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NO TRIPLE POINT OF PLANAR BROWNIAN MOTION
IS ACCESSIBLE

BY KRZYSZTOF BURDZY
1

AND WENDELIN WERNER
2

University of Washington, C.N.R.S. and University of Cambridge

We show that the boundary of a connected component of the comple-

ment of a planar Brownian path on a fixed time interval contains almost

surely no triple point of this Brownian path.

2 Ž1. Introduction. We will say that z g R is a frontier point not to be
.confused with the standard boundary point of the planar Brownian motion

� 4Z s Z , 0 F t F T if z is on the boundary of one of the connectedw0,T x t

components of the complement of Z in the plane. A point z is called aw0,T x
Ž . Ž . Ž .triple point for Z if z s Z t s Z t s Z t for some distinct t , t ,w0,T x 1 2 3 1 2

w xt g 0, T . In the sequel, T ) 0 is fixed. We will prove the following result.3

THEOREM 1. Almost surely, no frontier point of Z is a triple point.w0,T x

Although the cardinality of the set of frontier points is that of the real line,

the frontier points are in a sense exceptional; it is easy to see that, for a fixed

t F T, Z is almost surely not a frontier point of Z although all points oft w0,T x

Z are boundary points. The boundary of the unbounded connected compo-w0,T x
Ž .nent of the complement of Z which consists exclusively of frontier pointsw0,T x

w Ž .xhas been called a self-avoiding planar Brownian motion Mandelbrot 1982 .

ŽIt has been conjectured that the Hausdorff dimension of this set and also of
. w Ž .xthe set of frontier points is 4r3 Mandelbrot 1982 ; see Burdzy and Lawler

Ž .1990b for some rigorous estimates. The geometry of the boundary of a

connected component of the complement of a planar Brownian path has been
w Ž . Ž .studied in several works see Burdzy 1989a, b , Burdzy and Lawler 1990b

Ž .xand Werner 1994 . Let us mention two recent papers which will not be

referred to elsewhere in this paper, but which are somewhat related to it:
Ž . Ž . Ž .Burdzy 1995 and Le Gall and Meyre 1992 . Le Gall 1991 presents a clear

overview of the results derived before 1990.

Let us now recall some known facts about multiple points. For any T ) 0,
Ž . Ž .Z , 0 F t F T has almost surely points of any even uncountable multiplic-t

w Ž .ity for points of finite multiplicity, see Dvoretzky, Erdos and Kakutani 1954˝
Ž .and Adelman and Dvoretzky 1985 ; about points of infinite multiplicity, see
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Ž . Ž .Dvoretzky, Erdos and Kakutani 1958 , Le Gall 1987a and Bass, Burdzy˝
Ž . Ž . xand Khoshnevisan 1994 ; or, alternatively, Le Gall 1991 for an overview .

� 4All these sets of multiple points are dense in Z , 0 F t F T and thet

w Ž .Hausdorff dimension of each one of them is 2 see Le Gall 1987b and Bass,
Ž .xBurdzy and Khoshnevisan 1994 .

Ž .In his book, Levy 1965 noticed that the density of double points in the´
Ž .planar Brownian curve implies the existence and the density of frontier

double points in Z . Loosely speaking, the boundary of a connected compo-w0,T x

nent of the complement of Z contains a lot of double points of thew0,T x

Brownian path. Here is a sketch of Levy’s argument. Let L denote the´
boundary of a connected component of the complement of Z . Assume thatw0,T x

a connected subset L9 ; L, which is not a singleton, contains no double point
Žof Z . It is then easy to see that L9 s Z for some t - t otherwise, L9w0,T x w t ,t x 1 21 2

.contains a double point of Z . This can never be the case, since Zw0,T x w t ,t x1 2

contains double points. Hence, double points of Z are dense in L.

