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SYMMETRIZATION AND CONCENTRATION
INEQUALITIES FOR MULTILINEAR
FORMS WITH APPLICATIONS
TO ZERO-ONE LAWS
FOR LEVY CHAOS

By JAN RosINSKI! AND GENNADY SAMORODNITSKY 2

University of Tennessee, Knoxville, and Cornell University

We consider stochastic processes X = {X(¢), ¢t € T} represented as a
Lévy chaos of finite order, that is, as a finite sum of multiple stochastic
integrals with respect to a symmetric infinitely divisible random measure.
For a measurable subspace V of R” we prove a very general zero—one law
PX eV)=0 or 1, providing a complete analog to the corresponding
situation in the case of symmetric infinitely divisible processes (single
integrals with respect to an infinitely divisible random measure). Our
argument requires developing a new symmetrization technique for multi-
linear Rademacher forms, as well as generalizing Kanter’s concentration
inequality to multiple sums.

1. Introduction. Zero—one laws for subspaces are known phenomena in
probability theory which have been observed in a number of circumstances. A
typical zero—one law of this type says that, for a certain family & of
stochastic processes X = {X(¢), t € T} and a certain family 7” of measurable
subspaces V of RY,

(1.1) P(XeV+x)=0orl

for every X €2, V€ 7 and x € R”. The family 7 often (but not always)
contains all measurable subspaces of R”. Zero—one laws may also hold for
measurable subgroups of R”, but in this paper we will only be concerned with
subspaces.

Historically, the first case considered was that of T' = [0, 1] and % consist-
ing of the Wiener processes. Here the zero—one law for any measurable
subspace of C[0, 1] has been proved by Cameron and Graves (1951). Within
the next 20 years zero—one laws were proved for all Gaussian processes and
all measurable subspaces of R”. We only mention in this context the papers of
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Kallianpur (1970) and Jain (1971), and we refer the reader to the survey
article of Janssen (1984) for more details and an extensive survey containing
many important results in this area.

Gaussian zero—one laws were commonly derived using the theory of repro-
ducing kernel Hilbert spaces. However, no such theory is available for, say,
stable processes. It turns out nonetheless that there is another reason why
zero—one law should hold valid for both Gaussian and stable processes, and it
relies on the defining scaling property of these processes. This was the
argument used by Dudley and Kanter (1974) and Fernique (1974) and
extended to semistable processes by Louie, Rajput and Tortrat (1980) and
Tortrat (1980). For this family of stochastic processes zero—one laws hold,
once again, for all measurable subspaces of R”.

For general infinitely divisible processes, the situation turned out to be
more complicated, both because they do not have scaling properties and
because they clearly do not satisfy zero—one law for all measurable sub-
spaces, as the reader can easily convince him/herself by thinking of the
probability that the standard Poisson random variable equals zero. Still,
zero—one laws do hold for certain subspaces, which can be described in fairly
simple terms using the Lévy measure of the process. Even though the
statements of the results are simple, the arguments have typically been quite
complicated, and they rely on continuous convolution semigroup embedding
of infinitely divisible distributions and processes. We refer the reader once
again to Janssen’s (1984) survey for more details and references. A significant
shortening and simplification of these arguments, by using certain methods
of operator semigroups, has been presented recently by Byczkowski and
Rajput (1993).

Neither of these methods applies to the case of Lévy chaos. There is no
scaling property and the distribution structure of such processes is very
complicated. Therefore our starting point will be yet another idea of proving
zero—one laws for infinitely divisible processes due to Rosifiski (1990a). The
approach is based on series expansions for infinitely divisible processes [see
LePage (1980) and Rosifski (1990b)]. We present it here in the language of
stochastic integrals, which is the most suitable to the subject of this paper.
We further restrict ourselves to the symmetric case.

Let {X(¢), t € T} be a symmetric infinitely divisible stochastic process
without a Gaussian component given by

(1.2) X(t) =L(f(1)) = [ f(t;5)M(ds),  teT.

