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BROWNIAN MOTION WITH SINGULAR DRIFT

BY RICHARD F. BASS1 AND ZHEN-QING CHEN2

University of Connecticut and University of Washington

We consider the stochastic differential equation

dXt = dWt + dAt ,

where Wt is d-dimensional Brownian motion with d ≥ 2 and the ith
component of At is a process of bounded variation that stands in the same
relationship to a measure πi as

∫ t
0 f (Xs)ds does to the measure f (x)dx.

We prove weak existence and uniqueness for the above stochastic differential
equation when the measures πi are members of the Kato class Kd−1. As a
typical example, we obtain a Brownian motion that has upward drift when in
certain fractal-like sets and show that such a process is unique in law.

1. Introduction. To introduce the subject of our paper, first consider the
stochastic differential equation (SDE)

dXt = dWt + f (Xt ) dt, X0 = x0,(1.1)

where Wt is a d-dimensional Brownian motion, Xt is a d-dimensional semi-
martingale and f : Rd → Rd . When f is bounded, weak existence and uniqueness
of (1.1) are easily proved using the Girsanov transformation (see [20], Section 6.4).

If fi is the ith component of f and we let

Ai
t =

∫ t

0
fi(Xs) ds, At = (A1

t , . . . ,A
d
t ),

then (1.1) can be written as

dXt = dWt + dAt, X0 = x0.(1.2)

In the terminology of Markov processes, Ai
t is the additive functional whose Revuz

measure is fi(x) dx. The solutions to (1.2) with starting points x0 ∈ Rd form a
strong Markov process whose infinitesimal generator is L = 1

2� + f · ∇ , where
� is the Laplacian on Rd and ∇ = (∂/∂x1, . . . , ∂/∂xd).

In this paper we want to consider the SDE (1.2) with the fi(x) dx replaced
by more general signed measures πi on Rd , which may not be absolutely
continuous with respect to Lebesgue measure on Rd . This extension is motivated
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by considering examples such as Brownian motion, which drifts upward when
penetrating fractal-like sets. For simplicity, let us assume throughout the paper
that dimension d ≥ 3, although our main result holds for d = 2 as well (see
Remark 2.8). The one-dimensional case has been understood for some time;
see [16].

For α > 0, define the Kato class

Kα =
{
π(dx) : lim sup

ε→0
sup
x∈Rd

∫
B(x,ε)

|x − y|−α|π |(dy) = 0
}
,(1.3)

where |π | stands for the total variation of the signed measure π and B(x, ε)

denotes the ball in Rd centered at x with radius ε. We say a function f ∈ Kα

if f (x) dx ∈ Kα .
An illuminating prototype is the following. Suppose d = 3 and � = A × R,

where A is the Sierpinski gasket in R2. It is well known that � is a (1 +
log 3/ log2)-set in R3. Here a Borel-measurable set � ⊂ Rd is called a λ-set
(cf. [15]) for some 0 < λ ≤ d if there exist positive constants c1 and c2 such that,
for all x ∈ � and r ∈ (0, 1],

c1r
λ ≤ Hλ(

� ∩ B(x, r)
) ≤ c2r

λ,

where Hλ denotes λ-dimensional Hausdorff measure in Rd . It can be shown (see
Proposition 2.1) that Hλ restricted to a λ-set in Rd is in the Kato class Kd−1 if
λ > d − 1.

QUESTION. Can one construct a diffusion process in R3 that behaves like
Brownian motion outside � but drifts upward when it filters through the set �? If
such a process exists, is it unique in law?

The main result of this paper says that there is a unique weak solution to the
SDE (1.2) when πi ∈ Kd−1 for 1 ≤ i ≤ d and therefore gives an affirmative answer
to the above question.

When |f |2 ∈ Kd−2, it is well known (e.g., see [8]) that

lim
t→0

sup
x∈Rd

Ex
∫ t

0
f (Ws)

2 ds = 0

and

Mt = exp
(∫ t

0
f (Ws) dWs − 1

2

∫ t

0
f (Ws)

2 ds

)
, t ≥ 0,(1.4)

is a nonnegative martingale. The last fact can be proved similarly to arguments
in [6]. In this case, weak existence and uniqueness for (1.1) can be obtained from
the Girsanov transform (1.4) for standard Brownian motion Wt (see, e.g., [7]
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and [12]). On the other hand, when |f |2 ∈ Kd−2, the following Kato-type
inequality holds: for any ε > 0 there exists Aε > 0 so that, with π(dx) = f (x) dx∫

Rd
ψ(x)∇φ(x) · π(dx)

≤
(∫

Rd
|∇φ(x)|2 dx

)1/2(
ε

∫
Rd

|∇ψ(x)|2 dx + Aε

∫
Rd

ψ(x)2 dx

)1/2(1.5)

for any φ,ψ ∈ C∞
c (Rd) (see [8]). Therefore, the bilinear form associated with

the generator (L,C∞
c (Rd)), where L = 1

2� + f · ∇ , is lower semibounded,
closable, Markovian and satisfies Silverstein’s sector condition (cf. [7]). So there
is a minimal diffusion process Xt associated with L. It was proved in [7] that
this diffusion process coincides with the diffusion obtained through the Girsanov
transform (see also [17]).

At first glance, one might think that it would be easy to extend the above results
with π(dx) = f (x) dx to singular measures π = (π1, . . . , πd) in some Kato class,
using the above-mentioned Girsanov transform or Dirichlet form methods. But one
quickly realizes that there are enormous difficulties in trying to use either of these
two approaches. When π is not absolutely continuous with respect to Lebesgue
measure, it is not at all clear how to interpret the condition that the square of
dπ/dx is in Kd−2 nor the meaning of the Girsanov transform (1.4). It is also not
clear whether inequality (1.5) holds.

The results of this paper indicate that Kd−1 is the right class to consider. As
mentioned above, the Girsanov transform is not suitable for this class. We do not
know whether inequality (1.5) holds for π ∈ Kd−1 (we suspect in general it does
not). In fact, it is not clear whether the model we consider in this paper can even
be covered under the “generalized Dirichlet form” framework of Stannat [19]. So
a new approach is needed.

We will give a number of examples of measures in Kd−1 in Section 2. Surface
measure on a (d −1)-dimensional hypersurface barely misses being in Kd−1, while
Hausdorff measure Hλ on a λ-set for λ ∈ (d − 1, d] is in Kd−1. We note here that
when σ is the surface measure of a (d − 1)-dimensional hypersurface, n denotes
its inward normal vector field and π = nσ , then the corresponding SDE (1.2)
gives a Brownian motion that is reflected on the hypersurface along the normal
direction. There is quite an extensive literature on the study of reflecting Brownian
motions. However, the approach in this paper does not cover this case. It follows
from Hölder’s inequality that Lp(Rd) ⊂ Kd−1 ∩ {f :f 2 ∈ Kd−2} for p > d ; this
is not true when p = d . While there are examples where f is not in Kd−1 but
f 2 is in Kd−2, there are many f ∈ Kd−1 where f 2 is not in Kd−2. So even in the
absolutely continuous case, while our approach cannot recover all the previously
known results, our results include most of them and many more that are not covered
by earlier results.

We now describe the approach of our paper. Given π = (π1, . . . , πd) in Kd−1
(by which we mean that each component πi is a signed measure in Kd−1),
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we approximate each πi by πi
n(dx) = Gi

n(x) dx, where Gi
n(x) is a bounded

continuous function, and we say that we have a solution to (1.2) if

Xt = x0 + Wt + lim
n→∞

∫ t

0
Gn(Xs) ds.

Here Gn = (G1
n, . . . ,G

d
n) and we want the convergence to be uniform over t in

finite intervals. We prove that there exists a weak solution in this sense and that the
weak solution is unique.

