions (Theorem 18.1, page 37):

P�Z > a� ∼ L�2π�−1 exp�−a2/2�; a→∞;(2)

where L =
∫ T

0 �
∑n
j=1 g

′
j

2�t��1/2 dt, and (Corollary 17.1, page 36)

P�Z > a� ≤ L�2π�−1 exp�−a2/2� +
∫ ∞
a
�2π�−1/2 exp�−x2/2�dx; a > 0:(3)

The main term appearing in both expressions results from Rice’s formula,
which measures the expected number of upcrossings of a fixed level a [Mar-
cus (1977)]. In subsection 2.3, we improve the upper bound (3) for smooth
stationary processes providing a higher-order expansion for P�Z > a�.

Johnstone and Siegmund (1989) consider processes of the form (1) with
τX�t� ≡ 1, finite n and �ξ1; : : : ; ξn� uniformly distributed on the unit sphere.
By making use of the connection between the standard Gaussian distribution
in Rn and the uniform distribution on the unit sphere of Rn, we can adapt their
result (Theorem 3.3, page 190) to our context. It turns out that the resulting
upper bound is (3).

Sun (1993) investigates an asymptotic expansion for the tail probabilities
of the maximum of smooth Gaussian random fields with unit variance. In
the special case of processes, her results concern periodic processes of the
form (1) with τX�t� ≡ 1. For finite n, Sun obtains the asymptotic formula (2)
(Theorem 3.1, page 40) as a consequence of Weyl’s formula for the volume of
tubes around a manifold embedded in the unit sphere. For infinite n, (2) still
holds under additional assumptions, otherwise it becomes an upper bound
(Theorems 3.2 and 3.3, page 41).

The sharpest results concerning smooth Gaussian processes are due to
Piterbarg (1981, 1988) and Konstant and Piterbarg (1993) who produce very
precise asymptotic formulas for P�Z > a�. In subsection 2.3, our results are
compared to theirs. In particular, we provide rates of approximation for suit-
able variants of the asymptotic formulas given in Konstant and Piterbarg
(1993).

Our approach is based on the interpretation of the functions gj�t�, j ≥ 1,
as a parameterization of a curve embedded in the unit sphere of Rn or of
the space of square summable sequences. With the canonical moving frame
induced by this parameterization, we describe each level manifold �z = b�,
b ∈ R, of the functional

z = sup
t∈I

τ−1
X �t�

n∑
j=1

xjgj�t�;

where �xj: j ≥ 1� is a realization of �ξj: j ≥ 1�, as an envelope of the family
of hyperplanes �τX�t�−1∑n

j=1 xjgj�t� = b: t ∈ I�. This technique enables us
to express the density fZ�b� of Z as the canonical volume of �z = b�, leading
to an integral formula for fZ�b� (Theorem 1). This representation provides
(under weaker assumptions due to a perturbation argument) nonasymptotic
lower and upper bounds for fZ�b� and P�Z > a� with remarkable asymptotic
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features. Moreover, it allows us to handle processes with quite general varying
variance, to deal with the case n = ∞ and to manage the boundary effects with
great care.

The remainder of the paper is organized as follows. Our main results are
presented in Section 2 for n < ∞ and are extended to the infinite case in
Section 3. The theorems in Sections 2 and 3 are proved in Section 4. Some
related known results of differential geometry are briefly introduced in the
Appendix.

Notation. Throughout the paper, a.e. means almost every, `2 refers to the
Hilbert space of square summable sequences, x = �x1; x2; : : :� is an element of
either Rn or `2, �x;y� = ∑n

j=1xjyj, 2 ≤ n ≤ ∞, �x� = �x;x�1/2, Vect�x1; : : : ;xd�
and Vect⊥�x1; : : : ;xd� denote the linear subspace spanned by �x1; : : : ;xd� and
its orthogonal, respectively, Gram�x1; : : : ;xd� is the determinant of the ma-
trix G with entries Gij = �ai;aj� [note that detG = det2�x1; : : : ;xd�]. µn
is the Gaussian measure on Rn with density ϕn�x� = �2π�−n/2 exp�−�x�2/2�,
ϕ�x� = ϕ1�x� and8�x� =

∫ x
−∞ ϕ�y�dy. By convention, ϕ�∞� = 0 and8�∞� = 1.

Cm�A� denotes the set of functions A → R having kth-order continuous
derivatives for k = 1; : : : ;m. The partial derivatives ∂k+lr�x;y�/∂xk∂yl where
r ∈ C k+l�A� are written Dklr�x;y�. The Jacobian matrix of a differentiable
mapping p: Rn→ Rn is denoted Dp.

2. Main results.

2.1. An integral formula. Let X�t�, t ∈ I = �0;T�, be a Gaussian process
with mean 0 and variance σ2

X�t� > 0, of the form

X�t� = τ−1
X �t�U�t�; U�t� = �J;g�t��;(4)

where τX�t� = σ−1
X �t�, g�t� = �g1�t�; : : : ; gn�t��, n ≥ 2, and J = �ξ1; : : : ; ξn�

is a Gaussian r.v. with zero mean and identity covariance matrix. With this
representation, the covariance function rX�t1; t2� of X�t� is given by

rX�t1; t2� = τ−1
X �t1� τ−1

X �t2� rU�t1; t2� = τ−1
X �t1� τ−1

X �t2� �g�t1�;g�t2��
and DklrU�t1; t2� = �g�k��t1�;g�l��t2��. Since σ2

X�t� = rX�t; t� = �g�t��2/τ2
X�t�,

�g�t��2 = rU�t; t� ≡ 1 and g�t� parameterizes a curve γ embedded in the
unit sphere Sn−1 in Rn. Let us denote ρkl; u�t� = DklrU�t1; t2� �t1 = t2 = t. In this
subsection, we assume that

Condition 1. τX�t� is in C 2�I� and rU�t1; t2� has continuous partial
derivatives DklrU�t1; t2� for 0 ≤ k; l ≤ 2.

Condition 2. ρ11; u�t� 6= 0 for all t ∈ I.

Condition 3. �t: cg�t� = 0� ⊂ �t: τX�t� − τ′X�t�ρ12;u�t�/ρ3/2
11; u�t� +

τ′′X�t�/ρ11; u�t� > 0�, where the function cg�t� ≥ 0 defines the geodesic
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curvature of γ at the point g�t� (see the Appendix) and is given by
c2
g�t� = �ρ11; u�t�ρ22; u�t� − ρ2

12; u�t��/ρ3
11; u�t� − 1.

Condition 4. Whenever g�t�, g′�t� and g�t′� are linearly dependent for
t′ 6= t, g̃�t′� 6= g̃�t� where g̃�t� = τX�t�g�t� + τ′X�t�g′�t�/ρ11; u�t�.

Remark. We can relax Condition 2, allowing a finite set I0 of points
such that ρ11; u�t� = 0 for t ∈ I0. Though technical, Conditions 3 and 4
are very weak and easily checked. A sufficient standard condition is that
�U�t�;U′�t�;U′′�t�;U�t′�� admits a joint density for all t′ 6= t. However, Con-
ditions 3 and 4 are required only for the derivation of an explicit formula in
Theorem 1 and will not be used in the following subsections.

Remark. If σX�t� ≡ 1/τ is constant, Condition 3 is automatically satisfied,
g̃�t� = τg�t� and Condition 4 means that the curve γ has no self-intersection,
that is, t′ 6= t⇒ g�t′� 6= g�t�. In other words, rU�t; t′� < 1 for all t; t′ ∈ �0;T�
if g�t� [i.e., U�t�] is T-periodic and for all t; t′ ∈ �0;T� otherwise.

We are interested in finding nonasymptotic estimates for the distribution of

Z = sup
t∈I

X�t�:

The key idea of our approach is to transform this problem into a geometric
problem concerning the standard Gaussian measure of certain convex subsets
of Rn. We obtain an integral formula for the density fZ of Z which is stated in
Theorem 1. The derivation of this formula which is sketched below is greatly
simplified if we parameterize γ with unit speed. This can be done without
loss of generality when Condition 2 holds. Let us define the Gaussian process
Y�s�, s ∈ J, as

Y�s� = τ−1
Y �s�V�s�; V�s� = �J; f�s��;

where τY�s� = τX�λ−1�s��, f�s� = g�λ−1�s�� and s = λ�t� =
∫ t

0 ρ
1/2
11; u�t′�dt′

defines a unit speed parameterization of γ, J = �0;L� with L = �γ� = λ�T�.
Then we have

Z = sup
t∈I

X�t� = sup
s∈J

Y�s�:

The covariance function of Y�s� is given by rY�s1; s2� = rX�λ−1�s1�; λ−1�s2��.
Moreover, �f�s�� = �f ′�s�� ≡ 1 for all s ∈ J. Note that, in terms of s = λ�t�,
Condition 3 becomes: �s: c2

g�s� = �f ′′�s��2 − 1 = 0� ⊂ �s: τY�s� + τ′′Y�s� > 0�.
For simplicity, all our results will be expressed in terms of this unit speed

parameterization. However, simple transformations give the corresponding
formulas expressed in the original parameterization. In practice, only the lat-
ter are used.

