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VAPNIK–CHERVONENKIS TYPE CONDITIONS AND
UNIFORM DONSKER CLASSES OF FUNCTIONS1

BY MICHEL TALAGRAND

Université Paris VI and Ohio State University

Given a bounded class of functions, we introduce a combinatorial
quantity (related to the idea of Vapnik–Chervonenkis classes) that is much
more explicit than the Koltchinskii–Pollard entropy, but is proved to be
essentially of the same order.

1. Introduction. The theory of empirical processes studies the uniform
behavior of a class F of functions (defined on a measurable space �) with respect
to the law of large numbers (Glivenko–Cantelli classes), the central limit theorem
(Donsker classes) and so on. For the applications to statistics, where the underlying
probability distribution is not known a priori, it is natural to require that these
properties hold for each underlying distribution (universality) or even uniformly
over the underlying distribution (uniformity). Thus a uniform Donsker class of
functions is a class over which the central limit theorem holds uniformly over the
underlying probability. Giving a precise definition is however a nontrivial technical
tasks. (There exist several possible natural definitions that are not obviously
equivalent.) The technicalities involved in these tasks are irrelevant to the present
paper, so we refer the reader to [2, 6, 4] for definitions and a detailed background
on these notions.

In the important case where F consists of the indicators of a class C of sets, the
important structure is clearly identified. It is the so-called Vapnik–Chervonenkis
(VC) classes of sets. Let us recall that a class C of sets shatters a finite set F if
given a subset G of F there is a set C in C for which G = F ∩C. A class C of sets
is called a VC class if for some integer n, C does not shatter any set of cardinality n.
The largest cardinality of a set shattered by C is called its VC dimension.

The situation is much less satisfactory concerning classes of functions. Several
definitions have been proposed (see [2] and Chapter 4 of [3]). These definitions
are interesting from the point of view of combinatorics. Unfortunately they are
all distinct and none is the obvious choice. Roughly speaking, from the point of
view of probability, what matters is that the class of functions does not oscillate too
much. Oscillations of small amplitude are much less dangerous than oscillations of
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big amplitude, but the amplitude of the oscillations is not sufficiently distinguished
by the definitions of VC classes.

A natural concept is as follows.

DEFINITION 1.1. We say that a class F of functions shatters a set F at levels
α,β (α < β) if given a subset G of F , there exists f in F such that f (x) ≤ α if
x ∈ G, f (x) ≥ β if x ∈ F \ G.

It is natural to define

nF (ε) = sup{n; ∃α,∃F, card F = n,F shatters F at levels α,α + ε}.
It is proved in [10] that (under measurability), given a probability measure P

(that we will assume atomless for clarity), a uniformly bounded class F of
functions is a Glivenko–Cantelli (GC) class for P if there does not exist a set A

with P (A) > 0 and α < β such that for each n, almost every choice of x1, . . . , xn

in A (drawn at random independently according to the restriction of P to A),
the set {x1, . . . , xn} is shattered by F at levels α,β . The proof is complicated.
A modern proof seem to require both tools for empirical processes (such as put
forward, e.g., in the foundational paper [5]) and combinatorial arguments. Suitable
combinatorial tools are provided by the paper [7]. These are brought forward in the
context of the GC problem in [12], to prove the main result of [10], result that was
mentioned above. As an intermediate step, it is proved in [12] that if Sn(α,β)

denotes the set of n-tuples x1, . . . , xn such that the set {x1, . . . , xn} is shattered at
levels α,β by F , then F is a GC class for P if for each α < β , the sequence
an(α,β) = (P ⊗n(Sn(α,β)))1/n converges to zero. The rate of convergence in the
GC theorem is determined by the rate of convergence to zero of these sequences.
When it is true that nF (ε) < ∞ for each ε > 0, the sets Sn(α,β) are empty for
β − α > ε, and therefore the convergence is uniform over P . Thus, a uniformly
bounded class of functions is a uniform GC class if (and only if) nF (ε) is finite
for each ε > 0. Since this fact is not stated in [12], it belongs to the paper by Alon,
Ben-David, Cesa-Bianchi and Haussler [1] to state it first. As in [12], [1] uses the
Giné–Zinn methods, but the combinatorial ingredients are completely different and
of independent interest.

The previous results do not help when one is interested in rates of conver-
gence (and in central limit theorems, that resemble laws of large numbers with
rate n−1/2). As we will explain soon, “shattering at fixed levels” as in Defini-
tion 1.1 is no longer an adequate measure of the oscillations of F . We need to use
a different level for each point of F . The following definition is stated in [1].

DEFINITION 1.2. We say that a class of F of functions ε-shatters a set F if
for some point x in F there exists a level α(x) ∈ R, such that, given any subset G

of F , we can find a function f in F , such that f (x) ≤ α(x) for x in G, while
f (x) ≥ α(x) + ε for x in F \ G.
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The very same property was used in [11] to construct �1 sequences, even though
it was not given a name there.