The proof of our main theorem relies heavily on intersection exponent
Ž .estimates just as proofs in Burdzy and Lawler 1990b do. For this reason we

wrecall here a definition and a few relevant facts see Burdzy and Lawler
Ž .x 1 pqn1990a . Fix some n G 1, p G 1. Let Y , . . . , Y be p q n independent

1 p Ž . pq1planar Brownian motions started from Y s ??? Y s y1, 0 and Y s0 0 0
pqn Ž . � 4??? s Y s q1, 0 . We set, for all R ) 0 and j g 1, . . . , p q n ,0

j < j <T s inf t G 0, Y s R .� 4R t

Ž .The intersection exponent j p, n is defined by

j p , nŽ .

j jj jylog P D Y 0, T l D Y 0, T sBž / ž /ž / ž /1F jF p R pq1F jF pqn Rž /
s lim .

log RRª`

wIt is easy to see that this limit exists using a subadditivity argument see,
Ž .xe.g., Lawler 1991 . It has been conjectured that these exponents are rational

Ž . w Ž . Ž .numbers; except for j 2, 1 s 2 see Lawler 1989 , Burdzy and Lawler 1990a
Ž .xor Lawler 1991 , the exact value of these exponents is not known. See

Ž .Burdzy and Lawler 1990b for some estimates. It is greatly satisfying that
w Ž . xthe only known value i.e., j 2, 1 s 2 happens to be the one that is needed in

Ž .our proof. From this, we easily deduce that j 4, 2 G 4, but our key bound
Ž . Ž .Proposition 4 is that j 4, 2 is strictly bigger than 4. We then derive

Žconsequences of this result for disconnection probabilities of six paths Sec-
.tion 5 and, finally, we prove the theorem in the last section, using the fact,

informally speaking, that in the neighborhood of a triple point z, Z isw0,T x

similar to six independent Brownian paths started from z.

We would like to stress that we do not prove that the theorem holds for all

T ’s simultaneously. The possibility that some triple points Z s Z s Zt t t1 2 3

Ž .with t - t - t may be frontier points of Z is not ruled out by our1 2 3 w0,t x3

theorem, although we conjecture that such points do not exist.



PLANAR BROWNIAN MOTION 127

Let us justify the use of the term ‘‘accessible’’ in the title. A point z in a

closed set K ; R2 is called accessible if there exists a continuous path f :
w . 2 Ž . ŽŽ .. w0, 1 ª R , such that f 0 s z and f 0, 1 l K s B see, e.g., Ohtsuka
Ž . x1970 , page 253 . Of course, every accessible point of Z is a frontier pointw0,T x

w Ž . xof Z . It is not difficult see Burdzy and Lawler 1990b , pages 1003]1004w0,T x

to show that every frontier point of Z is in fact an accessible point ofw0,T x

Z . The proof uses only continuity of Z and compactness of Z .w0,T x w0,T x

2. Preliminaries. In this part, we introduce some notation and we
Žrecall some facts and tools of various origins probability, geometrical func-

.tion theory, potential theory we will use in this paper.

2.1. Notation. We will identify R2 and C and we will use both vector and
Ž . Ž .complex notation; C x, r and D x, r will denote, respectively, the circle and

Ž .the open disc centered at x with radius r. If X is a random variable, s X
Ž .will denote the sigma field generated by X. If Y s Y , t G 0 is a process int

Rd and K is a closed set in Rd, we set

� 4T Y s inf t G 0, Y g K .Ž .K t

df
� 4 Ž . Ž . w .If K s x , we will write T Y s T Y . If I ; R s 0, ` , we set Y sx K q I

Ž . � 4 cY I s Y , t g I . The complement of an event A will be denoted A .t

The boundary of a set V ; R2 will be denoted ­ V. We also define, for r ) 0,

D V , r s D y , r .Ž . Ž .D
ygV

2.2. The three-dimensional Bessel process. We now recall some well-known

facts about three-dimensional Bessel processes, which can be found, for
Ž . Ž .example, in Revuz and Yor 1991 . Let B s B , t G 0 denote a lineart

Ž .Brownian motion started from 0, and b s b , t G 0 a three-dimensionalt

Bessel process also started from 0. We set, for every r ) 0,

� 4t s T B , r s T b and s s sup t - t , B s 0 .Ž . Ž .r r r r r r t

Then, we have the following results.