Our method relies on the existence of an orthonormal moving frame �f�s�,
T�s�, K1�s�; : : : ;Kn−2�s�� of Rn such that the space tangent to Sn−1 at f�s� is
spanned by �T�s�, K1�s�; : : : ;Kn−2�s�� and T�s� = f ′�s� (see the Appendix).
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Let us consider the realization of ��;A ;P� as �Rn;B�Rn�; µn�, where
B�Rn� denotes the Borel σ-field of Rn. It follows that

Y�s;x� = τ−1
Y �s��x; f�s��; x ∈ Rn;

is a realization of the process Y�s� and

P�Z ≤ a� = µn�Ca�; a ∈ R;(5)

where

Ca =
{
x ∈ Rn: sup

s∈J
Y�s;x� ≤ a

}
:

The boundaries ∂Cb of Cb, b ≤ a, partition Ca. Indeed, by Lemma 7 in Sec-
tion 4,

∂Cb =
{
x ∈ Rn: sup

s∈J
Y�s;x� = b

}
:

This suggests that a suitable change of variable will express µn�Ca� as an
integral over b ≤ a of appropriate superficial measures of ∂Cb:

µn�Ca� =
∫ a
−∞

ψb�∂Cb�db =
∫ a
−∞

fZ�b�db:(6)

Such a decomposition can be worked out basically—for simplicity, we as-
sume Y�s� �X�t�� periodic here, the aperiodic case can be treated essentially
in the same way—because it is possible (see Lemma 9) to parameterize ∂Cb
by

pb�s; u� = c1�b; s�f�s� + c2�b; s�T�s� +
n−2∑
j=1

ujKj�s�;

where s ∈ J, u = �u1; : : : ; un−2� ∈ Db�s�, c1�b; s� and c2�b; s� are defined in
terms of b, τY�s� and τ′Y�s�, and Db�s� is a closed convex subset of Rn−2. We
show in Lemmas 11 and 12 that the transformation p: �b; s; u� → pb�s; u�
is a C1-diffeomorphism from an open subset of Rn into Rn. By the change-of-
variable formula and Fubini’s theorem, we have, for all A ∈ B�Rn�,

µn�A� =
∫
�b; s; u� ∈p−1�A�

ϕn�p�b; s; u��Gram1/2Dp�b; s; u�dbdsdu

=
∫
b∈R

∫
�s; u� ∈p−1

b �A∩∂Cb�
ϕn�pb�s; u��Gram1/2Dp�b; s; u�dsdu db

=
∫
b∈R

ψb�A ∩ ∂Cb�db:

Since Ca ∩ ∂Cb = ∂Cb if b ≤ a and Ca ∩ ∂Cb = \ otherwise, we obtain (6).

Remark. The canonical superficial measure on ∂Cb induced by ϕn�x� is
defined by

ψ∗b�A ∩ ∂Cb� =
∫
�s; u� ∈p−1

b �A∩∂Cb�
ϕn�pb�s; u��Gram1/2Dpb�s; u�dsdu
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[Berger and Gostiaux (1988), page 203]. If σY�s� ≡ 1/τ is constant, it results
from Lemma 11 that ψb�A∩∂Cb� = τψ∗b�A∩∂Cb� for allA ∈ B�Rn�. Otherwise,
ψb appears as a weighted version of ψ∗b, with weight τY�s�:

ψb�A ∩ ∂Cb� =
∫
�s; u�∈p−1

b �A∩∂Cb�
ϕn�pb�s; u��τY�s�Gram1/2Dpb�s; u�dsdu:(7)

The above approach leads to the following expression for fZ�b�, b ∈ R.

Theorem 1. Under Conditions 1–4, the density of Z is given by

fZ�b� =
∫ L

0

∫
Db�s�

τY�s�
(
b�τY�s� + τ′′Y�s�� − u1cg�s�

)

× ϕn�p�b; s; u��du1 · · ·dun−2 ds+ δZ�b�;
(8)

where

δZ�b� =





0; Y�s� L-periodic;
τY�0�ϕ�bτY�0��µn−1�Gb�0��

+ τY�L�ϕ�bτY�L��µn−1�Gb�L��; otherwise;

with

Db�s� =
{
u = �u1; : : : ; un−2� ∈ Rn−2: sup

s′∈J
τ−1
Y �s′��p�b; s; u�; f�s′�� ≤ b

}
;

p�b; s; u� = b�τY�s�f�s� + τ′Y�s�T�s�� +
n−2∑
j=1

ujKj�s�;

Gb�l� =
{
v = �v1; : : : ; vn−1� ∈ Rn−1: sup

s′∈J
τ−1
Y �s′��pb;l�v�; f�s′�� ≤ b

}

and

pb;l�v� = bτY�l�f�l� + vn−1T�l� +
n−2∑
j=1

vjKj�l�; l = 0;L:

Remark. Taylor expansions of order 1 of �pb;0�v�; f�s�� − bτY�s� [respec-
tively �pb;L�v�; f�s��−bτY�s�] around l, l = 0;L, show that Gb�0� [respectively
Gb�L�] has Lebesgue measure 0 in Rn−1 if Y�s� is L-periodic.

2.2. Nonasymptotic bounds. Several nonasymptotic upper and lower
bounds for P�Z > a� have been proposed [see, e.g., Samorodnitsky (1991),
and the references therein, Berman and Kôno (1989), and Weber (1989)].
However, these bounds, obtained in general in a broader context, either in-
volve unknown constants or are too crude to be used as p-values in statistical
tests. In this section, we provide explicit sharp bounds for fZ�b� that turn
out to be asymptotic to the density as b→∞, as shown in the next section.

From the integral representation (8), we can, under weaker assumptions
with the help of a perturbation argument, deduce an efficient and easily com-
putable upper bound for fZ�b�, b ∈ R.
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Theorem 2. Under Conditions 1 and 2 and for b ∈ R;
fZ�b� ≤M�b�

= b

2π

∫ L
0
τY�s��τY�s� + τ′′Y�s�� exp

(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)

×8
(
b�τY�s� + τ′′Y�s��

cg�s�

)
ds

+ 1
2π

∫ L
0
τY�s�cg�s� exp

(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)

× ϕ
(
b�τY�s� + τ′′Y�s��

cg�s�

)
ds+ δM�b�

(9)

where

δM�b� =





0; Y�s� L-periodic;
τY�0�ϕ�bτY�0��8�bτ′Y�0��
+ τY�L�ϕ�bτY�L���1−8�bτ′Y�L���; otherwise:

Remark. Expressions in terms of t = λ−1�s� for M�b� and δM�b� are ob-
tained by replacing L by T, ds by ρ1/2

11; u�t�dt, cg�s� by cg�t� (see the Appendix),

τY�s� by τX�t�, τ′Y�s� by τ′X�t�/ρ
1/2
11; u�t� and τ′′Y�s� by −τ′X�t�ρ12; u�t�/ρ3/2

11; u�t� +
τ′′X�t�/ρ11; u�t�.

The upper bound M�b� can be used to derive a lower bound for fZ�b�, b > 0.
Indeed, the integral formula (8) can be rewritten as

fZ�b� =
b

2π

∫ L
0
τY�s��τY�s� + τ′′Y�s��

× exp
(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
µn−2�Db�s��ds

− 1
2π

∫ L
0
τY�s�cg�s� exp

(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)

×
∫
Db�s�

u1ϕn−2�u�du1 · · ·dun−2 ds+ δZ�b�:

(10)

By the definition ofDb�s� and relation (5), µn−2�Db�s�� and
∫
Db�s� u1ϕn−2�u�du

can be interpreted in terms of P�sups′∈JWs�s′� ≤ b�, where Ws�s′� is a suit-
able Gaussian process of the form (4) for a.e. s ∈ J. Therefore, Theorem 2
provides upper bounds for P�sups′∈JWs�s′� > b� and the absolute value of
the second term on the right-hand side of (10). This approach requires the
following assumptions:

Condition 5. τX�t� is in C 3�I� and rU�t1; t2� has continuous partial
derivatives DklrU�t1; t2� for 0 ≤ k+ l ≤ 6.
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Condition 6. For all t 6= t′ ∈ I, the joint distribution of �U�t�;U′�t�;
U�t′�;U′�t′�� admits a density.