Here (S,.%) is a measurable space, with a d-ring & of “sets on it. Further,
M is a symmetric infinitely divisible random measure without a Gaussian
component on (S, £); that is, {(M(A), A € &} is a stochastic process such that,
" forrevery A € £, M(A) is a symmetric infinitely divisible random variable
without a Gaussian component, with the following properties: for pairwise
disjoint A,, A,,... in &, the random variables M(A,), M(A,),... are inde-
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pendent (“M is independently scattered”), and if U,_,; A, € &, then
M(U:_,A)=X:_1M(A)) as. (“M is o-additive”).

The random measure M is commonly parametrized as follows. For an
A € Z, write the characteristic function of M(A) in the form

(1.3) Eexp{iOM(A)} = exp{—2/:(1 — cos Ox)nA(dx)}.

It turns out that there is a probability measure A on (S, %) and a measurable
family of Lévy measures on (0, ), { p(-, s), s € S} such that the Lévy measure
1, in (1.3) can be represented in the form

(1.4) 2m,(B) - [ |[ “15(x)p(dx, ) a(9),

for every Borel subset B of (0, ) and
MseS:p((0,),s) =0} =0.

The measure A (a control measure of M) and the family of one-dimensional
Lévy measures {p(:,s), s € S} is a parametrization of the random meas-
ure M.

Finally, for every t € T, the function f(¢,-) in (1.2) is a measurable
function S — R satisfying certain integrability conditions for the integral to
be well defined. We refer the reader to Rajput and Rosinski (1989) for more
details.

The series expansion of the integral process (1.2) is constructed as follows.
For s € S, let

R(u,s) =inf{x > 0: p((x,®), s) < u},

u > 0. Let{g;, j =1}, {r;, j = 1} and {T}, j = 1} be independent sequences of
random variables, the first one being a sequence of i.i.d. Rademacher random
variables, the second one being a sequence of i.i.d. S-valued random variables
with common distribution A, and the last one being a sequence of arrival
times of a Poisson process on (0, «) with unit rate. Then the series

(1.5) Y(t) = Ag:lgiR(Fi’Ti)f(t;Ti)

converges a.s. for every ¢t € T and, moreover, X d Y in terms of equality of
finite-dimensional distributions, where X ={X(¢), t € T} and Y = {Y(2),
t € T}. This fact allows one to treat Y as opposed to X for the purpose of
considering zero—one laws. Since Y is based on an ii.d. sequence and its
terms have a high degree of independence, zero—one laws hold for Y and so
for X [see (1990a)].

In the case of stochastic processes represented by multiple stochastic
integrals with respect to infinitely divisible random measures there are,
perhaps somewhat unexpectedly, zero—one laws corresponding to the above
zero—one laws for infinitely divisible processes, although the arguments,
quite expectedly, turned out to be more complicated than in the latter case. In
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the Gaussian case the problem was considered by de Acosta (1976), who
established the zero-one law for quadratic forms, and by Rosifiski, Samorod-
nitsky and Taqqu (1993), who proved the zero-one law for finite sums of
multlinear forms of arbitrary order in Gaussian random variables. The
zero—one law for Gaussian chaos is a simple consequence of these results.

This leaves the non-Gaussian infinitely divisible case to be considered. Let
M be an infinitely divisible random measure as above, and let

d
(1.6) X(t) =fo(t) + X L(f(1)), teT,
j=1
where
(1.7) L(f(?)) = fsjfj(t;sl,...,sj)M(dsl) -+ M(ds;).

Here, for every t € T, f,(¢;-): S/ - R is symmetric (i.e., invariant under
permutations of its j arguments), and vanishing on the diagonals [i.e.,
fi(t; s1,...,8) = 0 whenever s; = s, for some i # k). When M is a symmetric
stable random measure, or, more generally, a type G random measure, a
zero—one law for all measurable subspaces of RT was proved once again by
Rosinski, Samorodnitsky and Taqqu (1993) using their zero—one law for the
Gaussian case and conditional Gaussianity of the above random measures.
Clearly, this argument breaks down once conditional Gaussianity is no longer
present. The next step was made by Rosiniski and Samorodnitsky (1994), who
proved a zero—one law for finite sums of multiple integral processes of the
type (1.6) under the following assumption on the infinitely divisible random
measure M. The Lévy measure n of M has a representation (1.4) such that,
for A-almost every s € S,

(18) p((0,%),5) = =.