Our method is essentially a perturbation one in the space of bounded continuous
functions Cb(R

d) (rather than in some Lp-space or Sobolev space). For λ > 0, let
Rλ be the resolvent operator for Brownian motion. We show (see Proposition 4.6)
that

Sλ = Rλ

( ∞∑
j=0

(BRλ)j

)
(1.6)

converges as a bounded operator on the space Cb(R
d) equipped with the uniform

norm ‖ · ‖∞ , where B = π · ∇ denotes the operator that maps a C1 function φ into
the measure

Bφ(dx) =
d∑

i=1

∂φ

∂xi

(x)πi(dx).

Intuitively speaking, we construct Sλ as the λ-resolvent of 1
2� + π · ∇ .

Furthermore, {Sλ,λ > 0} is the family of resolvent operators of the diffusion
process, which is the unique weak solution to the SDE (1.2). The key is that
if µ ∈ Kd−1, then, for each fixed x, ∇Rλµ(x) is continuous in µ with respect
to the weak convergence topology on bounded measures (see Proposition 3.9).
When πi(x) = fi(x) dx with f 2

i ∈ Kd−2, the resolvent identity (1.6) is proved
in [7] for diffusion processes obtained through Dirichlet form techniques but the
convergence is in the Sobolev space W 1,2 of order (1,2). Thus, the weak solution
or diffusion process constructed in this paper coincides with the previous known
ones when π(dx) = f (x) dx is in Kd−1 with |f |2 ∈ Kd−2.

Weak existence and weak uniqueness of (1.1) is well known to be equivalent
to the martingale problem for the operator L being well posed, where L =
1
2� + f · ∇ . One could view our results as extending existence and uniqueness
of the martingale problem to L = 1

2� + π · ∇ with π ∈ Kd−1. The model studied
in this paper raises interesting questions in PDE about the potential theory for
the differential operator L with π ∈ Kd−1 and warrants additional study. For
example, do the Harnack principle and boundary Harnack principle hold for such
operators L?

As mentioned previously, the one-dimensional case has been understood for
some time; see [16]. In higher dimensions, there is some previous work along
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these lines by [7] (cf. also [12]). In this connection, we would like to mention that
if f in (1.1) is ∇ logψ , where ψ > 0 a.e. on Rd and is locally in W 1,2(Rd), then
there is a conservative diffusion X that solves (1.1) (see [1, 5, 10, 11, 18]). This
process is called distorted Brownian motion and has relationships to Euclidean
field theory, generalized Schrödinger operators and stochastic mechanics.

It is possible to extend our results to the case where Brownian motion is replaced
by a diffusion on Rd with sufficiently smooth coefficients (see Remark 6.1).
However, our methods rely on a gradient estimate for the λ-resolvent density, and
it is not at all clear that the analogue of our results holds for Markov processes
corresponding to more general Dirichlet forms or infinitesimal generators.

In this paper we consider only weak solutions, that is, existence and uniqueness
of a suitable probability measure. It would be interesting to know if strong
solutions exist to (1.2), that is, where Xt is measurable with respect to the filtration
generated by the Brownian motion; if so, this would imply a pathwise uniqueness
result for (1.2) and vice versa. In this regard, see [21] for the existence and
uniqueness of strong solutions to (1.1) when f is bounded and see also [9].

In Section 2 we define our notation and give a precise statement of our main
theorem. Section 3 is devoted to some estimates on Brownian resolvents. Section 4
proves existence of a weak solution and Section 5 weak uniqueness, both under
the assumption of bounded support. This additional assumption is removed in
Section 6.

We will use Cb(R
d) and C0(R

d) to denote the space of bounded continuous
functions on Rd and the space of continuous functions on Rd that vanish at ∞,
respectively.

2. Preliminaries. We first give some examples of measures in the Kato
class Kd−1. To do this, we introduce a class of measures M(γ, κ).

Let B(x, r) denote the open ball of radius r with center x. We let the letter c

with subscripts denote finite positive constants whose exact value is unimportant. If
µ is a signed measure, let µ+ and µ− be the positive and negative parts,
respectively, and let |µ| = µ+ + µ−. Let γ, κ > 0 and set

M(γ, κ) = {
µ :µ is a signed measure and

|µ|(B(x, r)) ≤ κrd−1+γ for all x ∈ Rd, r ∈ (0,1]}.
If � is a λ-set with λ ∈ (d − 1, d], then Hausdorff measure Hλ restricted to the
set � as well as g(x)1�(x)Hλ(dx) when g is bounded are measures in the class
M(λ + 1 − d, κ) for some κ > 0.

PROPOSITION 2.1. Suppose µ ∈ M(γ, κ) is a positive measure and x1 ∈ Rd .
There exists c1 not depending on x1 or µ such that, for each x and ρ ≤ 1,∫

B(x1,ρ)

1

|x − y|d−1 µ(dy) ≤ c1κρ
γ .

In particular, M(γ, κ) ⊂ Kd−1.
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PROOF. Clearly, the integral is largest when x1 = x. Since B(x,2) can be
covered by a finite number of balls of radius 1, then µ(B(x,2)) ≤ c2κ . Suppose
2m−1 < ρ ≤ 2m. We have∫

B(x1,ρ)

1

|x − y|d−1 µ(dy) ≤
m∑

k=−∞

∫
B(x,2k)−B(x,2k−1)

1

|x − y|d−1 µ(dy)

≤
m∑

k=−∞

1

(2k−1)d−1
µ

(
B(x,2k)

)

≤
m∑

k=−∞
c32−k(d−1)κ(2k)d−1+γ

≤ c4κ2mγ ≤ c5κρ
γ . �

Let us give some examples of measures lying in M(γ, κ).

EXAMPLE 2.2. Suppose d = 2, let µ0 be a Cantor–Lebesgue measure
on [0,1] and let µ(dx dy) = µ0(dx) × dy. It is easy to see that µ(B(x, r)) ≤
c1r

1+(log 2/ log3). Hence µ ∈ M(γ, κ) with γ = log 2/ log 3. This example can be
generalized to higher order fractal sets lying in Euclidean space; for example,
one could take the Hausdorff measure on the Sierpinski carpet in R2 times the
Lebesgue measure along the z-axis to get a measure in R3.

EXAMPLE 2.3. Suppose f ∈ Lp for some p > d . Then µ(dx) = f (x) dx ∈
M(γ, κ) for some positive γ and κ . In fact, by Hölder’s inequality,

|µ|(B(x, r)) =
∫
B(x,r)

|f (y)|dy ≤ c1‖f ‖p(rd)1/q,

where p−1 + q−1 = 1. Since p > d , then 1/q > (d − 1)/d and so d/q > d − 1. In
this case, γ = (d/q) − (d − 1).

EXAMPLE 2.4. Let d ≥ 2, γ ∈ (0,1) and g : Rd−1 → R. Suppose

f (x1, . . . , xd) = (|xd − g(x1, . . . , xd−1)| ∧ 1
)γ−1

and µ(dx) = f (x) dx. It is easy to check that µ ∈ M(γ, κ). What is interesting
in this example is that |f |2 is not even locally L1-integrable when γ < 1/2, so
|f |2 cannot be in the Kato class Kd−2. Thus, in general, drifts with this kind of
singularity cannot be handled by Girsanov’s theorem. The above also gives an
example of an f that is in Kd−1 but f 2 /∈ Kd−2.

Let ψ(x) be a nonnegative C∞ function on Rd with compact support such that∫
ψ(x)dx = 1. Let ψε(x) = ε−dψ(x/ε). For signed Radon measures πi on Rd
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with 1 ≤ i ≤ d , define

Gi
n(x) =

∫
ψ2−n(x − y)πi(dy)(2.1)

and set

πi
n(dx) = Gi

n(x) dx.(2.2)

We write Gn(x) for (G1
n(x), . . . ,Gd

n(x)). The stochastic differential equation we
consider is

Xt = x0 + Wt + At,(2.3)

where At is the limit of
∫ t

0 Gn(Xt) dt . More precisely, let � be the set of
continuous functions mapping [0,∞) to Rd , let Xt(ω) = ω(t) and let Ft be the
usual cylindrical σ -field generated by {Xs, s ≤ t}.