2.2.1. Williams’ decomposition of the Brownian path. For all r ) 0 the
Ž . Ž .two processes B , u F t y s and b , u F r have the same laws qu r r u rr

w Ž .xWilliams 1974 .

2.2.2. The three-dimensional Bessel process as a Brownian motion condi-
Ž .tion not to hit 0. For all 0 - r - r 9, b , u F r y r has the same lawr qu r 9 rr

Ž . � � 4 4as B , u F t y t conditional on inf t ) t , B s 0 ) t .t qu r 9 r r t r 9r

Ž . Ž .2.2.3. Time-reversal. The processes b y b , u F t and b , u F tt t yu r u rr r

have the same law.

2.3. Skew-product decomposition. Planar Brownian motion is invariant
w Ž . xunder conformal mapping see, e.g., Le Gall 1991 , Chapter II, Theorem 1 .
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wIn particular, the analyticity of the exponential mapping implies that see,
Ž . xe.g., Le Gall 1991 , Chapter II, Theorem 3 a planar Brownian motion

Ž .X , t G 0 started from 1 may be represented ast

X s exp B q iu ,Ž .t AŽ t . AŽ t .

where B and u are independent Brownian motions started from 0 and where
Ž . t < <y2

A t s H X ds. As an immediate consequence, if 0 - a - 1 - b,0 s

log b
< < < <1 P T X - T X s P T B - T B s .Ž . Ž . Ž . Ž . Ž .Ž . Ž .a b log a log b

log braŽ .

Ž .2.4. Potential theory. We will also use mainly in Section 4 some poten-
Ž .tial theoretical results. We refer to Doob 1984 for detailed statements and

definitions.

2.4.1. h-processes. We start with a review of h-processes. The proofs may
Ž . Ž .be found in Doob 1984 and Meyer, Smythe and Walsh 1972 . Let D ; C be

a Greenian domain, and let h be a strictly positive superharmonic function in
DŽ .D. Let p x, y be the transition density for Brownian motion killed at thei

hitting time of Dc and

h yŽ .
h Dp x , y s p x , y .Ž . Ž .t t

h xŽ .

Any process with the ph-transition densities will be called an h-processt

Ž .conditioned Brownian motion . Let X be such a process, started from x

under the probability measure P h, and let s be the lifetime of X. Supposex

� Ž . 4that M is a closed subset of D, and let L s sup t - s : X t g M be the last

exit time from M. Let

1Y t s X t , t g 0, T M ,Ž . Ž . Ž . .
2Y t s X T M q t , t g 0, s y T M ,Ž . Ž . Ž .Ž . .
3Y t s X t , t g 0, L ,Ž . Ž . .
4Y t s X L q t , t g 0, s y L ,Ž . Ž . .
5Y t s X s y t , t g 0, s .Ž . Ž . .

Under P h, each process Y k is an h -process in a domain D . We havex k k

D s D s D R M, D s D s D s D and h s h s h; h is a potential1 4 2 3 5 1 2 3

supported by ­ M; h has the boundary values 0 on ­ M and the same4

Ž .boundary values as h on ­ D R M; h is the Green function G x, ? if x g D5 D

or a harmonic function with a pole at x if x g ­ D. The initial distributions of
1 3 � 4Y and Y are concentrated on x, D , where D is the coffin state. For the

Ž .remaining initial distributions see Doob 1984 .

2.4.2. The Harnack principle. The Harnack principle says that if h is a
Ž . Ž . Ž .strictly positive harmonic function in D x, r and a g 0, 1 , then h y -

Ž . Ž .ch z for all y, z g D x, ar , where c - ` depends only on a.