Additionally, they assumed that p(-, s) is atomless. This includes, in particu-
lar, all type G random measures. The argument in the latter paper used once
again the series representation of multiple stochastic integrals, introduced in
the context of multiple stable integrals by Samorodnitsky and Szulga (1989)
d
and extended to the general case by Szulga (1992). We have that X =Y in
terms of equality of finite-dimensional distributions, where Y is defined by
the series
d J

(1.9) Y(t) =fo(t) + X ! Y I1 snhR(I‘nh,rnh)

j=1 1lsn;<--<n;\h=1

X]‘j(t;Tnl,...,Tnj),

which converges a.s. and unconditionally for every ¢ € T.

It is the purpose of the present paper to prove a general zero—one law for
all stochastic processes of type (1.6) and all measurable subspaces of R,
when the random measure M satisfies only the assumption (1.8). The impor-
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tance of this step can be seen from the fact that this is exactly the case when
the zero—one law holds for all measurable subsets of R” in the case of
infinitely divisible stochastic processes.

The crucial step in the argument used by Rosiniski (1990a) for the proof of
the zero—one law for infinitely divisible processes was an extension of a
theorem of Paul Lévy. This argument does not seem to work in the case of
multiple integrals. Therefore, in this paper we propose another approach,
which works for both single and multiple integrals. This approach is based on
a multilinear version of a concentration inequality of Kanter (1976). We prove
this inequality for multiple Rademacher forms, and this is done in Section 3.
The proof relies on a simple symmetrization technique for multiple
Rademacher forms which is presented in Section 2. Finally, in Section 4 we
prove our general zero—one law.

2. Symmetrization. In this section we derive an explicit form of a
symmetrized Rademacher multilinear form. Roughly speaking, the sym-
metrization lowers the order of a multilinear form. To illustrate this phe-
nomenon, consider the following simple example of a Gaussian quadratic
form. Let @ = (aG + b)?, where G is N(0,1), and let @' = (aG’ + b)? be an
independent copy of @. Then

Q- Q) =a’GG’ + V2abG';

that is, the symmetrization of @ is conditionally a linear form in G. For
Rademacher multilinear forms we have the following lemma.

LEMMA 2.1. Let ¢, j =1, &}, j =1, and §;, j = 1, be three independent
sequences of i.i.d. random varlables the former two sequences being
Rademacher sequences, and the latter being a Bernoulli sequence with param-
eter %. Let a{)) i J=0,1,..., ik 1,2,..., for k=1,...,j be arrays of

.....

d
(2.1) Q=X

Jj=01i

HnMS

If, for each j=1,...,d, the array of vectors a“?w’ij is invariant under
permutations of the subscrzpts then

j-1

(2.2) . o o
:(Q-Q)=)Y Lm Z C L e e, e, 8
j=1k=0 =
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where
(2.3) mi — (i ) , if k and j have different parities,
. ! =
0, if k and j have the same parity.

The proof of this lemma will be based on the following two simple facts.
The first one is somewhat parallel to the well-known equality: if G and G’
are 1.i.d. N(0, 1) random variables, then

G+G@ G-G
V2o V2

LEMMA 2.2. Let &, &' and 8 be independent random variables, the first
two of which are Rademacher and the third has Bernoulli distribution with
parameter 3. Then

)i(G,G').

et+e e—¢'
(24) (

d !
D) )=(86,8(1—5)).

ProOF. The proof is obvious. O

LEmMMA 2.3. Let (aq,...,a,;) and (by,...,b;) be two sequences of real
numbers. Let o; = (a; + b;)/2 and B; = (a; — b,)/2,i=1,...,d. Then
1
E(‘h crag=by b)) = X [1aI1B;,
IEf‘f iel je&l

(2.5) )

(e ag+by by = T TTaTl8,

Iej‘zi el jelI

where f‘li is the collection of all subsets of {1,...,d} whose cardinality has a
different parity than d, and /‘;’ is the collection of all subsets of {1,...,d}
whose cardinality has the same parity as d.