DEFINITION 2.5. Given Radon measures {πi, 1 ≤ i ≤ d} on Rd , a weak
solution for Brownian motion with generalized drift π = (π1, . . . , πd) is a
probability measure on (�,F∞) such that

Xt = x0 + Wt + At,(2.4)

where:
(a) At = limn→∞

∫ t
0 Gn(Xs) ds uniformly over t in finite intervals, where the

convergence is in probability and Gn is defined by (2.1);
(b) there exists a subsequence {nk} such that supk

∫ t
0 |Gnk

(Xs)|ds < ∞ a.s. for
each t > 0;

(c) Wt with W0 = 0 is a d-dimensional Brownian motion under P with respect
to the σ -fields Ft .

Our main theorem is as follows.

THEOREM 2.6. Suppose x0 ∈ Rd , d ≥ 3 and πi ∈ Kd−1 for i = 1, . . . , d .
Then:

(a) There exists one and only one weak solution to (2.4). This unique solution
is conservative.

(b) Let (X,Px) denote the unique solution in (a) with X0 = x. Then the
collection (X,Px, x ∈ Rd) forms a strong Markov process. Furthermore, each
component Ai of A is a continuous additive functional of X of finite variation.

REMARK 2.7. As we mentioned earlier, the existing Dirichlet form literature
allows the construction of a solution to (1.1) provided |f |2 ∈ Kd−2. Although it
is not true that |f |2 ∈ Kd−2 implies f ∈ Kd−1 (e.g., f (x) = [|x| log3/4(1/|x|)]−1
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is such a counterexample), a simple application of Cauchy–Schwarz shows that if,
for some δ > 0,

lim sup
ε→0

sup
x∈Rd

∫
B(x,ε)

|f (y)|2∣∣ log1+δ(1/|x − y|)∣∣|x − y|2−d dy = 0,

then f ∈ Kd−1. Thus, the condition f ∈ Kd−1 includes the vast majority (but not
all) of what can be done using Dirichlet form theory. On the other hand, f ∈ Kd−1
is, in general, a much less restrictive condition than |f |2 ∈ Kd−2.

REMARK 2.8. We prove the theorem only for d ≥ 3. However, it is also true
for d = 2. In the proofs it is necessary to replace pt(x) by the transition density
for two-dimensional Brownian motion killed on exiting a large square [−M,M]2

and then to let M → ∞.

We will need the following technical lemma. Let G be a sub-σ -field of F∞.
A regular conditional probability for P(· | G) is a kernel Q(ω, dω′) such that
(1) Q(ω, ·) is a probability measure for each ω, (2) Q(·,A) is a measurable random
variable for each A ∈ F∞ and (3) if A ∈ F∞, then P(A | G) = Q(ω,A) for almost
every ω.

Let θt be the usual shift operators on � so that θt (ω)(s) = ω(s + t). Let S be a
bounded stopping time and let PS(A) = P(A ◦ θS).

PROPOSITION 2.9. Suppose P is a solution to (2.4) and S is a bounded
stopping time. If QS is a regular conditional probability for PS(· | FS), then for
almost every ω the probability QS(ω, ·) is a solution to (2.4) starting at XS(ω).
The same is true if QS is replaced by QS , a regular conditional probability for
PS(· | XS).

The proof of this is very similar to [3], Proposition 6.2.1, and is left to the reader.

3. Estimates. Throughout we assume d ≥ 3. Let

pt(x) = (2πt)−d/2 exp(−|x|2/2t), Rλ(x) =
∫ ∞

0
e−λtpt (x) dx.

Define

Rλf (x) =
∫

f (y)Rλ(x − y) dy =
∫ ∞

0
e−λt

∫
f (y)pt (x − y) dy dt.

We also write Rλµ(x) = ∫
Rλ(x − y)µ(dy) when

∫
Rλ(x − y)|µ|(dy) is finite.

Let B = π · ∇ and Bn = πn · ∇ be the operators that map a C1 function φ into
a measure

Bφ(dx) =
d∑

i=1

∂φ

∂xi

(x)πi(dx) and Bnφ(dx) =
d∑

i=1

∂φ

∂xi

(x)πi
n(dx),
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respectively, where πi
n is given by (2.2). For a signed Radon measure µ, define

mµ(r) = sup
x∈Rd

∫
B(x,r)

|x − y|1−d |µ|(dy).

That µ is in Kd−1 is equivalent to limr→0 mµ(r) = 0. It follows from Proposi-
tion 2.1 that mµ(r) ≤ cκrγ if µ ∈ M(γ, κ), where c is independent of κ , γ and µ.

REMARK 3.1. Clearly, if µ ∈ Kd−1, then∫
B(x1,ρ)

1

|x − y|d−2 |µ|(dy) ≤ ρmµ(ρ).

REMARK 3.2. Since |Rλ(x)| ≤ c1|x|2−d , if the measure µ ∈ Kd−1 is
supported in B(x1, ρ) for some x1 ∈ Rd and ρ ∈ (0,1], then

|Rλµ(x)| ≤ Rλ|µ|(x) ≤ c2ρmµ(ρ).

PROPOSITION 3.3. If µ ∈ Kd−1 is supported in B(x1, ρ) for some x1 ∈ Rd

and ρ ∈ (0,1], then for all λ ≥ 0, Rλµ is a C1 function with

|∇Rλµ(x)| ≤ Kmµ(ρ),

where K does not depend on x, x1 or µ.

PROOF. From the definition of Rλ, we have

∂Rλ

∂xi

(x) = −
∫ ∞

0
e−λt xi

t
(2πt)−d/2e−|x|2/2t dt.(3.1)

This is bounded in absolute value by

c1

∫ ∞
0

|x|
t

t−d/2e−|x|2/2t dt ≤ c2|x|1−d .

So ∣∣∣∣∂Rλµ

∂xi

(x)

∣∣∣∣ ≤ c2

∫
B(x1,ρ)

1

|x − y|d−1 |µ|(dy) ≤ c2mµ(ρ). �

PROPOSITION 3.4. If g is bounded, and λ > 0, then there exists c1 depending
only on λ such that

|∇Rλg(x)| ≤ c1‖g‖∞.
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PROOF. As in (3.1),

|∇Rλg(x)| ≤ c2

∫ ∞
0

∫
e−λt |x − y|

t
t−d/2e−|x−y|2/2t |g(y)|dy dt

≤ c3‖g‖∞
∫ ∞

0
e−λt t−1/2

∫
t−d/2e−|x−y|2/4t dy dt

≤ c4‖g‖∞
∫ ∞

0
e−λt t−1/2 dt

≤ c5‖g‖∞. �

We now impose a condition on our πi ’s that we will remove in Section 6. Recall
that K is the constant in Proposition 3.3.

ASSUMPTION 3.5. There exist x1 ∈ Rd and ρ > 0 such that for each i the
measure πi is in Kd−1, πi has support in B(x1, ρ) and mπi (ρ) < (2dK)−1.

PROPOSITION 3.6. If µ ∈ Kd−1 with µ supported in B(x1, ρ), x1 ∈ Rd and
ρ > 0 is such that mµ(ρ) < κ(2dK)−1 for κ ∈ [0,1], then ν = BRλµ is in Kd−1,
supported in B(x1, ρ) and mν(r) ≤ (κ/2d)

∑d
i=1 mπi (r) for r > 0. In fact, we have

|ν|(dx) ≤ κ

2d

d∑
i=1

|πi |(dx).

The same is true if ν is replaced by νn = BnR
λµ.

PROOF. We have

BRλµ(dx) =
d∑

i=1

∂Rλµ

∂xi

(x)πi(dx).

By Proposition 3.3, the right-hand side is bounded by
d∑

i=1

|∇Rλµ(x)||πi|(dx) ≤ Kmµ(ρ)

d∑
i=1

|πi |(dx) ≤ κ

2d

d∑
i=1

|πi |(dx).