From the point of view of the behavior of F with respect to probability theory,
it is just as bad that there exists a set F that is ε-shattered by F , whether or not
the shattering levels α(x) depend on x. (If this statement is not obvious now it
will become obvious at the beginning of the proof of Proposition 1.4.) On the
other hand, if, say, F consists of functions f with |f | ≤ 1, given a set F that is
ε-shattered by F , we can construct fixed levels α, α + ε/2, and a subset F ′ of F ,
such that F shatters F ′ at levels α,α+ε/2; but we cannot in general achieve better
than cardF ′ about ε cardF , a loss of accuracy that is devastating when dealing
with precise rates.

DEFINITION 1.3. The shattering function S(ε) = SF (ε) of the class F is
defined by SF (ε) = sup{n; F ε-shatters a set of cardinality n}.

We believe that the shattering function is a quantity of fundamental importance,
but this will be better explained after the statement of the main result. Throughout
the paper we will assume that F is uniformly bounded. Let us recall the definition
of the Koltchinskii–Pollard capacity:

D(ε,F ) = supsup
{
n; ∃f1, . . . , fn ∈ F , i < j ≤ n ⇒

∫
(fi − fj )

2 dγ ≥ ε2
}
,

where the outer supremum is taken over all probability measures γ supported by
a finite subset of the underlying space �. We then define the Koltchinskii–Pollard
entropy as logD(ε,F ).

PROPOSITION 1.4. For some universal constant K , we have for each ε > 0,

SF (ε) ≤ K logD

(
ε

2
,F

)
.(1.1)

This (easy) fact can be expressed by saying that the shattering function is
dominated by the Koltchinskii–Pollard entropy. Our main result is that, under
minimum regularity the converse is nearly true. Arguably the interesting case is
when SF (ε) resembles a positive power of 1/ε; thus the regularity condition (1.2)
below is mild.

THEOREM 1.5. Consider a continuous positive nonincreasing function ξ

on (0,∞). Assume that for some α ≥ 1 and all 0 < x < y we have

1

2

(
x

y

)α

≤ ξ(y)

ξ(x)
≤ 2

(
x

y

)1/α

.(1.2)

Assume that for each ε > 0 we have

SF (ε) ≤ ξ(ε).(1.3)
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Assume that F is uniformly bounded, and let � be its diameter for the uniform
norm. Then

∀ ε < �, logD(ε,F ) ≤ ξ(ε)

(
log

4�

ε

)K

(1.4)

where K depends upon α only.

Thus (within log terms) we essentially have SF (ε) ≈ logD(ε,F ). This result is
of the type “concentration of pathology.” Suppose we know that L = logD(ε,F )

is large. This simply means that F contains many well separated functions; but we
know very little about what kind of pattern they form. The content of the theorem
is that it is possible (with a lot of work) to construct a set F of size nearly L

and for x ∈ F levels α(x) for which the phenomenon described in Definition 1.2
occurs. We now have a very precise structure that witnesses that F is large, and
one can expect that this structure will be easy to identify. This result is exactly in
the line of the previously mentioned author’s characterization of Glivenko–Cantelli
classes [11].

COROLLARY 1.6. There exists a universal constant M , such that a countable
uniformly bounded class F of Borel functions that satisfies

sup
ε

ε2 SF (ε)

(
log

4�

ε

)M

< ∞
is a uniform Donsker class.

PROOF. Take M > K(2) + 2. Use Theorem 1.5 with a function ξ(ε) equal to
ε−2 log(2�/ε)M−2 for ε ≤ � and use Proposition 3.1 of [6]. �

It is certainly not necessary in Corollary 1.6 that F be countable or the functions
of F be Borel, but some kind of measurability is certainly needed. A convenient
condition, that seems sufficient for all practical purposes, is Dudley’s notion of
Souslin admissible classes; see [3].

One might like to know how small M can be taken in Corollary 1.6. It is
probably a rather difficult question to find a sharp value of M . This question
however does not seem very important because the natural examples of uniform
Donsker classes (such as those of [2]) satisfy supεαSF (ε) < ∞ for some α < 2.
Thus, even though (1.5) does not provide a characterization of uniform Donsker
classes, it seems that it does “for natural situations.”

Theorem 1.5 is proved implicitly, in another language in [10], and the aim of the
present paper is to make it known in the empirical process community. We present
complete proofs. The key lemmas reproduce the proofs of [10] with notation more
adapted to the present setting. The key argument is a (very powerful) iteration
method that is commonly used in Banach space theory. This central part of the
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argument has been completely rewritten, in a less savagely technical way, now
more adapted to the sharply diminished number of functioning neurons available to
the author. In retrospect, it however appears obvious that the present paper should
have either been written much earlier or not at all. Soon after it was submitted,
Mendelson and Vershynin obtained optimal results in the same direction, with
simpler and much nicer proofs [9].