PrOOF. Write p; = 4(a; @, — b, - b;) and q; = 3(a; - a; + by -+ b),
for i =1,...,d. Then the vector

29 (o) =5 ()

Now, (2.5) is obviously true for d = 1, and if it is true for d — 1, then its truth
for d follows from (2.6). This inductive argument completes the proof. O

Proor oF LEMMA 2.1. It follows from Lemma 2.3 that
1
@@ |
(2.7) d - = ,
= Y Y - X Ilaa+e)lz(e—epald .
=1 i.=11€l lel

J=1l1egi iy j
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Now, the assumptions on the arrays a(f ) e imply that, for each fixed
Jj=1,...,d, the expression being summed over I € 7 depends only on the

cardinahty of the set I. Since, for each 2 = 0,..., j, there are ( k) subsets I of
{1,...,j} of cardinality %, we conclude that
:(Q-Q)
28 d j—l o k
@8 _ s RN 1 i CAEE AT

n=k+1

Finally, (2.2) follows from (2.8) and Lemma 2.2. O

3. Concentration inequality for multilinear forms. The main pur-
pose of this section is to extend Kanter’s (1976) concentration inequality to
multilinear forms. Recall that in our situation (of Rademacher forms) Kanter’s
concentration inequality can be stated in the following way. Let Q be a
Rademacher form (2.1) with d = 1. Let C be a symmetric convex measurable
subset of the topological vector space E. If, for some n > 1, the cardinality of
the set {i: a{¥ & C} is at least n, then

(3.1) P(QeC) <c(1+n) '

where 0 < ¢; < « is an absolute constant; that is, if many of al”’s are not in
C, then Q itself is very unlikely to be in C.
Now let Q be a multilinear form (2.1), with d > 1. Can one prove a
concentratlon type inequality for such forms under the assumption that
“many of a( /s are not in C”? One observes immediately that “numerical

.....

size alone” does not suffice for this purpose.

ExamPLE 3.1. Let E = R and d = 2, and let the set C be the singleton {0}.
Let a? =a® =1, for j=3,4,...,n+2, and 0 for all other subscripts.
Further, let ¥ = 0, and let a{ = 0 for all i > 1. Then, no matter what n is,
the probability P(Q € C) is at least ;.

The set of (iy,...,i,) for which a{®) , & C in the previous example was
“too thin.” This leads us to 1ntroduce the following definition.

DEFINITION 3.1. Let F c N¢ and n > 1. Define recurrently sets F,, for
k=d,d—-1,...,1, as follows: F; = F and if & <d,

Fk = {(il,...,ik)lcard{j:(il,...,ik,j) EFk+1} Zn}.

We say that F admits sections of size n if all F,, 1 <k < d, are nonempty
and card(Fl) > n.

What kind of sets admit sections of size n for a possibly large n? Here are
a few examples.
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ExampLE 3.2. Let I; c N, for j = 1,..., d, be sets of cardinality at least n
each. Then F =1, X --- X I, (a box) clearly admits sections of size n.

ExampPLE 3.3. Let F c{1,2,...,m}¢ and let the cardinality of F be at
least pm?, for some 0 < p < 1. We claim that F admits sections of size

= c(d, p)m, where c(d, p) = p2'~? [so that n — © when card(F) — « and
p remains bounded away from zero]. The case d = 1 is trivial. Assuming the
truth of the statement for d — 1 > 1, consider an F c {1,2,..., m}? as above.
It is elementary that the cardinality of the set

H, = {i; €{1,2,...,m}: (i}, ig,...,iq)
€ F for at least pm?~! /2 different (i,,...,i4)}
is at least (p /(2 — p))m. For each i, € H,, by the induction hypothesis, there

is a set G, C N~ ! admitting sections of size (p/2)2* “m and (i, iy,...,i )
€ F for each (iy,...,i,) € G, . Therefore, F admits sections of size c(d, p)m,
with

c(d,p) = min(2 fp , %22_‘1).