More precisely, for each s ∈ int�J�,

µn−2�Db�s�� = P
{
sup
s′∈J

Y�s′� ≤ b � Y�s� = b;Y′�s� = 0
}

= P
{

sup
s′∈J

τ−1
Y �s′��b�τY�s��f�s�; f�s′�� + τ′Y�s��T�s�; f�s′���

+
n−2∑
j=1

ωj�Kj�s�; f�s′��� ≤ b
}
;

where V = �ω1; : : : ; ωn−2� is a Gaussian r.v. with mean 0 and identity co-
variance matrix. The Gaussian process Y�s′� � Y�s� = b;Y′�s� = 0 has mean
given by bτ−1

Y �s′��τY�s��f�s�; f�s′�� + τ′Y�s��T�s�; f�s′��� and variance given by
τ−2
Y �s′�α2

s�s′� where α2
s�s′� = 1−�f�s�; f�s′��2−�T�s�; f�s′��2 > 0 by Condition 6.

Therefore,

µn−2�Db�s�� = P
{

for all s′ ∈ J;
n−2∑
j=1

ωj�Kj�s�; f�s′�� ≤ bβs�s′�
}
;(11)

where

βs�s′� = τY�s′� − τY�s��f�s�; f�s′�� − τ′Y�s��T�s�; f�s′��
= b−1τY�s′��b−E�Y�s′� � Y�s� = b;Y′�s� = 0��:

If βs�s′� > 0 for all s′ 6= s, we show (Theorem 4) that µn−2�Db�s�� → 1
as b → ∞. Note that, for such an s, τY�s� + τ′′Y�s� ≥ 0 since βs�s + h� =
�τY�s� + τ′′Y�s��h2/2 + o�h2� as h→ 0. If βs�s′� < 0 for some s′ = s∗ 6= s, then
µn−2�Db�s�� ≤ 8�bα−1

s �s∗�βs�s∗�� → 0 as b → ∞ and is negligible compared
to the previous case. Finally, if βs�s′� ≥ 0 for all s′ 6= s and βs�s∗� = 0 for
some s∗ 6= s, µn−2�Db�s�� is also small for large b (see Theorem 4). Moreover,
for most of the processes of interest [e.g., τY�s� constant on J or admitting at
least one minimum in int�J� or a unique minimum at the boundary, say 0,
and τ′Y�0� = 0], the set J+ = �s: βs�s′� > 0 for all s′ 6= s and τY�s�+τ′′Y�s� > 0�
has positive Lebesgue measure and contains all points giving the largest con-
tribution to fZ�b�. For the case where τY�s� admits a unique minimum at the
boundary, say 0, and τ′Y�0� 6= 0, it can be shown that the main contribution to
the density is given by δZ�b� (see Theorem 4) and, for the sake of brevity in
the present paper, we have chosen to take 0 as the lower bound for δZ�b�.

From the above considerations, it follows that we can restrict ourselves to
the subset J+ ⊂ J in the elaboration of a lower bound for fZ�b�, taking 0 on
J\J+. On J+, it is possible to rewrite (11) in terms of a process of the form (4)
and to use Theorem 2 to provide a lower bound for fZ�b�:

µn−2�Db�s�� = P
{
sup
s′∈J

Ws�s′� ≤ b
}
; s ∈ J+;
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where Ws�s′� = τ−1
s �s′��V;ks�s′��, τ−1

s �s′� = Var1/2�Ws�s′�� = αs�s′�β−1
s �s′� > 0

and ks�s′� = �ks;1�s′�; : : : ; ks; n−2�s′�� parameterizes a curve γs on the unit
sphere of Rn−2. This curve is the normalized orthogonal projection of γ on
Vect⊥�f�s�;T�s�� and consequently s′ → ks�s′� is not unit speed. As in sub-
section 2.1, we need the autocovariance function of �V;ks�s′�� which is given
by

rs�s′1; s′2� = �ks�s′1�;ks�s′2��
= α−1

s �s′1�α−1
s �s′2�

(
�f�s′1�; f�s′2�� − �f�s�; f�s′1���f�s�; f�s′2��

− �T�s�; f�s′1���T�s�; f�s′2��
)

if s′1 6= s and s′2 6= s, rs�s; s′2� = �f�s�+ f ′′�s�; f�s′2��/�cg�s�αs�s′2�� and rs�s; s� =
1. By Condition 5, rs�s′1; s′2� has continuous partial derivatives Dklrs�s′1; s′2�
for 0 ≤ k; l ≤ 2. Let us denote ρkl; s�s′� = Dklrs�s′1; s′2��s′1 = s′2 = s′ .

In order to apply Theorem 2 to Zs = sups′∈JWs�s′�, it remains to determine
�k′s�s′�� and the geodesic curvature cg; s�s′� of γs. We have �k′s�s′�� = ρ

1/2
11; s�s′� >

0 by Condition 6 and c2
g; s�s′� = �ρ11; s�s′�ρ22; s�s′� − ρ2

12; s�s′��/ρ3
11; s�s′� − 1.

Theorem 3. Under Conditions 2, 5 and 6 and for b > 0;

fZ�b� ≥ m�b�

= b

2π

∫
J+
τY�s��τY�s� + τ′′Y�s��

× exp
(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)(
1−

∫ ∞
b
Ms�b′�db′

)
ds

− 1
2π

∫
J+
τY�s�cg�s� exp

(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
η−1�s�Ms�b�ds;

(12)

where 0 < η�s� = inf s′∈J τs�s′� ≤ c−1
g �s��τY�s� + τ′′Y�s�� for all s ∈ J+ and

Ms�b� =
b

2π

∫ L
0
τs�s′�ζs�s′� exp

(
−b

2

2

(
τ2
s �s′� +

τ′s
2�s′�

ρ11; s�s′�

))

×8
(
bζs�s′�
cg; s�s′�

)
ρ

1/2
11; s�s′�ds′

+ 1
2π

∫ L
0
τs�s′�cg; s�s′� exp

(
−b

2

2

(
τ2
s �s′� +

τ′s
2�s′�

ρ11; s�s′�

))

× ϕ
(
bζs�s′�
cg; s�s′�

)
ρ

1/2
11; s�s′�ds′ + δMs

�b�;

δMs
�b� =





0; Y�s� L-periodic;

τs�0�ϕ�bτs�0��8
(
bτ′s�0�
ρ

1/2
11; s�0�

)

+ τs�L�ϕ�bτs�L��
(

1−8
(
bτ′s�L�
ρ

1/2
11; s�L�

))
; otherwise;
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and

ζs�s′� = τs�s′� − τ′s�s′�ρ12; s�s′�/ρ3/2
11; s�s′� + τ′′s �s′�/ρ11; s�s′�:

Remark. Expressions in terms of t = λ−1�s� are obtained by apply-
ing the transformations of Theorem 2 and by replacing τs�s′� by τt�t′� =
βt�t′�/αt�t′� where α2

t �t′� = 1 − rU�t; t′�2 − D2
10rU�t; t′�/ρ11; u�t�, βt�t′� =

τX�t′� − τX�t�rU�t; t′� − τ′X�t�D10rU�t; t′�/ρ11; u�t�, τ′s�s′� by τ′t�t′�/ρ
1/2
11; u�t′�,

τ′′s �s′� by −τ′t�t′�ρ12; u�t′�/ρ3/2
11; u�t′� + τ′′t �t′�/ρ11; u�t′� and rs�s′1; s′2� by rt�t′1; t′2�

with similar transformations for ρkl; s�s′�.
The function Ms�b� involved in the expression of m�b� may be too complex

for practical purposes if the process Y�s� is not stationary. However, by means
of Laplace’s formula for integral representation [De Bruijn (1962), page 65],
we can derive a good approximation of Ms�b� already for moderate b:

Ms�b� ≈ κ�s�η�s�ϕ�bη�s��;
where κ�s� is defined in Theorem 5 and can be numerically computed using
finite differences for the derivatives involved.

2.3. Asymptotic behavior of fZ�b�, M�b� and m�b�. A remarkable feature
of our nonasymptotic approach is that it produces naturally very fine asymp-
totics for fZ�b� and hence P�Z > a�. Theorem 4 states first-order asymp-
totic results. It shows that in general our bounds are asymptotic to fZ�b� as
b→∞ and it makes explicit simple asymptotic formulas for fZ�b�. In partic-
ular, the expression (13) extends the well-known asymptotic formula (14) for a
class of smooth Gaussian processes with varying variance σ2

X�t�. Moreover, it
shows that the remainder term �fZ�b� − e�b��, where e�b� denotes the asymp-
totics of fZ�b� under consideration, has a superexponential decay as b→∞.
In addition, the fine first-order asymptotic results obtained by Konstant and
Piterbarg (1993), Corollaries 2.2 and 2.3, in a broader context are recovered
in statements (iii) and (iv).