2. The iteration argument. First, a word about Proposition 1.4. Consider a
finite set F that is ε-shattered by F . Let n = cardF , and for each subset G of F ,
consider a function fG in F with fG(x) ≤ α(x) when x ∈ G, fG(x) ≥ α(x) + ε

when x /∈ G, where the numbers α(x) are as in Definition 1.3. Consider the
probability γ on � that gives mass 1/n to each point of F . Then, clearly, for
two subsets G,G′ of F , we have∫

|fG − fG′ |2 dγ ≥ ε2γ (G�G′).(2.1)

It is elementary that one can find a family C of subsets of F with card C ≥ 2n/K

(for a certain number K) and card (G�G′) ≥ n/4 when G �= G′, G,G′ ∈ C so
that if G �= G′

∫
|fG − fG′ |2 dγ ≥

(
ε

2

)2
,

and thus logD(ε/2,F ) ≥ n/K . Taking the supremum over n yields (1.1).
We can replace F by aF + h for a suitable number a and a suitable function h

to see that there is no loss of generality to assume

f ∈ F 
⇒ 0 ≤ f ≤ 1,(2.2)

∃f,g ∈ F , ∃ω, |f (ω) − g(ω)| ≥ 2/3.(2.3)

These conditions are assumed through the rest of the paper. In particular, to
prove (1.4) we can and do assume that ε ≤ 1.

Many arguments of the paper involve numerical constants (such as 2/3 above).
The choice of these is never critical and is largely irrelevant. There is all the room
in the world to choose them. We have made no efforts whatsoever to make choices
anywhere close to optimal. In particular, the reader should not be disturbed if in
certain inequalities below we happen to lose a few factors of 2 for no particular
reason. These factors do not matter. It was easier while writing the proofs to allow
room at the beginning for possible later changes, and useless afterwards to attempt
to tighten the constants.

Given a function h (that need not belong to F ) and a probability measure γ

on �, supported by a finite set, we define N(ε,h, γ ) as the supremum of the
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cardinalities of the finite subsets Z of F such that

f ∈ Z 
⇒
∫

(f − h)2 dγ ≤ 4ε2,(2.4)

f,g ∈ Z,f �= g 
⇒
∫

(f − g)2 dγ ≥ ε2

4
.(2.5)

Of course N(ε,h, γ ) depends upon F , but the dependence is kept implicit since
we now fix F once and for all.

LEMMA 2.2. To prove Theorem 1.5 it suffices to prove that for each ε ≤ 1,
each h and each γ we have

log N(ε,h, γ ) ≤ ξ(ε)

(
log

(
4

ε

))K

.(2.6)

There and below, K denotes a constant depending upon α only. It need not be
the same at each occurrence.

PROOF OF LEMMA 2.2. Denoting by N(ε, γ ) the supremum of N(ε,h, γ )

over h, the trace on F of a ball in L2(γ ) of radius 2ε can be covered by N(ε, γ )

balls in L2(γ ) of radius ≤ ε. [If Z satisfies (2.4) and (2.5), and has the largest
possible cardinality, the union of the balls of L2(γ ) centered at Z, of radius ε,
covers the trace on F of the ball of L2(γ ) centered at h, of radius 2ε.] Then,
for each j ≥ 0, we see that F can be covered by Nγ (j) = ∏i=j

i=0 N(2−i , γ ) balls
for L2(γ ) of radius 2−j . By the pigeonhole principle, given a subset Z of F of
cardinal > Nγ (j), there exist two elements of Z within distance 2−j+1. So, if
2−j < ε/2, we see that, using (2.6)

logD(ε,F ) ≤ sup
γ

log Nγ (j) ≤ K

i=j∑
i=0

ξ(2−i )(log 2i+2)K.

Taking j as small as possible implies (1.4), using (1.2) to see that the term for
i = j is of the same order as entire sum. �

The basic idea to prove (2.6) is as follows. Starting with a family Z that satisfies
(2.4) and (2.5), we will try to realize these conditions when γ gives mass 1/n to
n points x1, . . . , xn of �. We want to make n as small as possible (possibly at the
cost of slightly decreasing Z). Ideally, if η satisfies

ξ(η) = log cardZ,

we would like to succeed in taking n small enough that

nε2 is about η2ξ(η).(2.7)

The space L2(γ ) is of dimension n, so by looking at volumes, a ball of radius 2ε

can contain at most 9n points that are ε/2 separated. (Notice that the open balls
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of radius ε/4 centered at these points are disjoint and entirely contained in a
ball of radius 9ε/4. This type of argument will later be referred to as a “volume
argument.”) Thus

ξ(η) = log cardZ ≤ n log 9

and

ξ(η)ε2 ≤ nε2 log 9.

The right-hand side is about η2ξ(η), so that the ratio ε/η is not large. Thus,
by (1.2), log cardZ = ξ(η) is not much larger than ξ(ε).

To achieve the previous program we will use the following reduction principle.

