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GEODESICS IN TWO-DIMENSIONAL FIRST-PASSAGE

PERCOLATION

BY CRISTINA LICEA AND CHARLES M. NEWMAN
1

New York University

We consider standard first-passage percolation on Z
2. Geodesics are

nearest-neighbor paths in Z
2, each of whose segments is time-minimizing.

We prove part of the conjecture that doubly infinite geodesics do not exist.

Our main tool is a result of independent interest about the coalescing of

semi-infinite geodesics.

w x1. Introduction. Standard first-passage percolation 3]5 may be re-
Ž .garded as a family of models, each of which yields a random metric T u, v on

the sites u, v of Z
d. The metric, usually thought of as a passage time, is

Ž .constructed out of i.i.d. nonnegative random variables t e , with common

distribution m, indexed by the nearest-neighbor edges e of Z
d. The passage

Ž . Ž .time T r for a finite path r consisting of edges e , . . . , e is simply Ý t e1 n i i

Ž . Ž .and T u, v is the infimum of T r over all finite paths r between u and v.

Ž .We shall assume throughout that m is continuous, in which case there is a.s.

Ž . Ž . Ž Ž ..a unique path M u, v such that T u, v s T M u, v .

We will call a finite or infinite path r a geodesic if, for every pair of sites
X X Ž X X. X X

u , v touched by r, the segment r u , v of r between u and v is exactly
Ž X X. Ž .M u , v . Clearly, a finite r is a geodesic if and only if it is some M u, v . This

paper is concerned with the nature and existence of infinite geodesics. There
Ž .always exist semiinfinite geodesics which we shall call unigeodesics . To see

Ž . Ž . dthis, define R x to be the union of M x, y over all y ’s in Z . For each x,
Ž . Ž .R x is easily shown to be a tree i.e., it has no loops and is connected

spanning all of Z
d and hence there exists at least one unigeodesic starting

from x.

Ž .The existence of doubly infinite geodesics which we shall call bigeodesics

is another matter entirely. Indeed, originating from the physics literature on
Ž .disordered Ising models as we discuss below is a conjecture that, at least for

d s 2, bigeodesics should not exist. In this paper, we give a result in that
Ž .direction by focusing on what we call x, y -bigeodesics, whose two ends haveˆ ˆ

Ž d .the definite asymptotic directions x and y unit vectors in R . One motiva-ˆ ˆ
w xtion for this focus comes from 6 . Theorem 2.1 of that paper shows that under

Ž .certain assumptions, there cannot exist any bigeodesics other than x, yˆ ˆ
ones, and further arguments, related to Proposition 3.2 there, can be used to
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Ž .rule out all cases except y s yx. In this paper see Theorem 2 of Section 2 ,ˆ ˆ
we partly rule out such geodesics for d s 2 by proving that, for Lebesgue

Ž .almost every x, there is a.s. no x, yx -bigeodesic. Note, however, that,ˆ ˆ ˆ
according to the full conjecture, such geodesics should be ruled out for every
Ž .not just almost every x and furthermore should be ruled out not just forˆ

Ž .every deterministic x but also for x v , depending on the v in the underly-ˆ ˆ
Ž .ing probability space of the t e ’s. It should also be noted that one assump-

w xtion of Theorem 2.1 and Proposition 3.2 of 6 concerns uniform curvature

properties of the first-passage asymptotic shape and this assumption, al-

though plausible, has not been verified for any distribution m. The results of

this paper thus leave much to be done for a verification of the full conjecture.

w xWe remark that a different step toward the conjecture was made by Wehr 8 ,
Ž .who showed that the number of bigeodesics of any type can a.s. only be 0

or `.