In the case of smooth stationary nonperiodic Gaussian processes [hence
τY�s� ≡ 1], Piterbarg (1981) provides a higher-order asymptotic expansion for
P�Z > a�. Under conditions comparable to Conditions D2–D4 in Section 3,
his Theorem 2.2 states that there exist constants ρ, 0 ≤ ρ < 1, and B such
that

�P�Z > a� − �L�2π�−1 exp�−a2/2� + 1−8�a��� ≤ B exp�−a2/�1+ ρ��:
We do not give such a precise result in the nonperiodic case [Theorem 4(ii)] but
we do [Theorem 4(i)] in the periodic case (not treated by Piterbarg). However,
under slightly stronger conditions than those of Theorem 2.2, Piterbarg (1981)
obtains the highest-order expansion to our knowledge. His Theorem 2.3 states
that there is an L0 small enough such that, for all L ≤ L0,

P�Z > a� = L�2π�−1 exp�−a2/2� + 1−8�a�
−Ca−5 exp�−a2�1+ c2

g�/�2c2
g���1+ o�1��
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as a→∞ where C = 61/23Lc9
g/�4π3/2�λ6−1−c2

g�� and λ6 is the sixth spectral
moment of the process.

Together with our nonasymptotic results, Theorem 4 enables us to derive
simple second-order asymptotic bounds for fZ�b� (Theorem 5). In the case
of smooth stationary Gaussian processes (Examples 1 and 2), these bounds
improve the well-known results (2) and (3). In the case of smooth Gaussian
processes with a variance admitting a finite number of maxima (Example 3),
we refine Corollaries 2.1 and 2.2 of Konstant and Piterbarg (1993), producing
rates of decay of the remainders.

Theorem 4. Under the conditions of Theorem 2 for M�b� and of Theorem 3
for m�b�; and consequently for fZ�b�;

fZ�b� = e�b� �1+R�b��;
M�b� ≤ e�b� �1+RM�b��; RM�b� > 0;

m�b� ≥ e�b� �1−Rm�b��; Rm�b� > 0

as b→∞; where:

(i) if J \J+ has Lebesgue measure 0 and Y�s� is periodic, or not periodic
with min�τY�0�; τY�L�� > inf s∈J τY�s�,

e�b� = b

2π

∫ L
0
τY�s��τY�s� + τ′′Y�s�� exp

(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
ds(13)

and R�b� = RM�b� = Rm�b� = O�ϕ�bθ�� for some θ > 0y
(ii) if Y�s� is not periodic and τY�s� ≡ 1 is constant,

e�b� = b

2π
L exp

(
−b

2

2

)
;(14)

R�b� = RM�b� = O�b−1� and Rm�b� = O�ϕ�bθ�� for some θ > 0;
(iii) if Y�s� is not periodic, τY�s∗� = τ < τY�s� for all s 6= s∗; s∗ ∈ int�J�

and q = inf�k ≥ 1: τ�k�Y �s∗� = τ�k� > 0� is assumed finite, then
1. e�b� = �1 + τ/τ′′�1/2τϕ�bτ� and R�b� = RM�b� = Rm�b� = o�1� if
q = 2y

2. e�b� = b1−2/q�2π�−1/2τ2−1/q�τ�q��−1/q q−10�q−1�0�q + 1�1/qϕ�bτ� and
R�b� = RM�b� = Rm�b� = o�1� if q ≥ 3y

(iv) if Y�s� is not periodic, τY�0� = τ < τY�s� for all s 6= 0 and q = inf�k ≥
1: τ�k�Y �0� = τ�k� > 0� is assumed finite, then

1. e�b� = δM�b�; R�b� = o�1�; RM�b� = O�ϕ�bθ�� and Rm�b� = 1 −
O�ϕ�bθ�� for some θ > 0 if q = 1y

2. e�b� = �2−1�1 + τ/τ′′�1/2 + 1�τϕ�bτ�; R�b� = RM�b� = o�1� and
Rm�b� = 1− �2−1�1+ τ/τ′′�1/2 + 1�−1 − o�1� if q = 2y

3. e�b� = b1−2/q�2π�−1/2τ2−1/q�τ�q��−1/qq−10�q−1�0�q + 1�1/qϕ�bτ� and
R�b� = RM�b� = Rm�b� = o�1� if q ≥ 3.



1116 J. DIEBOLT AND C. POSSE

Remark. The results stated in Theorem 4(iii) and (iv) can be easily
adapted to the case where τY�s� reaches its absolute minimum on a finite set
of points by adding the asymptotics over these points.

Note that when Y�s� reaches its maximum at the boundaries with high
probability, the main contribution to the density is given by the additional
term δZ�b�. This phenomenon affects the good behavior of m�b� since we have
chosen to take 0 as the lower bound for δZ�b� for the sake of brevity. However,
it would be possible to improve m�b� by introducing a term 0 < δm�b� ≤ δZ�b�
which corrects this imperfection. This subject is under current research.

Theorem 5. Assume that Conditions 2, 5 and 6 hold, J \J+ has Lebesgue
measure 0 and, for a.e. s ∈ J; the function s′ → τs�s′� reaches its infimum
η�s� > 0 at a finite number of points s′i; i = 1; : : : ; k; in J; with τ′′s �s′i� > 0 for
s′i ∈ int�J� and τ′s�s′i� 6= 0 or τ′′s �s′i� > 0 if s′i = 0;L. Then there exists for a.e.
s ∈ J a positive number κ�s� such that, for b→∞,

fZ�b� ≤
b

2π

∫ L
0
τY�s��τY�s� + τ′′Y�s��

× exp
(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
ψu�s; b�ds+ δZ�b�;

where

ψu�s; b� = 1− κ�s��1−8�bη�s����1+ o�1��
+ κ�s�cg�s��b�τY�s� + τ′′Y�s���−1ϕ�bη�s���1+ o�1��y

fZ�b� ≥
b

2π

∫ L
0
τY�s��τY�s� + τ′′Y�s�� exp

(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
ψl�s; b�ds;

where

ψl�s; b� = 1− κ�s��1−8�bη�s����1+ o�1��
− κ�s�cg�s��b�τY�s� + τ′′Y�s���−1ϕ�bη�s���1+ o�1��:

The function κ�s� is given by κ�s� =∑k
i=1 κi�s�; where:

(i) κi�s� = �1+ η�s�ρ11; s�s′i�/τ′′s �s′i��1/2 if s′i ∈ int�J�;
(ii) κi�s� = �1 + �1 + η�s�ρ11; s�s′i�/τ′′s �s′i��1/2�/2 if s′i = 0;L; τ′s�s′i� = 0;

τ′′s �s′i� > 0 and Y�s� is not periodic,
(iii) κi�s� = 1/2 if s′i = 0;L; τ′s�s′i� 6= 0 and Y�s� is not periodic.

Remark. Since 1 − 8�bη�s�� ∼ ϕ�bη�s��/bη�s� as b → ∞ and η�s� ≤
�τY�s� + τ′′Y�s��/cg�s�, it follows that ψu�s; b� ≤ 1+ o�1� as b→∞.

Example 1. If Y�s�, satisfying the conditions of Theorem 5, is stationary
and L-periodic, then cg�s� ≡ cg, τs�s′� = τ�s′�. Therefore, η�s� ≡ η ≤ c−1

g ,
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κ�s� ≡ κ and

fZ�b� ≤ bL�2π�−1 exp�−b2/2�
[
1− κ�1−8�bη���1+ o�1��
+ κcgb−1ϕ�bη��1+ o�1��

]
:

Moreover, the function τ�s′� is even and reaches a local minimum at s′ = 0 and
τ�0� = c−1

g . If this minimum is global, it turns out that κ = 31/2. Otherwise,
η−1 − cg > 0 and

fZ�b� ≤ bL�2π�−1 exp�−b2/2��1− κϕ�bη�b−1�η−1 − cg��1+ o�1���
for b large enough. Therefore,

P�Z > a� ≤ L�2π�−1 exp�−a2/2�
− κ�η−1 − cg�L�2π�−1�1+ η2�−1/2�1−8�a�1+ η2�1/2���1+ o�1��;

which improves the well-known upper bound (3) for a large enough. Similarly,

P�Z > a� ≥ L�2π�−1 exp�−a2/2�
− κ�η−1 + cg�L�2π�−1�1+ η2�−1/2�1−8�a�1+ η2�1/2���1+ o�1��:

Example 2. If Y�s�, satisfying the conditions of Theorem 5, is stationary
but not periodic, then cg�s� ≡ cg, τs�s′� = τ�s′ − s�, η−1�s� ≥ cg for all s and

P�Z > a� ≤ L�2π�−1 exp�−a2/2� + 1−8�a� − �2π�−1
∫ L

0
κ�s��η−1�s� − cg�

× �1+ η2�s��−1/2�1−8�a�1+ η2�s��1/2���1+ o�1��ds
for a large enough, which also improves (3). Similarly,

P�Z > a� ≥ L�2π�−1 exp�−a2/2� − �2π�−1
∫ L

0
κ�s��η−1�s� + cg�

× �1+ η2�s��−1/2�1−8�a�1+ η2�s��1/2���1+ o�1��ds:

Example 3. If τ = τY�s∗� < τY�s� for all s 6= s∗, s∗ ∈ int�J�, there exists
ε > 0 such that J∗ε = �s∗ − ε; s∗ + ε� ⊂ J+. We can then apply Theorem 5 to
the restriction of J to J∗ε. Let us denote

eε�b� =
b

2π

∫ s∗+ε
s∗−ε

τY�s��τY�s� + τ′′Y�s�� exp
(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
ds

and �τ + δ�2 = inf s∈J\J∗�τ2
Y�s� + τ′Y2�s��. By assumption, δ > 0. From (9) and

(12), we have M�b� = eε�b� + δM�b� + O�ϕ�b�τ + δ��� and m�b� = eε�b��1 −
O�ϕ�bη∗��� as b→∞, with η∗ = inf s∈J η�s� > 0. As min�τY�0�; τY�L�� > τ, it
results that

fZ�b� = e�b��1+O�ϕ�bθ���; b→∞;
for some θ > 0 since eε�b� = e�b��1+O�ϕ�b�τ+δ���� with e�b� given by (13). In
other words, the remaining term �fZ�b� − e�b�� has a superexponential decay.
Note that in Konstant and Piterbarg (1993) it is not proved that the remaining
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term �P�Z > a� − E�a��, where E�a� denotes the asymptotic formula they
obtain by making use of Laplace’s formula, has such a superexponential decay.