PROPOSITION 2.3. Consider a family Z of functions with cardZ ≥ 16 that
satisfies (2.4), and a number M such that

f,g ∈ Z,f �= g 
⇒
∫

(f − g)2 ∧ M2 dγ ≥ ε2

8
.(2.8)

We set

n = ⌈
(64M2 log cardZ)/ε2⌉

.(2.9)

Then we can find a number ε0 > 0, a function h0, a family Z0 ⊂ Z and n points
x1, . . . , xn in � with the following property. If γ0 denotes the probability measure
n−1 ∑i=n

i=1 δxi
, we have

1

8
≤ ε0

ε
≤ 4,(2.10)

cardZ0 ≥ ( 1
2 cardZ

)1/6
,(2.11)

∀f ∈ Z0,

∫
(f − h0)

2 dγ0 ≤ 4ε2
0,(2.12)

∀f, g ∈ Z0, f �= g 
⇒
∫

|f − g|2 dγ0 ≥ ε2
0/4.(2.13)

In words, starting with a situation (2.4) and (2.5), we create a similar situation
without changing ε too much [as (2.10) witnesses] or without decreasing Z too
much [as shown by (2.11)], where the number n of points that γ charges satis-
fies (2.9). The points x1, . . . , xn will simply be selected at random independently
according to γ . In order to make the procedure efficient (i.e., to obtain n small)
we need to have a good control on M (i.e., we need M to be small). To achieve
this, starting with a situation where we know (2.5), we have to achieve (2.8) with
as small M as possible, without reducing Z too much.
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PROPOSITION 2.4. There exists a number K1, depending upon α only, with
the following property. Consider n points x1, . . . , xn (that need not be distinct)
and the probability measure γ = n−1 ∑

1≤i≤n δxi
. Assume n ≥ ξ(1). Consider a

subset Z of F that satisfies (2.4) and (2.5). Consider an integer j (which might
be negative) and a positive number θ ≤ 2−6 that satisfy

log
(

en

ξ(1)

)
ξ(θ2−j ) + nε2θ22j ≤ log cardZ

K1
.(2.14)

Then we can find a subset Z′ of Z such that

cardZ′ ≥ (cardZ)1/2(2.15)

and

∀f, g ∈ Z′, f �= g 
⇒
∫

|f − g|2 ∧ 2−2j+2 dγ ≥ ε2

8
.(2.16)

In words, under (2.14), we can achieve (2.6) with M2 = 2−2j+2, without
reducing Z too much. Of course in (2.14) we will choose θ suitably, and then j

as large as we can. But one gets a clearer argument if one resists the temptation to
optimize over θ in (2.14). To achieve (2.14) with 22j large (i.e., M2 small), it helps
a lot that n is not large. Thus, the situation is as follows: Proposition 2.2 lets us
reduce n (the smaller M , the better it works) while Proposition 2.3 lets us reduce M

(the smaller n, the better it works). The idea is then to use these propositions in
turn a large number of times. The nice (and somewhat unexpected) feature is that
this iteration brings us within logarithmic terms of the optimal result. We delay
the proof of Propositions 2.3 and 2.4 until Section 3, and we perform this iteration
now. We start with a subset Z of F with cardZ ≥ 16 that satisfies (2.4) and (2.5),
and we consider an η such that

log cardZ = ξ(η).(2.17)

As already pointed out, we can assume ε ≤ 1, and we can assume η ≤ ε (for
there is nothing to prove otherwise).

The first step of the construction is special. We apply Proposition 2.3 with
M = 1. Since we assume 0 ≤ f ≤ 1 for f in F (2.8) follows from (2.5). We
set

n0 = ⌈
(64 logcardZ)/ε2⌉

.

Using (1.2), and since η ≤ ε we have

n0

ξ(1)
≤ Kξ(η)

ε2ξ(1)
≤

(
2

η

)K

.(2.18)

We then find ε0, Z0 as in (2.10) to (2.13). We observe that n0ε
2 is about ξ(η),

while our goal is to reduce it to about η2ξ(η).
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We now describe the general step of the iteration. At the beginning of this
step, we start with a subset Zk of F , a number εk ≥ ε2−k−3, an integer nk and
a probability measure γk that is the sum of point masses 1/nk at each of nk points
(not necessarily distinct). The elements of Zk satisfy

f ∈ Zk 
⇒
∫

(f − hk)
2 dγk ≤ 4ε2

k ,(2.19)

f,g ∈ Zk,f �= g 
⇒
∫

(f − g)2 dγk ≥ ε2
k/4,(2.20)

and we have

log cardZk ≥ 2−6(k+1)ξ(η).(2.21)

For simplicity we write

ak = 2−6(k+1).(2.22)

The general step consists in successive applications of Propositions 2.4 and
then 2.3, in that order. If nk ≤ ξ(1) or if cardZk < 16, we stop the construction.
We will show later that there is nothing to prove. So we assume that nk ≥ ξ(1)

and cardZk ≥ 16. We will apply Proposition 2.4 to Z = Zk and n = nk . We must
choose θ and j so that (2.14) holds.