ExaMPLE 3.4. The previous two examples notwithstanding, the set admit-
ting sections of size n can be very sparse. For example, for d = 2 take
F={G,):i=12,...,n, j=n'"tt pint2 plthr}

We need the following simple lemma.

LEMMA 3.1. Let F c N? admit sections of size n > 2% Then there is a
subset G C F admitting sections of size at least [n'/?], such that the projec-
tions of G on the axes are pairwise disjoint.

Proor. Choose an m < n, and take any m of the indices in F). For each
one of these m indices i,, choose m indices i, not equal to any of the above m
indices i; and such that (i,,i,) € F,. This is possible when m < n — m.

For each resulting pair (i,, i,), choose m indices i, not equal to any of the
above indices i, and i, and such that (i;,i,,i5) € F5. This can be done as
longas m <n —m — m?

We continue in the same way. We can obtain a set G C F admitting
sections of size m such that the projections of G on the axes are pairwise
disjoint as long as

m<n—-m-m?—--—mi L

It is clear that if n > 29, then m = [n'/?¢] satisfies the above conditions. O

DEFINITION 3.2. A Rademacher form (2.1) such that, for each j =1,...,d,
i is invariant under permutations of the subscripts

.....

is called symmetric.
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Our next theorem is a concentration inequality for multilinear forms. It is
the crucial tool in the proof of the zero—one law in the next section, but is also
of interest of its own.

THEOREM 3.1. Let C be a symmetric convex measurable subset of a topo-
logical vector space E. Let Q be a convergent E-valued symmetric Rademacher
form of degree not exceeding d, given by (2.1). Suppose that the set

(3.2) Fi={(iy,...,i;) € N?:dal® , & C}
admits sections of size n. Then

(3.3) P(QeC) <cy(1+n) ",
where

(3.4) a, = {23241 "

and c; € (0,) is a constant that depends only on d.

Proor. We prove the theorem first under the following additional as-
sumption:

(3.5) the projections of F' on the axes are pairwise disjoint.

The proof is by induction on d. Observe that the truth of our statement for
d = 1 follows from Kanter’s concentration inequality (1976). Assume that our
statement holds for some d — 1 > 1, and let us prove it for d.

We start with rewriting (2.1) in the form

[«

(36) Q- %

1~ 1 d
where R is a multilinear form of order not exceeding d — 1, and where we
have dropped the superscript of a{® ;.

Let Q' be an independent copy of Q. Since C is a symmetric convex set,
(3.7) P(QeC)’ <P(3(Q-Q) €C).
We now apply Lemma 2.1, to conclude that

P(QeC)’<Pld Y -~ X & =&, 6 &,
(3.8) i1=1 igo1=1

where ¢;, j > 1, &}, j > 1,and §;, j > 1, are, correspondingly, two Rademacher
sequences and a Bernoulli (3) sequence living on, say, probability spaces
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(Q,,9, P), (Q,,%,,P,), and (Qj,%;, P;). Furthermore, for every fixed
(wy, wg) € Qy X O3, R’ is a symmetric Rademacher form in ¢;, j > 1, of
degree strictly less than d — 1.

We will use the following simple statement. There is a finite positive
constant ¢ such that, for every n > 1,

n n
(3.9) P3(81+---+6n<z) SCexp(——).
c

Let m <n be an integer to be chosen later. Choose an arbitrary set
G, C F, of cardinality m. By (3.9), apart from an event of probability at most
cexp(—m/c), there are [m /4] indices i; € G, such that §; = 1. Call the
obtained (random) set of indices H;.

Now, for every i, € H,, choose m indices i, such that (i, i,) € F,. Again,
by (3.9), apart from an event of probability at most c exp(—m /c), there are
[m /4] indices i, out of the above such that §; = 1. Call the resulting random
set of pairs H,.

