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ON NEW EXAMPLES OF BALLISTIC RANDOM WALKS
IN RANDOM ENVIRONMENT

BY ALAIN-SOL SZNITMAN

ETH-Zentrum

In this article we show that random walks in random environment on Zd ,
d ≥ 3, with transition probabilities which are ε-perturbations of the simple
random walk and such that the expectation of the local drift has size bigger
than ερ , with ρ < 5

2 , when d = 3, ρ < 3, when d ≥ 4, fulfill the condition (T′)
introduced by Sznitman [Prob. Theory Related Fields (2002) 122 509–544],
when ε is small. As a result these walks satisfy a law of large numbers with
nondegenerate limiting velocity, a central limit theorem and several large
deviation controls. In particular, this provides examples of ballistic random
walks in random environment which do not satisfy Kalikow’s condition in the
terminology of Sznitman and Zerner [Ann. Probab. (1999) 27 1851–1869].
An important tool in this work is the effective criterion of Sznitman.

0. Introduction. Random walks in random environment on Zd constitute one
of the basic models of random motions in a random medium; see Hughes [6],
Molchanov [12] and Zeitouni [23]. Yet in dimension bigger than one, the present
understanding of their asymptotic behavior is rather primitive. As opposed to
other models of random motions in random media (see, e.g., [2, 14, 9, 13]),
until about three years ago few references dealt with their study (cf. Kalikow [7],
Lawler [10] and Bricmont and Kupiainen [5]). Recently however, there has been
some progress in the understanding of random walks in random environment
with ballistic behavior (cf. [3] for a review). In [20] the so-called condition (T)
and in [21] the slightly weaker condition (T′) were introduced [we recall what
these conditions are in (0.3)]. As soon as the dimension d is bigger than 1, these
conditions have a number of interesting consequences such as a ballistic law of
large numbers, a central limit theorem and several large deviation controls, which
in particular hold for certain critical regimes related to slowdowns of the walk.
In fact, there is a strong suspicion that (T) and (T′) are equivalent. They may even
turn out to characterize ballistic behaviors of random walks in random environment
when d ≥ 2.

In [21] condition (T′) was shown to be equivalent to an effective criterion, which
can be checked by direct inspection of the environment in a finite box of large size.
The main purpose of the present article is to present an application of this effective
criterion which provides new examples of walks with ballistic behavior. These
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walks come as small perturbations of the simple random walk on Zd , d ≥ 3, and
offer instances of ballistic behavior beyond current knowledge.

Before discussing these examples any further we recall the model. The
environment where the walk evolves is described by a collection of i.i.d.
(2d)-dimensional vectors, which prescribe the transition probability of the walk
at each site of Zd (d ≥ 1, for the time being). We implicitly assume ellipticity of
the motion, and for some κ ∈ (0, 1

2d
],

The common law µ of the vectors is supported on Pκ ,

the set of (2d)-vectors (p(e))|e|=1,e∈Zd ,

with p(e) ∈ [κ,1], for each e and
∑

|e|=1 p(e) = 1.

(0.1)

The random environment is then an element ω = (ω(x, ·))x∈Zd of � = P Zd

κ ,

which is endowed with the product σ -algebra and the product measure P = µ⊗Zd
.

The random walk in the random environment ω is the canonical Markov chain
(Xn)n≥0 on (Zd)N, with state space Zd , “quenched” law Px,ω starting from x ∈ Zd ,
and transition probability ω(y, e) of being in y + e at the next step, when in y.
One also defines for x ∈ Zd , the “annealed” laws Px on � × (Zd)N, as the
semidirect product

Px = P × Px,ω.(0.2)

We now turn to conditions (T) and (T′) of [20] and [21]. We only discuss here one
of the equivalent characterizations of (T) and (T′) in terms of decays of certain
exit probabilities of the walk from thick slabs. We refer to [21] for other equivalent
formulations. If � ∈ Sd−1 is a unit vector of Rd , we say that (T′) holds relative to �

if for every γ ∈ (0,1), for all �′ in some neighborhood of �,

lim sup
L→∞

L−γ log P0
[
T̃ �′

−bL < T �′
L

]
< 0 for any b > 0,(0.3)

where for w ∈ Sd−1, u ∈ R,

T w
u = inf{n ≥ 0,Xn · w ≥ u}, T̃ w

u = inf{n ≥ 0,Xn · w ≤ u}.(0.4)

In a similar fashion, condition (T) is said to hold relative to � when for all �′ in
some neighborhood of �, (0.3) holds with γ = 1. Clearly, condition (T) relative to �

implies condition (T′) relative to �. There is a strong suspicion that both conditions
are equivalent. As soon as d ≥ 2, (T′) relative to � implies a ballistic law of large
numbers,

P0-a.s.,
Xn

n
→ v, v deterministic with v · � > 0,(0.5)

a central limit theorem,

Under P0 the laws of Bn· = 1√
n
(X[·n] − [·n]v)

on the Skorohod space D(R+,Rd) converge weakly to a Brownian motion
with a nondegenerate covariance matrix,

(0.6)
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and several large deviation controls on Xn

n
(slightly weaker than the corresponding

results under condition (T), cf. [20, 21]). Incidentally these controls are more
delicate than (0.5) and (0.6), and show that for a broad class of walks large
deviations “on the segment [0, v]” are critical. Such large deviations are closely
linked to slowdowns of the walk.

In this article we consider certain small perturbations of the simple random walk
on Zd , when d ≥ 3. More precisely, for ε ∈ (0,1) we define

Sε the subset of Pκ=1/4d of (2d)-vectors (p(e))|e|=1

with |p(e) − 1
2d

| ≤ ε
4d

, for each e,
(0.7)

and denote by �ε the subset S⊗Zd

ε of � (with κ = 1
4d

). The local drift at site x in
the environment ω is defined as

d(x,ω) = ∑
|e|=1

ω(x, e)e.(0.8)

The main result of the present article is the following.

THEOREM (d ≥ 3). For η ∈ (0,1), there exists ε0(d, η) ∈ (0,1) such that for
0 < ε < ε0, whenever the single site distribution µ is supported on Sε and

λ
def= E[d(0,ω) · e1] >

ε5/2−η, when d = 3,

ε3−η, when d ≥ 4,
(0.9)

condition (T′) holds with respect to e1 the first coordinate vector of the canonical

basis of Rd . The expectation in (0.9) is taken relative to P (= µ⊗Zd
).

The above theorem reads off the ballistic nature of the walk from the expectation
of d(0,ω) with respect to the straightforward static distribution P, instead of a
dynamic distribution stemming from the method of the “environment viewed from
the particle” (cf. [9, 12, 13, 15]). It provides new instances of ballistic behavior.
In particular, it gives examples of walks for which (T′) holds but the so-called
Kalikow’s condition breaks down; cf. [7, 22] and (5.3). For instance when d ≥ 3
and µ̃ supported on Sε/2 is isotropic, that is, invariant under rotations of Rd

preserving Zd , and for some ρ ∈ (0,1),

varµ̃(p(e1)) ≥ ρε2, covµ̃

(
p(e1),p(−e1)

)≤ (1 − ρ)varµ̃(p(e1)),(0.10)

it follows from Theorem 5.1 that the image µ of µ̃ under the map

(p(e))|e|=1 →
(
p(e) + λ

2
e · e1

)
|e|=1

with λ ∈ (0, c(d, ρ)ε2)(0.11)

does not satisfy Kalikow’s condition with respect to any direction for small ε

(depending on d,ρ). However, when λ is not too small [cf. (0.9)], condition (T′)
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relative to e1 is fulfilled. The above distribution µ can be viewed as a slight
anisotropic perturbation of the isotropic perturbation µ̃ of the simple random
walk (such isotropic perturbations are considered in [5]). This is only one possible
example. The main result applies to more general situations.

One can naturally wonder whether the conclusion of the theorem holds when
we replace (0.9) with the weaker assumption λ > 0. This is not the case and we
refer to [4], where examples of slight perturbations of the simple random walk
with diffusive behavior and yet nonvanishing λ are constructed.

The proof of our main result relies on the effective criterion of [21]. Indeed, in
the case of direction e1, it is proved in Theorem 2.4 of [21] that (T′) relative to e1
is equivalent to

inf
B0,a

{
c(d)

(
log

1

κ

)3(d−1)

L̃
(d−1)
0 L

3(d−1)+1
0 E

[
ρa

B0

]}
< 1,(0.12)

where B0 runs over all boxes (−L0 +2,L0 +2)× (−L̃0, L̃0)
d−1, with L0 ≥ c′(d),

3
√

d ≤ L̃0 < L3
0, a ∈ (0,1], and c(d) and c′(d) are some explicit positive dimen-

sion dependent constants,

ρB0 = P0,ω[XTB0
/∈ ∂+B0]

P0,ω[XTB0
∈ ∂+B0] ,(0.13)

provided TB0 stands for the exit time from B0 and

∂+B0 = {z∈ Zd\B0,∃ z′ ∈ B0 such that

|z − z′| = 1, z · e1 ≥ L0 + 2, |z · ei| < L̃0 for i ≥ 2}.(0.14)

We recall that in the present setting κ = 1
4d

. Intuitively (0.12) has some flavor of
the condition E[ρ] < 1, (ρ = ω(0,−1)/ω(0,1)), which in the one-dimensional
context characterizes ballistic walks with positive velocity (cf. Solomon [17]).
Note, however, that (0.12) involves moments of ρB0 of arbitrarily small order. This
can be viewed as a reflection of the weakening effect of traps in higher dimension.

To prove the main result, we check (0.12) with L0 of order ε−4 and L̃0 of
order L3

0. We derive in Corollary 1.3 a general upper bound on E[ρa
B0

]. In the
present context this bound enables us to control the potentially small denominator
in ρa

B0
, which is linked to the occurrence of atypical exit distributions of the walk

from B0. This feature is closely related to the presence of traps in the medium
(cf. [20]). The general bound derived in Section 1 reduces the task of check-
ing (0.12) to the control of the random variable

D = E0,ω

[
TU−1∑
k=0

d(Xk,ω) · e1

]
,(0.15)

where d(x,ω) is defined in (0.8) and TU denotes the exit time from the strip

U = {z ∈ Zd, |z · e1| < L}(0.16)
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(L is an integer comparable to ε−1). To check (0.12) it then suffices to prove that
D has P-expectation bigger than const λL2 but fluctuations of a smaller size.
The advantage is that one now works in U where the walk in the environment
ω ∈ �ε cannot deviate too much from the simple random walk. In the terminology
of Bricmont and Kupiainen [5], we only need to deal with a “small field problem.”