Here is a version of the boundary Harnack principle we will use. Let

V ; R2 be an open connected set whose boundary is a finite union of graphs
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Ž .of Lipschitz functions possibly in different orthonormal coordinate systems .

Let V be an open set, K a compact set, K : V. There exists a constant c1

such that if u and v are strictly positive harmonic functions in V that vanish
Ž .continuously on ­ V l V, then

u x u yŽ . Ž .
F c for all x , y g K l V .1

v x v yŽ . Ž .

Ž . Ž .See Bass and Burdzy 1991 , Banuelos, Bass and Burdzy 1991 or Bass˜
Ž .1995 for strong versions of this result and for references.

2.5. Conformal invariance, prime ends. We now recall some facts about
wŽ .conformal mappings, which can be found, for example, in Ahlfors 1973 ,

x wŽ . x wŽ .Section 4.6 , Ohtsuka 1970 , Chapter III or Pommerenke 1992 , Chapter
x2 . For any two simply connected open planar domains V and V such that1 2

each one has more than two boundary points, there exists a conformal

one-to-one mapping from V onto V ; the mapping has a continuous one-to-1 2

one extension to a mapping of V onto V if the boundaries of V and V are1 2 1 2

Ž .sufficiently ‘‘nice’’ for instance, if they are Jordan curves . If the boundaries

are not ‘‘nice,’’ then one must use the concept of prime ends introduced by
ŽCaratheodory instead of boundary points see the above-mentioned references´

.for details . For instance, if f is a one-to-one conformal map from V onto
Ž . Ž .D 0, 1 , f induces a one-to-one correspondence between C 0, 1 and the prime

ends of V.

Ž .Recall also that, for any three distinct points on the circle C 0, 1 , there
Ž . Ž .exists an analytic one-to-one mapping from D 0, 1 onto D 0, 1 which maps

these three points onto three other arbitrarily chosen distinct points in
Ž .C 0, 1 which have the same cyclic order. Hence, for any two simply connected

open planar domains which have more than two boundary points and any

three distinct prime ends a, b, c on the boundary of the first domain, there

exists an analytical one-to-one mapping of the first domain onto the other
Ž . Ž .which takes a, b, c or b, a, c onto three other arbitrarily chosen distinct

prime ends of the second domain.

2.6. A lemma. We state without a proof an easy lemma which will be

useful in the sequel. Let us fix n G 1. Let X 1, . . . , X n denote n planar

Brownian motions started on the unit circle and independent given their
Ž .starting points the starting points may not be independent . Let y , . . . , y1 n

denote n independent uniformly distributed random variables on the circle
Ž .C 0, 2 .

LEMMA 1. There exists a constant k ) 1 such that, for any boundedn

Ž . 1 nmeasurable positive function f : C 0, 2 ª R, and independently of X , . . . , X ,0 0

y1
1 nk E f y , . . . , y F E f X , . . . , XŽ . Ž .Ž . Ž .Ž .n 1 n T Ž < X <. T Ž < X <.2 2

F k E f y , . . . , y .Ž .Ž .n 1 n
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ŽThis result can be viewed as a direct consequence of the fact that in the
. wnotation of Section 2.3 , u is a Cauchy random variable see, e.g., RevuzT Ž < X <.2

Ž . xand Yor 1991 , Chapter 3, Proposition 3.3 .