We conclude this section with a brief discussion of some physics back-
d) d Ž . dground. Let Z denote the lattice Z q 1r2, 1r2, . . . , 1r2 . It is dual to Z

Žin the sense that each elementary plaquette i.e., one of the codimension-1
. dfaces of an elementary cube of Z is the perpendicular bisector of a nearest-

neighbor edge eU of Z
d). In a nearest-neighbor Ising model on Z

d), there are

real coupling constants J U indexed by the nearest-neighbor edges eU
se

² U U: d) � 4Z
d )

x , y of Z and a formal energy function on SS s y1, q1 :

1
U U U U1.1 H S s y J S S .Ž . Ž . Ý ² x , y : x y

2 U U² :x , y

Ž .Although this is only a formal series, the change in H, D H S , when S g SSA

Ž . U
Uis changed by ‘‘flipping’’ i.e., multiplying by a minus sign the S ’s for x inx

the finite A ; Z
d), is well defined:

1.2 D H S s J U U S U S U ,Ž . Ž . ÝA ² x , y : x y

­A

where ­A denotes the set of nearest-neighbor edges of Z
dU

touching both A
Ž .and its complement. Thus one defines an infinite volume ground state of H

Ž .to be any S g SS such that 1.2 is nonnegative for every finite A.

Ž .Ground states always exist by a compactness argument and they always
Ž .come in pairs related by a global flip . Furthermore, in the ferromagnetic

case where J U G 0 for every eU, the constant configurations, S U ' 1 ande x

S U ' y1, are, of course, ground states. In the physically interesting case ofx

Ž .Udisordered Ising models, where the J ’s are say i.i.d. random variables,e

little else is known rigorously about ground states, even for nonnegative
Ž w x.UJ ’s. However, nonrigorous scaling arguments see, e.g., Section 5 of 2e

Ž .suggest the conjecture that in low dimensions including d s 2 , these disor-
Ždered ferromagnets with, say, a common continuous distribution for the

.UJ ’s have no nonconstant ground states.e

For d s 2, the relation to first-passage percolation is easily understood.

Ž . 2Consider the first-passage model where t e for an edge e in Z is equal to

J U for eU the perpendicular bisector edge of e. If there existed a bigeodesic,e
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then the pair of configurations with one constant value on one side of the

geodesic and the opposite value on the other side would be nonconstant

ground states. A converse argument is also not difficult. One concludes that

the existence of nonconstant ground states for such disordered Ising ferro-

magnets is equivalent to the existence of bigeodesics for the dual-lattice

first-passage model. Analogous statements are valid for d ) 2, but first-
Ž .passage geodesics must be replaced by minimal codimension one surfaces

constructed out of plaquettes.

2. Results. We begin by defining more precisely a term from the last
² : ² :section. A unigeodesic consisting of the edges x , x , x , x , . . . is an0 1 1 2

5 5 5 5 dx-unigeodesic if x r x ª x, where ? denotes the Euclidean norm in R .ˆ ˆn n

Ž .An x, y -bigeodesic is a bigeodesic which is the union of an x-unigeodesicˆ ˆ ˆ
and a y-unigeodesic.ˆ

There are two main results in this paper, presented as Theorems 1 and 2

in this short section. Both results are restricted to d s 2. Theorem 1 concerns

the coalescing of x-unigeodesics, and Theorem 2 concerns the nonexistence ofˆ
Ž .x, y -bigeodesics. The proof of Theorem 2 is based on Theorem 1 and is givenˆ ˆ
at the end of this section. The proof of Theorem 1 is given in the next section.

w x Ž .A preliminary version of Theorem 1 was stated in 6 as Theorem 2.3 there

but the hypotheses on m were stronger than for Theorem 1 and only a brief

sketch of the proof was given. In both Theorems 1 and 2, we deal with

deterministic x ’s and y ’s belonging to a set UU which we now define. Weˆ ˆ
Ž . Ž .denote by V, FF, P the underlying probability space for the t e ’s; a specific

choice will not be made until the next section.
d Ž .For any unit vector x in R , let D x denote the event that, for every xˆ ˆU

in Z
d, there is at most one x-unigeodesic starting at x. We define UU as theˆ

Ž Ž .. w xset of x such that P D x s 1. The next theorem, taken from 6 , showsˆ ˆU

that Lebesgue almost every x is in UU. We include the proof for completeness.ˆ

Ž .THEOREM 0. Suppose d s 2 and n is any continuous Borel probability
2 Ž .measure on the unit sphere of R . Then n UU s 1.