We see from (2.21) that (2.14) will hold provided

(log ck)ξ(θ2−j ) + nkε
2
kθ22j ≤ akξ(η)

K1
,(2.23)

where for clarity we write ck = enk/ξ(1).
Since our goal is to reduce nkε

2
k to η2ξ(η), it clarifies matters to set

uk = nkε
2
k

η2ξ(η)
.

Consider v and j such that 2−j−1 ≤ vη ≤ 2−j . Then (2.23) will hold as soon as

(log ck)
ξ(ηθv)

ξ(η)
+ 4

θuk

v2 ≤ ak

K1
.(2.24)

If we can now take θ such that t := θv > 1, then since ξ(tη) ≤ 2ξ(η)t−1/α

by (1.2), to achieve (2.24) it will suffices to have

2t−1/α log ck + 4
ukt

v3 ≤ ak

K1
,(2.25)

which will follow from

t =
(

4K1 log ck

ak

)α

; v =
(

8K1tuk

ak

)1/3

.(2.26)
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We have to be careful however that Proposition 2.4 requires θ = t/v ≤ 2−6, that
is, t ≤ 2−6v. Simple algebra show that this is implied by the condition

uk ≥ K2
(log ck)

2α

a2α−1
k

,(2.27)

where K2 = K2(α) is now fixed once and for all.
If (2.27) fails, that is, if

uk <
K2(log ck)

2α

a2α−1
k

,(2.28)

we simply stop the construction. We also stop the construction if akξ(η) ≤ 4.
We will explain later why the construction has already succeeded. Thus, the
construction continues only if (2.27) holds, if nk ≥ ξ(1), if cardZk ≥ 16 and if
akξ(η) ≥ 2.

We now assume that these conditions hold; we take t and v as in (2.26); we take
for j the smallest integer with 2−j−1 ≤ vη. Hence (2.14) holds. Proposition 2.4
gives us a subset Z′ of Zk such that, using (2.21), and since log cardZ′ ≥
(1/2) log cardZk ,

log cardZ′ ≥ ak

2
ξ(η)(2.29)

and that

∀f, g ∈ Z′, f �= g 
⇒
∫

(f − g)2 ∧ M2 dγk ≥ ε2
k

8

for M = 2−j+2 ≤ 4ηv, so that by (2.26),

M2 ≤ 16η2
(

8K1tuk

ak

)2/3

.(2.30)

We now apply Proposition 2.3 to Z′, with min(M,1) rather than M [see (2.2)]
to find a number εk+1 satisfying

εk+1 ≥ εk

8
≥ 2−3(k+1)ε(2.31)

an hk+1 (the h0 of Proposition 2.3) and a subset Zk+1 of Z′ satisfying

cardZk+1 ≥ (1
2 cardZ′)1/6(2.32)

such that (2.19) and (2.20) hold (for k + 1 rather than k) with

nk+1 =
⌈

64(min(M,1))2 log cardZ′

ε2
k

⌉
.
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We observe that cardZ′ ≥ 4 by (2.29) and since akξ(η) ≥ 4 and that, by the
equation after (2.29), we have M2 ≥ ε2

k/8. Thus, since �x� ≤ 2x for x ≥ 1, we
have

nk+1 ≤ 128(min(M,1))2 log cardZ′

ε2
k

.

Since log cardZ′ ≤ log cardZ, and using (2.17) to bound log cardZ, we get

nk+1 ≤ K(min(M,1))2 log cardZ′

ε2
k

≤ K

ε2
k+1

(
tuk

ak

)2/3

η2ξ(η).(2.33)

Let us observe that (2.33) implies that

uk+1 = nk+1ε
2
k+1

η2ξ(η)
≤ K

(
t

ak

)2/3

u
2/3
k .(2.34)

Since card Z′ ≥ 4, we have
1
2 cardZ′ ≥ (cardZ′)1/2,(2.35)

and combining (2.29), (2.32) and (2.35), we get

log cardZk+1 ≥ ak

32
ξ(η) = ak+1ξ(η).

At this point we observe that ε2
k ≥ 2−6(k+1)ε2 = ε2ak and that, since we assume

akξ(η) ≥ 4, without loss of generality, we can reduce Z′ in (2.29) so that
log cardZ′ is not larger than ξ(η)ak . Then the first inequality of (2.33) and the
definition of n0 show that nk+1 ≤ Kn0. Thus ck ≤ Kc0. From (2.22) and (2.26),
we see that t ≤ Kk(log Kc0)

α so that by (2.34), we have

uk+1 ≤ Kk+1(logKc0)
2α/3u

2/3
k(2.36)

and thus

uk+1

K3(k+2)(logKc0)2α
≤

(
uk

K3(k+1)(logKc0)2α

)2/3

.(2.37)

Recall that 0 < η < ε < 1. Consider the smallest integer m such that
(2/3)m−1 log(4/η) ≤ 1 and assume first that the construction has not stopped
before m. Then combining the inequalities (2.37) for k = m − 1, . . . , k = 0 shows
that

um

K3(m+1)(logKc0)2α
≤

(
u0

K3(log Kc0)2α

)(2/3)m

.