Ž .3. Intersection exponents. Recall the intersection exponents j p, n

defined in the Introduction. In order to prove Theorem 1, we need in fact

estimates of nonintersection probabilities of Brownian motions which have
Ž .random initial distributions. Therefore, we introduce an analogue of j p, n

for Brownian motions with uniformly distributed starting points on the unit

circle. Let Z1, . . . , Z pqn denote p q n independent planar Brownian motions
Ž .started uniformly and independently on C 0, 1 . We set, for all R ) 0 and for

� 4all j g 1, . . . , p q n ,

j < j < < j <S s inf t G 0, Z s R s T Z .Ž .� 4R t R

wThe subadditivity argument can be easily adapted using Proposition 5.2.1 in
Ž .xLawler 1991 to show that the following limit exists:

ylog P D Z j
j l D Z j

j s BŽ . Ž .ž /1F jF p w0,S x pq1F jF pqn w0,S xR R
j p , n s lim .Ž .u

log RRª`

Then we have the following lemma.

LEMMA 2. For all n G 1,

j 1, n s j 1, n .Ž . Ž .u

Ž . Ž .One expects that j p, n s j p, n for all n G 1 and p G 1, but proving itu

seems to be more difficult.

PROOF OF LEMMA 2. Recall the definitions of Y j and T
j

for 1 F j F n q 1,R

with p s 1, from the Introduction. Lemma 1 and scaling yield that, for all

R ) 2,

nq1
1 j

j1P Y l Y s BDw0 ,T x w0,T xR Rž /ž /
js2

nq1
1 j

j j1 1F P Y l Y s BDwT ,T x wT ,T x2 R 2 Rž /ž /
js2

nq1
1 j

j j1 1F k P Z l Z s BDnq1 w S ,S x w S ,S x2 R 2 Rž /ž /
js2

nq1
1 j

j1F k P Z l Z s BDnq1 w0,S x w0,S xR r2 R r2ž /ž /
js2

Ž . Ž .and, consequently, j n, 1 G j n, 1 . Note that this argument shows in factu

Ž . Ž .that j p, n G j p, n for all n G 1, p G 1.u



PLANAR BROWNIAN MOTION 131

We now turn our attention toward the opposite inequality. We define

1 < 1 <t s sup t F T , Z s 1� 4R t

and

< 1 <s s inf t G t , Z s 2 .� 4t

1 Ž .1As Z l D 0, 1 s B,w s ,T xR

nq1
1 j

j1P Z l Z s BDw0 ,S x w0,S xR Rž /ž /
js2

nq1
1 j

j1F P Z l Z s BDw s ,S x w0,S xR Rž /ž /
js2

nq1
1 j

1 jF P Z l X s B ,Dw s ,S x w0,T Ž < X <.xR Rž /ž /
js2

2 nq1 Ž 1.where X , . . . , X are independent and independent of Z planar Brown-

ian motions started from 0.

Ž 1 .The process Z , u F S y s is a planar Brownian motion started withsqu R

Ž . Ž . Ž .uniform distribution on C 0, 2 conditioned to hit C 0, R before C 0, 1 ,
w Ž .xwhich is an event of probability log 2rlog R cf. 1 . Hence, using a simple

symmetry argument, if X 1 denotes a planar Brownian motion started from 2,

independent of X 2, . . . , X nq1,

nq1 1 nq1 j
1 jP X l D X s BŽ .ž /w0 ,T Ž < X <.x js2 w0,T Ž < X <.xR R1 j

j1P Z l Z s B F .Dw0 ,S x w0,S xR Rž /ž / log 2rlog Rjs2

A simple shift-and-scaling argument now completes the proof. I

We now present a straightforward consequence of the last lemma. See also
Ž . Ž .Theorem 1.2 i in Burdzy and Lawler 1990b .