The result now follows by our assumptions on πi .
Similarly,

|BnR
λµ(dx)| ≤ Kmµ(ρ)

d∑
i=1

|πi
n|(dx) ≤ κ

2d

d∑
i=1

|πi
n|(dx).(3.2)

Note that

mπi
n
(r) ≤

∫
sup
x∈Rd

∫
ψ2−n(x − y)

(∫
B(x,r)

|y − z|1−d |πi |(dz)

)
dy

≤ sup
x∈Rd

∫
ψ2−n(x − y)mµ(r) dy = mµ(r),

(3.3)
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so, in particular, πn
i is in Kd−1. Combining with (3.2) proves the proposition. �

PROPOSITION 3.7. Let x1 ∈ Rd, ρ ∈ (0,1] and µ be a signed measure in
Kd−1 having support in B(x1, ρ). Given ε > 0, there exists λ0 > 0 that depends
only on the pointwise bound of the function mµ(r) such that if λ ≥ λ0, then

|∇Rλµ(x)| ≤ ε.

PROOF. By the change of variables s = |x|2/t , we have∣∣∣∣∂Rλ

∂xi

(x)

∣∣∣∣ ≤
∫ ∞

0
e−λt

∣∣∣∣∂pt

∂xi

∣∣∣∣(x) dt

≤ c1

∫ ∞
0

e−λt |x|
t

t−d/2e−|x|2/2t dt

= c2

∫ ∞
0

e−λ|x|2/s |x|1−dsd/2−1e−s/2 ds.

We will choose β > 0 in a moment. If |x| ≤ β , this is less than c3|x|1−d . If |x| > β ,
this is less than c4|x|1−dϕ(λ,β), where

ϕ(λ,β) =
∫ ∞

0
e−λβ2/ssd/2−1e−s/2 ds.

Note that, for each β , ϕ(λ,β) → 0 as λ → ∞.
Let µβ = µ|B(x,β). Then, by Proposition 2.1,∣∣∣∣∂Rλµβ

∂xi

(x)

∣∣∣∣ ≤ c5mµ(β)

and ∣∣∣∣ ∂

∂xi

Rλ(µ − µβ)(x)

∣∣∣∣ ≤ c6mµ(ρ)ϕ(λ,β).

If we first choose β small so that c5mµ(β) < ε/(2d) and then choose λ large so
that c6mµ(ρ)ϕ(λ,β) < ε/(2d), our proof is complete. �

Let

L = {
f :f maps Rd to [−1,1], f is Lipschitz with Lipschitz constant 1

}
.

Define dL(µ, ν) = sup{| ∫ f dµ − ∫
f dν| :f ∈ L}. The distance dL is a metric

for the topology of weak convergence for finite measures.

PROPOSITION 3.8. Suppose µ ∈ Kd−1 with support in B(x1, ρ), where ρ < 1.
Then Rλµ is Lipschitz:

|Rλµ(x) − Rλµ(y)| ≤ c1(|x − y| ∧ 1),

where c1 depends only on mµ(ρ).
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PROOF. This is immediate from Proposition 3.3 and Remark 3.2. �

PROPOSITION 3.9. If µ and ν are in Kd−1 and have support in B(x1, ρ) with
ρ < 1, then there is a decreasing function φ > 0 with limr↓0 φ(r) = 0 such that

|∇Rλ(µ − ν)(x)| ≤ φ(dL(µ, ν)).

The function φ depends only on the bounds on mµ(r) and mν(r).

PROOF. Fix i and define

Hδ(x) =
∫ ∞
δ

e−λt ∂pt

∂xi

(x) dt = −
∫ ∞
δ

e−λt xi

t
(2πt)−d/2e−|x|2/2t dt.

Then

|Hδ(x)| ≤ c2

∫ ∞
δ

|x|
t

t−d/2e−|x|2/2t dt ≤ c3

∫ ∞
δ

t−(d+1)/2 dt = c4δ
−(d−1)/2.(3.4)

Similarly, we compute ∂Hδ/∂xj and we see that

|∇Hδ(x)| ≤ c5δ
−d/2.(3.5)

We next look at (H − Hδ)(x). Similarly to the above, we see that

|(H − Hδ)(x)| ≤ c6

∫ δ

0
t−(d+1)/2 |x|

t1/2
e−|x|2/2t dt.(3.6)

We will choose β > 0 in a moment. If |x| ≤ β , we have

|(H − Hδ)(x)| ≤ c7|x|1−d .(3.7)

If |x| > β , we have

|(H − Hδ)(x)| ≤ c8

∫ δ

0
t−(d+1)/2e−β2/4t dt ≤ c9β

−d−1δ e−β2/16δ.(3.8)

From (3.4) and (3.5), we have

|Hδ(µ − ν)(x)| ≤ c10δ
−d/2dL(µ, ν),(3.9)

where we write Hδµ(x) = ∫
Hδ(x − z)µ(dz) and c10 depends on κ, γ,ρ. From

Proposition 2.1 and (3.7), we have

|(H − Hδ)µβ(x)| ≤ c11mµ(β),(3.10)

where µβ = µ|B(x,β). By (3.8), we have

|(H − Hδ)(µ − µβ)(x)| ≤ c12δβ
−d−1e−β2/16δ ≤ c13δβ

−d−3.(3.11)

If we choose β so that βd+3 = δ1/2, then combining (3.10) and (3.11) yields

|(H − Hδ)µ(x)| ≤ c14
(
mµ(δ1/(2(d+3)) + δ1/2)

)
.(3.12)
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We have a similar estimate with µ replaced by ν. Combining with (3.9) and
choosing δ so that δd/2 = (dL(µ, ν))1/2, we obtain our result. �

Given a process At of bounded variation, let A+
t and A−

t denote its positive and
negative variation, respectively.

LEMMA 3.10. Assume that X is a strong Markov process. Let A1
t and A2

t

be two continuous additive functionals of X having bounded variations and let
Bt = A1

t − A2
t . Suppose supx Ex

∫ ∞
0 e−λt d((A

j
t )

+ + (A
j
t )

−) ≤ N , j = 1,2, and
supx |Ex

∫ ∞
0 e−λt dBt | ≤ ε. Then

Ex

(
sup

t

∣∣∣∣ ∫ t

0
e−λs dBs

∣∣∣∣)2

≤ c1εN.

PROOF. Let C1
t = ∫ t

0 e−λs d((A1
s )

+ + (A2
s )

−) and C2
t = ∫ t

0 e−λs d((A2
s )

+ +
(A1

s )
−). Let Dt = ∫ t

0 e−λs d(A1
s − A2

s ). Then, by the Markov property,

E[Cj∞ − C
j
t | Ft ] = e−λtEXt

∫ ∞
0

e−λs dCj
s ≤ 2N, j = 1,2,

and ∣∣E[D∞ − Dt | Ft ]
∣∣ = e−λt

∣∣∣∣EXt

∫ ∞
0

e−λs dDs

∣∣∣∣ ≤ ε.

By [2], Proposition I.6.14, Ex(supt D
2
t ) ≤ c2εN , which is what we wanted. �

4. Existence. Throughout this section we assume Assumption 3.5 holds. Let
Gi

n(x)dx be approximations to πi(dx) as in (2.1). Let Xn
t be the solution to the

stochastic differential equation

dXn
t = dWt + Gn(X

n
t ) dt, Xn

0 = x0,

where Wt is a d-dimensional Brownian motion. Let P
x0
n be the probability on �

induced by the law of Xn under P when Xn
0 = x0. Define

Sλ
nf (x) = Ex

n

∫ ∞
0

e−λtf (Xt ) dt

and

Bnf (dx) =
d∑

i=1

∂f

∂xi

(x)πi
n(dx) =

d∑
i=1

∂f

∂xi

(x)Gi
n(x) dx.

LEMMA 4.1. If g is bounded,

Sλ
ng(x) =

∞∑
j=0

Rλ(BnR
λ)jg(x).(4.1)



804 R. F. BASS AND Z.-Q. CHEN

PROOF. If f ∈ C2 is bounded, then by Itô’s formula

f (Xn
t ) − f (Xn

0 ) =
∫ t

0
∇f (Xn

s ) · dWs +
∫ t

0
∇f (Xn

s ) · Gn(X
n
s ) ds

+ 1
2

∫ t

0
�f (Xn

s ) ds.