Continue in this way. We conclude that, apart from an event of probability
at most

3.10 e 1 e (m o

: e | B R e ,

( ) cexp( c ) " 1 )

there is a random set H, , C F,_, that admits sections of size [m /4] such
that for every (iy,...,i,_,) € H;_, we have §; - §; =1

Now, by Kanter’s 1nequa11ty, apart from an event of probablhty at most

myd-1
(3.11) c(1+ n)*/z(z) ,
all the vectors L7 _,¢; (1 — §; )da, are not in C, provided (i;,...,i4_1)
€EH, ;.
We are now in a position to apply the induction hypothesis [on the
probability space (Q;, %, P,)], to conclude that

oo ig

TQg-1

P@=0f=e() o1t o ()

coosf-Z)fr (5]

Choosing m = [(1 + n)?] with p = 1/[2(d — 1 + a4_,)], we conclude that

P(QeC) <c(l+n) ™
with

X1

Ad-1+ay )

0<ad5
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It is elementary to see that we may take
(3.12) ag = {2%2(d - 1)1} . |

Therefore, under the assumption (3.5), the statement of the theorem holds
with a, given by (3.12).

In the general case we apply Lemma 3.1 to reduce the situation to the case
when (3.5) holds, but n has been replaced by [n!/?¢]. Therefore, we obtain
our general concentration inequality with a,; given by (3.4). This ends the
proof. O

REMARK. There is no claim that the powers of n given by (3.4) are
optimal. We remark here that in the case when the set (3.2) contains a box
(Example 3.2), a simple modification of the argument yields

ag = {22471(d — 1)1} .
We conclude this section with a simple selection lemma.

LEMMA 3.2. Let 7,,74,... be i.i.d. random variables taking values in
(S, 9. Let A €%, d > 1, be such that

P((1y,79,...,74) €A) > 0.
Then, with probability 1, the random set
H={(ny,...,ng) €N%(1,,...,7, ) € A}

contains a box of arbitrarily large size. More precisely, there exists an Q, C Q)
with P(Q,) = 1 such that for every o € O, and n € N there exists k = k(w, n)

such that
(Tnl( w),...,'rnd(w)) €A,
forall k<n,<k+n, k+n<ny,<k+2n,..., k+(d-Dn<ny;<k+
dn.
PrOOF. Let
k+n k+dn
Xk = 1_[ 1—.[ lA(Tn1 Tng""’Tnd);

ni=k+1 ng=k+(d-n+1
{X,: & > 0} is a sequence of identically distributed Bernoulli random vari-
ables which contains an ii.d. subsequence {X;;,: ¢ > 0}. Therefore, it is
enough to show that P{X, = 1} > 0; that is,

n dn
(3.13) py(A)=E|]] - 11 IA(TnI,TnQ,...,Tnd) > 0.
n;=1 ng=(d-Dn+1

The proof of (3.13) is by induction in d. It is obvious for d = 1. Suppose (3.13)
is true for all sets in 7%~ Vd-1>1, satisfying the condition of the lemma.
. Notice that :

n AVi

i=1

pa(4) = [ pas w(dyy) = w(dy,),
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where w =Po7;! and AY = {(xy,...,x4_1): (x,...,%4_1, y) € A}. Hence it
is enough to show that

P

n
(T1severTg_1) € nAyi) >0,
i=1

for (y4,..., y,) from a set of positive u®"-measure. The last statement is true
because

P

where

n

(TI’""Tdfl) = ﬂ A%
i=1

w(dy,) -+ w(dy,) =E[n(A,, .. )],

Axl xd_1:= {y:(xl""7xd—1’y)EA}’

.....

and the last expectation is positive since
Td—l)] =P((Tl’~~-,7d) EA)>0_ 0

.....

4. 0-1 law. We remind the reader that X = {X(¢), ¢t € T} is a stochastic
process defined by (1.6) and (1.7). We will use the notation f(s,,...,s;) =
(f(t;s4,...,84),t€T) R,

The following is the main result of this paper: the zero—one law for finite
sums of multiple stochastic integrals under assumption (1.8). The crucial tool
in our argument is the series representation (1.9), which will allow us to use
the machinery developed in the previous sections. In terms of the series
representation (1.9), our assumption (1.8) means R(T,, 7,) > 0 a.s. for all n.

