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ON STATES OF EXIT MEASURES
FOR SUPERDIFFUSIONS!
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National Chiao Tung University

We consider the exit measures of (L, a)-superdiffusions, 1 < a < 2,
from a bounded smooth domain D in R? By using analytic results about
solutions of the corresponding boundary value problem, we study the
states of the exit measures. (Abraham and Le Gall investigated earlier
this problem for a special case L = A and « = 2.) Also as an application of
these analytic results, we give a different proof for the critical Hausdorff
dimension of boundary polarity (established earlier by Le Gall under more
restrictive assumptions and by Dynkin and Kuznetsov for general situa-
tions).

1. Introduction. A super-Brownian motion X = (X,,P,) on R? is a
branching measure-valued Markov process describing the evolution of a
random cloud. It is related (via Laplace transition functionals) to the equa-
tion

Ju

— =Au —u® onR"X RY,
ot

(1.1)

where A is the Laplace operator and 1 < a < 2. The process X can be
obtained as a limit of branching Brownian particle systems by speeding up
the branching rate, decreasing the mass of particles and increasing the
number of particles. [We refer to Dynkin (1994) for more detail.]

It is well known that if d < 2/(a — 1), the states X, of X are absolutely
continuous (with respect to the Lebesgue measure on R?%), whereas in the
case d > 2/(a — 1) they are singular measures. [See, e.g., Dawson and
Hochberg (1979), Dawson, Fleischmann and Roelly (1991) and Fleischmann
(1988).]

An enhanced model of superdiffusions (of which super-Brownian motion is
a special case) was introduced by Dynkin (1993). For every open set D in R,
as a special case of Dynkin’s construction, there corresponds a random exit
measure X, describing, before taking a limit, the mass distribution of the
particle systems at the first exit time from D [see, e.g., Dynkin (1991)]. The
exit measures Xj, play a role similar to that of random exit points from D in
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EXIT MEASURES FOR SUPERDIFFUSIONS 269

the diffusion theory. The exit measure X, is related to the boundary value
problem
(1.2) Lu=u®* in D,

u=v ondD,
where L is a differential operator of the form (2.1) and v is a finite measure
on the boundary D of D. Problem (1.2) was investigated probabilistically by,
for example, Dynkin (1991), Dynkin and Kuznetsov (1995) and Le Gall (1993,
1994b). For analytic treatment of (1.2), we refer to Gmira and Véron (1991)
and Sheu (1994).

In this paper we will study the states of the random exit measures X, for
(L, o) superdiffusions. We observe that if d < (e + 1)/(a — 1), the states of
X, are absolutely continuous with respect to the surface area on JdD (see
Theorem 3.3), whereas in the case d > (« + 1)/(a — 1), they are singular
(see Theorem 4.3). [For the special case L = A and a = 2, the same results
were obtained earlier by Abraham and Le Gall (1993).] Our approach depends
on some analytic results about solutions of the problem (1.2). Also as an
application of these analytic results, we establish in Section 5 that the critical
Hausdorff dimension of the boundary polarity is d — (« + 1)/(a — 1), which
confirms a conjecture stated in Dynkin (1994). [By using the relation between
Hausdorff dimension and the Bessel capacity, Dynkin and Kuznetsov (1994)
obtained the same results. The case L = A and o = 2 was also treated by
Le Gall (1994a).]

We write d(E, F') for the Euclidean distance between two subsets, E and
F, of R%. Moreover, if E is a Borel set, the notation M(F) stands for the set of
all finite measures on E. If Y is a random variable on a probability space
(Q,7, P), PY is the expected value of Y with respect to the probability
measure P. The notation ¢ always denotes a constant which may change
values from line to line.