3. Extension to series representation. The results of Section 2
can be extended to the maximum Z of Gaussian processes of the form
X�t� = τ−1

X �t�U�t�, t ∈ I = �0;T�, where τX�t� > 0, U�t� is a centered
Gaussian process with unit variance and covariance function rU�t1; t2� =
�g�t1�;g�t2�� =

∑∞
j=1 gj�t1�gj�t2�: The functions g�t� = �g1�t�; g2�t�; : : :�

parameterize a curve γ embedded in the unit sphere of `2. Let us denote
ρkl;u�t� = DklrU�t1; t2��t1=t2=t. We assume that

Condition D1. The function τX�t� is in C 3�I� and rU�t1; t2� has continu-
ous partial derivatives DklrU�t1; t2� for 0 ≤ k; l ≤ 4.

Condition D2. ρ11; u�t� 6= 0 for all t ∈ I.

Under these conditions, we give an upper bound for the density fZ�b� of
Z = supt∈IX�t�. With the following assumptions we also derive a lower bound.

Condition D3. The function τX�t� is in C 4�I� and rU�t1; t2� has continu-
ous partial derivatives DklrU�t1; t2� for 0 ≤ k+ l ≤ 8.

Condition D4. For all t 6= t′ ∈ I, the joint distribution of �U�t�;U′�t�;
U�t′�;U′�t′�� admits a density.

The length and geodesic curvature of γ are given by L =
∫ T

0 ρ
1/2
11; u�t′�dt′

and c2
g�t� = �ρ11; u�t�ρ22; u�t� − ρ2

12; u�t��/ρ3
11; u�t� − 1. As in Section 2, γ has

a unit speed parameterization s = λ�t� =
∫ t

0 ρ
1/2
11; u�t′�dt′ under Condition D2.

Therefore, Z = supt∈IX�t� = sups∈JY�s�, where Y�s� = τ−1
Y �s�V�s� with

τY�s� = τX�λ−1�s��, V�s� = U�λ−1�s�� a Gaussian process of variance 1 and
covariance function rV�s1; s2� = �f�s1�; f�s2�� with f�s� = g�λ−1�s��. The func-
tions αs�s′�, βs�s′�, τs�s′�, η�s�, rs�s′1; s′2�, ρkl; s�s′�, cg; s�s′� and ζs�s′� defined
in Section 2 are also well defined in the present context and we can show the
following result.

Theorem 6. Under Conditions D1 and D2, Z has a density fZ�b� and
fZ�b� ≤ M�b� for b ∈ R; with M�b� given by �9�. Under Conditions D2–D4,
fZ�b� ≥ m�b� for b > 0; with m�b� given by �12�. In addition, Theorems 4
and 5 still hold.

4. Proofs of the results of Sections 2 and 3.

4.1. Proof of Theorem 1. We give a detailed proof for the case Y�s� periodic
and sketch the straightforward adaptation for the other case. A complete proof
of all results can be found in Diebolt and Posse (1995) and is available upon
request.
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We need a workable description of the boundary ∂Ca of Ca for a ∈ R. Note
first that Ca is the intersection of the closed half spaces �x ∈ Rn: Y�s;x� ≤ a�,
s ∈ J. These half spaces have hyperplane boundaries given by

H�sya� = �x ∈ Rn: Y�s;x� = a�; s ∈ J:(15)

Lemma 7 shows that the surface ∂Ca is closely related to the hypersurface
enveloped by the hyperplanes H�sya�, s ∈ J.

Lemma 7. If Ca 6= \; ∂Ca = �x ∈ Rn: sups∈JY�s;x� = a�.

Lemma 8. ∂Ca = 6a ∩Ca; where 6a = ∪s∈J5a�s�; with 5a�s� denoting the
affine subspace of dimension n− 2 of Rn defined by the equations

�x; f�s�� = aτY�s�;
�x;T�s�� = aτ′Y�s�:

Lemma 9. (i) The hypersurface 6a can be parameterized by

pa�s; u� = a�τY�s�f�s� + τ′Y�s�T�s�� +
n−2∑
j=1

ujKj�s�;(16)

with s ∈ J; u = �u1; : : : ; un−2� ∈ Rn−2.
(ii) The hypersurface ∂Ca can be parameterized by pa�s; u�; with s ∈ J and

u ∈ Da�s�, where Da�s� is the closed convex subset of Rn−2 (possibly empty)
defined by the set of inequalities �sups′∈JY�s′;pa�s; u�� ≤ a�.

Lemma 10. Let s0 ∈ J be given.

(i) If u ∈ Da�s0� 6= \; then d�a; s0� − u1cg�s0� ≥ 0.
(ii) If u ∈ int�Da�s0�� 6= \ and cg�s0� > 0, then d�a; s0� − u1cg�s0� > 0,

where d�a; s� = a�τY�s� + τ′′Y�s��.

Proof. (i) For each fixed u ∈ Rn−2 and s0, the function hu; s0
�s� =

Y�s;pa�s0; u��; s ∈ J, is twice differentiable and h′u; s0
�s0� = 0. Further-

more, since f ′′�s� = cg�s�K�s� − f�s� for all s ∈ J, h′′u; s0
�s0� = −�d�a; s0� −

u1cg�s0��/τY�s0�. If u ∈ Da�s0� 6= \, hu; s0
�s� reaches its maximum value at

s = s0, implying that h′′u; s0
�s0� ≤ 0.

(ii) Suppose that u ∈ int�Da�s0�� 6= \. Let us show by contradiction that
h′′u; s0
�s0� < 0. Otherwise, we would have h′′u; s0

�s0� = 0 by (i). If h′′u; s0
�s0� = 0,

since cg�s0� > 0 and u ∈ int�Da�s0��, we can pick v ∈ Da�s0� (close enough to
u) such that h′′v; s0

�s0� > 0 (by taking v1 > u1), which contradicts (i). 2

Let us define the C1-function

p�b; s; u� = pb�s; u�; b ∈ R; s ∈ J; u = �u1; : : : ; un−2� ∈ Rn−2:
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This function maps Va = ��b; s; u�: b ≤ a; s ∈ J and u ∈ Db�s�� ⊂ Rn onto
Ca ⊂ Rn since ∪b≤a∂Cb = Ca. Moreover, the restriction of p�b; s; u� to the open
subset V0

a = ��b; s; u�: b < a; b 6= 0; s ∈ int�J� and u ∈ int�Db�s��� ⊂ Va

maps V0
a onto a subset C0

a of Ca. In the following, we will assume that a is
such that V0

a 6= \.

Lemma 11. (i) �detDp�b; s; u�� = τY�s��d�b; s� − u1cg�s��.
(ii) The function p�b; s; u� is a local C1-diffeomorphism from V0

a onto C0
a

and C0
a is an open subset of Rn.

Proof. (i) follows from the fact that GramDp = τ2
Y�s��d�b; s� − u1cg�s��2

and (ii) follows from (i), Lemma 10, Condition 3 and that detDp�b; s; u� 6= 0
for �b; s; u� ∈ V0

a. 2

Lemma 12. The function p is a one-to-one mapping from V0
a onto C0

a.

Proof. Using Condition 4, the proof is similar to the proof of Lemma
10(ii). 2

Lemma 13.

µn�C0
a� =

∫
V0
a

τY�s��d�b; s� − u1cg�s��ϕn�p�b; s; u��du1 · · ·dun−2 dsdb:(17)

Proof. According to Lemmas 11 and 12, the function p is a C1-
diffeomorphism from V0

a onto C0
a. Moreover, according to Lemmas 10 and 11,

detDp�b; s; u� > 0 for all �b; s; u� ∈ V0
a. Then (17) results from the change of

variable x = p�b; s; u� applied to the integral µn�C0
a� =

∫
C0
a
ϕn�x�dx. 2

Since Db�s� is a convex of Rn−2, the Lebesgue measure in Rn−2 of ∂Db�s�
is 0. Therefore, the Lebesgue measure of Va \V0

a is 0 and we can replace V0
a

by Va in (17). Moreover, Ca \ C0
a has Lebesgue measure 0 since Ca \ C0

a =
p�Va�\p�V0

a� ⊂ p�Va \ V0
a� and p�b; s; u� is a C1-function from Rn to Rn.