We recall that u0 ≤ K/η2 by (2.18) and (2.10). Thus we have(
u0

K3(logKc0)2α

)(2/3)m

≤
(

K

η2

)(2/3)m

≤ K
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and thus

um ≤ Km(logKc0)
2α ≤

(
log

4

η

)K

,(2.38)

where we have used in the second inequality that, by definition of m we have
(3/2)m ≤ log(4/η) that, since η ≤ 1, we have log(4/η) ≥ log 4 > 1, and also that
by (2.18) we have log c0 ≤ K log(2/η).

Thus

nmε2
m ≤

(
log

4

η

)K

η2ξ(η)

and thus, since εm ≥ 2−3(m+1)ε ≥ (log(4/η))−Kε, we have

nm ≤
(

log
4

η

)K η2

ε2
ξ(η).

Now, using the “volume argument” in the first inequality below and (2.21) in the
second, we have

nm ≥ 1

K
log cardZm ≥ 1

26(m+1)
log cardZ ≥

(
log

4

η

)−K

ξ(η)

and thus

ε ≤
(

log
4

η

)K

η.

It is simple to deduce that η ≥ ε/(log(4/ε))K and thus by (1.2),

ξ(η) ≤ ξ(ε)

(
log

4

ε

)K

.(2.39)

This completes the proof in the case where the construction does not stop
before m.

Now we consider the case where the construction stopped before m. There are
4 cases. The first is that it happened for some k ≤ m that log cardZk ≤ 4. By (2.21)
this is because

log cardZ = ξ(η) ≤
(

log
4

η

)K

.(2.40)

Since we assume SF (ε) ≤ ξ(ε) and since SF (2/3) ≥ 1 by (2.3), we see from
(1.2) and (2.40) that η ≥ 1/K . Since ε ≤ 1, we get log cardZ = ξ(η) ≤ Kξ(ε) and
there is nothing more to prove.

The second case is that it happened for some k ≤ m that akξ(η) ≤ 4. It is entirely
similar to the first case.
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The third case is that it happened for some k ≤ m that nk ≤ ξ(1). Since by
volume arguments, we have log cardZk ≤ Knk , and since log cardZ ≤ 26(k+1)×
log cardZk , we have

ξ(η) = log cardZ ≤ K26(k+1)ξ(1) ≤ Kξ(1)

(
log

4

η

)K

and, as before, we get η ≥ 1/K . The fourth case is that it happened that
(2.28) occurs for k ≤ m. In that case one simply repeats the argument that
deduces (2.39) from (2.38).

3. Proof of the reduction principles.

PROOF OF PROPOSITION 2.3. We start with the following well known
elementary inequality (see, e.g., [11], Lemma 2.2 or [8], Theorem 2 for a sharper
result with a harder proof). If (Xi)i≤n are i.i.d. r.v., 0 ≤ Xi ≤ A, then

P

(∑
i≤n

Xi ≤ n

4
EX1

)
≤ exp

(
− n

4A
EX1

)
.(3.1)

Consider an i.i.d. sequence of points (xi)i≤n in �, distributed like γ . Fixing f,g

in Z with f �= g, we consider Xi = (f (xi) − g(xi))
2 ∧ M2, so that 0 ≤ Xi ≤ M2

and EXi ≥ ε2/8 by (2.8). Thus by (3.1), we have

P

(∑
i≤n

Xi ≤ nε2

32

)
≤ exp

(
− nε2

32M2

)
.

By (2.9),

nε2

32M2
≥ 2 logcardZ(3.2)

so that the event

∀f,g ∈ Z,f �= g,
1

n

∑
i≤n

(
f (xi) − g(xi)

)2 ≥ ε2

32
(3.3)

has probability ≥ 1 − N(N − 1)/(2N2) > 1/2 where N = cardZ. On the other
hand, given f in Z, the event

1

n

∑
i≤n

(
f (xi) − h(xi)

)2 ≤ 16ε2(3.4)

has a probability at least 3/4 by (2.4) and the Markov inequality. By the Fubini
theorem, with probability at least 1/2, (3.4) occurs for at least half of the elements
of Z. Thus we can find x1, . . . , xn such that (3.3) occurs, and that (3.4) occurs
for f ∈ Z1, where cardZ1 ≥ (1/2) cardZ. We then choose for γ0 the probability
n−1 ∑

1≤i≤n δxi
.
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Let us consider the L2(γ0) metric d(f, g). Thus Z1 consists of elements of a
ball of radius 4ε, and they are ε/4

√
2 separated by (3.3). This is not what we

need. We need ε0/2 separated elements in a ball of radius 2ε0. To obtain this
we repeat the first argument of Lemma 2.2. If for j ≥ 0 we denote by N(j)

the maximum possible number of 21−j ε separated elements of Z1 contained in
a ball of radius 22−j ε, we see that Z1 can be covered by