THEOREM 4.1. Let X ={X(¢), t € T} be given in the form (1.6), with the
random measure M satisfying assumption (1.8). Let V be a measurable linear
subspace of RT. Then

(4.1) P(XeV)=0orl.

Moreover, if the probability in (4.1) equals 1, then the following processes
obtained by a reduction of X to sums of lower-order iterated integrals must
belong to V with probability 1: for every i = 1,...,d and for A\®-almost all
(uy,...,u;) €8S

(4.2) P(Xi;u1 77777 u € V) =1,
where
Xz 75T ul= {Xi;ul ,,,,, u(t)’teT}
(4.3) a I
= Zm j—l( Jylyseens u,)’
J=i :

and where f;,, o 877" > RT is given by

,,,,,,

fius..) ui(t;sl,...,sj,i) =fi(tsur,e sty 1500, 8-4).
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Proor. The proof is by induction in d. If d = 0, then the theorem holds
trivially. Assume that it holds for all [ < d — 1, and we will show it for [ = d.
We will use the series representation Y of X [see (1.9)]. If P(Y € V) = 0, then
there is nothing to prove. Suppose that P(Y € V) > 0. Define, for 1 <i <
d—1and k>0,

Y (uy,..u;) =ilf(uy,...,u;)
J

d
+ XX IT &,R(T,,.,)

=i+l k<ng,<--<n;\h=it+l
ij(ul,..., Uu;, Tni+1""’Tnj)

and
Yd,k(ul,..., ud) = fd(ul,..., ud).

d
Notice that Y; o(u,,...,u;) =X,
l1<i<dand*£=>=0,

(44)  P{Y, ,(uy,...,u;) €V} =1 for A*-aa.(uy,...,u;) €S-
We have the following identities: for every 1 <i < d,

(4.5) Y = Y ( I1 8n1R(I‘n1, ’Tnl))Yi’ni(Tnl, e, Tni) +Q;,
=1

1<n,;< - <n;

up First we will show that, for every

.....

where Q; is a multilinear form in &,, €,,... of order less than i, and, for
everyl<i<d-1land 0 <k <Pk,
Y n(up,eou;) =Y, p(uy,...,u;)
(4.6) k'
= Z 8nR(Fn’Tn)Yi+1,n(u1""1ui9Tn)'
n=k+1

We will prove (4.4) by decreasing induction in i = d,..., 1. If i = d, then we
need to show that

P(fy(ry,...,75) €V)=1.
Suppose that this is not the case. Then, by the selection Lemma 3.2, the set
H= {(nl,...,nd): £i(7s ) & V}

contains an arbitrarily large box with probability 1. By the concentration
inequality (3.1),

P(Y'E.Vl{ﬂJ’{EJ) =(L

contradicting our assumption that P{Y € V} > 0.
Now we assume that (4.4) holds for i + 1 < d and we will prove it for i. By
(4.6) we get, for every 0 < £ < k' and for A®"-a.a. (u,,...,u;) € S’,

(4.7) Y p(up,eoou;) =Y p(uyg,..,u;) €V 0oas.
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Let £ > d be an arbitrary integer. By (4.5) we have

x|

l<n;<--<n;<k

i

| 8n1R(Fnl, 'Tnl))Yi,k(Tnl, s Tn,)

i

(4.8) + Yy ( &, R(T,,, Tn,))

l<ni< - <n;<k \l=1

X {Yi,ni(Tnl? el Tnl_) — Yi,k(’rnl, cees Tni)}

+ ‘Vi,k + Qi’

where W, , is a multlinear form in &,,..., ¢, of order less than i. The second
term on the right-hand side belongs to V a.s. by (4.7). The first term is of
order i in ¢,,..., &, and Y; , is independent of ¢,,..., &.

Consider the set
A={(uy,...,u;) € S P{Y; o(uy,...,u;) €V} =1}

From (4.7) we get P(Y; ,(uy,...,u;) & V} = 1for A®-a.a. (uy,...,u;) €A and
all £ > 0.