Of course D can be re-expressed in terms of the Green function of the walk
killed outside U ,

gU (x, y,ω) = Ex,ω

[
TU−1∑

0

1{Xk = y}
]
,(0.17)

which can be compared to the corresponding Green function g0,U (·, ·) of the
simple random walk killed outside U . In Section 3 we derive in Propositions 3.1
and 3.2 the required estimates on the expectation of D and on the size of its
fluctuations. The difficulty is that d(x,ω) · e1 typically has size of order ε, which
is potentially much larger than its expectation λ [cf. (0.9)]. One needs to show that
cancellations take place. We then control the fluctuations of D by the martingale
method, and show in Proposition 3.2 that for γ ∈ (1,2] and small ε (L depends on
d, γ, ε, and γ close to 1 is the more interesting choice),

P
[|D − E[D]| > u

]≤ 2 exp
{
−u2

σ 2

}
for u > 0,

with σ 2 ≤ c(d)ε2
∑
y∈U

g0,U (0, y)2/γ ≤ c(d, γ )εν(d,γ ) where

ν(d, γ ) =



1 − 2(γ − 1)

γ
, when d = 3,

2 − 4(γ − 1)

γ
, when d = 4,

2, when d ≥ 5 and γ <
6

5
.

(0.18)

Let us finally explain the structure of this article.
In Section 1, we introduce some further notations and derive a general bound

of independent interest that enables controlling E[ρa
B0

]. In Section 2, we collect
deterministic estimates on gU (·, ·,ω), ω ∈ �ε, and on g0,U (·, ·). Section 3 is
devoted to the derivation of a lower bound on E[D] and an upper bound on the
fluctuations of D. Section 4 combines the estimates of the previous sections to
prove the main result. Section 5 recalls the definition of Kalikow’s condition and
provides examples of walks for which (T′) holds but Kalikow’s condition fails.
Finally, the Appendix contains a proof of Lemma 1.2, which is used in Section 1,
and of certain Green function estimates for the simple random walk killed outside
the slab U .
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1. A bound on fractional moments of ρB0 (d ≥ 2). In this section we first
introduce some further notations. The main object, however, is to derive a general
estimate on fractional moments of ρB0 (cf. Corollary 1.3). This estimate will later
be applied in Section 4 when proving our main result [cf. (0.9) or Theorem 4.1].
For the main estimate of this section we slice B0 into layers along the first axis
and we control E[ρa

B0
] in terms of quantities in a single layer. This has of course

the same flavor as the main renormalization step derived in Proposition 2.1 of [21].
However, the estimates are conducted in a different fashion because we are looking
here for a seed estimate of the renormalization scheme in [21] [i.e., checking
(0.12)], whereas in [21] the objective was to set up a renormalization scheme.

We begin with additional notations. We denote by | · | the Euclidean distance
on Rd , and write B(w, r) for the open | · |-ball of radius r centered at w ∈ Rd .
For U , a subset of Zd , |U | stands for the cardinality of U , and ∂U for the boundary
of U ,

∂U = {x ∈ Zd \ U,∃y ∈ U, |x − y| = 1}.(1.1)

We denote by (tx)x∈Zd the spatial shift on � = P Zd

κ and by (θn)n≥0 the canonical
shift on (Zd)N. We write (Fn)n≥0 for the canonical filtration on (Zd)N attached to
the canonical process (Xn)n≥0. For U ⊆ Zd , HU and TU stand for the respective
entrance and exit time of Xn in (resp. from) U

HU = inf{n ≥ 0,Xn ∈ U }, TU = inf{n ≥ 0,Xn /∈ U }.(1.2)

We consider L > 1, N > 1, even integers, as well as the box

B = (−NL,NL) × (− 1
4 (NL)3, 1

4 (NL)3)d−1
.(1.3)

It may be helpful to mention that the box B0 mentioned above is simply
B0 = B + 2e1, so that in the notation below (0.12), L0 = NL and L̃0 = 1

4 (NL)3.
We define

pB(ω) = 1 − qB(ω)

= P0,ω

[
XTB

· e1 ≥ NL, |XTB
· ei | < 1

4
(NL)3 for all i ≥ 2

]
,

(1.4)

ρB = qB

pB

.(1.5)

Further, for x ∈ Zd , ω ∈ �, i ∈ Z, we introduce

p̂(x,ω) = 1 − q̂(x,ω) = Px,ω

[
Tx·e1+L < T̃x·e1−L

]
,(1.6)

where for u in R, Tu, T̃u are defined as in (0.4) with the choice w = e1, and

ρ̂(i,ω) = sup
{

q̂(x,ω)

p̂(x,ω)
, x ∈ Hi , sup

2≤j≤d

|x · ej | < 1

4
(NL)3

}
(1.7)
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with

Hi = {x ∈ Zd, x · e1 = iL}.(1.8)

The quantities ρ̂(i,ω) enable us to mimic the construction of certain martingales
which appear in the one-dimensional context [cf. (A.3) and (A.9) in the Appendix].

Our main purpose is to derive an upper bound on E[ρa
B], 0 < a ≤ 1, which

involves E[ρ̂(0,ω)2a] and some other quantities which we now introduce. We
consider positive integers h,H,M with

2h ≤ H <
1

32
(NL)3 and M =

[
(NL)3

32H

]
.(1.9)

We introduce the stopping time

S = inf
{
n ≥ 0, |(Xn − X0) · e1| ≥ L or sup

j≥2
|(Xn − X0) · ej | ≥ h

}
,(1.10)

which will be used to compare displacements in the e1 direction to displacements
in the orthogonal directions. We also need the driftlike quantity

�(x,ω) = Ex,ω[XS] − x, x ∈ Zd, ω ∈ �.(1.11)

We can now define for γ1, γ2 ∈ (0,1],
p = inf

j≥2
P
[
for all z ∈ B̃j ,�(z,ω) · e1 ≥ γ1L,

|�(z,ω) · ei | ≤ γ2h for all i ≥ 2
]
,

(1.12)

where for 2 ≤ j ≤ d ,

B̃j = {y ∈ B, |y · ej | < H }.(1.13)

Incidentally, let us mention that for the applications in the present article we will
only use the value γ2 = 1. The principal bound comes in the following.

THEOREM 1.1 [d ≥ 2, under (0.1)]. Assume 0 < a ≤ 1 and

δ−1 def= exp
{
−γ1N

32

}
+ 10N

γ1
exp

{
−γ1N

32

(
H

2hN
− 4γ2

γ1

)2

+

}
< 1,(1.14)

then

E[ρa
B] ≤ 2E[ρ̂(0)2a]N/2

(1 − E[ρ̂(0)2a]1/2)+

+2dκ−aNL exp
{
−M

2

(
p − 7NL

M

logκ−1

log δ

)2

+

}
.

(1.15)
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PROOF. We introduce

T̃ = inf
{
n ≥ 0, sup

i≥2
|Xn · ei | ≥ 1

4 (NL)3
}

(1.16)

and

G = {
ω ∈ �,P0,ω[T̃ ≤ T̃−NL ∧ TNL] ≤ κ6NL

}
.(1.17)

The first step comes with the following lemma.

LEMMA 1.2.

E[ρa
B] ≤ 2E[ρ̂(0)2a]N/2

(1 − E[ρ̂(0)2a]1/2)+
+ κ−aNLP[Gc].(1.18)

[(1.14) is not needed for Lemma 1.2.]
The proof of Lemma 1.2 is essentially a variation on the derivation of (2.39)

in [21]. For the reader’s convenience we provide the proof of Lemma 1.2 in the
Appendix.

Hence to prove (1.15), our main task is to bound P[Gc], and here we adopt a
different strategy than in the proof of Proposition 2.1 of [21]. We denote by Sk ,
k ≥ 0, the iterates of the stopping time S introduced in (1.10), namely,

S0 = 0 and Sk+1 = S ◦ θSk
+ Sk for k ≥ 0.(1.19)

Observe that for any x and ω, under Px,ω,

Mk = XSk
− X0 −

k−1∑
0

�(XSm,ω) is a (FSk
)-martingale.(1.20)

Further, the increments of Mk · ei are bounded by 2L when i = 1 and by 2h when
i ≥ 2. Then for ω ∈ �, in the notations of (0.4),

P0,ω[T̃ ≤ T̃−NL ∧ TNL]

≤
d∑

j=2

(
P0,ω

[
T

ej

(1/8)(NL)3 < TB

]+ P0,ω

[
T̃

ej

−(1/8)(NL)3 < TB

])
.

(1.21)

We now bound the term P0,ω[T e2
1/8(NL)3 < TB], all other terms can be handled in a

similar fashion,

P0,ω

[
T

e2
(1/8)(NL)3 < TB

]
≤ P0,ω

[
T

e2
4MH < TB

]
≤ E0,ω

[
T

e2
4(M−1)H < TB,

PXT
e2
4(M−1)H

,ω

[
T

e2[1+4(M−1)]H ∧ T̃
e2[4(M−1)−1]H ≤ TB̃2+(M−1)4He2

]]
.

(1.22)
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We now concentrate on the inner probability in the rightmost term of (1.22).
Note that for x ∈ B with |x · e2| ≤ M4H , and t = [3N

γ1
] + 1,

Px,ω

[
T

e2
x·e2+H ∧ T̃

e2
x·e2−H ≤ TB̃2+x·e2e2

]
≤ Px,ω

[
T

e2
x·e2+H ∧ T̃

e2
x·e2−H ≤ St ∧ TB̃2+x·e2e2

]+ Px,ω

[
St < TB̃2+x·e2e2

]
.

(1.23)

We first bound the rightmost term. For x as above,

Px,ω

[
St < TB̃2+x·e2e2

]
≤ Px,ω

[
St < TB̃2+x·e2e2

,Mt · e1 +
t−1∑

0

�(XSk
,ω) · e1 ≤ 2NL

]
.