2. Diffusion and superdiffusion. Throughout this paper we consider a
differential operator in R? of the form

d J 4d d
(2.1) L= ) a,—— + ) b—
o1 U x; dx; — ' ox;

such that:

1. The functions a;; = a;; and b, are bounded smooth functions in R
2. There exists a constant ¢ > 0 such that

d

Y a;;(x)uu; > cY u? forall x € RYandall u,,u,,...,u,.

i,j=1

Then there exists a continuous Markov process & = (£,,I1,) in R? with the
property that for every continuous function f with compact support, the
function

u,(x) =1,1(&)
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is the solution of the initial-value problem:

Ju .
— =Lu inR*X R4,
Jt

u—f ast—0.

[See, e.g., Stroock and Varadhan (1979).] We call ¢ the L-diffusion.

To every L of the form (2.1) and every a, 1 < o < 2, there corresponds a
Markov process X = (X;, P,) in M@R?) such that for every positive Borel
function f on R and every u € M(R%), we have

(2'2) Pp,exp{_<f’Xt>} =exp{—<vt,/u>},

where v, satisfies the equation
t
(2:3) v(x) + 1L [ v (&) ds =TLf(&), x<R

[For every Borel function f on R? and v € M(R%), {f, v) denotes the integral
of f with respect to v.] Moreover, for every open set D in R?, there exists a

random exit measure Xj, such that for every positive Borel function f and
every u € M(R?),

(24) P, exp{—(f, Xp)} = exp{ — (v, w},

where v satisfies the equation

(2.5) o(x) + 1L [Too () ds = 1 (£,)

and 7, is the first exit time of ¢ from D [see, e.g., Dynkin (1991)]. Following
Dynkin, we call X = (X,, X, P,) the (L, a) superdiffusion. Note that (2.4)
and (2.5) imply

(2.6) PLf Xp) =T, f(E,)-

3. Absolutely continuous states of X;,. From this point on we con-
sider an (L, a) superdiffusion X = (X,, X, P ) and always assume that D is
a bounded smooth domain in R? Let S(dz) be the surface area on the
boundary ¢D of D. For every z € R? and every ¢ > 0, let @,(z) be the cube in
R? with center z and edge length ¢. Denote by #(M(JD)) the o-algebra on
M(dD) generated by f— {f, u>, f € C(dD). To prove absolute continuity of
Xp, we need the following two lemmas. The first one is a modification of
Lemma 3.4.2.2 in Dawson (1993).

LEMMA 3.1. Let Y be a random measure defined on a probability space
(Q, 7, P) with values in (M(9D), #(M(4D))). Assume that:
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(a) There exists a Borel subset N C D of surface area zero such that for
each z € D\ N, there is a sequence &,(z) - 0 and as n — =,

Y(Q.,(2))
5(Q.,(2))

where Z(2) is a random variable with P 2 (z) < c.
(b) P{f,Y) = [,pf(2)PZ(2)S(dz), for all f € C(4D).

Then Y is almost surely an absolutely continuous measure [with respect to

S(dz)] on 4D.

converges to Z( z) weakly,

Proor. With some suitable changes, the proof is the same as that of
Lemma 3.4.2.2 in Dawson (1993). We use Wheeden and Zygmund [(1977),
Corollary (10.50)] to replace the Lebesgue density theorem, quoted in Daw-
son. We omit the proof and refer the reader to Dawson (1993) for more detail.

O

We replace (1.2) by an equivalent integral equation

(3.1) u(x)+ng(x,y)ua(y)dy=LDk(x,z)M(dz), x €D,

where g(x, y) is the Green function of L in D and k(x, z) is the Poisson
kernel. Note that quotients of Green functions are uniformly bounded [see
Hueber and Sieveking (1982)] and that there is a constant ¢ depending only
on L and D such that

(3.2) k(x,2) <cp(x)llx —zl7%, x €D and z € 4D,

where p(x) = d(x, dD) and || - || is the Euclidean norm in R [see, e.g., Maz’ya
(1972), Lemma 6, or Dynkin and Kuznetsov (1994)]. Therefore, the same
arguments as that of Sheu [(1994), Lemmas 2.2 and 2.3] imply that if
d<(a+ 1 /(a—1), for every u € M(9D), there exists a solution (which
means a positive solution) of (3.1).