Consequently, µn�Ca� = µn�C0
a� which, with (5) and (6), concludes the proof of

Theorem 1 for Y�s� periodic.
Suppose now that Y�s� is not periodic. Lemma 7 still holds. In Lemma 8, we

have to replace 6a by 6′a = �∪s∈int�J�5a�s�� ∪H�0; a� ∪H�L;a�, where H�l; a�
is defined in (15). Then ∂Ca can be partitioned as ∂Ca = ∂Ca; int∪∂Ca;0∪∂Ca;L,
where ∂Ca; int = �∪s∈int�J�5a�s��∩Ca, ∂Ca; l =H�l; a�∩Ca, l = 0;L. Lemmas 9–
13 can be applied without modification to Ca; int = ∪b≤a∂Cb; int. The additional
term δZ�b� is obtained from the boundaries ∂Cb; l, b ≤ a, l = 0;L. Indeed,
for l = 0;L, ∂Cb; l can be parameterized by pb; l�v� = bτY�l�f�l� + vn−1T�l� +∑n−2
j=1 vjKj�l� with v ∈ Gb�l� = �v ∈ Rn−1: sups′∈J τY�s′�−1�pb; l�v�; f�s′�� ≤ b�.

Since Gram Dpb; l = τ2
Y�l�, we have ψb�∂Cb; l� =

∫
v∈Gb�l� ϕn�pb; l�v��τY�l�dv. 2
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4.2. Proof of Theorem 2. (i) Under Conditions 1–4, the inequality (9) is a
direct consequence of Lemma 10.

(ii) To enlarge the scope of this inequality, we use the following perturbation
argument. Let us consider the auxiliary Gaussian process Y∗�s�, s ∈ J,

Y∗�s� = τ−1
Y �s�V∗�s�; V∗�s� =

n+k∑
j=n+1

ξjf
∗
j�s�;

where ξj, j = n+1; : : : ; n+k, are independent standard Gaussian r.v.’s, inde-
pendent of ξj, j = 1; : : : ; n,

∑n+k
j=n+1 f

∗2
j �s� =

∑n+k
j=n+1 f

∗′2
j �s� ≡ 1 for s ∈ J, the

functions f∗j�s� are in C∞�J�, k is sufficiently large to ensure that the vectors
f∗�s1�, f∗

′�s1�, f∗�s2�, f∗
′�s2� and f∗�s3�, where f∗�s� = �f∗n+1�s�; : : : ; f∗n+k�s��,

are linearly independent for all s1 6= s2, s1 6= s3 and s2 6= s3 in J. For instance,
V∗�s� = ∑p

i=1 bi�ξn+2i−1 cos�is/A� + ξn+2i sin�is/A�� with bi 6= 0, i = 1; : : : ; p,∑p
i=1 b

2
i = 1,

∑p
i=1 i

2b2
i = A2 and L/A 6= 0 mod�2π�. This process is stationary,

nonperiodic on J and its geodesic curvature c∗g�s� satisfies c∗g�s� ≡ c∗g > 0. We
form the process

Yε�s� = τ−1
Y �s��1+ ε2�−1/2�V�s� + εV∗�s�� = τ−1

Y �s�
n+k∑
j=1

ξjfε; j�s�;

where fε; j�s� = �1 + ε2�−1/2fj�s� for j ≤ n and fε; j�s� = �1 + ε2�−1/2εf∗j�s�
for j > n.

It is easily shown that Yε�s� is a centered Gaussian process with variance
τ−2
Y �s� and that fε�s� = �fε;1�s�; : : : ; fε; n+k�s��, s ∈ J, parameterizes with unit

speed a curve γε whose geodesic curvature cε;g�s� = �1+ε2�−1/2�c2
g�s�+ε2c∗2g �1/2

is positive for ε > 0. Hence, Yε�s� satisfies Condition 3 for ε > 0. By linear
independence, it also satisfies Condition 4 for ε > 0. Therefore, we can apply
Theorem 1 and (i) to Yε�s�, for all ε > 0, to obtain that fZε

�b� ≤Mε�b�, where
Zε = sups∈JYε�s� and Mε�b� is given by (9) with cg�s� replaced by cε;g�s�.
Then

Mε�b� ≤
�b�
2π

∫ L
0
τY�s��τY�s� + τ′′Y�s�� exp

(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
ds

+ 1
2π

∫ L
0
τY�s�cε;g�s� exp

(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
�2π�−1/2 ds+ δM�b�;

where δM�b� is independent of ε. For �ε� ≤ ε0, the expression on the right-
hand side is bounded above by M∗�b� = O��b� exp�−b2η2

Y/2��, where ηY =
inf s∈J τY�s��> 0�.

Finally, P�Zε ≤ a� → P�Z ≤ a� for all a as ε→ 0 since

�Zε −Z� ≤ η−1
Y

(
��1+ ε2�1/2 − 1� sup

s∈J
�V�s�� + �ε� sup

s∈J
�V∗�s��

)
:

It follows that fZε
�b� → fZ�b� as ε→ 0 as in the last paragraph of the proof

of Theorem 6. 2
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4.3. Proof of Theorem 3. For each s ∈ J+, µn−2�Db�s�� in formula (10) can
be interpreted as P�Zs ≤ b�, where Zs = sups′∈JWs�s′�,

Ws�s′� =





n−2∑
j=1

ωj�Kj�s�; f�s′��/βs�s′�; s′ 6= s;

ω1cg�s�/�τY�s� + τ′′Y�s��; s′ = s;
with V = �ω1; : : : ; ωn−2� a Gaussian r.v. with zero mean and identity co-
variance matrix. With this definition, Ws�s′� is defined and continuous on
J, Var�Ws�s′�� = α2

s�s′�/β2
s�s′� for s′ 6= s and Var�Ws�s�� = c2

g�s�/�τY�s� +
τ′′Y�s��2. Moreover, Ws�s′� is of the form (4) and satisfies Conditions 1 and 2:
Ws�s′� = τ−1

s �s′��V;ks�s′��, where τs�s′� = �Var�Ws�s′���−1/2 and ks�s′� =
�ks;1�s′�; : : : ; ks; n−2�s′�� with ks; j�s′� = �Kj�s�; f�s′��/αs�s′� for s′ 6= s, ks;1�s� =
1 and ks; j�s� = 0, j ≥ 2. Therefore, we can apply Theorem 2 to Zs to obtain
an upper bound for 1− µn−2�Db�s��.

This interpretation can also be used to derive an upper bound for the sec-
ond term in (10). Indeed, by Stokes’ theorem [Berger and Gostiaux (1988),
page 195]

∣∣∣∣
∫
Db�s�

u1ϕn−2�u�du1 : : : dun−2

∣∣∣∣ =
∣∣∣∣
∮
∂Db�s�

ϕn−2�u�du2 ∧ : : : ∧ dun−2

∣∣∣∣

≤
∫
∂Db�s�

ϕn−2 dV;

where dV denotes the canonical volume element of the manifold ∂Db�s�
[Berger and Gostiaux (1988), page 203]. A straightforward adaptation of
Lemmas 7–10 yields
∫
∂Db�s�

ϕn−2 dV =
∫
�s′′; v�∈p−1

b; s�∂Db�s��
ϕn−2�pb; s�s′′; v��Gram1/2Dpb; s�s′′; v�ds′′ dv;

where s′′ ∈ J, v ∈ Rn−4 and �s′′; v� → pb;s�s′′; v� defines a parameterization of
∂Db�s� analogous to (16). From (6) and (7) applied to Ws�s′�, it follows that

∫
∂Db�s�

ϕn−2 dV ≤
1

inf s′∈J τs�s′�
fZs
�b� = η−1�s�fZs

�b�;

where fZs
�b� is the density of Zs. 2

4.4. Proof of Theorem 4. (i) AssumeY�s� periodic and J\J+ has Lebesgue
measure 0. Let us denote

e1�b� =
b

2π

∫ L
0
τY�s��τY�s� + τ′′Y�s�� exp

(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
ds:

By (9),

M�b� = e1�b� +
b

2π

∫ L
0
τY�s��τY�s� + τ′′Y�s��

× exp
(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
H

(
b�τY�s� + τ′′Y�s��

cg�s�

)
ds;
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where 0 < H�x� = x−1ϕ�x� − �1 − 8��x� ≤ x−3ϕ�x� for all x > 0 and
H�∞� = 0. Since cg�s� is continuous and τY�s� + τ′′Y�s� is continuous and
positive on J, it follows that θ1 = inf s∈J�τY�s� + τ′′Y�s��/cg�s� > 0 and M�b� −
e1�b� ≤ e1�b��bθ1�−3ϕ�bθ1�. By (12), m�b� = e1�b� −A −B, where A involves∫∞
b Ms�b′�db′ and B involves Ms�b�. Therefore, it suffices to examine the

asymptotic behavior of Ms�b�. Since η�s� > 0,

Ms�b� ≤
1

2π
exp

(
−b

2η2�s�
2

) ∫ L
0
τs�s′��b�ζs�s′��

+ cg; s�s′��2π�−1/2�ρ1/2
11; s�s′�ds′:

Using Taylor expansions of sufficient order, it can be shown that the
functions �s; s′� ∈ J × J → τs�s′�; τ′s�s′�; τ′′s �s′�, ρkl; s�s′�, 0 ≤ k; l ≤ 2,
and cg; s�s′� are continuous. Therefore, their supremum over J × J is
finite and, by the positivity of τs�s′� as a function of �s; s′� ∈ J × J,
θ2 = inf s∈J η�s� = inf �s; s′�∈J×J τs�s′� > 0. It follows that Ms�b� ≤ C1 bϕ�bθ2�
for all s ∈ J and all b > 0. Hence,

∫∞
b Ms�b′�db′ ≤ C2 ϕ�bθ2�. Consequently,

A ≤ e1�b�C3 ϕ�bθ2� and B ≤ e1�b�C4 ϕ�bθ2�. From the asymptotic behavior of
M�b� and m�b�, it follows that e1�b� = e�b�.

If Y�s� is not periodic and min�τY�0�; τY�L�� > inf s∈J τY�s�,

ϕ�bτY�0��
e1�b�

= C5

(∫ L
0
τY�s��τY�s� + τ′′Y�s�� exp

(
b2

2
�τ2
Y�0� − τ2

Y�s� − τ′Y2�s��
)
ds

)−1

:

For ε > 0 small enough, the subset Jε = �s ∈ J: τ2
Y�0�−τ2

Y�s�−τ′Y2�s� ≥ ε2� of
J contains a nonempty interval [around a global minimum of τ2

Y�s� + τ′Y2�s�].
Therefore, it has positive Lebesgue measure. For such an ε > 0,

∫ L
0
τY�s��τY�s� + τ′′Y�s�� exp

(
b2

2
�τ2
Y�0� − τ2

Y�s� − τ′Y2�s��
)
ds

≥ exp
(
b2ε2

2

) ∫
Jε

τY�s��τY�s� + τ′′Y�s��ds

= C6 ϕ
−1�bε�:

Hence, ϕ�bτY�0�� = e1�b�O�ϕ�bθ3��, that is, δM�b� = e1�b�O�ϕ�bθ3��. Finally,
from the continuity and positivity of s → τs�0� and τs�L�, sups∈J δMs

�b� =
e1�b�O�ϕ�bθ4��.

(ii) Straightforward.
(iii) Let us take ε > 0 such that �s∗ − ε; s∗ + ε� ⊂ J+. Such an ε exists

since βs�s′� > 0 for s close to s∗ and s′ ∈ J. Then there exists δ > 0 such that
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τ2
Y�s� + τ′Y2�s� ≥ �τ + δ�2 for s ∈ �s∗ − ε; s∗ + ε� and

M�b� = b

2π

∫ s∗+ε
s∗−ε

τY�s��τY�s� + τ′′Y�s��

× exp
(
−b

2

2
�τ2
Y�s� + τ′Y2�s��

)
ds

(
1+O

(
ϕ�bθ1�
b3

))

+O�bϕ�b�τ + δ���
[see (i)]. A similar result is obtained for m�b�, replacing O�ϕ�bθ1�/b3� by
O�ϕ�bθ2�� for some θ1 and θ2 > 0. This shows that M�b� ∼m�b� ∼ fZ�b�. The
conclusion follows by applying Laplace’s formula to the main term of M�b�
in the above expression using a Taylor expansion of order q of τ2

Y�s� + τ′Y2�s�
around s = s∗.

(iv) Analogous to (iii). 2

4.5. Proof of Theorem 5. This follows directly from a straightforward adap-
tation of the proof of Theorem 3 and the application of Laplace’s formula to
Ms�b�. 2

4.6. Proof of Theorem 6. Lemma 14 shows that the process X�t� admits
the representation (1). Therefore, by truncation and renormalization, we can
construct a sequence of Gaussian processes Xn�t� of the form (4) which con-
verge to X�t�. Moreover, under Conditions D1 and D2, Xn�t� satisfies Condi-
tions 1 and 2 for all n sufficiently large. Similarly, under Conditions D2–D4,
Xn�t� satisfies Conditions 2, 5 and 6 for n large enough. Hence, the density
fZn
�b� of Zn = supt∈IXn�t� has an upper bound Mn�b� of the form (9) and a

lower bound mn�b� of the form (12).
We will show that Mn�b� →M�b� for all b, mn�b� →m�b� for all b > 0 and

the sequence �fZn
� is weakly relatively compact in L1�R�. With an equality

due to Dmitrovskii [Lifshits (1986)], this implies that Z has a density fZ�b�
which is the limit of fZn

�b� and satisfies m�b� ≤ fZ�b� ≤M�b�.

Lemma 14. Under Condition D1:

(i) there exists a representation τ−1
X �t�

∑∞
j=1 ξjgj�t� ofX�t�; where the r.v.’s

ξj; j ≥ 1; are i.i.d. N �0;1�y
(ii) the functions gj�t�; j ≥ 1; are in C 3�I�y

(iii) sup�t1; t2�∈I×I �DklrU�t1; t2� −
∑n
j=1 g

�k�
j �t1�g

�l�
j �t2�� → 0 as n→ ∞; 0 ≤

k; l ≤ 3.

Proof. (i) Straightforward.
(ii) From (i), gj�t� = E�U�t� ξj� for all j ≥ 1 and all t ∈ I. Therefore, by

Theorem 2.2.2 in Adler (1981) and the Cauchy–Schwarz inequality, g�k�j �t� =
E�U̇�k��t� ξj� for all 0 ≤ k ≤ 4, where U̇�k��t� denotes the kth quadratic mean
derivative of U�t�.

(iii) This is a consequence of Dini’s theorem and Parseval’s inequality. 2
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Let Pn: `2 → `2 denote the orthogonal projection of `2 onto Rn × �0; : : :�,
defined by Pnx = �x1; : : : ; xn;0; : : :� for x ∈ `2.

Lemma 15. (i) Under Condition D1, �Png�t�� = 1+ εn�t� with ε
�k�
n �t� → 0

as n→∞ uniformly for t ∈ I; for 0 ≤ k ≤ 3y
(ii) Under Conditions D1 and D2, �Png′�t�� → �g′�t�� uniformly for t ∈ I

as n→∞ and there exists N1 such that inf t∈I �Png′�t�� > 0 for all n ≥N1.

Proof. All statements are direct consequences of Lemma 14 and the con-
tinuity and positivity of �g′�t�� in I. 2

Hence, from Lemma 15, gn�t� = Png�t�/�Png�t�� = �gn;1�t�; : : : ; gn;n�t�;
0; : : :�, t ∈ I, is well defined for all n ≥ N1 and g�k�n �t� → g�k��t� uniformly
for 0 ≤ k ≤ 3. The functions gn�t�, t ∈ I, parameterize a curve γn on
the unit sphere of Rn × �0; : : :� ⊂ `2. Moreover, there exists N2 such that
inf t∈I �g′n�t�� > 0 for all n ≥ N2. The corresponding unit speed parameter-
ization of γn is defined by fn�λn�t�� = �fn;1�λn�t��; : : : ; fn;n�λn�t��;0; : : :�,
where λn�t� =

∫ t
0 �g′n�t′��dt′. With this notation Zn = supt∈IXn�t� =

supt∈IYn�λn�t��, where Xn�t� = τ−1
X �t�Un�t�, Un�t� =

∑n
j=1 ξjgn;j�t�,

Yn�λn�t�� = τ−1
Yn
�λn�t��Vn�λn�t�� and Vn�λn�t�� =

∑n
j=1 ξjfn;j�λn�t��.

Lemma 16. Under Conditions D1 and D2, λ�k�n �t� → λ�k��t�; �λ−1
n ��k� �λn�t��

→ �λ−1��k��λ�t��; f �k�n �λn�t�� → f �k��λ�t�� all uniformly for t ∈ I and for 0 ≤
k ≤ 3; τ�l�Yn

�λn�t�� → τ
�l�
Y �λ�t�� uniformly for t ∈ I and for 0 ≤ l ≤ 3 and

cg;n�λn�t�� → cg�λ�t�� uniformly for t ∈ I.