Ž . 2PROOF. Let e s u, v be a directed nearest-neighbor edge in Z . As noted˜
Ž .in the Introduction, R u , the union of all finite geodesics starting from u, is

Ž . Ž .a.s. a spanning tree with at least one infinite unigeodesic starting from u.

Ž .Let us regard R u as a kind of family tree with u representing the initial
w Ž .ancestor. Suppose that v is a child of u i.e., the edge e s u, v appears in˜

Ž .xR u and that v has infinitely many descendants; this is equivalent to

assuming that there exists at least one unigeodesic whose first step is e. We˜
qŽ .will next define r e to be the particular unigeodesic, starting with e,˜ ˜

wobtained from a counterclockwise search algorithm, as follows. An analogous
yŽ . x Ž .clockwise search defines a unigeodesic r e . For each x / u, let Y x˜ 0

� Ž . Ž .4denote the parent of x and Y x : 1 F i F J x denote the children of x.i

Ž .Then J x , the number of children, is either 0, 1, 2 or 3 and we have chosen a
Ž .specific clockwise ordering of the children so that the angle u x fromi
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Ž . Ž . Ž .x y Y x to Y x y x which can be either pr2, 0 or ypr2 is decreasing in0 i
qŽ . Ž . Ž .i. The unigeodesic r e consists of the steps x , x , x , x , . . . with˜ 0 1 1 2

Ž . Ž .x , x s e and with x for n G 1 taken as the Y x with the smallest i˜0 1 nq1 i n

Ž .such that Y x has infinitely many descendants.i n

If there are two distinct x-unigeodesics r and r starting at some x, thenˆ 1 2

they have to bifurcate at some u going respectively to v and v in their next1 2

steps. Because d s 2, any other unigeodesics from u caught ‘‘between’’ r and1

r must be x-unigeodesics as well. Now either r is asymptotically counter-ˆ2 1
qŽŽ .. wclockwise to r or vice versa. In the former case, r u, v as well as2 2

yŽŽ ..x qŽŽ .. wr u, v is an x-unigeodesic and in the latter case r u, v as well asˆ1 1
yŽŽ ..x Ž .r u, v is an x-unigeodesic. Thus D x must occur unless the eventˆ ˆ2 U

Ž . qŽ .G e, x , that r e is an x-unigeodesic, occurs for some e, and so˜ ˆ ˜ ˆ ˜

2.1 1 G P D x G 1 y P G e, x .Ž . Ž . Ž .Ž .Ž .ˆ ˜ ˆÝU

ẽ

Ž . qŽ .For each e and P-almost every v , r e cannot be an x-unigeodesic for˜ ˜ ˆ
more than one x; thus by Fubini’s theorem and by continuity of n ,ˆ

2.2 P G e, x n dx s I v n dx P dv s 0.Ž . Ž . Ž . Ž . Ž . Ž .Ž .˜ ˆ ˆ ˆH H H GŽe , x .˜ ˆ

Ž . Ž . Ž Ž ..Integrating 2.1 against n dx then implies that P D x s 1 for n-a.e. x.ˆ ˆ ˆU

I

REMARKS. It seems reasonable to conjecture that UU is the entire unit

sphere, but we do not even know that the coordinate vectors belong to UU. Our

proof of Theorem 0 is based on the fact that, for P-a.e. v, the set of x ’s forˆ
Ž .which D x does not occur must be countable. This should not be the caseˆU

for d ) 2, but some version of Theorem 0 could well be valid.

Ž . Ž .For x g UU, we denote by s s s x the unique if it exists x-unigeodesicˆ ˆ ˆu u

starting from u g Z
d. Although the existence of such unigeodesics is not

w xneeded in this paper, we note that their existence was proved in 6 , Theorem
Ž2.1, under certain assumptions including the unverified curvature hypothe-
.sis mentioned in the Introduction . A crucial consequence of x belonging to UUˆ
Ž . Ž .is that, if s and s ever meet i.e., if they are not site-disjoint , then a.s.u v

they coalesce. The next theorem shows that, for d s 2, s and s must meet,u v

and thus coalesce. Its proof is given in Section 3. Although our proof is two-

dimensional, we see no reason why Theorem 1 should be invalid for d ) 2.