LemMmA 3.2. Assume d < (a + 1)/(a — 1). Let u, be a sequence of finite
measures on dD and, for each n, let u, be a solution of (3.1) with u replaced
by w,. If w, converges weakly to ., in M(9D), then there exists a subsequence
n, = » such that u, converges pointwise to a function u, in D and u.,
satisfies (3.1) with u replaced by u.,.

ProoF. We show that the family u is relatively weakly compact in
LY D, p(x)dx). By the Dunford—Pettis theorem [see, e.g., Dunford and
Schwartz (1958), IV.8, Corollary 11] we need to prove that for any & > 0, it is
possible to find 6 > 0 such that for any n and any measurable set E C D,

(3.3) pr(x) dx < & implies /Eu;-;(x)p(x) dx < e.
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Note that for any E € D and a > 0, we have

(384) [ ug(x)p(x)dx <a*[ p(x)dx+ [ ug(x)p(x)dx
E E {u,>a}

and

(3.5) J, . wx)p(x) de= = [ AtdB, (%),

u,>

where B,(A) = [, . yp(x)dx, A > 0.
We estimate B,(A). Set h,(x) = [,pk(x, z2)u,(dz). By (3.1), we have u, < h,
and so B,(A) < v,(A), where y,(A) = [, ., p(x) dx. Note that

Ma(A) < f{hmhn(x>p(x>clx= /ﬁDun<dz>f{hn>”k(x,z>p(x>dx

(3.6) < p,(oD) sup [ k(x,2)p(x)dx
ze oD “{h,>A\}

<c sup k(x,z)p(x)dx,
ze gD “{h,>)\}

where ¢ = sup,, u,(dD) < «©, by assumption. Choose & € («a,(d + 1)/(d — 1))
and let z € 9D. By Hélder’s inequality, we have

(3.7) [ R(x2)p(x) dx < (A)7(5,(1)7,

{h,>A}
where A = [ k(x,2)%p(x)dx and 1/a + 1/a&’ = 1. By (3.2), we have
(38)  Asc[p(x)"x -2l dr <cf x -2l V" dx.

D D

Since D is bounded and & < (d + 1)/(d — 1), (3.8) implies that A is bounded
for z € 9D. Combining (3.6)-(3.8) we get Ay,()) < cy,(MV¥, and so

(3.9) Bu(A) < 7(X) <ed™@

for all A > 0.
Since a < @, we have, by integration by parts and (3.9),

- fx/\“dﬂn()\) = aB,(a) + afxﬁn()t)/\”_ld)\

3.10 _ o _
( ) Scaa*“-i-af ACTE L)

a

<ca®“ ‘.

Therefore the condition in (3.3) follows easily from (3.4), (3.5) and (3.10), and
this implies that {u 2} is relatively weakly compact.
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Assume we choose a subsequence n, — » such that u, converges to w
weakly in L'(D, p(x) dx). Fix x € D. Since (g(x, y)) /( p(y)) is bounded in y,

[ g p)ui(y)dy > [ g(x,y)w(y)dy.

Since u, converges to w., h,(x) converges to h.(x), where

hx) = faDku,ym(dy)-

Passing to a limit in (3.1) with u = u,, and p = p, , we obtain u, (x) - u.(x)
and

ux) + ng(x,y)w(y) dy = h(x).