Taking Px expectations, multiplying by e−λt and integrating over t from 0 to ∞,
we obtain

Ex
∫ ∞

0
e−λtf (Xn

t ) dt − 1

λ
f (x)

= Ex
∫ ∞

0
e−λt

∫ t

0

[
∇f (Xn

s ) · Gn(Xs) + 1

2
�f (Xn

s )

]
ds dt(4.2)

= 1

λ
Ex

∫ ∞
0

e−λs

[
∇f (Xn

s ) · Gn(Xs) + 1

2
�f (Xn

s )

]
ds

or

λSλ
nf (x) = f (x) + Sλ

n

[∇f · Gn + 1
2�f

]
(x).(4.3)

Suppose g ∈ C2 is bounded and set f = Rλg. Then f ∈ C2 and 1
2�f = 1

2�Rλg =
λRλg − g. Substituting in (4.3), we have

Sλ
ng(x) = Rλg(x) + Sλ

nBnR
λg(x).

This holds for g ∈ C2 if g is bounded. By taking limits and using Proposi-
tion 3.4, this holds for all bounded continuous g. Taking further limits, we have,
by (3.3) and Proposition 3.9,

Sλ
nµ(x) = Rλµ(x) + Sλ

nBnR
λµ(x)

for µ ∈ Kd−1 such that µ has support in B(x1, ρ) for some ρ. We have finiteness
by Proposition 3.3.

We now iterate and obtain

Sλ
nµ(x) = Rλµ(x) + RλBnR

λµ(x) + Sλ
nBnR

λBnR
λµ(x).

Continuing to substitute for Sλ
n on the right-hand side, we have

Sλ
nµ(x) =

k∑
j=0

Rλ(BnR
λ)jµ(x) + Sλ

n(BnR
λ)k+1µ(x).

By Proposition 3.6, Gn(x)(∇Rλ(BnR
λ)kµ)(x) is a function bounded by

c12−kκ (c1 may depend on n), so Sλ
n(BnR

λ)kµ(x) → 0 as k → ∞. Similarly,∑∞
j=k+1 Rλ(BnR

λ)jµ(x) → 0 as k → ∞. Therefore,

Sλ
nµ(x) =

∞∑
j=0

Rλ(BnR
λ)jµ(x).
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If g is bounded with support in B(x1,
1
2 ) for some x1, setting µ(dx) = g(x) dx

establishes (4.1) for such g. A function that is bounded with compact support
can be written as the sum of finitely many bounded functions, each of which
has support in some ball of radius 1

2 . Thus, by linearity, (4.1) holds for bounded
functions with compact support.

Finally, for g bounded, let gm(x) = g(x)1{|x|≤m}. Clearly, Rλgm → Rλg. Note
that, under Assumption 3.5, πi

n has support in some ball B(x1, ρ) for each i. In
view of the proof of Proposition 3.4, ∇gm → ∇g uniformly and boundedly in
B(x1, ρ). Consequently, dL(BnR

λgm,BnR
λg) → 0 as m → ∞. Hence, by (3.3)

and Propositions 3.6 and 3.9,
∑∞

j=0 Rλ(BnR
λ)jgm(x) → ∑∞

j=0 Rλ(BnR
λ)jg(x)

as m → ∞. Now applying (4.1) to gm and letting m → ∞, establishes (4.1) for
bounded functions g. �

As a corollary we have the following.

THEOREM 4.2. The collection of functions {Sλ
ng :n ≥ 1,‖g‖∞ ≤ 1} is

equicontinuous.

PROOF. By the preceding proposition,

Sλ
ng = Rλ

( ∞∑
j=0

(BnR
λ)j

)
g.

Note that, for every φ ∈ C1, the support of Bnφ is contained in B(x1,2ρ) for
n large. By Proposition 3.6, there is 0 < κ ≤ 1 such that, for any j ≥ 1,

|(BnR
λ)jg| ≤ κ

2jd

d∑
i=1

|πi|.

Therefore,
∑∞

j=1 |(BnR
λ)jg| ≤ (κ/d)

∑d
i=1 |πi |. The result now follows by (3.3)

and Proposition 3.3. �

Next we show that for each x the sequence Px
n is tight. In fact, we have a

uniformity over x as well.

THEOREM 4.3. Let β, ε > 0, T > 0. There exists δ not depending on x or n

such that

Px
n

(
sup

s,t≤T, |t−s|<δ

|Xt − Xs | > β

)
< ε.

PROOF. By the Markov property and standard arguments, it is enough to show
that there exists δ such that

Px
n

(
sup
t≤δ

|Xt − x| > β

)
< ε.
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By standard estimates on Brownian motion, it is well known that we can make

Px
n

(
sup
t≤δ

|Wt | > β

2

)
<

ε

2

if we take δ small enough. Let Hn(x) = ∑d
i=1 |Gi

n(x)|. Therefore, it suffices to
show that

Px

(∫ δ

0
Hn(X

n
s ) ds >

β

2

)
<

ε

2
(4.4)

uniformly in x and n if we take δ small enough.
By Chebyshev’s inequality, the probability in (4.4) is bounded by

2

β
Ex

∫ δ

0
Hn(X

n
s ) ds.

If we set θ = 1/δ, this in turn is bounded by

2e

β
Ex

∫ δ

0
e−θtHn(X

n
s ) ds ≤ 2e

β
SθHn(x).(4.5)

By (3.3), mGi
n(x) dx(r) ≤ mπi (r) and therefore mHn(x) dx(r) ≤ ∑d

i=1 mπi (r). By
Proposition 3.7, if we take δ sufficiently small, then

‖SθHn(x)‖∞ ≤ ε(1 ∧ β)/4e for every n ≥ 1.

With (4.5), this yields the desired estimate. �

COROLLARY 4.4. Let β ∈ (0,1]. There exists δ < 1 such that if τ =
inf{t : |Xt − X0| > β}, then supx Ex

ne
−τ ≤ δ.

PROOF. By Theorem 4.3, there exists ε such that Px
n(τ < ε) < 1

2 . Then

Ex
ne

−τ ≤ e−εPx
n(τ ≥ ε) + Px

n(τ < ε)

= e−ε[1 − Px
n(τ < ε)] + Px

n(τ < ε)

= Px
n(τ < ε)(1 − e−ε) + e−ε

≤ 1 − e−ε

2
+ e−ε = 1 + e−ε

2
.

Now set δ = (1 + e−ε)/2. �

THEOREM 4.5. There exists a subsequence nm such that Px
nm

converges
weakly, say to Px , for each x. The collection (Xt ,Px) forms a strong Markov
process having the strong Feller property.
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PROOF. Let {gi} be a countable collection of continuous functions that are
dense in C0(R

d) in the uniform topology. Let {λk} be a set of positive reals that is
dense in some interval [a, b] ⊂ (0,∞). By Theorem 4.2 and a diagonalization
procedure, we can extract a subsequence {nm} such that S

λk
nmgi converges for

each i and k as m → ∞, say, to Sλkgi uniformly on every compact set. Since
‖Sλk‖∞ ≤ 1/λk , it follows that along this sequence S

λk
nmg converges for each

continuous g in C0(R
d). Moreover, by Theorem 4.2, the modulus of continuity

depends only on a, b and ‖g‖∞. By the resolvent identity, ‖Sp
n −S

q
n‖∞ ≤ c1|p−q|

if p,q ∈ [a, b], where c1 depends only on a and b. Therefore, Sλ
nm

g converges, say,
to Sλg, for every λ ∈ [a, b].