Assume that ω is such that

for all z ∈ B̃2 + x · e2e2, �(z,ω) · e1 ≥ γ1L, sup
j≥2

|�(z,ω) · ej | ≤ γ2h,(1.24)

then the above quantity is smaller than

Px,ω[Mt · e1 ≤ 2NL − γ1Lt] ≤ exp
{
−(2N − γ1t)

2−
8t

}
in view of Azuma’s inequality (cf. Alon, Spencer and Erdös [1], page 85), and the
remark below (1.20). Since 3N

γ1
≤ t ≤ 4N

γ1
, the above is smaller than exp{−γ1N

32 }.
We then bound the first term in the right-hand side of (1.23), which is smaller

than

Px,ω

[
SI ∧ SĨ ≤ St ∧ TB̃2+x·e2e2

]
,

provided

I = inf
{
k ≥ 0,XSk

· e2 − x · e2 ≥ H − h
}
,

Ĩ = inf
{
k ≥ 0,XSk

· e2 − x · e2 ≤ h − H
}

(note that Px,ω-a.s., I ≥ 1, Ĩ ≥ 1 and SI ∧ SĨ ≤ T
e2
x·e2+H ∧ T̃

e2
x·e2−H ). The above

quantity is smaller than

Px,ω

[
I ≤ t, SI ≤ TB̃2+x·e2e2

,MI · e2 +
I−1∑

0

�(XSk
,ω) · e2 ≥ H − h

]

+ same term with Ĩ in place of I and “≤ h − H” in place of “≥ H − h”

and if (1.24) holds, noting that t + 1 ≤ 5N
γ1

, by Azuma’s inequality,

≤ 2(T + 1) exp
{
− 1

8t

(
H

h
− 1 − γ2t

)2

+

}
(1.9)≤ 10N

γ1
exp

{
−γ1N

32

(
H

2hN
− 4γ2

γ1

)2

+

}
,
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where we have used H
h

− 1 ≥ H
2h

and γ2t ≤ 4γ2
γ1

N . Collecting our bounds on the
right-hand side of (1.23), we see that when (1.24) holds

Px,ω

[
T

e2
x·e2+H ≤ TB̃2+x·e2e2

]≤ δ−1.(1.25)

Using this to bound the inner probability in the rightmost expression of (1.22), we
obtain

P0,ω

[
T

e2
M4H < TB

]≤ P0,ω

[
T

e2
(M−1)4H < TB

] · δ−ZM−1(e2),(1.26)

with the notation for k ≥ 0, |e| = 1 with e · e1 = 0,

Zk(e) = 1
{

for all z ∈ B with |z · e − 4kH | < H ,

�(z,ω) · e1 ≥ γ1L, sup
j≥2

|�(z,ω) · ej | ≤ γ2h

}
.

(1.27)

By induction, we now see that:

P0,ω

[
T

e2
M4H < TB

]≤ δ−∑M−1
0 Zk(e2).(1.28)

Similar estimates hold for each term in the right-hand side of (1.21). Further, the
variables Zk(e), k ≥ 0, for fixed e are i.i.d., with success probability bigger than p

[cf. (1.12)]. Hence by (1.21), (1.23) and (1.28),

P[Gc] = P
[
P0,ω[T̃ ≤ T̃−NL ∧ TNL] > κ6NL

]
≤ ∑

|e|=1,e·e1=0

P

[
δ−∑M−1

0 Zk(e) ≥ κ6NL

2(d − 1)

]
(1.29)

and since 1
2(d−1)

κ6NL ≥ κ7NL, using Azuma’s inequality,

≤ 2d exp
{
− 1

2M

(
Mp − 7NL

logκ−1

log δ

)2

+

}
.

This and (1.18) complete the proof of (1.15). �

We can now apply Theorem 1.1 to the derivation of a bound on E[ρa
B0

]
[cf. (0.13)], with the choice

B0 = B + 2e1.(1.30)

COROLLARY 1.3 [d ≥ 2, under (0.1)]. Assume 0 < a ≤ 1, and (1.14) holds,
then

E
[
ρa

B0

]≤ κ−4aE[ρa
B]

≤ κ−4a

(
2E[ρ̂(0)2a]N/2

(1 − E[ρ̂(0)2a]1/2)+
(1.31)

+2dκ−aNL exp
{
−M

2

(
p − 7NL

M

logκ−1

log δ

)2

+

})
.
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PROOF. By translation invariance,

E
[
ρa

B0

]= E

[(
P−2e1,ω[XTB

/∈ ∂+B]
P−2e1,ω[XTB

∈ ∂+B]
)a
]
,(1.32)

provided ∂+B is defined analogously as in (0.14) via

∂+B =
{
z ∈ ∂B, z · e1 ≥ NL, sup

i≥2
|z · ei| < 1

4 (NL)3
}
.(1.33)

Thanks to (0.1), we have

κ2P0,ω

[
XTB

/∈ ∂+B
]≤ P−2e1,ω

[
XTB

/∈ ∂+B
]≤ κ−2P0,ω

[
XTB

/∈ ∂+B
]

(1.34)

and similar inequalities hold with {XTB
/∈ ∂+B} replaced by {XTB

∈ ∂+B}. Hence
we find

E
[
ρa

B0

]≤ κ−4aE[ρa
B],

and (1.31) follows from (1.15). �

2. Deterministic bounds on Green functions (d ≥ 3). The purpose of this
section is to collect several controls on the Green function in a slab U of
thickness 2L orthogonal to the direction e1 for the random walk in an arbitrary
environment ω ∈ �ε; see below (0.7). Our main interest lies in the situation
where L is comparable to a small multiple of ε−1. In this regime the random
walk in an environment ω ∈ �ε , killed when exiting U , will be a not too drastic
perturbation of the simple random walk killed when exiting U . The estimates on
Green functions derived in this section will hold uniformly for ω ∈ �ε, and will be
instrumental in Sections 3 and 4. We will obtain both Lp and pointwise bounds. We
first introduce some more notations. For ω ∈ �ε, 0 < ε < 1, we write for x ∈ Zd ,
|e| = 1,

ω(x, e) = 1

2d
+ δ(x, e),(2.1)

and in view of (0.7),

|δ(x, e)| ≤ ε

4d
.(2.2)

We recall that κ is chosen equal to (4d)−1. The respective transition kernels of the
walk in the environment ω ∈ �ε and of the simple random walk are

Rf (x) = ∑
|e|=1

ω(x, e)f (x + e), R0f (x) = ∑
|e|=1

1

2d
f (x + e),(2.3)

where f is some arbitrary real-valued function on Zd , and x ∈ Zd . For the time
being, L ≥ 2 is some integer, but we shall soon restrict L to be smaller than a
suitable multiple of ε−1. We are interested in the slab U introduced in (0.16),

U = {y ∈ Zd, |y · e1| < L}.
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We introduce the Green operators of the walks killed when exiting U ,

GU = ∑
n≥0

(1UR1U)n, G0,U = ∑
n≥0

(1UR01U)n,(2.4)

which are easily seen to define bounded operators on the space L∞(Zd) of
bounded functions endowed with the supremum norm. This space will contain
all functions of interest in the present context. Before getting any further, it may
be helpful to point out that our main object (cf. Section 4) is to show that the
expectation of the variable GU(d ·e1)(0) [= D in the notation of (0.15)] is positive
and “dominates fluctuations.” The deterministic bounds of this section will be
helpful for this purpose.

The Green functions are defined via

gU (x, y,ω) = (GU1y)(x),

g0,U (x, y) = (G0,U1y)(x), x, y ∈ Zd, ω ∈ �ε

(2.5)

[the notation is coherent with (0.17)]. From the method of images (see also (3.15)
of [18]), we have for x, y ∈ U ∪ ∂U ,

g0,U (x, y) = ∑
k∈Z

(
g0(x − y + 2k2Le1) − g0(x − y∗ + (2k + 1)2Le1

))
,(2.6)

provided y∗ stands for the image of y under the reflection with respect to the
hyperplane {z : z · e1 = 0}, and g0(·) is the full space Green function of the simple
random walk with pole at 0 (recall d ≥ 3). The fact that∑

|e|=1

δ(x, e) = 0(2.7)

plays an important role in the sequel. In particular it implies that for any numerical
function f on Zd , x ∈ Zd ,

(R − R0)f (x) = ∑
|e|=1

δ(x, e)f (x + e) = ∑
|e|=1

δ(x, e)
(
f (x + e) − f (x)

)
.(2.8)

This will be very helpful when comparing GU and G0,U with the usual
perturbation identities

GU = G0,U + GU1U(R − R0)1UG0,U

= G0,U + G0,U1U(R − R0)1UGU.
(2.9)

We first gather some estimates on g0,U (·, ·).

LEMMA 2.1.

sup
x∈U

∑
y∈U

g0,U (x, y) ≤ c1L
2 = ∑

y∈U

g0,U (0, y) with c1 = d,(2.10)
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sup
x∈U,|e|=1

∑
y∈U

(|g0,U (x + e, y) − g0,U (x, y)|
+ |g0,U (x, y + e) − g0,U (x, y)|)

≤ c2(d)

2
L,

(2.11)

sup
x∈U,|e|=1

∑
y∈U

[(
g0,U (x + e, y) − g0,U (x, y)

)2
+ (

g0,U (x, y + e) − g0,U (x, y)
)2]

≤ c3(d),

(2.12)

g0,U (x, y) ≤ c4(d)

(1 + |x − y|)d−2
exp

{
−c5(d)

L
|(x − y)⊥|

}
, x, y ∈ U,(2.13)

with z⊥ denoting the projection of z on the orthogonal of e1.

PROOF. We begin with (2.10). We denote by Qx the law of the simple
random walk starting in x and by EQx the corresponding expectation. Observe
that under Qx , x ∈ Zd ,

(Xn · e1)
2 − (X0 · e1)

2 − n

d
, n ≥ 0 is a martingale.(2.14)

For x ∈ U , applying the stopping theorem, with the help of routine arguments, we
find:

1

d
EQx [TU ] = L2 − (x · e1)

2.(2.15)

The claim (2.10) easily follows since EQx [TU ] =∑
y g0,U (x, y). Let us now prove

(2.13). For x, y ∈ U ,

g0,U (x,Xn∧TU∧Hx ), n ≥ 0 is a bounded martingale under Qy

(we use the notation Hx as a shorthand for H{x} [see (1.2)]). If we define T =
inf{n ≥ 0, |(Xn − y)⊥| ≥ 1

2 |(x − y)⊥|} ≤ Hx , Qy -a.s., the stopping theorem yields

g0,U (x, y) = EQy
[
g0,U (x,XTU ∧T )

]= EQy [g0,U (x,XT ), T < TU ]
≤ sup

{
g0,U (x, z); |(z − x)⊥| ≥ 1

2 |(x − y)⊥| − 1
}
Qy[T < TU ].(2.16)

Considering successive displacements of the simple random walk at
|(·)⊥|-distance 4L, during which the walk has a nondegenerate probability of ex-
iting U , it follows by standard arguments that

Qy[T < TU ] ≤ c(d) exp
{
−c′(d)

L
|(x − y)⊥|

}
for x, y ∈ U.(2.17)



298 A.-S. SZNITMAN

On the other hand, we know from page 31 of Lawler [11] that

g0,U (x, y) ≤ g0(x − y) ≤ c(d)

(1 + |x − y|)d−2
, x, y ∈ Zd .(2.18)

Combining (2.16)–(2.18), and considering the cases |(x − y)⊥| ≤ L and
|(x − y)⊥| > L separately, the claim (2.13) follows. As for (2.11) and (2.12), they
are proved in the Appendix. �

For 1 ≤ p,q ≤ ∞, we denote by | · |p the Lp(Zd)-norm and by ‖ · ‖p,q the
operator norm from Lp(Zd) into Lq(Zd). We also write

∇yf (x) = f (x + y) − f (x),(2.19)

for x, y ∈ Zd and f a numerical function on Zd . We have the following controls
on the norms of GU and G0,U :

PROPOSITION 2.2. Assume that

εc1L < 3
4d, εc2L < 1

2 ,(2.20)

then for 1 ≤ p,q ≤ ∞, |e| = 1, ω ∈ �ε,

‖GU‖p,q ≤ 4
3‖G0,U‖p,q, ‖∇eGU‖p,q ≤ 4

3‖∇eG0,U‖p,q,(2.21)

‖G0,U‖p,p ≤ c1L
2, ‖∇eG0,U‖p,p ≤ c2L.(2.22)

Moreover, for a suitable c6(d) ∈ (0,1):

sup
x∈Zd ,ω∈�ε

Ex,ω

[
exp

{
c6

L2
TU

}]
≤ 2.(2.23)

PROOF. We begin with (2.21). For f a bounded function on Zd , and x ∈ U ,

[1U(R − R0)1UG0,Uf ](x)

= [(R − R0)G0,Uf ](x)

(2.8)= ∑
|e|=1,y∈U

δ(x, e)
(
g0,U (x + e, y) − g0,U (x, y)

)
f (y).