Suppose that P{(r4,...,7;) € A} > 0. By Lemma 3.2, for every n > 1 there
exists an integer-valued random variable K such that, with probability 1,
(r4,...,7,) €A for every K<n;<K+n,..., K+ (G- Dn <n; <K+ in.
Choose £ € N such that P{K <k —in} > 1 — &, where &> 0 is arbitrary.
Applying the concentration inequality (3.3) conditionally to (4.8) we get, on
the set {K < & — in},

P(Y e VI{r}.{T).{g}s,1) <c(1+n) " as.

Since n and & are arbitrary, we infer that P{Y € V} = 0, which is a contra-
diction. Hence P{(7y,...,7;) € A} = 0, that is, P{Y; ,(¥,,...,u;) € V} > 0 for

: d ’
A®haa. (uy,...,u;). Since Y, o(uy,...,u;)=X;, . is a sum of multiple
integrals of order no greater than d —i <d — 1, P{Y, ((u,,...,u) €V} =1
for A®*-a.a. (uq, ..., u;). This in conjunction with (4.7) establishes (4.4) and the
second part of the theorem.

Now we will prove that P{Y € V} = 1. By (4.5) we have

Y= Z 8nR(rn7 7'rL)Yl,rL(TrL) + fO’

n=1

and, by (4.4), Y, ,(7,) € V a.s. Hence, for every & > 0,

o

{Y € V} = { Z gnR(Fn’ Tn)Yl,n(Tn) + f0 = V}
n==k + 1

modulo P. Since Y is a function of the ii.d. sequence {¢,,I, = T, _1, 7}, 51,

the Hewitt—Savage zero—one law yields P{Y € V} = 0 or 1, and under our

assumption this probability must be 1. O
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We conclude this paper with a short discussion of implications of Theorem
4.1 to zero laws. First we observe that the second part of the theorem can be
reformulated to say that
(4.9) PXeV)=0
if one of conditions (4.2) fails.

We can be more explicit in particular situations. Many measurable linear
subspaces V have property (C).

DEFINITION 4.1.  We say that a Borel subset B of R” has property (C) if for
any x ¢ B, any probability measure u on R” with w(B) =1 and any £ > 0
there exists a convex symmetric Borel set D c B such that x ¢ D and
WD) >1-¢g.

Examples of subspaces V with property (C) include the following: (i)
separable complete locally convex spaces V of real functions on 7' such that
the natural embedding of V into R” is continuous; if, for example, 7T is
countable, then also (ii) {*(7'); (iii) generalized Orlicz spaces of real functions
on T [which include such nonlocally convex spaces as [”(T'), 0 < p < 1, etc.].
We refer the reader to Rosifiski and Samorodnitsky (1994) for more details.
An immediate application of the above zero law and of Rosifiski and
Samorodnitsky [(1994), Theorem 5.1] establishes the following zero law.

COROLLARY 4.1. Under the assumption of Theorem 4.1 suppose that the
subspace V has property (C). If, for somej=0,1,...,d,

(4.10) P(fj(Tl,...,Tj) €V)>0,
then the zero law (4.9) holds.

Alternatively, we can obtain a conclusion similar to that of Corollary 4.1
without assuming property (C) but assuming instead a special structure on
the random measure M in (1.7). Recall that a symmetric infinitely divisible
random measure M is called (symmetric) r-semistable index a [or r-SS(a)],
0<r<1,0<a<?2,if for every n > 1,

(4.11) M L pnsayg

where {(M*Y(A), A € £} is an infinitely divisible random measure such that,
for every A € £ and 0 € R, E expliOM*'(A)] = (E exp[i0M(A)])”. We refer
the reader to Chung, Rajput and Tortrat (1982) for more information on
semistable measures. The following zero law is an immediate consequence of
Theorem 4.1 and the argument of Proposition 5.2 of Rosifski and Samorod-
nitsky (1994). In fact, it generalizes the latter from stable to the semistable
case.

" COROLLARY 4.2. Under the assumption of Theorem 4.1 suppose that the
random measure M is r-SS(a), 0 <r < 1,0 < a < 2. If (4.10) holds for some
J=20,1,..., then the zero law (4.9) holds.
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