∏
0≤j≤� N(j) balls of

radius 21−�ε. For � = 5 these balls are of diameter ≤ ε/8 and thereby can contain
at most one element of Z. Thus

cardZ ≤ ∏
0≤j≤5

N(j)

and thus there exists 0 ≤ j0 ≤ 5 such that N(j0) ≥ (cardZ1)
1/6. To conclude

we take ε0 = 22−j0ε, and Z0 an ε0/2 separated subset of Z1 witnessing that
N(j0) ≥ (cardZ1)

1/6. �

We now turn to the proof of Proposition 2.4. This proposition is itself the result
of an iteration procedure, the basic step of which is given as follows, keeping the
notation of Proposition 2.4. In particular the function h is as in (2.4).

PROPOSITION 3.1. Consider an integer � ≥ 0 and a positive number θ ≤ 2−6.
Then we can find a subset Z1 of Z that satisfies

cardZ1 ≥ cardZ exp
(

−K

(
log

(
2n

ξ(1)

)
ξ(θ2−�) + θε2n22�

))
,(3.5)

∀f ∈ Z1, ∀g ∈ Z1, ∀ i ≤ n,

f (xi) − h(xi) ∈ [2−�,2−�+1]

⇒ |f (xi) − g(xi)| ≤ 2−3|f (xi) − h(xi)|.

(3.6)

PROOF OF PROPOSITION 2.4. We can assume j ≥ 0, for otherwise we simply
take Z′ = Z. We apply Proposition 3.1 recursively for all values of 0 ≤ � ≤ j . We
get a subset Z2 of Z with

cardZ2 ≥ exp(−S) cardZ,(3.7)

where

S = K

(
log

2n

ξ(1)

∑
�≤j

ξ(θ2−�) + θε2n
∑
�≤j

22�

)
(3.8)

and such that

∀f ∈ Z2, ∀g ∈ Z2, ∀ i ≤ n, ∀ � ≤ j,

f (xi) − h(xi) ∈ [2−�,2−�+1]

⇒ |f (xi) − g(xi)| ≤ 2−3|f (xi) − h(xi)|.

(3.9)
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We use again the same construction for −Z2 and −h, that is, we find a subset Z′
of Z2 such that

cardZ′ ≥ exp(−S) card Z2 ≥ exp(−2S) cardZ

and

∀f ∈ Z′, ∀g ∈ Z′, ∀ i ≤ n, ∀ � ≤ j,

−f (xi) + h(xi) ∈ [2−�,2−�+1]

⇒ |f (xi) − g(xi)| ≤ 2−3|f (xi) − h(xi)|.

Thus in (3.9), if we replace Z2 by Z′, we can replace the condition f (xi) −
h(xi) ∈ [2−�,2−�+1] by the condition |f (xi) − h(xi)| ∈ [2−�,2−�+1], that is, we
have

∀f ∈ Z′, ∀g ∈ Z′, ∀ i ≤ n,

|f (xi) − h(xi)| ≥ 2−j


⇒ |f (xi) − g(xi)| ≤ 2−3|f (xi) − h(xi)|.
(3.10)

Consider then f,g in Z′ and let I = {i ≤ n, |f (xi) − h(xi)| ≥ 2−j }. Then by
(3.10) and (2.4), we have∑

i∈I

(
f (xi) − g(xi)

)2 ≤ 2−6
∑
i∈I

(
f (xi) − h(xi)

)2 ≤ 2−4ε2n.(3.11)

Consider J = {i ≤ n; |g(xi) − h(xi)| ≥ 2−j }. We get, similarly,∑
i∈J

(
g(xi) − f (xi)

)2 ≤ 2−4ε2n.(3.12)

Set now L = {1, . . . , n} \ (I ∪ J ). Combining (2.5) with (3.11) and (3.12), we
have

∑
i∈L

(
g(xi) − f (xi)

)2 ≥ nε2

8
.

Since

|g(xi) − f (xi)| ≤ |g(xi) − h(xi)| + |h(xi) − f (xi)| ≤ 21−j

for i ∈ L, we have shown that

1

n

∑
i≤n

|g(xi) − f (xi)|2 ∧ 22−2j ≥ ε2

8
.(3.13)

To conclude the proof, it suffices to observe that by (1.2),

2S ≤ K

(
log

(
2n

ξ(1)

)
ξ(θ2−j ) + θε2n22j

)



1580 M. TALAGRAND

and to observe that together with (2.14) and the fact that cardZ′ ≥ exp(−2S)×
cardZ this implies (2.15). �

The proof of Proposition 3.1 will require two steps. In the first step, for
each i ≤ n, we will construct 18 small intervals contained in the set h(xi) +
[2−�−1,2−�+2] and a large subset Z′′ of Z such that for f in Z′′, f (xi) never
belongs to these small intervals.