It remains to prove that u2 = w. To do this, it suffices to show that Uy,
converges weakly in L'(D, p(x)dx) to u®. Let f€ L*(D, p(x) dx) and let K
be an arbitrary compact set in D. Then

(3.11) ‘/ x)f(x)p(x)dx—[ ul(x)f(x)p(x)de| <I+d,
where
| f w2 £ p00) dx = [ us) (o 0(0)
K K
and

=‘f up (x)f(x)p(x)dx|+ us(x)f(x)p(x)dx|.
D\K K

Note that u, < h, and, by (3.2), &,(x) < c[, p(2)llx — z||~%u,(dz) < ¢ for all
n and x € K. For fixed K, the bounded convergence theorem implies that
I >0 as n;, > <. By Fatou’s lemma, J <csup,, [p, gu;(x)p(x)dx. Since
u, satisfies condition in (3.3), J - 0 as K1 D. Lettlng k — © and then
K1 D in (3.11), we get

Jui () F(x)p(x) dx = [ ws(x)f(x)p(x) dx,
D D
which completes the proof of Lemma 3.2. O
We write u € M (D) if u € M(D) and p has a compact support in D.

THEOREM 3.3. Assume d <(a + 1)/(a —1). If ve M (D), then X, is,
Pra.s., an absolutely continuous measure on dD.

Proor. Fix v € M (D) and let K be the support of ». It suffices to show
that the random measure X, satisfies conditions Lemma 3.1(a) and (b). To
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verify Lemma 3.1(a), we choose z € dD and let A > 0. For every £ > 0, define
a function f, on 4D by

1
f.(y) = { S(Q.(2))"
0, fory ¢ Q.(z) N dD.
We have, by (2.4) and (2.5),
P, exp{—Xf,, Xp)} = exp{— (v, ,, )},

where v, , satisfies (3.1) with u(dy) replaced by Af,(y)S(dy). Clearly as
e = 0, Af.(y)S(dy) converges weakly to A5,(dy). By Lemma 3.2, there exists
a sequence &, —~ 0 such that v, . (x) - v(x) for all x € D and v, satisfies
the equation

(3.12) v(x) + /Dg(x,y)vv‘“(y) dy = Me(x,z), x€D.

fory € Q.(z) NndD,

Note that v, , are uniformly bounded on K [see, e.g., Dynkin (1991), Lemma
3.1 and Theorem 0.5]. We have, by the bounded convergence theorem,
(v), ., > = (v, v) and so

P, exp{—A( f. XD>} — exp{—<(v,, )}.
Thus, (f, , Xp) converges weakly to some 2°(z) and

(3.13) P exp{ —AZ(z)} = exp{—<v,, »)}.
Note that, by (3.12), we have

vy(x) 1
(3.14) o ke 2) = [ 8(xy)ui(y) dy
and

1
(815) 0= —[ g(x,y)v0(y)dy <A [ g(x,y)k"(y,2) dy.
Ap D

We show [, g(x, ¥)E*(y, z) dy is bounded in x € K. Let 26 = d(K, ¢D) and

set K;={x € D, d(x, K) < 8}. Then it suffices to check that both A and B
are bounded on K, where

A= g(x,9)k*(y,2)dy
K;
and
B=[  g(x,y)k(y,2)dy.
D\K;
By (3.2), on K, k(y, z) is bounded and so

ASC/Dg(x,y)dySC, x e K.
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To estimate B, we fix x, € K. Then there exists a constant ¢ such that
g(xy,y) <cp(y) for all y € D\ K; [see, e.g., Dautray and Lions (1990), 11.4,
Property 4] and (g(x, y))/(g(x,, y)) <c for all x € K and y € D\ K; [see
Doob (1984), 1 XII, Section 2]. Therefore (g(x, ¥))/p(y)) is bounded for x € K
and y € D\ K;. Thus if x € K,

BSCkaa(y,Z)p(y) dy,

which, by taking & = « in (8.8), is bounded. Combining with (3.13)-(3.15), we
obtain that

(3.16) P, (2) = lim <UA)’\“> = [ k(x,2)0(dx).

Moreover, for every f € C(dD), by (2.6) and (3.16),
PAf, Xp) = [v(dx)k(x,2)f(2)S(dz) = fDPV%(z)f(z)S(dz),
J.
which completes the proof of the theorem. O

REMARK. Abraham and Le Gall (1993) obtained the same result for
L=A,a=2andv=5_, x €D.