(2.24)

Hence, we find

|1U(R − R0)1UG0,Uf |∞
(2.2)≤ ε

4d
sup

x∈U∪∂U

∑
|e|=1,y∈U

|g0,U (x + e, y) − g0,U (x, y)||f |∞
(2.11)≤ ε

2
c2L|f |∞.

(2.25)
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(Note that when x and x + e belong to ∂U the expression in the sum of the right-
hand side of the first inequality vanishes. To bound the terms where x ∈ ∂U , we
hence only need consider the case x ∈ ∂U , x + e ∈ U , and writing x + e = x′,
x = x′ + e′, we observe that we can replace U ∪ ∂U by U in the supremum, and
even ε

2 by ε
4 in the last inequality.) Similarly,

|1U(R − R0)1UG0,Uf |1

≤ ε

4d
sup
y∈U

∑
|e|=1,x∈U∪∂U

|g0,U (x + e, y) − g0,U (x, y)||f |1

≤ ε

2
c2L|f |1,

(2.26)

where we have used (2.11), the symmetry of g0,U (·, ·) (cf. [11], page 34) and taken
into acount when e = e1 or −e1 the contribution of terms x ∈ ∂U , coming from
“half of the boundary.” It then follows from the Riesz–Thorin theorem (cf. Reed
and Simon [16], page 27) that for 1 ≤ p ≤ ∞,

‖1U(R − R0)1UG0,U‖p,p ≤ ε

2
c2L

(2.20)
<

1

4
.(2.27)

As a result I − 1U(R − R0)1UG0,U defines a bounded invertible operator from
Lp(Zd) into Lp(Zd) and the norm of its inverse is smaller than 4

3 . From the first
line of (2.9) we easily deduce (2.21). Let us turn to the proof of (2.22). From (2.10)
and (2.11), we find by analogous considerations that for p = 1 or ∞ and |e| = 1,

‖G0,U‖p,p ≤ c1L
2, ‖∇eG0,U‖p,p ≤ c2L.

The claim (2.22) then follows from the Riesz–Thorin theorem.
Let us finally prove (2.23). Observe that (2.21) and (2.22) imply that for ω ∈ �ε ,

sup
x

Ex,ω[TU ] ≤ 4
3c1L

2.(2.28)

The claim now follows by a classical argument of Khas’minskii [8]; see, for
instance, the proof of Lemma 1.1 of [18]. �

We will now derive pointwise bounds on gU in terms of g0,U which will be
useful to control the fluctuations of GU(d · e1)(0).

PROPOSITION 2.3. Let α ∈ [0,1), and assume

εL <
1

2

1 − α

2 − α

√
c6,(2.29)

then

gU (x, y,ω) ≤ c7(d)g0,U (x, y)1/(2−α), x, y ∈ U, ω ∈ �ε.(2.30)
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PROOF. For any x ∈ Zd , n ≥ 0, ω ∈ �ε, the law Px,ω restricted to Fn is
absolutely continuous with respect to Qx , and

Px,ω = ZnQx on Fn,(2.31)

provided

Zn = exp

{
n−1∑

0

log
(
1 + 2dδ(Xk,Xk+1 − Xk)

)}
.(2.32)

As a result of Taylor’s formula with integral remainder for |u| ≤ 1
2 ,

log(1 + u) = u − u2
∫ 1

0

∫ v

0

1

(1 + uw)2 dwdv.(2.33)

We now derive some integrability properties of ZTU
under Qx . For 0 < β < ε−1,

y ∈ Zd , we have

1

2d

∑
|e|=1

exp
{
β log

(
1 + 2dδ(y, e)

)− β2ε2}
(2.33)= 1

2d

∑
|e|=1

exp
{
β2dδ(y, e) − β

(
2dδ(y, e)

)2
×
∫ 1

0

∫ v

0

1

(1 + 2dδ(y, e)w)2
dwdv − β2ε2

}
.

(2.34)

But for each |e| = 1, in view of (2.2),

β2ε2 = β2ε2
∫ 1

0

∫ v

0
2 dwdv ≥ (

β2dδ(y, e)
)2 ∫ 1

0

∫ v

0

1

(1 + β2dδ(y, e)w)2 dwdv,

hence coming back to the last line of (2.34), we obtain an upper bound by dropping
the term containing the integral and replacing β2ε2 by the above lower bound.
Using (2.33) again we see that

1

2d

∑
|e|=1

exp
{
β log

(
1 + 2dδ(y, e)

)− β2ε2}
≤ 1

2d

∑
|e|=1

exp
{
log
(
1 + β2dδ(y, e)

)}= 1 + β
∑
|e|=1

δ(y, e)
(2.7)= 1.

(2.35)

As a result we see that for 0 < β < ε−1 and any x,

Z
β
n exp{−β2ε2n}, n ≥ 0, is an (Fn)-supermartingale under Qx.(2.36)

In particular if 0 < 2βεL <
√

c6, then 2βε < 1, and for any x ∈ U ,

EQx
[
Z

β
TU

] ≤ EQx
[
Z

2β
TU

exp{−4β2ε2TU }]1/2
EQx [exp{4β2ε2TU }]1/2

(2.36)≤ EQx [exp{4β2ε2TU }]1/2
(2.23)≤ √

2.

(2.37)
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[Note that each �ε′ , 0 < ε′ < 1, contains the constant environment corresponding
to the simple random walk so that (2.23) applies to Qx .] We can choose

β = 2 − α

1 − α
, β ′ = 2 − α

(
so that

1

β
+ 1

β ′ = 1, β ≥ 2 ≥ β ′ > 1
)
,(2.38)

and in view of (2.29), 0 < 2βεL <
√

c6. Then for x, y ∈ U , ω ∈ �ε ,

gU(x, y,ω) = lim
n→∞Ex,ω

[
TU∧n−1∑

0

1y(Xk)

]
(2.39)

using (2.31), the martingale property of Zn and then the uniform integrability
stemming from (2.37) and (2.23),

= lim
n

EQx

[(
TU ∧n−1∑

0

1y(Xk)

)
ZTU ∧n

]
= EQx

[(
TU −1∑

0

1y(Xk)

)
ZTU

]

Hölder≤ EQx

[(
TU−1∑

0
1y(Xk)

)β ′]1/β ′

EQx
[
Z

β
TU

]1/β
.

Applying once more Hölder’s inequality on the first term since β ′ = α + 2(1 −α),
and using (2.37) to control the second term,

≤ EQx

[
TU −1∑

0

1y(Xk)

]α/β ′

EQx

[(
TU−1∑

0

1y(Xk)

)2](1−α)/β ′

21/2β.

Observe now that

EQx

[(
TU −1∑

0

1y(Xk)

)2]
≤ 2EQx

[ ∑
0≤k≤m<TU

1y(Xk)1y(Xm)

]
= 2g0,U (x, y)g0,U (y, y).

(2.40)

Since g0,U (y, y) ≤ g0(0), 1−α
β ′ ≤ 1, 2β ≥ 1, (2.30) follows from the last line of

(2.39) and (2.40). �

As a slight variation of (2.36), we mention the following estimate which will be
used in Section 3.

LEMMA 2.4. When 2εL <
√

c6, then in the notation of (2.32),

EQx
[
Z−1

TU

]≤ √
2 for any x.(2.41)
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PROOF. As in (2.34), for y ∈ Zd , |e| = 1,

1

2d

∑
|e|=1

exp
{−2 log

(
1 + 2dδ(y, e)

)− 4ε2}
= 1

2d

∑
|e|=1

exp
{
−4dδ(y, e) + 2

(
2dδ(y, e)

)2
×
∫ 1

0

∫ v

0

1

(1 + 2dδ(y, e)w)2
dwdv − 4ε2

}(2.42)

but ε < 1
2 [indeed, c6 ∈ (0,1); cf. (2.31)] and

4ε2 = 2ε2
∫ 1

0

∫ v

0
4 dwdv

≥ (
4dδ(y, e)

)2[∫ 1

0

∫ v

0

1

(1 + 2dδ(y, e)w)2
dwdv

+
∫ 1

0

∫ v

0

1

(1 − 4dδ(y, e)w)2 dwdv

]
,

and the last member of (2.42) is smaller than∑
e

1

2d
exp

{
−4dδ(y, e)

− (
4dδ(y, e)

)2 ∫ t

0

∫ v

0

1

(1 − 4dδ(y, e)w)2
dwdv

}
(2.7),(2.33)= 1.

We hence see from Cauchy–Schwarz’s inequality that

EQx
[
Z−1

TU

]≤ EQx
[
Z−2

TU
e−4ε2TU

]1/2
EQx

[
e4ε2TU

]1/2 ≤ √
2

by a similar argument as in (2.37) and by (2.23). �

3. Stochastic bounds on exit measures (d ≥ 3). The main purpose of this
section is to control the random variable p̂(0,ω) [cf. (1.6)], which describes the
probability that the walk starting at the origin exits the slab U [cf. (0.16)], “to
the right.” Throughout this section we assume that the single site distribution µ

is concentrated on Sε [cf. (0.7)]. The random variable p̂(0,ω) is closely
related to the random variable GU(d · e1)(0) [= D in the notations of (0.15)].
Indeed, it follows from the stopping theorem applied to the Px,ω-martingale
Xn · e1 −∑n−1

0 d(Xk,ω) · e1 that for 0 < ε < 1, L ≥ 1 integer, ω ∈ �ε ,

p̂(x,ω) = 1

2
+ 1

2L
GU(d · e1)(x) for x ∈ Zd with x · e1 = 0.(3.1)

We want to show in this section that when L is comparable to a small multiple of ε,
and ε is small but λ = E[d(0,ω) · e1] is not too small in the sense of (0.9), then the
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expectation of GU(d · e1)(0) is positive and dominates the “relevant fluctuations”
of GU(d · e1)(0). We begin with a lower bound on E[GU(d · e1)(0)]. A special
cancellation in the term B of (3.14) will play an important role in the derivation of
this lower bound.