Proof. All convergences follow directly from Lemma 15 [g′n�t� → g′�t�
uniformly], Lemma 14 and the uniform continuity of τX�t� and its derivatives
over I. 2

If Condition D1 is replaced by Condition D3 in Lemmas 15 and 16, all
the results hold for 0 ≤ k ≤ 7 and 0 ≤ l ≤ 4. Let us define βn;λn�t��λn�t′�� =
τYn
�λn�t′��−τYn

�λn�t���fn�λn�t��, fn�λn�t′���−τ′Yn
�λn�t���Tn�λn�t��; fn�λn�t′���.

Lemma 17. Under Conditions D1 and D2, for each compact subset K+ ⊂
λ−1�J+�:

(i) there exists N3 such that, for all n ≥ N3; δ = inf t∈K+�τYn
�λn�t�� +

τ′′Yn
�λn�t��� > 0y

(ii) there exists N4 such that, for all n ≥ N4; βn; λn�t��λn�t′�� > 0 for all

t ∈K+ and t′ ∈ I.

Proof. (i) The proof is similar to the proof of Lemma 15(ii).
(ii) By a Taylor expansion of order 3 and Lemma 16, βn; λn�t��λn�t� + h� =

�τYn
�λn�t�� + τ′′Yn

�λn�t���h2/2+Rn�t; h�, where Rn�t; h� ≤ C�h�3 for some con-
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stant C > 0. Moreover, by (i), we have for n ≥ N′4 that βn; λn�t��λn�t� + h� ≥
h2�δ/2−C�h�� > 0 for all t ∈K+ and h 6= 0 such that �h� < ε = δ/�4C�.

SinceKε = ��t; t′� ∈K+×I: �t′−t� ≥ ε� is compact and the function �t; t′� →
βλ�t��λ�t′�� is continuous and positive on Kε, inf �t; t′�∈Kε

βn; λn�t��λn�t′�� > 0
for all n ≥ N′′4 in view of Lemma 16. The conclusion follows for n ≥ N4 =
max�N′4;N′′4�. 2

Lemma 18. Under Conditions D1–D4, there exists N5 such that, for all
n ≥ N5 and all t′ 6= t ∈ I; fn�λn�t��; f ′n�λn�t��; fn�λn�t′��; f ′n�λn�t′�� are
linearly independent.

Proof. First, using a Taylor expansion of sufficient order and Lemma 16,
we show that the Gram determinant of this system is positive for all t′ 6= t
sufficiently close whenever n is large enough. Second, we take advantage of
the continuity and positivity of the corresponding Gram determinant with fn
and fn′ replaced by f and f ′ for �t′ − t� ≥ ε > 0 and its uniform convergence
�n→∞�. 2

Lemma 19. Under Condition D1, P�Zn ≤ a� → P�Z ≤ a� for all a.

Proof. First,

�Z−Zn� ≤ sup
t∈I
�X�t� −Xn�t�� ≤

(
inf
t∈I
τX�t�

)−1
sup
t∈I
�U�t� −Un�t��;

κ2
n = sup

t∈I
Var�U�t� −Un�t�� → 0

and

d2
n�t1; t2� = E��U�t1� −Un�t1�� − �U�t2� −Un�t2���2 ≤ C�t1 − t2�2

for n large enough, by Lemma 14. On the other hand, we have the following
inequality due to Dmitrovskii [Lifshits (1986)]:

P
{
sup
t∈I
�U�t� −Un�t�� > u

}
= 2 exp�−u2/�2κ2

n��qn�u�;

where qn�u� = 4:1 exp �21/2 69 ��κn/u�1/2�� �κn/u�1/2 �9 ��κn/u�1/2��1/2 with
9�εn� ∼ εn log1/2�C1/εn� when εn → 0 as n → ∞ and dn�t1; t2� ≤ C�t1 − t2�.
Therefore, P��Z −Zn� > u� → 0 as n→∞ and Zn converges in probability,
hence weakly, to Z. Then P�Zn ≤ a� → P�Z ≤ a� for all continuity points a.
As P�Z ≤ a� is continuous [Tsirel’son (1975)], P�Zn ≤ a� → P�Z ≤ a� for
all a. 2

For each compact subset K+ ⊂ λ−1�J+�, let us define the restrictions
mK+�b� and mn;K+�b� of m�b� and mn�b�, respectively, obtained by replacing
in (12) the integral in s over J+ by the integral over λ�K+� and λn�K+�, re-
spectively. By Lebesgue’s convergence theorem and Lemmas 14–18, it follows
that Mn�b� →M�b� for all b and mn;K+�b� →mK+�b� for all b > 0. Moreover,
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Mn�b� ≤M∗�b� for n large enough and M�b� ≤M∗�b�, where M∗�b� = Cϕ�bθ�
for some C > 0 and θ > 0. Hence, the sequence �fZn

� is weakly compact in
L1�R� [Bourbaki (1967), pages 112–113], which means that there exist a func-
tion f ∈ L1�R� and a subsequence �fZn′ � such that

∫∞
−∞ fZn′ �b�h�b�db →∫∞

−∞ f�b�h�b�db for all h ∈ L∞�R�. By taking h�b� = 1�−∞; a��b�, it follows that
P�Zn′ ≤ a� →

∫ a
−∞ f�b�db for all a. Therefore, by Lemma 19, Z has a density

fZ�b� = f�b�. Moreover, the same result holds for any accumulation point
of �fZn

�. Finally, fZn
�b� → fZ�b� for a.e. b. By Tsirel’son (1975), fZ�b� has

bounded variation on every compact interval of R. Hence, fZ�b� has a right
and a left limit at each point. If we select a left-continuous (say) version of
fZ�b�, it follows that mK+�b� ≤ fZ�b� for all b > 0 and fZ�b� ≤M�b� for all
b. Since the Lebesgue measure of λ−1�J+�\K+ can be made arbitrarily small,
it follows that m�b� ≤ fZ�b� for all b > 0. 2

APPENDIX

Let f�s� = �f1�s�; : : : ; fn�s��, s ∈ J = �0;L�, be a unit speed parameter-
ization of a smooth curve γ embedded in the unit sphere of Rn. Therefore,
�f�s�� = �f ′�s�� ≡ 1, �f�s�; f ′′�s�� ≡ −1, �f ′′�s�� ≥ 1 for all s ∈ J and L = �γ� is
the length of γ.

At each point M = M�s� of γ, we can define the unit vector tangent to γ
T = T�s� = f ′�s� and the principal normal vector N = N�s� = f ′′�s�/�f ′′�s��.
Since �T� = 1, N = T′/c is orthogonal to T, where c = c�s� = �f ′′�s�� defines
the curvature of γ at the point M =M�s�.

For each s ∈ J, if N�s� 6= −f�s�, there exists only one unit vector K=K�s� ∈
Vect⊥�f;T� such that K ∈ Vect�f;N� and �N;K� = cosα > 0. Moreover,
K�s� is C1 on each interval on which �f;N� > −1, that is, c 6= 1. If c =
1 we can define K�s� = K�s �. Let us denote by K1 = K1�s�; : : : ;Kn−2 =
Kn−2�s� an orthonormal basis of Vect⊥�f;T� such that K1 ≡ K and the func-
tions K2; : : : ;Kn−2 are C1. At each point M = M�s� of γ, the moving frame
�M; f;T;K1; : : : ;Kn−2� is orthonormal and the matrix of �f ′;T′;K′1; : : : ;K′n−2�
with respect to �f;T;K1; : : : ;Kn−2� is antisymmetric:

f ′ T′ K′1 K′2 · · · K′n−2


0 −1 0 0 · · · 0

1 0 −cg 0 · · · 0

0 cg

0 0
:::

::: ∗
0 0




f
T
K1

K2

:::

Kn−2

where cg = cg�s� = �K1;T′� = c�K1;N� = c cosα ≥ 0 defines the geodesic
curvature of γ at the pointM =M�s�. By the definition of α, we have �f;N�2 =
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sin2 α = 1/c2 and then c2
g = �f ′′�2 − 1. Note that cg = 0 iff cosα = 0, that is,

�f;N� = −1. Finally, it can be shown that K = �f + f ′′�/cg.
If g�t�, t ∈ I = �0;T�, is a general parameterization of γ with �g′�t�� > 0

for all t ∈ I, the corresponding unit speed parameterization of γ is given by
f�s� = g�λ−1�s��, s ∈ J, where s = λ�t� =

∫ t
0 �g′�u��du, t ∈ I, is the arc length

of γ from 0 to t. We have

T�s� = f ′�s� = df
ds
= dg
dt

dt

ds
= g′�t�
λ′�t� =

g′�t�
�g′�t�� ;

c�s�N�s� = f ′′�s� = d
2f
ds2
= d

dt

(
g′

�g′�

)
dt

ds

= 1
�g′�t��2

(
g′′�t� − �g

′�t�;g′′�t��
�g′�t��2 g′�t�

)
;

c2
g�t� =

�g′�t��2�g′′�t��2 − �g′�t�;g′′�t��2
�g′�t��6 − 1:
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