THEOREM 1. For d s 2 and x g UU, there is zero probability that there existˆ
disjoint x-unigeodesics.ˆ

In this paper, we apply Theorem 1 to obtain the following theorem on the

nonexistence of bigeodesics. Note that, if x g UU, then also yx g UU and soˆ ˆ
Ž .the theorem rules out x, yx -bigeodesics. A rather different application ofˆ ˆ
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Ž .a preliminary version of Theorem 1 to surface microstructure in first-
w xpassage percolation may be found in 6 .

THEOREM 2. For d s 2 and x, y g UU, there is zero probability that thereˆ ˆ
Ž .exist x, y -bigeodesics.ˆ ˆ

PROOF. By the definition of UU, we may assume x / y. If there were twoˆ ˆ
Ž .distinct x, y -bigeodesics with x, y g UU, then two applications of Theorem 1ˆ ˆ ˆ ˆ

show that the two bigeodesics would have to meet at some x and at some
Ž .y / x while being distinct in between, resulting in nonuniqueness for M x, y .

Ž .Thus there can be at most one x, y -bigeodesic. Let A be the event thatˆ ˆ
Ž . 2there exists a unique x, y -bigeodesic and for L a finite subset of Z , let Aˆ ˆ L

Ž .be the intersection of A with the event that the unique x, y -bigeodesicˆ ˆ
Ž 2 . Ž .passes through L. By ergodicity with respect to translations in Z , P A s 0

Ž .or 1 and so, to prove the theorem, we need only rule out the case P A s 1.

Ž . Ž .If P A s 1, then P A G 1 y « with « - 1r2 for some choice of finite LL

Ž . 2e.g., a large square centered at the origin . Let z g Z be such thatn

5 5 5 5z ª ` and z r z ª z / x or y. Then, for every v g A , the uniqueˆ ˆ ˆn n n L

Ž .x, y -bigeodesic passes through L q z for only finitely many n’s. Thusˆ ˆ n

2.3 P A l A ª 0 as n ª `.Ž . Ž .L Lqzn

But by translation invariance and our choice of L,

2.4 P A l A G 1 y P Ac y P Ac G 1 y 2« ,Ž . Ž .Ž . Ž .L Lqz L Lqzn n

Ž . Ž .which contradicts 2.3 and proves that P A / 1. I

w x3. Proof of Theorem 1. For x g UU, let S s S x denote the union ofˆ ˆ
Ž . Ž . ds s s x , the unique if they exist x-unigeodesics starting from any u g Z .ˆ ˆu u

� d 4More precisely, S is the random graph with vertex set, u g Z : s exists ,u

and edge set which is the union of the edges of all the s ’s. As mentionedu

previously, since x g UU, s and s must coalesce if they ever meet. It followsˆ u v

that S is either empty or else is a forest consisting of N G 1 distinct infinite

trees. Theorem 1 is thus equivalent to the statement that, for d s 2,
Ž . w xP N G 2 s 0. The general structure of our proof will parallel that used in 1

to rule out two or more infinite clusters in nearest-neighbor bond percolation.

Ž .There are three parts. In this section, we take the t e ’s to be the coordinate
Ž . Ž 2functions, denoted v , on V, FF, P , the product probability space over E ,e

2 . Ž .the edge set of Z of R, BB, m with BB the Borel s-field.