COROLLARY 3. We have

j 2, 2 G 5r2 and j 4, 1 G 3.Ž . Ž .u u

Ž . Ž .PROOF. As j 2, 1 s j 2, 1 s 2, these estimates are easy consequences ofu

wBeurling’s projection theorem on harmonic measure in a disc see Ahlfors
Ž . Ž .x1973 and Oksendal 1983 . Trivially,

P Z j
j l Z j

j s BD Dw0 ,S x w0,S xR Rž / ž /ž /
js1,2 js3,4

F P Z j
j l Z 3

3 s B and Z 1
1 l Z 4

4 s B ,D w0 ,S x w0,S x w0,S x w0,S xR R R Rž /ž /
js1,2
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and Beurling’s theorem shows that, for every continuous path L connecting
Ž . Ž .the circles C 0, 1 and C 0, R ,

4 4 4w x4 4P L l Z s B F P yR , y1 l Y s B Y s 1 ;Ž . ž /w0 ,S x w0,T x 0R R

Ž . y1r2 wit is a classical fact that this last quantity is bounded by 4rp R see,
Ž .x Ž . Ž .e.g., Werner 1995 . Hence, as j 2, 1 s 2, j 2, 2 G 2 q 1r2. Similarly,u u

Ž . Ž .j 4, 1 G 2 q 2 1r2 .u

4. The key estimate.

4.1. Probability of making a loop for an h-process. Before stating and

proving Proposition 4, let us first derive three technical estimates for

h-processes which will be useful in its proof.
Ž . Ž .a Suppose that h is a positive harmonic function in D z, r . We will show

that for any p - 1 there is b ) 0 such that the probability that an h-process
Ž . Ž .starting from z makes a closed loop around D z, br before hitting C z, r is

greater than p.

First find b - 1 such that the standard Brownian motion starting from a1

Ž . 'point of C x, r has a chance greater than p of making a closed loop around
Ž . Ž .D x, b r before hitting C x, rrb .1 1

Ž . Ž .Next use the Harnack principle to find b g 0, 1 such that h y r2

Ž . Ž .'h x ) p for all x, y g D z, b r .2

Let b s b b2r2. The strong Markov property applied at the hitting time of2 1

Ž .C z, brrb shows that it will suffice to prove that the probability that an1

Ž .h-process starting from a point of C z, brrb makes a closed loop around1

Ž . Ž .D z, br before hitting C z, r is greater than p. By our choice of b , the1

Ž .probability that a Brownian motion starting from a point of C z, brrb1

Ž . Ž 2 .makes a closed loop around D z, br before hitting C z, brrb is greater1

'than p .

Let P and P h denote the distributions of Brownian motion and anx x

h-process, respectively, starting from x, and let X stand for the generic
Ž . Ž 2 .process. If x g C z, brrb and y g C z, brrb , then both x and y belong1 1

Ž .to D z, b r . Using the relationship between the hitting densities for an2

Ž .h-process and a Brownian motion starting from x g C z, brrb shows that1

h yŽ .
h

2 2P X T g dy s P X T g dyŽ . Ž .Ž . Ž .x CŽ z , br r b . x CŽ z , br r b .1 1h xŽ .

' 2G p P X T g dy .Ž .Ž .x CŽ z , br r b .1

The distribution of an h-process and of a Brownian motion starting from x
Ž 2 .and stopped at the hitting time of C z, brrb are identical if we condition1

Ž 2 .them to hit the same point of C z, brrb . Hence, the last formula shows1

that the Radon]Nikodym derivative of the distribution of an h-process
Ž . Ž 2 .starting from x g C z, brrb and stopped at the hitting time of C z, brrb1 1

with respect to the distribution of Brownian motion starting from the same
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2Ž . 'point x and stopped at the hitting time of C z, brrb is greater than p . It1

Ž .follows that an h-process starting from a point of C z, brrb makes a closed1

Ž . Ž 2 .loop around D z, br before hitting C z, brrb with probability greater1

' 'than p ? p s p.