4. Singular state of X;. Let F' be a subset of the boundary D of D.
Consider the following boundary value problem:
Lu=u®* inD,

u=0 ondD\F.
[We write u = f on K C 4D if for every z € K, lim, _, , u(x) = f(2).]

(4.1)

LEMMA 4.1.  If u is a solution of the boundary value problem (4.1), then
(4.2) u(x) <cd(x,F) ¥, x€D,
where c is a constant depending only on L, a and D.

PrROOF. Our proof is a modification of that of step 1 for Sheu [(1994),

Theorem 3]. We sketch only the main steps. Let u be a solution of (4.1). Put
w(x) = u(x) — 1, x € D, and h(x) = g(w(x)1p, z(x) for all x € R¢, where

0, ifr<o,
g(r) = r2/2, if0<r<1,
r—s, ifr=1.

On D, we have either w =u —1<1 or hA(x) =u(x) — 3/2. Since D is
bounded, it suffices to show that

(4.3) h(x) <cd(x,F)"*“ Y xeD.
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To prove (4.3), by Dynkin [(1991), Lemma 3.1 and Theorem 0.5], we need to
check that

(4.4) —Lh+h*<0 onRI\F.
Note that in D,
N , , Jw Jdw N
—Lh +h*=—-g'(w)Lw — g (w)%awa—xla—x] +h
< —g'(w)Lw + A",
where the last inequality follows from the assumptions on L. Then (4.4)
follows from arguments similar to those of Sheu (1994). O

Notation B,(z) stands for the ball with radius & centered at z.

LEMMA 4.2. Let K be a compact set in D. Then there exist two constants c
and &, (depending only on L, a, D and K) such that if u, is a solution of
(4.1) with F = B,(2) N dD for some z € D and & < &,, then we have

(4.5) u(x) <ceg? (et/e-b -y eK.

PrOOF. By choosing & small enough we can assume d(K, dD) > 2¢. Let
u, be a solution of (4.1) with F = B_(z) N dD for some z € dD. Let 7=

inf{t, £, ¢ D} and 7, = min{inf{¢, || ¢, — 2l > 2¢)}, 7}. Since Lu —u® = Lu —

u® lu, we have

(46) () =M (g )ew{ - [Tu (@) ds|, 2=k
‘ 0
[See, e.g., Wentzell (1981), Microtheorem 13.5.] Since u_ = 0 on dD \ F, (4.6)
implies that
(4.7) u(x) <M [u, (&) 7 <]

On 7, < 7, we have, by Lemma 4.1,

u,(é)<cd(é¢, F)_Q/(“_l) < ce 2/,
and so, by (4.7),
(4.8) u,(x) <ce 2/ VI [1, < 7].

The same arguments as in Abraham and Le Gall [(1991), Theorem 3.1] imply
that for ¢ sufficiently small,

(4.9) O [7, <7] <cll,[&€B;,(z) ndD], x€KkK.

By (4.9) and (3.2), we have I1 [7, < 7] < ce? !, x € K. Our conclusion follows
from the above inequality and (4.8). O

REMARK. It follows from Dynkin (1991) that solutions of Lu = u® in D
are locally uniformly bounded in D. Therefore if d < (a + 1)/(a — 1), the
estimate (4.5) does not give the best possible lower bound.
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THEOREM 4.3. Assume d > (a+ 1)/(a— 1. If n€ M (D), then X, is,
P,-a.s., singular with respect to the surface area S on dD.