Ž . Ž .PART 1. We show that P N G 2 ) 0 implies P N G 3 ) 0. By utilizing
2 Žthe symmetries of Z , we may assume, without loss of generality here and
.throughout the proof , that x has a strictly positive x-coordinate. Thenˆ

any x-unigeodesic is eventually to the right of any vertical line. This andˆ
Ž .translation invariance show that P N G 2 ) 0 implies that, for some

Ž Ž .. Ž .y ) 0, P A 0, y ) 0, where A y , y , . . . , y denotes the event that0 0 1 2 m
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s , . . . , s are disjoint and that, for each j s 1, . . . , m, every site touchedŽ0, y . Ž0, y .1 m

Ž .by s , after its initial site at 0, y , has strictly positive x-coordinate.Ž0, y . jj

Ž .Figure 1 gives a schematic diagram of A y , y , y .1 2 3

Ž Ž .. Ž Ž ..Since P A n, n q y s P A 0, y ) 0, we see that the sequence of0 0

Ž .events, A n, n q y , occurs infinitely often with positive probability. It fol-0
X w Ž . Ž .lows that, for some y - y - y - y with y , y s n , n q y and1 2 2 3 1 2 1 1 0

Ž X . Ž .x Ž . Ž X .y , y s n , n q y , the intersection A y , y l A y , y has positive2 3 2 2 0 1 2 2 3

probability. But, for v in this intersection, s must be disjoint from sŽ0, y . Ž0, y .2 3

since if they were not disjoint they would coalesce and then s X , trapped inŽ0, y .2

between them in two dimensions, would also coalesce with them, violating
Ž X . Ž . Ž X .the definition of A y , y . Thus A y , y l A y , y is contained in2 3 1 2 2 3

Ž .A y , y , y and so1 2 3

3.1 P A y , y , y ) 0,Ž . Ž .Ž .1 2 3

Ž .which, of course, implies P N G 3 ) 0.

Ž .FIG. 1. A schematic diagram of a configuration from A y , y , y . The edges in Q are those1 2 3

indicated just to the left of the y-axis between y and y .1 3
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Ž .We remark that similar reasoning leads to the conclusion that P N s `
Ž .) 0 in fact s 1 by ergodicity , but we shall not need this conclusion.

Ž . Ž .PART 2. We show that P N G 3 ) 0 implies P F ) 0 for some m, k Gm , k

0. Here F denotes the event that some tree in S touches the rectanglem , k

� Ž . 2 4R s u s a , b g Z : 0 F a F m, yk F b F k but no other site in them , k

�Ž . 4 Ž . Žhalf-plane a , b : a F m . Starting from P N G 3 ) 0 and repeating some
. Ž .of the proof of Part 1 or else by simply quoting its conclusion, we have 3.1

valid for some y - y - y . It turns out that the proof of Part 2 is consider-1 2 3

Ž .ably simpler if the distribution of the t e ’s has unbounded support, that is, if
Ž Ž . .P t e ) t ) 0 for every t - `. So we first give the proof in that restricted

case.

Ž . Ž .Case a }m with unbounded support. Starting from 3.1 , we will show
Ž . Ž < < < <. Ž .that P F ) 0 with k s max y , y . Denote by Q the set of edges u, v0, k 1 3

Ž . Ž . Ž .with u s y1, b , v s 0, b and y F b F y see Figure 1 . Denote by B1 3 l

Ž .the event that, for each u, v g Q, there exists a path r between u and v not
Ž . Ž .using any edges in Q with T r - l. Since P B ª 1 as l ª `, we have forl

˜some large l that

3.2 P A y , y , y l B ) 0.Ž . Ž .Ž .˜1 2 3 l

˜Ž . Ž .Consider the event A s A y , y , y ; l appearing in 3.2 . Suppose an1 2 3
X ˜v g A is altered to v by changing each v - l with e g Q to some value ate

˜least as large as l. Since the v ’s with e g s for i s 1, 2, 3, were un-e Ž0, y .i
changed while others increased or stayed constant, it follows that, for each i,

Ž . X X
the path r ' s v continues to be an x-unigeodesic for v . Similarly, vˆi Ž0, y .i X ˜continues to belong to B , but, since v G l for each e g Q, it follows that nol̃ e

e g Q can belong to any geodesic for v
X
. Thus any geodesic r for v

X
, which

Ž . w xstarts from u s a , b , with a - 0, or a s 0 and b f y , y , cannot touch1 3

the middle path r without first passing through the lower or upper path, r2 1

or r . If this r is an x-unigeodesic, then either it coalesces with r or itˆ3 1

coalesces with r or else v
X

has the property that some x-geodesics meetˆ3

without coalescing.
˜ XŽ .Now let us consider F A , the set of all possible v ’s obtained from