Next fix x. Let P′ and P′′ be any two subsequential limit points of the
sequence Px

nm
with respect to weak convergence. Since

U1(P
′, λ) = EP′

∫ ∞
0

e−λtg(Xt ) dt

will be the limit of some subsequence of Sλ
nm

g if g is continuous and bounded, then
U1(P

′, λ) = Sλg(x) if λ ∈ [a, b]. The same thing holds if we replace P′ by P′′. By
the uniqueness of the Laplace transform and the continuity of the paths of Xt , we
have that EP′g(Xt ) = EP′′g(Xt ) for all t and all g ∈ C0(R

d). To get the equality of
higher order joint distributions, consider

U2(P
′, λ,µ) = EP′

[∫ ∞
0

∫ ∞
0

e−µse−λtf (Xs)g(Xs+t ) ds dt

]
,

where f and g are in C0(R
d). This is the limit along an appropriate subsequence

of

Ex
nm

[∫ ∞
0

∫ ∞
0

e−µse−λtf (Xs)g(Xs+t ) ds dt

]
.

By the Markov property, this equals

Ex
nm

[∫ ∞
0

e−µsf (Xs)E
Xs
nm

[∫ ∞
0

e−λtg(Xt ) dt

]
ds

]

= Ex
nm

[∫ ∞
0

e−µsf (Xs)S
λ
nm

g(Xs) ds

]
= Sµ

nm

(
f Sλ

nm
g
)
(x).

Using the fact that Sλ
nm

g converges to Sλg and the equicontinuity of Sλ
ng, we

deduce that this expression converges to Sµ(f Sλg). Therefore, U2(P
′, λ,µ) =

Sµ(f Sλg)(x). The same is true for U2(P
′′, λ,µ). By the uniqueness of the mul-

tivariate Laplace transform, we conclude the two-dimensional joint distributions
under P′ and P′′ are the same. The higher order joint distributions are handled
similarly. Therefore, we deduce that P′ = P′′.
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We have thus shown that Px
nm

converges weakly, say, to Px , and the resol-
vents Sλ

nm
g converge uniformly on compacts to Sλg(x) = Ex

∫ ∞
0 e−λtg(Xt ) dt

if λ ∈ [a, b] and g ∈ C0(R
d). Clearly, (X,Px, x ∈ Rd) is a conservative Markov

process with P x(X0 = x) = 1. Moreover, Sλg is continuous with a modulus of
continuity that depends only on a, b and ‖g‖∞.

By taking limits, we have Sλg is continuous if g is bounded. Let Ptg(x) =
Exg(Xt ). For any t > 0,

Ptg(x) = lim
λ→∞e−λt

∞∑
n=0

(λt)n

n! (λSλ)ng(x),(4.6)

where the limit holds in the sup norm. Thus, Ptg is continuous if g is bounded.
That is, X has the strong Feller property. It is then standard (see Theorem I.8.11
of [4]) that (Xt ,Px) is a strong Markov process. �

Let Sλg(x) = Ex
∫ ∞

0 e−λtg(Xt ) dt and Sλ
ng(x) = Ex

n

∫ ∞
0 e−λtg(Xt ) dt .

PROPOSITION 4.6. If λ > 0 and g is bounded, then

Sλg = Rλ

( ∞∑
j=0

(BRλ)j

)
g.

Furthermore, Sλg ∈ C0(R
d) if g ∈ C0(R

d).

PROOF. Let g be continuous. We have Sλ
ng = Rλ(

∑∞
j=0(BnR

λ)j )g and
Sλ

ng → Sλg provided, we take n → ∞ along an appropriate subsequence. We
will show Rλ(BnR

λ)jg converges. In view of Proposition 3.4, Assumption 3.5
and Proposition 3.6,

‖Rλ(BnR
λ)jg‖∞ ≤ c12−j‖g‖∞.

Using dominated convergence, we will then have the proposition for continuous g.
The case of bounded g then follows by a limit argument.

Write

Rλ(BnR
λ)jg − Rλ(BRλ)jg =

j−1∑
k=0

Rλ(BnR
λ)k(BnR

λ − BRλ)(BRλ)j−k−1g.

By Propositions 3.4 and 3.6, νjk(g) = (BRλ)j−k−1g will be a measure in
Kd−1 whose total variation is bounded by (κ/d)

∑d
i=1 |πi | for some κ > 0. By

Proposition 3.3,

(BnR
λ − BRλ)(BRλ)j−k−1g =

d∑
i=1

∇Rλ(νjk(g))(x)(πi
n − πi)(dx)
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is a measure in Kd−1. By (3.3) and Proposition 3.9,

(BnR
λ)(BnR

λ − BRλ)(BRλ)j−k−1g

will be a measure in Kd−1 whose total variation is bounded by c3φ(β(n))
∑d

i=1 |πi|
where β(n) = ∑d

i=1 dL(πi
n,π

i)c3 depends on ‖g‖∞ but not on n, and φ is a de-
creasing function with limr↓0 φ(0) = 0 that depends only on the upper bounds on∑d

i=1 mπi (r). By Proposition 3.3,

(BnR
λ)k(BnR

λ − BRλ)(BRλ)j−k−1g

will be a measure in Kd−1 whose total variation is bounded by c4φ(β(n))
∑d

i=1 |πi|
where c4 does not depend on n, and by Remark 3.3,

Rλ(BnR
λ)k(BnR

λ − BRλ)(BRλ)j−k−1g

is a function whose sup norm is less than or equal to c5φ(β(n))
∑d

i=1 mπi (ρ),
where again the constant depends on ‖g‖∞ but not on n. This implies that this
term goes to 0 as n → ∞.

Now suppose g ∈ C0(R
d). Clearly, Rλg ∈ C0(R

d). As π has compact support,
Rλ(BRλ)jg ∈ C0(R

d). So, by Proposition 3.6 and Remark 3.1, Sλg ∈ C0(R
d).
�

REMARK 4.7. The proof of Theorem 4.5 in fact shows that for every
subsequence nk there is a sub-subsequence nkm such that Px

nkm
converges for every

x ∈ Rd . The proof of Proposition 4.6 tells us that every subsequential limit of Pk
n

has the same resolvent and therefore has the same law. This implies that Px
n is

convergent for each x.

THEOREM 4.8. The strong Markov process (X,Px) is a Feller process having
the strong Feller property. In particular, it is a Hunt process.

PROOF. It follows from (4.6) and Proposition 4.6 that Ptg ∈ C0(R
d) if g ∈

C0(R
d). So X is a Feller process. The strong Feller property was proved in

Theorem 4.5. �

PROPOSITION 4.9. Under Px we have Xt = x + Wt + At and Px(X0 =
x) = 1, where Wt is a d-dimensional Brownian motion such that At =
limn→∞

∫ t
0 Gn(Xs) ds is an Rd -valued continuous additive functional of X having

finite variation, where the convergence is in the following sense: for any ε > 0 and
t > 0,

lim
n→∞ Px

(
sup
s≤t

∣∣∣∣ ∫ s

0
Gn(Xr) dr − As

∣∣∣∣ > ε

)
= 0.

Furthermore, there exists a subsequence {nk} such that supk

∫ t
0 |Gnk

(Xs)|ds < ∞
a.s. for each t > 0.
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PROOF. Fix i and let us look at the ith component. Let ε > 0. From
Proposition 3.6,

Sλ|πi
n|(x) = Rλ

( ∞∑
j=0

(BRλ)j

)
|πi

n|(x)

is bounded, independently of n. Define µi,+
n = ψ2−n ∗πi,+ and µi,−

n = ψ2−n ∗πi,−.
Then πi

n = µi,+
n − µi,−

n . Let

Sλ(πi,+)(x) = Rλ

( ∞∑
j=0

(BRλ)j

)
πi,+(x).