PROPOSITION 3.1. Assume 0 < 8dε < 1, and L ≥ 2 is an integer.
Let (2.20) and the assumptions of Lemma 2.4 hold. If

λ = E[d(0,ω) · e1] > c8(d)ε2
(
ε logL + 1

L

)
,(3.2)

then

E[GU(d · e1)(0)] ≥ 2
5c1λL2.(3.3)

PROOF. We write for x ∈ Zd , |e| = 1, ω ∈ �ε,

δ̃(x, e) = δ(x, e) − E[δ(x, e)],(3.4)

d̃(x,ω) = d(x,ω) − E[d(x,ω)].(3.5)

Observe that

GU(d · e1)(0) = λ(GU1)(0) + GU(d̃ · e1)(0).

In view of (2.20), (2.25) and the first line of (2.9),

(GU1)(0) ≥ (
G0,U1 − 1

4GU1
)
(0),

so that for ω ∈ �ε ,

(GU1)(0) ≥ 4
5 (G0,U1)(0)

(2.10)= 4
5c1L

2.(3.6)

Hence our claim will follow once we show that

|E[GU(d̃ · e1)(0)]| ≤ 2
5c1λL2.(3.7)

By a classical Markov chain calculation,

GU(d̃ · e1)(0) = ∑
x∈U

P0,ω[Hx < TU ] d̃(x) · e1

Px,ω[H̃x > TU ] ,(3.8)

provided for z ∈ Zd , H̃z denotes the hitting time of z,

H̃z = inf{n ≥ 1,Xn = z}.(3.9)

Let us write for x ∈ Zd , ω ∈ �ε ,

P x,ω = Px,ωx where ωx(y, ·) = ω(y, ·),when y �= x,

ωx(x, ·) = E[ω(0, ·)].(3.10)
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(Note that ωx ∈ �ε.) We find

GU(d̃ · e1)(0) = ∑
x∈U

P0,ω[Hx < TU ](d̃(x) · e1
)

×
(
Px,ω[H̃x > TU ] +∑

|e|=1

δ̃(x, e)Px+e,ω[Hx > TU ]
)−1

= ∑
x∈U

P0,ω[Hx < TU ] d̃(x) · e1

Px,ω[H̃x > TU ]

×
(

1 + ∑
|e|=1

δ̃(x, e)
Px+e,ω[Hx > TU ]
Px,ω[H̃x > TU ]

)−1

.

(3.11)

From (0.1) (recall that here κ = 1
4d

),

Px+e,ω[Hx > TU ] ≤ κ−1P x,ω[H̃x > TU ] for x ∈ U , |e| = 1.(3.12)

Hence from (2.2) and our assumption on ε,∣∣∣∣∣∑|e|=1

δ̃(x, e)
Px+e,ω[Hx > TU ]
P x,ω[H̃x > TU ]

∣∣∣∣∣≤ ε

κ
≤ 1

2
.

However for |u| ≤ 1
2 ,

|(1 − u)−1 − 1 − u| = u2

1 − u
≤ 2u2,(3.13)

and as a result

GU(d̃ · e1)(0) = A + B + C, where

A = ∑
x∈U

P0,ω[Hx < TU ] d̃(x) · e1

P x,ω[H̃x > TU ] ,(3.14)

B = − ∑
x∈U

P0,ω[Hx < TU ]
Px,ω[H̃x > TU ]

(
d̃(x) · e1

) ∑
|e|=1

δ̃(x, e)
Px+e,ω[Hx > TU ]
Px,ω[H̃x > TU ] ,

and by (3.12), (3.13) and (2.2),

C ≤ 2
∑
x∈U

P0,ω[Hx < TU ]
Px,ω[H̃x > TU ]ε

(
ε

κ

)2

≤ 2
(

ε

κ

)3

(GU1)(0)
(2.21), (2.22)≤ 8

3
c1

(
ε

κ

)3

L2,

where we have used in the second inequality the fact that

P x,ω[H̃x > TU ] ≥ κPx,ω[H̃x > TU ] for x ∈ Zd,ω ∈ �ε,(3.15)

and the analogue of (3.8) with 1 in place of d̃ · e1.
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Observe at this point that P0,ω[Hx < TU ] and Px,ω[H̃x > TU ] are independent
of ω(x, ·) so that

E[A] = 0.(3.16)

By choosing c8(d) large enough in (3.2), we can make sure that 1
5c1λ ≥

8
3c1(

ε
κ
)3.

Hence (3.7) will follow once we show that

|E[B]| ≤ 1
5c1λL2.(3.17)

This is where the special cancellation showing that “there is no term of order
ε2L2 in B” comes into play.

In view of (2.7), for x ∈ Zd , ω ∈ �ε ,∑
|e|=1

δ̃(x, e) = 0.(3.18)

As a consequence, B remains unchanged if the rightmost term Px+e,ω[Hx >

TU ] is replaced by Px+e,ω[Hx < TU ] − Px+e1,ω[Hx < TU ]. Note also that by
similar arguments as in the derivation of (2.16) (replacing T by Hx),

Py,ω[Hx < TU ] = gU(y, x,ω)

gU(x, x,ω)
for x, y ∈ Zd,ω ∈ �ε.(3.19)

As a result, using also (3.15), we obtain

|B| ≤ 1

κ2

∑
x∈U

P0,ω[Hx < TU ]
Px,ω[H̃x > TU ]2

|d̃(x) · e1|

× ∑
|e|=1

|̃δ(x, e)||gU (x + e, x,ω) − gU (x + e1, x,ω)|

(2.2)≤
(

ε

κ

)2

sup
|e|=1

∑
x∈U

gU (0, x,ω)|gU(x + e, x,ω)

− gU(x + e1, x,ω)|Px,ω[H̃x > TU ]−1.

(3.20)

Further, from the Cauchy–Schwarz inequality, Lemma 2.4 and (2.37) with

β ∈ (1,
√

c6
2εL

),

Qx[H̃x > TU ] ≤ EQx
[
H̃x > TU ,ZTU

]1/2
EQx

[
Z−1

TU

]1/2

= Px,ω[H̃x > TU ]1/2EQx
[
Z−1

TU

]1/2

≤ √
2Px,ω[H̃x > TU ]1/2.

(3.21)

Since the left-hand side of (3.21) is bounded away from 0 by a dimension
dependent constant (recall d ≥ 3), the same holds true for Px,ω[H̃x > TU ]. Hence
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to prove (3.17) it suffices to show that for some c9(d) > 0, any |e| = 1, ω ∈ �ε,
L ≥ 2 integer, ∑

x∈U

gU(0, x,ω)|gU(x + e, x,ω) − gU (x + e1, x,ω)|

≤ c9

(
ε logL + 1

L

)
L2.

(3.22)

Using the first line of (2.9), the left-hand side of (3.22) is smaller than the sum
D + E, where

D = ∑
x∈U

gU(0, x,ω)|g0,U (x + e, x) − g0,U (x + e1, x)|(3.23)

and

E = 2 sup
|e′|=1

∑
x∈U

gU(0, x,ω)
∣∣(∇e′GU1U(R − R0)1UG0,U1x

)
(x)
∣∣.(3.24)

We first bound E. To this end we note that∣∣(∇e′GU1U(R − R0)1UG0,U1x

)
(x)
∣∣

=
∣∣∣∣∣ ∑
y∈U, |e′′|=1

∇e′gU (x, y,ω)δ(y, e′′)∇e′′g0,U (y, x)

∣∣∣∣∣.
Here ∇e′ and ∇e′′ , respectively, operate on the first variable of the
functions gU and g0,U ,

≤ ε sup
x∈U,|e′′|=1

(∑
y∈U

(∇e′gU(x, y)
)2)1/2(∑

y∈U

(∇e′′g0,U (y, x)
)2)1/2

(2.12)≤ ε
√

c3‖∇e′GU‖2,∞
(2.21)≤ 4

3ε
√

c3‖∇e′G0,U‖2,∞
(2.12)≤ 4

3εc3.

(3.25)

We hence find with the help of (2.10) and (2.21),

|E| ≤ 32
9 c1c3εL

2.(3.26)

We now bound D. From (2.6) and the identity g0(e) = g0(e1) for |e| = 1, it follows
that for x ∈ U , |e| = 1,

|g0,U (x + e, x) − g0,U (x + e1, x)|

≤ ∑
k �=0

|g0(e + 2k2Le1) − g0(e1 + 2k2Le1)|

+ ∑
k �=0,−1

∣∣∇e−e1g
0(e1 + 2x1e1 + (2k + 1)2Le1

)∣∣
+ ∣∣∇e−e1g

0(e1 + 2x1e1 + 2Le1)
∣∣+ ∣∣∇e−e1g

0(e1 + 2x1e1 − 2Le1)
∣∣,

(3.27)

where x1 denotes the first coordinate of x. Note that for k �= 0,−1 and m = 2k+1,

|m| ≥ 3 and |2x1 + 1 + (2k + 1)2Le1| ≥
∣∣(|m| − 1)2L − 1

∣∣≥ (|m| − 2)2L.
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From Theorem 1.5.5 of Lawler [10], the second sum in the right-hand side
of (3.27) is smaller than

c(d)
∑

|m|≥3

(|m| − 2)−(d−1)L−(d−1) ≤ c′(d)L−(d−1).

A similar bound holds for the first sum on the right-hand side of (3.27). As a result
we find that

|g0,U (x + e, x) − g0,U (x + e1, x)|
≤ c(d)

(
L1−d + |L − x1|1−d + |L + x1|1−d

)
for x ∈ U.

(3.28)

Keeping (3.26) in mind, we see that the claim (3.22) will follow provided we
can show a similar inequality with the term |gU (x + e, x,ω) − gU (x + e1, x,ω)|
replaced by |L − x1|1−d + |L + x1|1−d . We therefore consider∑

x∈U

gU(0, x,ω)|L − x1|1−d (2.9)= ∑
x∈U

g0,U (0, x)|L − x1|1−d + F with

F = ∑
x,y∈U, |e|=1

gU (0, y,ω)δ(y, e)∇eg0,U (y, x)|L − x1|1−d .
(3.29)

Using (A.23) from the Appendix, together with (2.10) and (2.21) we find

|F | ≤ ε(GU1)(0) sup
y∈U

∑
x∈U

c(d)
(
L1−d + (

1 + |(y − x)⊥|)1−d)
× exp

(
−c′(d)|(y − x)⊥|

L

)
|L − x1|1−d

≤ c(d)εL2
∑

w∈Zd−1

(
L1−d + (1 + |w|)1−d) exp

(
−c′(d)|w|

L

) 2L∑
k=1

k1−d

≤ c(d)εL2
∞∑
1

md−2(L1−d + m1−d) exp
(
−c′(d)m

L

)
≤ c(d)εL2 logL.