Ž . Ž .b For this part, suppose that d g 0, 1r4 is fixed and we set

˜ 2D s x , x g R : x - 0, 0 - x - 1 ,Ž .� 41 2 1 2

˜ 2D s x , x g R : x - 0, d - x - 1 y d .Ž .� 41 1 2 1 2

Suppose that z F y1 and let1

˜L s x , x g D : x s z y 3r4 ,Ž .� 41 1 2 1 1

˜L s x , x g D : x s z y 1r2 ,Ž .� 42 1 2 1 1

˜L s x , x g D : x s z y 1r2 ,Ž .� 43 1 2 1 1

˜K s x , x g D : z y 1r2 - x - z q 1r2 ,Ž .� 41 1 2 1 1 1

˜K s x , x g D : z y 1r4 - x - z q 1r4 ,Ž .� 42 1 2 1 1 1 1

˜K s x , x g D : z y 1 - x - z q 1r2 ,Ž .� 43 1 2 1 1 1

˜K s x , x g D : z y 1 - x - z q 1 ,Ž .� 44 1 2 1 1 1

˜Q s x , x g D : z y 1 - x - z q 1r2 ,Ž .� 41 2 1 1 1

Suppose that h is a strictly positive harmonic function in K which4

˜ ˜vanishes on ­D. Let v be the center of L , and let C be the event that a1

Žprocess hits L , then makes a closed loop around K inside K all this2 2 1

˜.before exiting K and finally exits K through L . The P -probability of C is3 3 3 v

equal to p ) 0, which depends only on d .

Ž . Ž .The Harnack principle implies that h y rh v ) b ) 0 for all y g L and3

so, for y g L , we have3

h yŽ .
hP X T g dy s P X T g dy ) bP X T g dy .Ž . Ž . Ž .Ž . Ž . Ž .v ­ K v ­ K v ­ K3 3 3h vŽ .

Ž . hJust as in part a we deduce that the Radon]Nikodym derivative P rP ) bv v
h ˜� Ž . 4 Ž .on the event X T g L . Thus P C ) bp.­K 3 v3

Ž Ž . .For a fixed y g L , the function x ª P X T g dy is a harmonic2 x ­ Q

˜function in Q which vanishes on ­D l ­ Q, and the same can be said about h.

Ž .The boundary Harnack principle see Section 2.4 implies that, for some

b ) 0 and all x g L ,1 1

h yŽ .
hP X T g dy s P X T g dyŽ . Ž .Ž . Ž .x ­ Q x ­ Q

h xŽ .

h yŽ .
G b P X T g dyŽ .Ž .1 v ­ Q

h vŽ .

s b P h X T g dy .Ž .Ž .1 v ­ Q
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The strong Markov property applied at the exit time from Q now implies that
h ˜Ž .P C G b bp s b ) 0 for all x g L .x 1 2 1

Ž . Ž . Ž .c Suppose that J, an arc of C 0, 1 , and r ) 0 are such that D J, r does
Ž . w Ž . Ž .xnot cover C 0, 1 recall that D J, r s D D y, r . Suppose that h is ay g J

Ž .positive harmonic function in D J, r . We will show that every h-process
Ž . Ž .starting from a point of D J, rr2 makes a closed loop around D J, 3rr4

Ž .before leaving D J, r with probability greater than p ) 0 which depends

only on r.

< < Ž .If x y x s r, then Brownian motion starting from a point of D x , r1 2 1

Ž . Ž . Ž .can hit D x , r without leaving D x , 2r j D x , r with probability p ) 0.2 1 2 1

Ž .With probability p ) 0, Brownian motion starting from a point of D x, r2

Ž . Ž .will make a closed loop around D x, r before leaving D x, 2r . There exists

a k - ` which depends only on r and which has the following property: one
� 4can find an r ) 0 and a sequence of points x such that x s x ,1 1F jF k 1 k

< < Ž . Ž . Ž .x y x s r for all j - k, D D x , 2r ; D J, 7rr8 R D J, 3rr4j jq1 1F jF k j

Ž . Ž .and the discs D x , r form a closed loop around D J, 3rr4 . A repeatedj

application of the strong Markov property at the consecutive hitting times of
Ž . Ž .D x , r ’s shows that Brownian motion starting from a point of D x , r canj 1

Ž . Ž .hit all D x , r ’s and finally make a loop around D x , r before leavingj 1