Define Sλ(πi,−) similarly. Set Sλ(πi)(x) = Sλ(πi,+)(x) − Sλ(πi,−). It follows
from (3.3) and Propositions 3.9 and 3.6 that Sλ(µi,+

n )(x) → Sλ(πi,+)(x) and
Sλ(µi,−

n )(x) → Sλ(πi,−)(x) uniformly in x. Hence, Sλ(πi,+) and Sλ(πi,−) are
bounded continuous λ-potentials of the Feller process X. So there are two positive
continuous additive functionals Ai,+ and Ai,− of X such that Sλ(πi,+)(x) =
Ex[∫ ∞

0 e−λt dAi+
t ] and Sλ(πi,−)(x) = Ex[∫ ∞

0 e−λt dA
i,−
t ] (see Theorem IV.3.13

of [4]). Let Ai = Ai,+ − Ai,− and A = (A1, . . . ,Ad). Note that A is an Rd -valued
continuous additive functional of X having finite variation whose signed Revuz
measure is π . As supx∈Rd |Sλ(πi

n − πi)(x)| → 0, it follows by Lemma 3.10 that
Ex[supt |Bt |2] → 0 as n → ∞, where

Bt =
∫ t

0
e−λs dAi

s −
∫ t

0
e−λsGi

n(Xs) ds.

If Ht = Ai
t − ∫ t

0 Gi
n(Xs) ds, then

Ht =
∫ t

0
eλs dBs = eλtBt −

∫ t

0
λeλsBs ds

by integration by parts. Therefore,

Ex

[
sup
s≤t

∣∣∣∣Ai
s −

∫ s

0
Gi

n(Xr) dr

∣∣∣∣]2

= Ex sup
s≤t

|Hs |2 ≤ ε

if n is large enough. Therefore,
∫ t

0 Gi
nk

(Xr) dr converges to Ai
t uniformly over t

in finite intervals in probability. Consequently, there exists a subsequence {nk}
such that

∫ t
0 Gi

nk
(Xr) dr converges to Ai

t a.s. for each i, uniformly over t in finite
intervals. Note also that we can choose the subsequence not depending on x so that
we have this convergence Px-a.s. for each x.

If we let µi
n = µi,+

n + µi,−
n , then µi

n converges weakly to |πi
n|. By the same

argument as in the preceding paragraph, there exists a subsequence {nk} such
that

∫ t
0 µi

nk
(Xr ) dr converges uniformly over t in finite intervals a.s. As |Gi

n(x)| ≤
µi

n(x) for each i, n and x, it follows that supk

∫ t
0 |Gi

nk
(Xr)|dr < ∞ a.s.
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As in the first paragraph of the proof, we have

Sλ
m|πi

n|(x) = Rλ

( ∞∑
j=0

(BmRλ)j

)
|πi

n|

bounded, independently of m and n, and Sλ
m(πi

n − πi)(x) → 0 at a rate that does
not depend on x or m. Hence,

Ex
m

[
sup

t

∣∣∣∣ ∫ t

0
e−λsGi

p(Xs) ds −
∫ t

0
e−λsGi

n(Xs) ds

∣∣∣∣]2

→ 0

as n,p → ∞, independently of m, and then

Ex
m

[∫ t

0
Gi

p(Xs) ds −
∫ t

0
Gi

n(Xs) ds

]2

≤ ε

if n and p are large enough.
Let r1 ≤ · · · ≤ rk ≤ s, let f1, . . . , fk be continuous functions on Rd with

compact support and let Y = ∏k
j=1 fj (Xrj ). By Cauchy–Schwarz, there exists n0

such that if n,p ≥ n0, then∣∣∣∣Ex[YAi
t ] − Ex

[
Y

∫ t

0
Gi

n(Xs) ds

]∣∣∣∣ ≤ c1ε
1/2

and ∣∣∣∣Ex
m

[
Y

∫ t

0
Gi

p(Xs) ds

]
− Ex

m

[
Y

∫ t

0
Gi

n(Xs) ds

]∣∣∣∣ ≤ c1ε
1/2

for all m. By weak convergence, for each fixed n,

Ex
m

[
Y

∫ t

0
Gi

n(Xs) ds

]
→ Ex

[
Y

∫ t

0
Gi

n(Xs) ds

]
as m → ∞ along an appropriate subsequence, since Gi

n is continuous. Set n = n0
and take p = m. If m is large enough,∣∣∣∣Ex

m

[
Y

∫ t

0
Gi

m(Xs) ds

]
− Ex[YAi

t ]
∣∣∣∣ ≤ 2c1ε

1/2 + ε.

Since ε > 0 is arbitrary,

Ex
m

[
Y

∫ t

0
Gi

m(Xs) ds

]
→ Ex[YAi

t ]
as m → ∞ along an appropriate subsequence.

Now Xi
m(t) − ∫ t

0 Gi
m(Xm(r)) dr is a martingale. Then

Ex
m

[(
Xi

t −
∫ t

0
Gi

m(Xr) dr

)
Y

]
= Ex

m

[(
Xi

s −
∫ s

0
Gi

m(Xr) dr

)
Y

]
.
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Passing to the limit,

Ex[(Xi
t − Ai

t)Y ] = Ex[(Xi
s − Ai

s)Y ].
This proves that Xi

t − Ai
t is a martingale.

We show similarly that (Xi
t − Ai

t )(X
j
t − A

j
t ) − δij t is a martingale, where δij

is 1 if i = j and 0 otherwise. Hence, if Wi
t = Xi

t −xi −Ai
t , then Wt is a continuous

martingale with 〈Wi,Wj 〉t = δij t and W0 = 0. This implies that Wt is a standard
d-dimensional Brownian motion. �

REMARK 4.10. It follows from the above proof that, given a subsequence {nk},
there exists a further subsequence {nkm} such that

sup
m

∫ t

0

∣∣Gnkm
(Xs)

∣∣ds < ∞ a.s.

and ∫ t

0
Gnkm

(Xs) ds

converges uniformly to At over t in finite intervals.

REMARK 4.11. Whenever νi
n(dx) = Hi(x) dx ∈ Kd−1 with mνi

n
(r) ≤ mπi (r)

and νi
n(dx) converges weakly to πi(dx), then SλH i → Sλπi uniformly, and

so, by Lemma 3.10,
∫ t

0 e−λsH i(Xs) ds converges to
∫ t

0 e−λs dAi
s uniformly over

t ∈ [0,∞).

5. Uniqueness. In this section we prove uniqueness of the solution to (2.4).
We operate under Assumption 3.5 throughout this section.

The first step is to show that, in proving uniqueness, it suffices to consider
solutions P for which there exists a subsequence {nk} with

EP

d∑
i=1

∫ ∞
0

e−λt d|Ai
t | < ∞ and EP sup

k

d∑
i=1

∫ ∞
0

e−λt
∣∣Gi

nk
(Xt )

∣∣dt < ∞.(5.1)

To see this, let {Px, x ∈ R} be the solution constructed in Section 4 and let Q be
any solution to (2.4). There is a subsequence {nk} associated to the solution Q

and a subsequence {nm} associated to the solutions Px (from the construction
in the proof of Proposition 4.9, {nm} can be chosen independently of x). By
using Remark 4.10, taking a subsequence of {nk} and relabeling if necessary, we
may without loss of generality assume there is a single subsequence {nk} that
can be used in the definition of weak solution for Q and for each Px such that∫ t

0 Gnkm
(Xs) ds converges uniformly over t in finite intervals a.s. under both Q

and each Px . Let

TN = inf

{
t :

d∑
i=1

∫ t

0
d|Ai

t | +
d∑

i=1

sup
k≥1

∫ t

0

∣∣Gi
nk

(Xt )
∣∣dt ≥ N

}
.
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Since At is locally of bounded variation and
∫ t

0 Gi
nk

(Xs) ds converges to Ai
t

uniformly over t in finite intervals, then TN < ∞ a.s. We construct a new solution,
P̃, that behaves according to Q up to time TN and like PXTN after that. We specify P̃

by setting

P̃
(
B ∩ (C ◦ θTN

)
) = EQ

[
PXTN (C);B

]
,

whenever B ∈ FTN
and C ∈ F∞. It is easy to see that P̃ is again a solution to (2.4).

Moreover,

EP̃

∫ ∞
0

e−λt d|Ai
t | = EP

∫ TN

0
e−λt d|Ai

t | + EQ

[
e−λTN E

P
XTN

∫ ∞
0

e−λt d|Ai
t |

]
.

The first term is bounded by N and the second is less than EQ[Sλ(|πi |)(XTN
)].