We consider the set

H = ⋃
−1≤k≤24

[
2−�(1 + 2−4k),2−�(1 + 2−4k + θ)

]
,

that consists of 18 evenly spaced intervals of length θ2−�. For t ≤ 2−4 − θ , we
consider the sets

Hi(t) = H + h(xi) + t2−�.

LEMMA 3.2. We can find a subset Z′′ of Z such that

cardZ′′ ≥ exp(−Knε2θ22�) cardZ(3.14)

and numbers (ti)i≤n,0 ≤ ti ≤ 2−4 − θ , such that

∀ i ≤ n, f ∈ Z′′ 
⇒ f (xi) /∈ Hi(ti ).(3.15)

PROOF. This is a counting argument. We consider the natural product
probability P on �′ = [0,2−4 − θ]n. For f in Z, we consider the event

Ai(f ) = {f (xi) /∈ Hi(ti)},
where t = (ti )i≤n is a generic point of �′. If we denote by λ the Lebesgue measure
we have

(2−4 − θ)P (Ac
i (f )) = λ

({ti ∈ [2−4 − θ];f (xi) ∈ Hi(ti)}).
Now,

{ti ∈ [2−4 − θ];f (xi) ∈ Hi(ti)} = {[2−4 − θ] ∩ 2�
( −H + f (xi) − h(xi)

)}
.

We observe that 2�(−H + f (xi) − h(xi)) is the union of intervals of length θ and
that any two of these intervals are at a distance at least 2−4 − θ . Thus it should be
obvious that the above set has a Lebesgue measure at most θ . Thus

P (Ai(f )) ≥ 1 − θ

2−4 − θ
≥ 1 − 25θ.

Moreover, P (Ai(f )) = 1 if f (xi) ≤ h(xi) + 2−�−1. We define

A(f ) = ⋂
i≤n

Ai(f ) = {
t ∈ �′; ∀ i ≤ n,f (xi) /∈ Hi(ti)

}
.
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By independence,

P (A(f )) ≥ (1 − 25θ)m,(3.16)

where m = card{i ≤ n;f (xi) ≥ h(xi) + 2−�−1}. By (2.4), we have m ≤ 16nε222�.
Since θ ≤ 2−6, we have 1 − 25θ ≥ exp(−26θ) and thus by (3.16), we have

P (A(f )) ≥ exp(−211θnε222�).(3.17)

Thus we can find t such that the set

Z′′ = {f ;A(f ) occurs }
satisfies

cardZ′′ ≥ cardZ exp(−211θnε222�). �

PROOF OF PROPOSITION 3.1. We consider Z′′ and the sets Hi(ti) as provided
by Lemma 3.2. For a given −1 ≤ k ≤ 24 and f in Z′′, we consider the set

A(f ; k) = {i ≤ n;f (xi) ≤ bi,k},(3.18)

where

bi,k = h(xi) + 2−�(1 + 2−4k + ti )

and we consider the collection Ak of all the subsets of {1, . . . , n} of the type (3.18).
The importance of (3.15) is that

i /∈ A(f, k) 
⇒ f (xi) ≥ bi,k + θ2−�(3.19)

because by (3.15), we have f (xi) > bi,k ⇒ f (xi) ≥ bi,k + θ2−�. Now if Ak shat-
ters a subset I of {1, . . . , n}, we see by (3.18) and (3.19) that F (θ2−�)-shatters I

(by Definition 1.2); so that by (1.3), we have card I ≤ m := min(n, �ξ(θ2−�)�).
By the Sauer–Shelah theorem, we have

cardAk ≤ ∑
p≤m

(
p

n

)
≤

(
en

m

)m

≤ exp
(

log
(

en

ξ(1)

)
ξ(θ2−�)

)
,

using that ξ(θ2−�) ≥ ξ(1) and that the function t → (en/t)t is increasing if
0 < t < n. Thus there are at most exp(6 log(en/ξ(1))ξ(θ2−�)) possible 6-tuples
(A(f, k))−1≤k≤4, f in Z. Hence we can find a subset Z1 of Z′′ such that

∀f,g ∈ Z1, ∀ k,−1 ≤ k ≤ 4, A(f, k) = A(g, k),(3.20)

while

cardZ1 ≥ exp
(

−6 log
(

en

ξ(1)

)
ξ(θ2−�)

)
cardZ′′.(3.21)

If

f (xi) ∈ h(xi) + [2−�,2−�+1],
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then there is −1 ≤ k ≤ 24 such that bi,k < f (xi) ≤ bi,k+1 (there it helps to
allow the value k = −1). Then i ∈ A(f, k + 1), i /∈ A(f, k), so that by (3.20),
i ∈ A(g, k + 1), i /∈ A(g, k), that is, bi,k < g(xi) ≤ bi,k+1, so that

|f (xi) − g(xi)| ≤ 2−42−� ≤ 2−3|f (xi) − h(xi)|,
because f (xi) − h(xi) ≥ 2−�. �
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