˜v ’s g A. To be more precise, we define a mapping F on subsets of V by first
˜Ž . � 4letting W v s e g Q: v - l and then settinge

˜ ˜w� 43.3 F F s v = l,` .Ž . Ž . .D Ł Łe
Ž . Ž .efW v egW vvgF

˜ Ž .It should be noted that F may map a measurable set i.e., one in FF to a
˜ ˜Ž Ž .. Ž Ž ..nonmeasurable set and thus we cannot claim that P F A ) 0 since P F A

Ž .may not be defined. However, since P A ) 0, we can apply the following
˜Ž w x. Ž . Ž .lemma which extends Proposition 9 of 6 to conclude that F A > F A ,

Ž . Ž Ž ..where F A g FF and P F A ) 0.

Since x g UU, we know that there is zero probability for x-unigeodesics toˆ ˆ
meet and not to coalesce. Thus, from the discussion of the last paragraph,

X Ž . Ž .almost every v g F A belongs to A y , y , y and has the property that1 2 3
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Ž X. w x Ž X.s v with a - 0, or a s 0 and b f y , y , is disjoint from s v .Ža , b . 1 3 Ž0, y .2

Ž X. Ž X. Ž . Ž .Thus s v belongs to a tree in S v which touches 0, y but no a , bŽ0, y . 22

w x X
with a - 0, or a s 0 and b f y , y , and so v g F with k s1 3 0, k

Ž < < < <. Ž .max y , y . We conclude that P F ) 0, as desired.1 3 0, k

2 Ž .LEMMA 3.1. For D any subset of the edge set E , denote by V , FF , PD D D

Ž . cthe product over D of R, BB, m . Also, for F ; V and v g V , define1 D

3.4 F s v g V : v ' v , v g F .� 4Ž . Ž .D , v 2 D 1 21

2 Ž .For each finite subset w of E , let R in FF be chosen so that P R ) 0 andw w w w

then define a map F on FF:w

3.5 F G s v g V c : P G ) 0 = R .Ž . Ž . � 4Ž .w 1 w w w , v w1

2 ˜Ž . Ž .Suppose W v is a random finite subset of E and F F , for F ; V, is

defined as

˜ � 43.6 F F s v = R .Ž . Ž . D Ł e W Žv .ž /
Ž .efW vvgF

˜ Ž . Ž .Then, for F g FF, F F contains F F g FF, defined as the following union

over finite subsets of E
2 :

� 43.7 F F s F F l W s w .Ž . Ž . Ž .D w

w

Ž . Ž Ž ..Furthermore, P F ) 0 implies P F F ) 0.

� 4 Ž . Ž .PROOF. Let us denote F l W s w by F w . By decomposing 3.6 accord-
Ž .ing to the value of W v , one sees that

˜ c3.8 F F s v g V : F w is nonempty = R ,� 4Ž . Ž . Ž . w , vD 1 w w1

w

Ž . Ž . Ž .which contains F F , as given by 3.7 and 3.5 . Since F is the countable
Ž . Ž . Ž Ž ..disjoint union of the F w ’s, P F ) 0 implies P F w ) 0 for some w. For

that w, by Fubini’s theorem,

c3.9 P F w s P F w P dv ) 0,Ž . Ž . Ž . Ž .Ž . Ž .w , vH w w 11
cVw

ˆand so the set F of v ’s such that the integrand in the square brackets isw 1

ˆŽ . Ž .cstrictly positive, has P F ) 0. But, according to the definition 3.5 of F ,w w w

ˆŽ Ž ..F F w s F = R and sow w w

ˆc3.10 P F F w s P F P R ) 0.Ž . Ž . Ž .Ž .Ž . Ž .w w w w w

Ž . Ž Ž .. Ž Ž ..Since F F contains F F w , we conclude that P F F ) 0, as desired. Iw

Ž .We have now completed the proof in case a of Part 2, that is, m with

unbounded support. We continue with the proof for the case of bounded

support. The only place where boundedness enters the proof is in the use of
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the shape theorem, but for that it would suffice for m to have, for example, a

finite second moment.