Since Sλ(|πi |) is bounded, we conclude EP̃

∫ ∞
0 e−λt d|Ai

t | < ∞. Similarly,

EP̃ sup
k

∫ ∞
0

e−λt
∣∣Gi

nk
(Xt )

∣∣dt < ∞,

using Proposition 4.9. If we show P̃ = Px0 , it follows that Q|FTN
= Px0|FTN

for
each N . Since we are supposing that At is locally of bounded variation, then
TN → ∞ as N → ∞ and we conclude that Q = Px0 . It therefore suffices to
consider only solutions Q for which (5.1) holds.

PROPOSITION 5.1. If Q is a solution to (2.4) and (5.1) holds, then Q = Px0 .

PROOF. Let Q be such a solution and let f ∈ C2. By Itô’s formula,

f (Xt) − f (X0) =
∫ t

0
∇f (Xs) · dWs +

∫ t

0
∇f (Xs) · dAs

+ 1
2

∫ t

0
�f (Xs) ds.

Let us take the expectation with respect to Q, multiply by e−λt and integrate over t

from 0 to ∞. We then have

EQ

∫ ∞
0

e−λtf (Xt ) dt − 1

λ
f (x0)

= EQ

∫ ∞
0

e−λt
∫ t

0
∇f (Xs) · dAs dt + 1

2
EQ

∫ ∞
0

e−λt
∫ t

0
�f (Xs) ds dt

= 1

λ
EQ

∫ ∞
0

e−λs∇f (Xs) · dAs + 1

λ
EQ

∫ ∞
0

e−λs�f (Xs) ds.

Next multiply both sides by λ. If g ∈ C2 and we set f = Rλg, then f ∈ C2 and
1
2�f = λRλg − g. Substituting, we obtain

EQ

∫ ∞
0

e−λtg(Xt ) dt = Rλg(x0) + EQ

∫ ∞
0

e−λt∇Rλg(Xt) · dAt .(5.2)
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Define the linear functional V λ by

V λh = EQ

∫ ∞
0

e−λth(Xt ) dt.

We can then express (5.2) by

V λg = Rλg(x0) + EQ

∫ ∞
0

e−λt∇Rλg(Xt) · dAt .(5.3)

We first have this for g ∈ C2, but by taking limits, we have (5.3) for g continuous
and bounded.

Since
∫ t

0 Gnk
(Xs) ds converges to At uniformly over t in finite intervals, then,

using (5.1), we have that
∫ ∞

0 e−λsHs · Gnk
(Xs) ds converges to

∫ ∞
0 e−λsHs · dAs

when s → Hs is piecewise linear and H takes only finitely many values. By
approximating continuous functions by piecewise linear ones, we again have
convergence if s → Hs is continuous. Therefore, the second term on the right-
hand side of (5.3) is equal to

lim
n→∞EQ

∫ ∞
0

e−λt∇Rλg(Xt) · Gnk
(Xt ) dt = lim

k→∞V λ
(
(∇Rλg)Gnk

)
.

But, using (5.3) again,

V λ
(
(∇Rλg)Gnk

)
= Rλ

(
(∇Rλg)Gnk

)
(x0) + EQ

∫ ∞
0

e−λt∇Rλ
(
(∇Rλg)Gnk

)
(Xt ) · dAt.

(5.4)

The limit as n → ∞ of the first term on the right-hand side is Rλ(BRλg)(x0). For
the second term on the right-hand side of (5.4), the integral is dominated by∫ ∞

0
e−λt |∇Rλ(Bnk

Rλg)(Xt )|d|At |,
and |∇Rλ(Bnk

Rλg)| is uniformly bounded by Proposition 3.3. Therefore, the limit
of the second term is

EQ

∫ ∞
0

e−λt (BRλg)(Xt ) · dAt .

We thus have

V λg = Rλg(x0) + RλBRλg(x0) + EQ

∫ ∞
0

e−λt∇Rλ(BRλ)(Xt ) · dAt .

We continue by writing the last expectation as the limit of

EQ

∫ ∞
0

e−λt∇Rλ(BRλ)(Xt ) · Gnk
(Xt ) dt = V λ

(∇Rλ(BRλ)Gnk

)
.

After k steps we arrive at

V λg = Rλ

(
k∑

j=0

(BRλ)j

)
g(x0) + EQ

∫ ∞
0

e−λt∇Rλ(BRλ)kg(Xt ) · dAt .
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The absolute value of the last term is bounded by c1‖g‖∞2−kEQ

∫ ∞
0 e−λt d|At |,

which tends to 0 as k → ∞. Since∣∣∣∣∣Rλ

( ∞∑
j=k+1

(BRλ)j

)
g(x0)

∣∣∣∣∣ ≤ c2‖g‖∞
∞∑

j=k+1

2−j → 0

as k → ∞, we can pass to the limit and obtain

V λg(x0) = Rλ

( ∞∑
j=0

(BRλ)j

)
g(x0) = Sλg(x0).

By the uniqueness of the Laplace transform, we have EQ[g(Xt )] = EPx0 [g(Xt )]
for all t , or the one-dimensional distributions of Xt under Q and Px0 are the same.
To obtain equality of all the finite-dimensional distributions and hence equality
of Q and Px0 is standard; see [3], Section 6.3. �

6. Global results. In this section we sketch the rather routine argument that
shows that Assumption 3.5 is not necessary, leaving the details to the reader.

PROOF OF THEOREM 2.6. We can find ρ > 0 such that
∑d

i=1 mπi (ρ) <

(2dK)−1, where K is the constant in Proposition 3.3. Let T0 = 0 and Ti+1 =
inf{t > Ti : |Xt − XTi

| ≥ ρ}. Let Qx be the solution to (2.4) with X0 = x and πi

replaced by πi |B(x,ρ). Let Q1 = Qx and define inductively

Qi+1
(
A ∩ (B ◦ θTi

)
) = EQi

[
QXTi (B);A

]
, A ∈ FTi

, B ∈ F∞.

It is obvious that Qm|FTk
= Qk|FTk

if m ≥ k. Define Px(A) = Qk(A) if A ∈ FTk
.

Note

EQi+1

[
e−Ti+1

] = EQi+1

[
e−(Ti+1−Ti)e−Ti

] = EQi

[
e−TiE

Q
XTi

[
e−T1

]]
.(6.1)

Since, by Corollary 4.4, supx EQx [e−T1] ≤ δ < 1, by induction the left-hand side
of (6.1) is less than δi+1. So EPx [e−Ti ] ≤ δi → 0, which implies that Ti → ∞.

To show
∫ t

0 Gi
nk

(Xs) ds → Ai
t under Px , it is enough to show that∫ t∧Tj+1

t∧Tj
Gi

nk
(Xs) ds converges to Ai

t∧Tj+1
− Ai

t∧Tj
for each j . By conditioning

on FTj
, it is enough to show

∫ t∧T1
0 Gi

nk
(Xs) ds converges to Ai

t∧T1
uniformly

over t , and we have that by Proposition 4.9.
It is routine to check that Px is a solution to (2.4) with X0 = x. By standard

arguments (cf. [3], Section 6.3), we also have uniqueness.
Part (b) follows from the uniqueness in (a) and Proposition 4.9. �

REMARK 6.1. One question that arises is whether we can replace Brownian
motion in (1.2) by other processes. If we have a diffusion in Rd , in either
divergence or nondivergence form, whose coefficients are sufficiently smooth



816 R. F. BASS AND Z.-Q. CHEN

(see, e.g., [14]), the above proofs can be suitably modified. For example, using
Schauder’s estimate (cf. [13]) and the gradient estimates for the Green functions
in [14], the main result, Theorem 2.6, of this paper holds if Brownian motion
is replaced by a symmetric diffusion whose infinitesimal generator is a uniform
elliptic operator in divergence form having C1 coefficients. In general, however,
the conditions of bounded and measurable coefficients together with uniform
ellipticity are not enough to guarantee the necessary estimates.

Acknowledgment. The authors thank the referee for a careful reading of the
paper and very helpful comments.
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