(3.30)

On the other hand, we see from (2.13) that∑
x∈U

g0,U (0, x)|L − x1|1−d

≤ ∑
x∈U

c(d)(1 + |x|)2−d exp
(
−c′(d)|x⊥|

L

)
|L − x1|1−d

(3.31)

and by a similar argument as above,

≤ c(d)
∑

w∈Zd−1

(1 + |w|)2−d exp
(
−c′(d)|w|

L

)
≤ c(d)L.

We have thus obtained that for |e| = 1, ω ∈ �ε, L ≥ 2 integer,∑
x∈U

g(0, x,ω)|L − x1|1−d ≤ c10(d)

(
ε logL + 1

L

)
L2.(3.32)
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A similar estimate naturally holds with |L + x1|1−d in place of |L − x1|1−d . This
finishes the proof of (3.22) and hence of Proposition 3.1. �

We now turn to the control of fluctuations of GU(d · e1)(0). In the notation
of (0.18), our main estimate comes in the following.

PROPOSITION 3.2. Let α ∈ [0,1), ε ∈ (0,1), L ≥ 2 be an integer, and assume
(2.20) and (2.29). Then for u > 0,

P
[|GU(d · e1)(0) − E[GU(d · e1)(0)]| > u

]≤ 2 exp
{
− u2

cα,L

}
,(3.33)

where

cα,L = c11(d)ε2
∑
y∈U

g0,U (0, y)2/(2−α),(3.34)

and for some c12(α, d) > 0,

cα,L ≤


c12ε

2L1+(2(1−α)/(2−α)), when d = 3,

c12ε
2L(4(1−α)/(2−α)), when d = 4,

c12ε
2, when d ≥ 5 and α > 4

5 .

(3.35)

PROOF. We use the martingale method. Namely, we introduce xi, i ≥ 1, an
enumeration of U and define the filtration

Gn =
{

σ
(
ω(x1, ·), . . . ,ω(xn, ·)), n ≥ 1,

{φ,�}, n = 0,
(3.36)

as well as the bounded Gn-martingale

Hn = E[GU(d · e1)(0)|Gn], n ≥ 0.(3.37)

We will show that under the assumptions of Proposition 3.2,

|Hn − Hn−1| ≤ c13(d)εg0,U (0, xn)
1/(2−α) def= γn, n ≥ 1.(3.38)

Using a slight variation of the proof of Azuma’s inequality (cf. [1], pages 240
and 234), it will follow that for n ≥ 1 and ρ ∈ R,

E[exp{ρ(Hn − Hn−1)}|Gn−1] ≤ exp
{ 1

2ρ2γ 2
n

}
,(3.39)

from which it follows by routine arguments that

E
[
exp

{
ρ
(
GU(d · e1)(0) − E[GU(d · e1)(0)])}]≤ exp

{
1
2ρ2

∑
n≥1

γ 2
n

}
,(3.40)
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since H0 = E[GU(d · e1)(0)] and H∞ = GU(d · e1)(0). The claim (3.33) is then
an immediate consequence and (3.35) readily follows from (2.13). Hence our main
task is to prove (3.38). To this end, for n ≥ 1, and ω,ω′ in �ε which coincide at
each xi, i �= n, we define

�n(ω,ω′) = GU(d · e1)(0,ω′) − GU(d · e1)(0,ω).(3.41)

Let us introduce ωu(xi, ·) = (1 − u)ω(xi, ·) + uω′(xi, ·), for i ≥ 1, u ∈ [0,1].
Notice that ωu belongs to �ε and coincides with ω and ω′ except maybe at xn.
Also by rather analogous considerations as in (3.8),

GU(d · e1)(0,ωu) = E0,ωu

[Hxn∧TU−1∑
0

(d · e1)(Xk,ωu)

]

+ P0,ωu[Hxn < TU ]
Pxn,ωu[H̃xn > TU ]Exn,ωu

[H̃xn∧TU−1∑
0

(d · e1)(Xk,ωu)

]
.

(3.42)

Observe that neither P0,ωu[Hxn < TU ] nor the first term on the right-hand side
of (3.42) depend on u. Differentiating in the u variable, we obtain

∂uGu(d · e1)(0,ωu)

= P0,ωu[Hxn < TU ]
Pxn,ωu[H̃xn > TU ]

× ∑
|e|=1

((
ω′(xn, e) − ω(xn, e)

)
×
[
e1 · e + Exn+e,ωu

[Hxn∧TU−1∑
0

(d · e1)(Xk,ωu)

]

− Exn,ωu

[H̃xn∧TU−1∑
0

(d · e1)(Xk,ωu)

]
Pxn+e,ωu [Hxn > TU ]
Pxn,ωu[H̃xn > TU ]

])
.

(3.43)

By the same calculation as in (3.8),

P0,ωu[Hxn < TU ]
Pxn,ωu[H̃xn > TU ] = gU (0, xn,ωu)

(2.30)≤ c7g0,U (0, xn)
1/(2−α).(3.44)

Note that using the strong Markov property at time Hxn ∧ TU , we find for |e| = 1,

Exn+e,ωu

[Hxn∧TU−1∑
0

(d · e1)(Xk,ωu)

]
= GU(d · e1)(xn + e,ωu) − Pxn+e,ωu

[
Hxn < TU

]
GU(d · e1)(xn,ωu)

(3.45)
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and that

GU(d · e1)(xn,ωu) = Exn,ωu

[H̃xn∧TU−1∑
0

(d · e1)(Xk,ωu)

]
Pxn,ωu

[
H̃xn > TU

]−1
.

As a result the expression inside the square brackets in (3.43) equals

e1 · e + GU(d · e1)(xn + e,ωu)

−GU(d · e1)(xn,ωu)
(
Pxn+e,ωu

[
Hxn < TU

]+ Pxn+e,ωu

[
Hxn > TU

])
= e1 · e + ∇eGU(d · e1)(xn,ωu).

(3.46)

In view of (2.21) and (2.22), the absolute value of the above is smaller than

1+ 4
3c2

ε
2d

L
(2.20)≤ c14(d). Since

∑
|e|=1 |ω′(xn, e)−ω(xn, e)|

(2.2)≤ ε, it follows from

(3.43) and (3.44) and the above that for n ≥ 1, ω,ω′ in �ε which coincide at each
xi, i �= n,

|�n(ω,ω′)| ≤ c15(d)εg0,U (0, xn)
1/(2−α).(3.47)

The claim (3.38) is then an easy consequence since Hn and Hn−1 are the respective
integrals of GU(d ·e1)(0) with respect to the variables ω(xi, ·), i > n, and ω(xi, ·),
i ≥ n, under the infinite product of the single site distribution µ.

This completes the proof of (3.38) and hence of Proposition 3.2. �

4. Denouement. The main purpose of this section is to apply the considera-
tions of the previous sections to the proof of the main result of the present article
[cf. (0.9)].

THEOREM 4.1 (d ≥ 3). For any η ∈ (0,1), there exists ε0(d, η) ∈ (0,1) such
that for 0 < ε < ε0, and any µ supported on Sε , with

λ
def= E[d(0,ω) · e1] ≥ λ0(d, η, ε)

def=
ε5/2−η, when d = 3,

ε3−η, when d ≥ 4,
(4.1)

condition (T′) holds relative to the direction e1.

PROOF. We are going to check the effective criterion (0.12) with the help of
the estimate (1.31) of Corollary 1.3, where we choose a = 1

2 , and we recall that in
our context κ = 1

4d
. We choose α ∈ [0,1) such that

η

8
= 1 − α

2 − α
.(4.2)

We also assume that ε < ε1(d, η), so that ε8d < 1,

L

2
def=
[

1

2ε
min

(
3d

8c1
,

1

4c2
,

√
c6

4

1 − α

2 − α

)]
≥ 1(4.3)
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and so that the assumptions of Propositions 3.1 and 3.2 are fulfilled and L is an
even integer as assumed throughout Section 1. Let us now specify the choices of
parameters which appear in Theorem 1.1 and Corollary 1.3. We pick

N = L3 [cf. (1.3)],(4.4)

h =
[

4

c6
L2 logL

]
, H =

[
log 2

6400 log4d
(NL)2

]
[cf. (1.9)],(4.5)

γ2 = 1, γ1 = c1

10
λ0L [cf. (1.12) and (4.1)].(4.6)

By choosing ε ≤ ε2(d, η) ≤ ε1(d, η), we can make sure that (1.9) and δ > 2
[cf. (1.14)].

Observe that since εL < 3
4 [cf. (4.3) and recall c1 = d],

|GU(d · e1)|∞
(2.2), (2.21), (2.22)≤ 4

3

ε

2d
c1L

2 <
L

2
.(4.7)

As a result [cf. (1.7) and (3.1)],

ρ̂(0) ≤ 3,(4.8)

and as a result we do not have to worry about any small denominator problem
when bounding E[ρ̂(0)]. Using (3.3), for x ∈ Zd with x · e1 = 0,

E[GU(d · e1)(x)] ≥ 2
5c1λL2 (4.1)≥ 2

5c1λ0L
2,

and hence using (4.8),

E[ρ̂(0)] ≤ 1 − (1/5)c1λ0L

1 + (1/5)c1λ0L

+ 3P

 inf
x·e1=0

supj≥2 |x·ej |<(NL)3/4

{
GU(d · e1)(x) − E[GU(d · e1)(x)]}

≤ −1

5
c1λ0L

2
]

(3.33)≤ 1 − 1

5
c1λ0L + 6

{
(NL)3

2

}d−1

exp
{
− 1

25
c2

1
λ2

0L
4

cα,L

}
(4.9)

and provided ε < ε3(d, η) ≤ ε2(d, η), in view of (4.1)–(4.3) and (3.35),

≤ 1 − 1
10c1λ0L.
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We now turn to the quantity p of (1.12) and (1.31). We will bound it from below.
In the notation of (1.11), since TU ≥ S, P0,ω-a.s.,

�(0,ω) = E0,ω[XS,TU = S] + E0,ω[XS,TU > S]
= E0,ω

[
XTU

,TU = S
]+ E0,ω[XS,TU > S](4.10)

so that

�(0,ω) − E0,ω

[
XTU

]= E0,ω

[
XS − XTU

,TU > S
]

(4.11)

and of course the left-hand side of (4.11) coincides with �(0,ω)−GU(d(·,ω))(0).
We now see that

|�(0,ω) · e1 − GU(d · e1)(0)|
≤ 2LP0,ω[TU > S] ≤ 2LP0,ω[TU > h]

(2.23)≤ 4L exp
{
− c6

L2 h

}
(4.5)≤ 4L−2 ≤ 1

5
c1λ0L

2,

(4.12)

provided ε ≤ ε4(d, η) ≤ ε3(d, η). As a result for ε ≤ ε5(d, η) ≤ ε4(d, η),

p = inf
j≥2

P
[∀ z ∈ B̃j ,�(z,ω) · e1 ≥ γ1, |�(z,ω) · ei | ≤ γ2h,∀ i ≥ 2

]
≥ 1 − sup

j≥2
|B̃j |P

[
GU(d · e1) − E[GU(d · e1)(0)] ≤ − 1

10
c1λ0L

2
]

(4.13)

(3.33)≥ 1 − (NL)2d 2 exp
{
− 1

100

c2
1λ

2
0L

4

cα,L

}
≥ 1 − exp{−Lη/2}.