Proof. Fix p € M (D) and put K = supp(Xp). Forall n > 1,let{B, };c;
be an open covering of 4D and diam(B, ;) = 27". By the regularity of dD, we
can assume the cardinality of I, is less than ¢2"?~V where c is a constant
independent of n. Set

H, = Z 1{Bn,imK¢®)

iel,
and
v,,i(x) = —log P; [ X,(B, ;) = 0].
Then
P H, = Z P,[X,(B, ;) > 0] = Z (1 - P,[Xp(By ;) = 0])
(4.10) e e
= iEZI (1 - exp{—<v,,;, W}) < iEZI (U is 1)

Note that v, ; is, as A — o, the limit of the functions
Ui, 2(x) = —log P; exp{—AXp(B, )}

and v, ; , is a solution of Lu = u® in D with v = 0 on dD \ B, ;. Note that
similar results as in Dynkin [(1992), Theorem 1.2] hold for elhptlc case.
Therefore, v, ; is a solution of (4.1) with F = B, ; N dD. By Lemma 4.2, we
have, for n sufficiently large,

(v, 1) < c(2fn)d7(a+1)/(a71)’ iel,
Therefore, by (4.10),
P#Hn < Z C(2—n)(d—(ﬂt+1)/(01—1)) < 0(2_n)—2/(a—1),
iel,
which implies, for n sufficiently large,
B[(2 ") PH,| <c <.

By Fatou’s lemma, liminf(2~")*(*~YH, <, P,-as., and so the Hausdorff
dimension of K is less or equal to 2/(a — 1). Since dim(dD) =d — 1 and
d—-1>2/(a -1, Xp is, P-as., singular. O

REMARK. (a) The same result was obtained by Abraham and Le Gall
[(1993), Theorem 6.1] for the special case L = A and « = 2. Our proof is the
same in spirit.

(b) Assume d = (a+ 1)/(a — 1). By using Brownian path-valued pro-
cesses, Abraham and Le Gall (1993) obtained a lower upper bound for
P [X,(B, ;) # 0] and proved that X, is singular for L = A and a = 2.
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5. Critical Hausdorff dimension for boundary polarity. In this sec-
tion we consider X = (X,, P,), a (L, a) superdiffusion in D [for more detail,
see Dynkin (1993)]. The range of X is the smallest closed set %, in R? such
that for every ¢ > 0, supp(X,) C.%,. A set F C 4D is said to be d-polar if

Ps[#ZyNF=]=1 forall x €D.

Dynkin and Kuznetsov (1994) obtained that a closed subset F of 4D is
d-polar if and only if there is no nonzero solution of the problem (4.1).
Combining with Sheu [(1994), Theorem 1(A)] (which is still true for general
L), we obtain that if d < (a + 1)/(a — 1), there are no J-polar sets.

Let hy(s) = sB, s> 0, B> 0 and write hg — m(F) for the hgz-Hausdorff
measure of F [for a definition of hg-Hausdorff measure, see Dynkin (1991)].

THEOREM 5.1. Assumed > (a + 1)/(a — 1) and let F be a closed subset of
dD. Put By=d — (a + 1 /(a — 1).

(@) If hg-m(F) = 0, then F is d-polar.
(b) If h;-m(F) > 0 for some B, <s <d — 1, then F is not d-polar.

Proor. (a) Fix x € D and let 8 > 0. By assumption, there is a covering
{B.(z))}, with z; € 9D, of F such that

Zhﬁo( g) <é.

(We can assume ¢; are small enough such that if K = {x}, the conclusions of
Lemma 4.2 hold.) Set B; = B,(z,). Then

P,[#,NF+Q2] < LP|%,nB #2|=Y(1-P %, nB =7

= ©(1 - exp{-v,(x)}) = Luy(x),

13

where v; is the maximum solution of (4.1) with F = D N Esi(zi) [see Dynkin
and Kuznetsov (1994)]. By Lemma 4.2, there exists a constant ¢, depending
only on L, a and D, such that

v;(x) <chg(e) foralli,

and so Pﬁx[%D NF+J) < cZihBO(gi) < ¢b. Since 6 is arbitrary, we obtain
Pﬁx[%’D N F # ] = 0, which completes the proof of (a).

(b) This follows directly from Sheu [(1994), Theorem 1(B)] and Dynkin and
Kuznetsov’s criterion for J-polarity. O
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