Ž . Ž . Ž .Case b }m with bounded support. As in case a , we start from 3.1 . Our
Ž . Ž .unit vector x s x , x has been assumed without loss of generality to haveˆ ˆ ˆ1 2

x ) 0. We can and will also assume that x G 0. Let l denote the sup of theˆ ˆ1 2

Ž .support of m and let g x denote the time constant in the x direction. That is,ˆ ˆ
2 5 5 5 5if v is a sequence of sites in Z , with v ª ` and v r v ª x, then, forˆn n n n

Ž . 5 5 Ž . 1 Ž w x w x.any fixed u, T u, v r v ª g x a.s. and in L see, e.g., 4 and 5 . Sinceˆn n

Ž . 5 5Ž .there exist paths from u to v with approximately v x q x edges, itˆ ˆn n 1 2

easily follows that

3.11 g x - l x q x .Ž . Ž .ˆ ˆ ˆŽ .1 2

For the fixed y , y , y , any positive integer m and any «
X
) 0, let C«

X

1 2 3 m

Ž .denote the event that the x-unigeodesics s if they exist touch the lineˆ Ž0, y .j
�Ž . 4 w Ž .xa , b : a s m for the first time coming from 0, y within the vertical linej

X Ž . Ž .Xsegment Q , of length « m centered at the point mrx x see Figure 2 .ˆ ˆm , « 1

We denote the distance mrx of this point from the origin by L . From theˆ1 m
X Ž «

X

.definition of an x-unigeodesic, it follows that, for any « ) 0, P C ª 1 asˆ m

m ª `.
X « , «

X

Ž .Next, for « , « ) 0, let B denote the event that, for every site z s 0, ym

with y F y F y and every site w g Q X ,1 3 m , «

3.12 T z , w - g x q « L .Ž . Ž . Ž .Ž .ˆ m

Ž w x w x.From the first-passage shape theorem see, e.g., 4 and 5 , it follows that
Ž X. Ž . X X

g x ª g x as x ª x, and also that, for any « ) 0 and all « ) 0 suffi-ˆ ˆ ˆ ˆ
Ž « , «

X

.ciently small, P B ª 1 as m ª `.m

Finally, for any positive integer m and k, let C denote the event thatm , k

Ž . �Ž .the three x-unigeodesics s if they exist do not intersect a , b : 0 F a Fˆ Ž0, y .j
< < 4m, b ) k . From the definition of an x-unigeodesic, it follows that, for anyˆ

Ž .fixed m, P C ª 1 as k ª `.m , k

Combining all these results, we see that, for any « ) 0, then for sufficiently

small «
X
) 0, then for sufficiently large m and finally for sufficiently large k,

˜ X «
X

« , «
X

3.13 C « , « , m , k ' C l B l CŽ . Ž . m m m , k

has probability as close to 1 as desired}in particular close enough so that

X 1˜3.14 P A y , y , y l C « , « , m , k G P A y , y , y ) 0.Ž . Ž . Ž . Ž .Ž .Ž .1 2 3 1 2 32

Let A denote the event whose probability appears on the left-hand side of
Ž . Ž .3.14 . Let r denote the segment of r ' s between 0, y and the firstj̃ j Ž0, y . jj

Ž . Ž .Xplace r touches Q see Figure 2 . For v g A, we have by 3.12 thatj m , «

Ž . Ž Ž . . Ž .T r - g x q « L and thus between any points z and w as in 3.12 , one˜ ˆj m

Ž . Ž .can choose a path r z, w which first moves vertically down , then follows r ,1̃

then moves vertically again, with

X
3.15 T r z , w - l y y y q g x q « L q l« m.Ž . Ž . Ž . Ž .Ž . Ž .ˆ3 1 m
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Ž . «
X