Hence assuming 0 < ε < ε5, it follows from (1.31) that

E
[√

ρB0

]≤ (4d)2
[

2(1 − (c1/10)λ0L)N/2

1 − √
1 − (c1/10)λ0L

+2d(4d)(NL)/2 exp
{
−M

2

(
p − 7NL

M

log 4d

log 2

)2

+

}]
.

(4.14)

Observe that for 0 < ε < ε6(d, η) ≤ ε5(d, η),

M ≥ 100 log4d

log 2
NL(4.15)

and

E
[√

ρB0

]≤ (4d)2

[
80(c1λ0L)−1 exp

{
− c1

20
Nλ0L

}

+2d exp
{
NL

[
log 4d

2
− 100 log4d

2 log 2

(
3

4
− 7

100

)2]}]
.
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Recall that in the notation of (0.12), L0 = NL = L4, L̃0 = 1
4(NL)3 = 1

4L12.
We hence see that for ε < ε0(d, η) < ε6(d, η), (0.12) is fulfilled and therefore
condition (T′) relative to e1 holds true. �

REMARK 4.2. We can of course replace (4.1) by

|E[d(0,ω)]| ≥
ε5/2−η, when d ≥ 3,

ε3−η, when d ≥ 4,
(4.16)

and choosing a possibly smaller ε̃0(d, η) ≤ ε0(d, η) conclude that when
ε < ε̃0(d, η) then condition (T′) holds with respect to some direction e ∈ Zd with
|e| = 1.

5. About Kalikow’s condition. In Sznitman and Zerner [2], an assumption
previously introduced by Kalikow in [7] was nicknamed Kalikow’s condition. This
condition was later shown in [20] to imply condition (T), which itself trivially
implies (T′). We will provide here examples for which Kalikow’s condition fails in
a quite strong sense and yet (T′) holds. Let us more precisely recall what Kalikow’s
condition is. Assume (0.1) and introduce for each U strict subset of Zd , connected
and containing 0 the auxiliary Markov chain on U ∪∂U with transition probability

P̂U (x, x + e) = E[gU (0, x,ω)ω(x, e)]
E[gU (0, x,ω)] , x ∈ U, |e| = 1,

P̂U(x, x) = 1 if x ∈ ∂U,

(5.1)

with gU defined by (0.17) with U as above [and not as in (0.16)]. Thanks to (0.1)
and the connectedness of U � Zd , (5.1) is easily seen to make sense. Further, for
x ∈ U ∪ ∂U , one can consider the auxiliary local drift at x ∈ U ∪ ∂U ,

d̂U (x) =


E[gU (0, x,ω)d(x,ω)]
E[gU(0, x,ω)] , x ∈ U,

0, x ∈ ∂U.

(5.2)

Kalikow’s condition relative to � ∈ Sd−1 is the requirement

ε(�,µ)
def= inf

U,x∈U
d̂U (x) · � > 0.(5.3)

This condition is of course not very explicit, but Kalikow provided an explicit cri-
terion in [7] which enables checking (5.3) and showed that (5.3) implied transience
in the direction �, that is, P0[lim XN · � = ∞] = 1. Further, consequences of (5.3)
such as a ballistic law of large numbers, a central limit theorem and various large
deviation controls were later proved in [22, 19]. As shown in Remark 2.5 of [22],
Kalikow’s condition characterizes walks with nondegenerate asymptotic velocity,
when d = 1. The results of this section will in particular imply that this is not the
case when d ≥ 3.
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To shed some light on the role of (5.3), it may be helpful to mention that
the auxiliary Markov chains with transition probabilities given in (5.1) have the
remarkable property that under P0 and under the auxiliary chain starting at 0, the
walk has the same exit distribution from U , provided U is almost surely left by
the auxiliary chain. The interest of (5.3) is matter-of-factly to enable the control of
exit distributions of the auxiliary chain and hence of the walk under P0.

Let us now turn to the description of the class of walks under consideration in
what follows. We assume that d ≥ 2, and

µ is supported by Sε and invariant under the rotations when d ≥ 3,
respectively, the isometries when d = 2, preserving Zd and e1.

(5.4)

Further, we have ρ ∈ (0,1), such that

varP
(
ω(0, e1)

)= varP
(
ω(0,−e1)

)≥ ρε2,

covP

(
ω(0, e1),ω(0,−e1)

)≤ (1 − ρ)varP
(
ω(0, e1)

)
.

(5.5)

An example corresponds to the situation mentioned in (0.10) of an isotropic law µ̃

(d ≥ 3) supported on Sε/2 for which

varµ̃(p(e1)) ≥ ρε2, covµ̃

(
p(e1),p(−e1)

)≤ (1 − ρ)varµ̃(p(e1)),

and a law µ which is the image of µ̃ under the map

p(e) → p(e) + λ

2
e · e1 for |e| = 1,(5.6)

with |λ| < ε
4d

. It is then straightforward to see that (5.4) and (5.5) are satisfied.
We will use the notation

U+ = {y ∈ Zd, y · e1 ≥ 0}, U− = {y ∈ Zd, y · e1 ≤ 0}.(5.7)

In what follows we recall that κ = 1
4d

.

THEOREM 5.1 (d ≥ 2). Let ρ ∈ (0,1) and assume (5.4) and (5.5). Then for

ε < 1
4κ4ρ2, |λ| ≤ κ2

2
ρ2ε2 with λ = E[d(0,ω) · e1],(5.8)

d̂U+(0) = ν+e1, d̂U−(0) = ν−e1 with ν+ > 0, ν− < 0.(5.9)

In particular Kalikow’s condition fails for every � ∈ Sd−1.

PROOF. Let V stand for either U+ or U−. From (5.4), using a rotation when
d ≥ 3, a symmetry when d = 2, preserving e1 and mapping ei into −ei , for a given
i ≥ 2, we see that

d̂V (0) · ei = 0 for i ≥ 2,(5.10)



NEW EXAMPLES OF BALLISTIC RWRE 315

and hence d̂V (0) is colinear to e1. We see by analogous manipulations as in (3.11)–
(3.14), that since ε

κ
≤ 1

2 ,

E[gV (0,0,ω)(d · e1)(0)] = E

[
(d · e1)(0)

P0,ω[H̃0 > TV ]
]

= αV + βV + γV ,

where in the notation of (3.10),

αV = λE
[
P0,ω[H̃0 > TV ]−1]

βV = E

[
(δ̃(0, e1) − δ̃(0,−e1))

P 0,ω[H̃0 > TV ]2

∑
|e|=1

δ̃(0, e)Pe,ω[H0 < TV ]
]
,

|γV | ≤ 2
(

ε

κ

)3

.

(5.11)

Using independence,

βV = ∑
|e|=1

E
[(̃

δ(0, e1) − δ̃(0,−e−1)
)̃
δ(0, e)

]
E

[
Pe,ω[H0 < TV ]
P 0,ω[H̃0 > TV ]2

]
.(5.12)

In view of (5.4) the rightmost term in the above expression is the same for all
|e| = 1 with e · e1 = 0. Since

∑
e·e1=0 δ̃(0, e) = −(δ̃(0, e1) + δ̃(0,−e1)), we find

βV = −E
[(̃

δ(0, e1) − δ̃(0,−e−1)
)(̃

δ(0, e1) + δ̃(0,−e−1)
)]

E

[
Pe2,ω[H0 < TV ]
P 0,ω[H̃0 > TV ]2

]

+ ∑
e·e1=±1

E
[(̃

δ(0, e1) − δ̃(0,−e1)
)̃
δ(0, e)

]
E

[
Pe,ω[H0 < TV ]
P 0,ω[H̃0 > TV ]2

]
.

In view of the first equality of (5.5), the first expectation in the right-hand side
vanishes and

βV = [
varP

(
ω(0, e1)

)− covP

(
ω(0, e1),ω(0,−e1)

)]
×E

[
Pe1,ω[H0 < TV ] − P−e1,ω[H0 < TV ]

P 0,ω[H̃0 > TV ]2

]
.

(5.13)

As a result of (5.5), the first factor is bigger than ρ2ε2. We hence see that

βU+ ≥ κρ2ε2, βU− ≤ −κρ2ε2.(5.14)

Moreover, from (5.8),

|αV | ≤ |λ|
κ

≤ κ

2
ρ2ε2.(5.15)

We thus see that

E
[
gU+(0,0,ω)(d · e1)(0)

]≥ κ

2
ρ2ε2 − 2

(
ε

κ

)3

= ε2
(

κ

2
ρ2 − 2ε

κ3

)
> 0,(5.16)
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whereas

E
[
gU−(0,0,ω)(d · e1)(0)

]≤ −κ

2
ρ2ε2 + 2

(
ε

κ

)3

< 0.(5.17)

This completes the proof of (5.9). �

REMARK 5.2. (1) One can of course relax some of the assumptions of
Theorem 5.1, which by no means is the most general result one can obtain.
Let us however note that one cannot simply drop the last inequality of (5.5).
Indeed if one constructs µ as indicated in (5.6) with µ̃ isotropic concentrated on
Sε/2 ∩ {(p(e))|e|=1; p(e) = p(−e), for |e| = 1}, such that varµ̃(p(e)) ≥ ρε2, then

the local drift at any site in a typical µ⊗Zd
-configuration is deterministic and equal

to λe1. Hence Kalikow’s condition (5.3) holds relative to λ
|λ|e1, provided λ �= 0.