FIG. 2. A schematic diagram of a configuration from A y , y , y l C l C . The set Q1 2 3 m m , k

consists of those edges between r , r and the vertical lines at x s 0 and x s m. The asterisks on˜ ˜1 3

the vertical line at x s m denote the upper and lower endpoints of Q X.m , «

Ž .None of the edges of r z, w belong to Q, the random finite set of edges
�Ž . 4 Ž .Xbounded by r , r , Q and 0, y : y F y F y see Figure 2 . On the other˜ ˜1 3 m , « 1 3
XŽ . Ž .hand, if an alternate path r z, w using only edges of Q had t e G l y «

X Ž . Ž .for every edge, then, since r would contain at least L x q x y y y yˆ ˆm 1 2 3 1

y «
X
m edges,

X X
3.16 T r z , w G l y « L x q x y y y y y « m .Ž . Ž . Ž . Ž .Ž . ˆ ˆŽ .m 1 2 3 1

Ž .We can proceed as follows. By 3.11 , we can choose « so that

3.17 g x q « - l y « x q x .Ž . Ž . Ž .ˆ ˆ ˆŽ .1 2

Noting that m s L x , we then choose «
X

so small thatˆm 1

X X
3.18 g x q « q l x « - l y « x q x y « l y « x .Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆŽ .1 1 2 1
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Then we choose m so large that, for our fixed y y y , the right-hand side of3 1

Ž . Ž . X
3.15 is strictly smaller than that of 3.16 . We also pick « small enough and

Ž .m large enough so that for k sufficiently large 3.14 is valid.

Žw ..Note that, for any « ) 0, m l y « , ` ) 0 since l is the sup of the support.
˜Ž . Ž . Ž . Ž .As in case a but with l s l y « , we now define W v for v g A to be

˜ ˜� 4 Ž . Ž .e g Q: v - l and define F A exactly as in case a . We now apply Lemmae

˜Ž Ž .. Ž . Ž .3.1 again and conclude that P F A ) 0 with F A ; F A . The point now
Ž .is that, for any v g F A , any x-unigeodesic originating in the half-planeˆ

�Ž . 4a ,b : a F m other than in the rectangle R could not touch the middlem , k

Žgeodesic r without either touching r or r in which case, it would a.s.˜ ˜2 1 3

. XŽ .coalesce with r or r or else having a segment r z, w entirely using edges1 3

Ž .of Q and thus satisfying 3.16 . But, by the choices of the last paragraph, no
Ž . Ž . Ž .such segment can be a finite geodesic because r z, w still satisfies 3.15 .

Ž .Thus F A has positive probability and is a subset of F so thatm , k

Ž .P F ) 0, as desired.m , k

Ž .PART 3. We show that P F ) 0 is impossible. Consider a rectangularm , k

array of nonintersecting translates Ru of the basic rectangle R indexedm , k m , k
2 Ž .by u g Z in a natural way and consider the corresponding translated

events F u . If F u and F v both occur, then the corresponding trees in Sm , k m , k m , k

Ž .from the definitions of these two events must be disjoint. Let n denote theL
u w x w x Ž .number of R ’s in 0, L = 0, L and N the random number of them , k L

u Ž .corresponding F ’s which occur. By translation invariance E N sm , k L

Ž . 2 Ž .n P F . Clearly, n G cL for some c ) 0 and large L and thus P F )L m , k L m , k
X Ž .0 implies that, with c s cP F ) 0,m , k

3.19 P N G c
X
L2 ) 0 for all large L.Ž . Ž .L

w x w xBut N F the number of disjoint trees in S which touch 0, L = 0, L . SinceL

each tree in S is infinite, this number cannot exceed the number of boundary
w x w x Y

sites in 0, L = 0, L which is less than or equal to c L for large L. For L so
Y X 2 Ž .large that c L - c L , the assumption that P F ) 0 yields a contradic-m , k

tion, which completes the proof. I
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