(2) In Remark 2.5 of [20] one can find another example of walk for which
Kalikow’s condition fails. However the proof used in [20] relies on the calculation
of d̂U (0), for U = {0} and U = {−e1,0}, whereas (5.9) offers a more fundamental
obstruction to Kalikow’s condition and the way it is used in proofs. As we now will
see the class described in Theorem 5.1 contains examples of walks with ballistic
behavior when d ≥ 3. �

COROLLARY 5.3 (d ≥ 3). Assume ρ,η ∈ (0,1), there exists ε̃(d, η, ρ) ∈
(0,1) such that when 0 < ε < ε̃, (5.4) and (5.5) hold and

ε5/2−η < λ <
κ2

2
ρ2ε2 when d = 3,

ε3−η < λ <
κ2

2
ρ2ε2 when d ≥ 4,

(5.18)

condition (T′) holds relative to e1 together with (5.9), and Kalikow’s condition
fails with respect to all directions.

The above corollary shows that (T′) may very well hold in spite of an
“oscillatory” behavior of the auxiliary drift.

APPENDIX

This appendix is devoted to the proof of Lemma 1.2, which is a variation on
the derivation of (2.3.9) in [21], and to the proof of the Green function estimates
(2.11) and (2.12). We begin with the following.

PROOF OF LEMMA 1.2. We use the notation of Section 1. For a ≤ b in Z we
introduce

πa,b = ∏
a<i≤b

ρ̂(i,ω).(A.1)
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We will first prove that in the notations of (1.16), below (1.6) and (1.3),

P0,ω[T̃−NL < T̃ ∧ TNL] ≤ π−N,0 + · · · + π−N,N−1

1 + π−N,−N+1 + · · · + π−N,N−1
.(A.2)

To this end we define f (i,ω) for i ≤ N , ω ∈ �, via

f (N,ω) = 0,

f (i,ω) = ∑
i≤m<N

∏
m<j<N

ρ̂(j,ω)−1 for i < N.(A.3)

We denote by Vk , k ≥ 0, the sequence of iterates of the stopping time V =
TX0·e1+L ∧ T̃X0·e1−L, namely,

V0 = 0 and for k ≥ 0, Vk+1 = V ◦ θVk
+ Vk.(A.4)

We write

τ = inf
{
k ≥ 0,

∣∣XVk
· e1

∣∣≥ NL
}
.(A.5)

Note that with definition (1.8),

P0,ω-a.s. on {T̃−NL < T̃ ∧ TNL}, XVτ ∈ H−N and Vτ < T̃ .(A.6)

Moreover for m ≥ 0,

E0,ω

[
f

(
1

L
XV(m+1)∧τ

· e1

)
,V(m+1)∧τ ≤ T̃

]
≤ E0,ω

[
f

(
1

L
XVm∧τ · e1

)
,Vm∧τ ≤ T̃ , τ ≤ m

]
+ E0,ω

[
f

(
1

L
XVm+1 · e1

)
,Vm < T̃ , τ > m

]
so that using the strong Markov property

= E0,ω

[
f

(
1

L
XVm · e1

)
,Vm∧τ ≤ T̃ , τ ≤ m

]
+ E0,ω

[
τ > m,Vm < T̃ ,EXVm,ω

[
f

(
1

L
XV1 · e1

)]]
.

(A.7)
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However on {τ > m,Vm < T }, P0,ω-a.s.,

EXVm,ω

[
f

(
1

L
XV1 · e1

)]
= f

(
1

L
XVm · e1

)
+ p̂(XVm,ω)

[
f

(
1

L
XVm · e1 + 1

)
−f

(
1

L
XVm · e1

)]

+ q̂(XVm,ω)

[
f

(
1

L
XVm · e1 − 1

)
− f

(
1

L
XVm · e1

)]
(A.3)= f

(
1

L
XVm · e1

)

+ ∏
1
LXVm ·e1<j<N

ρ̂(j,ω)−1
[
−p̂(XVm,ω) + q̂(XVm,ω)ρ̂

(
1

L
XVm · e1

)−1]
(1.7)≤ f

(
1

L
XVm · e1

)
.

(A.8)

Coming back to the last line of (A.7), we see that

E0,ω

[
f

(
1

L
XV(m+1)∧τ

)
,V(m+1)∧τ ≤ T̃

]

≤ E0,ω

[
f

(
1

L
XVm · e1

)
,Vm∧τ ≤ T̃

]
≤ f (0)

by induction. Since τ is P0,ω-a.s. finite, it then follows from Fatou’s lemma that

E0,ω

[
f

(
1

L
XVτ · e1

)
,Vτ ≤ T̃

]
≤ f (0).(A.9)

From this we deduce that

P0,ω[T̃−NL < T̃ ∧ TNL] ≤ f (0)

f (−N)

=
∏

0<j<N ρ̂(j,ω)−1 +∏
1<j<N ρ̂(j,ω)−1 + · · · + 1∏

−N<j<N ρ̂(j,ω)−1 + · · · + 1

= π−N,0 + · · · + π−N,N−1

1 + π−N,−N+1 + · · · + π−N,N−1
,

(A.10)

proving (A.2). We now define

A = P0,ω[T̃−NL < T̃ ∧ TNL] + P0,ω[T̃ ≤ T−NL ∧ TNL],(A.11)

so that in the notation of (1.4) and (1.5),

qB ≤ A and ρB = qB

1 − qB

≤ A

(1 − A)+
,(A.12)
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using in the last step the fact that q → q
1−q

is nondecreasing for q < 1. As a result
on G [cf. (1.17)],

A ≤ π−N,0 + · · · + π−N,N−1 + κ6NL(1 + · · · + π−N,N−1)

1 + · · · + π−N,N−1
,

(1 − A)+ ≥ 1 + · · · + π−N,−1 − κ6NL(1 + · · · + π−N,N−1)

1 + · · · + π−N,N−1
.

(A.13)

Moreover, as a result of (0.1),

κL ≤ ρ̂(i,ω) ≤ κ−L and

κ2NL ≤ π−N,j ≤ κ−2NL for −N < j < N.
(A.14)

Further by assumption L ≥ 2 ≥ supu≥0 2u(1
2)u, and since κ ≤ 1

2 ,

6NLκ3NL ≤ L.(A.15)

As a result we see that

(1 − A)+ ≥ 1 + κL − 2Nκ4NL

1 + · · · + π−N,N−1
≥ (1 + · · · + π−N,N−1)

−1,

and therefore

ρB ≤ π−N,0 + · · · + π−N,N−1 + κ6NL(1 + · · · + π−N,N−1)

≤ π−N,0 + · · · + π−N,N−1 + 2Nκ4NL ≤ 2(π−N,0 + · · · + π−N,N−1),
(A.16)

since π−N,0 ≥ κNL and using (A.15).
Note that the variables ρ̂(i,ω), for i even and for i odd are two collections of

i.i.d. variables. Since a ∈ (0,1], we have

E[ρa
B,G] ≤ 2

∑
0≤m<N

E[πa−N,m,G]

≤ 2
∑

0≤m<N

∏
−N<j≤m

E
[
ρ̂(j)2a]1/2

= 2
∑

0≤m<N

E
[
ρ̂(0)2a](m+N)/2 ≤ 2E[ρ̂(0)2a]N/2

(1 − E[ρ̂(0)2a]1/2)+
.

(A.17)

On the other hand, we know from (0.1) that

ρB ≤ κ−NL,(A.18)

and hence combining (A.17) and (A.18),

E[ρa
B] ≤ 2E[ρ̂(0)2a]N/2

(1 − E[ρ̂(0)2a]1/2)+
+ κ−aNLP[Gc],(A.19)

which completes the proof of Lemma 1.2. �
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We now turn to Green’s function estimates and will provide the following.

PROOF OF (2.11) AND (2.12). We first derive some pointwise bounds. It
follows from (2.6) that for x ∈ U , y ∈ U , |e| = 1,

g0,U (x + e, y) − g0,U (x, y)

= ∑
k∈Z

∇eg
0(x − y + 2k2Le1) − ∇eg

0(x − y∗ + (2k + 1)2Le1
)
,

(A.20)

using the notation (2.19). From Lawler ([11], page 32, Theorem 1.5.5) we know
that

|∇eg
0(z)| ≤ c(d)

(1 + |z|)d−1 for z ∈ Zd .(A.21)

Hence for x, y ∈ U ,

|g0,U (x + e, y) − g0,U (x, y)|

≤ c(d)

[
(1 + |x − y|)−(d−1) + (1 + |x − y∗ + 2Le1|)−(d−1)

+ (1 + |x − y∗ − 2Le1|)−(d−1) + ∑
|k|≥2

(kL)−(d−1)

]

≤ c(d)
[
(1 + |x − y|)−(d−1) + (1 + |x − y∗ + 2Le1|)−(d−1)

+ (1 + |x − y∗ − 2Le1|)−(d−1) + L−(d−1)
]
.

(A.22)

By an analogous argument as in the proof of (2.16), we find that for x, y ∈ U ,
|e| = 1 with |(x − y)⊥| > L, and T as above (2.16),

|g0,U (x + e, y) − g0,U (x, y)|
= ∣∣EQy [g0,U (x + e,XT ) − g0,U (x,XT ), T < TU ]∣∣
≤ sup

{|g0,U (x + e, z) − g0,U (x, z)|;
|(x − z)⊥| ≥ 1

2 |(x − y)⊥| − 1
}
Qy[T < TU ].

Combining the above estimate and (A.22) we find that for x, y ∈ U , |e| = 1,

|g0,U (x + e, y) − g0,U (x, y)|
≤ c(d)

[
(1 + |x − y|)−(d−1) + (1 + |x − y∗ + 2Le1)

−(d−1)

+ (1 + |x − y∗ − 2Le1|)−(d−1) + L−(d−1)
]

× exp
{
−c′(d)

L
|(x − y)⊥|

}
.

(A.23)
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Moreover, by symmetry of g0,U (·, ·), a similar estimate holds as well for
|g0,U (x, y + e) − g0,U (x, y)| in place of |g0,U (x + e, y) − g0,U (x, y)|.

To obtain (2.11), we distinguish between the case |(x − y)⊥| > L and the case
|(x − y)⊥| ≤ L, and see that for x ∈ U, |e| = 1,∑

y∈U

(|g0,U (x + e, y) − g0,U (x, y)| + |g0,U (x, y + e) − g0,U (x, y)|)
≤ c(d)

∑
y∈U,|(x−y)⊥|≤L

[
(1 + |x − y|)−(d−1)

+ (1 + |x − y∗ + 2Le1|)−(d−1)

+ (1 + |x − y∗ − 2Le1|)−(d−1) + L−(d−1)]
+ c(d)

∑
y∈U,|(x−y)⊥|≥L

L−(d−1) exp
{

− c′(d)

L
|(x − y)⊥|

}
≤ c(d)L,

(A.24)

which proves (2.11), and in a similar fashion,∑
y∈U

[(
g0,U (x + e, y) − g0,U (x, y)

)2 + (
g0,U (x, y + e) − g0,U (x, y)

)2]
≤ c(d),

(A.25)

so that (2.12) holds as well. �
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