Ž . Ž . Ž .D D x , 2r ; D J, 7rr8 R D J, 3rr4 with probability greater than1F jF k j

pk p . Actually, the starting point of the process can be in any of the discs1 2

Ž .D x , r , so the strong Markov property applied at the first hitting time ofj

Ž .D D x , r implies that Brownian motion starting from a point of1F jF k j

Ž . Ž . Ž .D J, rr2 makes a closed loop around D J, 3rr4 before leaving D J, 7rr8

with probability greater than pk p .1 2

The Harnack principle implies that there exists b ) 0 which depends only1

Ž . Ž . Ž .on r such that h y rh x ) b for all x, y g D J, 15rr16 . A calculation1

Ž . Ž .similar to that in parts a and b of this section gives

h yŽ .
hP X T g dy s P X T g dyŽ . Ž .Ž . Ž .x ­ DŽ J , 7r r8. x ­ DŽ J , 7r r8.

h xŽ .

G b P X T g dy ,Ž .Ž .1 x ­ DŽ J , 7r r8.

Ž . hfor all x g D J, rr2 . Hence the Radon]Nikodym derivative P rP G b onx x 1

w x0, T . Now, an application of the strong Markov property at the­DŽ J , 7r r8.

hitting time T shows that an h-process starting from a point of­DŽ J , 7r r8.

Ž . Ž . Ž .D J, rr2 makes a closed loop around D J, 3rr4 before leaving D J, r
with probability greater than b pk p .1 1 2

4.2. The key estimate. We are now ready to prove our key result, that is,

Proposition 4. Let Z1, . . . , Z6 denote independent planar Brownian motions
Ž .started uniformly and independently on C 0, 1 .

Ž .PROPOSITION 4. We have j 2, 4 ) 4. In other words, for some fixed c ) 0,u 1

a ) 0 and all R ) 1,1

P Z j
j l Z j

j s B F c Ry4ya1 .D Dw0 ,T Ž < Z <.x w0,T Ž < Z <.x 1R Rž / ž /ž /
1FjF2 3FjF6
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As the proof of this proposition is long, technical and complicated, we first

offer an outline of the general idea of the proof.

OUTLINE OF THE PROOF. Suppose that « s 1rR. Let X j, j s 1, 2, and Y j,

j s 1, 2, 3, 4, be two-dimensional Brownian motions. Suppose that they are

jointly independent and that they start from distinct deterministic points
1 2 1 4 Ž .x , x , y , . . . , y on C 0, « . The scaling property and a conditioning argu-0 0 0 0

ment show that it will suffice to prove that

P X j
j l Y j

j s B F c « 4qa1 ,D Dw0 ,T Ž X .x w0,T ŽY .x 1C Ž0 ,1. C Ž0 ,1.ž / ž /ž /
1FjF2 1FjF4

where c and a are independent of « and of the starting points1 1

Ž 1 2 1 4. Ž .6x , x , y , . . . , y in C 0, « .0 0 0 0
1Žw Ž 1.x.We know that the probability that the path X 0, T X is disjointCŽ0, 1.

1Žw Ž 1.x. 2Žw Ž 2 .x. wfrom the paths Y 0, T Y and Y 0, T Y in short, the proba-CŽ0, 1. CŽ0, 1.
1 Ž 1 2 . x 2 w Ž . xbility that X l Y j Y s B is of order « because j 2, 1 s 2 . The

2 Ž 3 4.same is true for the probability that X l Y j Y s B. We will argue

that, given both these events, there is a significant conditional probability

that X 2 l Y 1 / B or that X 1 l Y 3 / B. More precisely, we will show that

this conditional probability is of order 1 y « b for a positive b. In order to

achieve this goal, we first observe that the traces of X 1 and X 2 have to differ
Ž k .significantly on the circles C 0, a , for some fixed a ) 0 and many values of

Ž . 1k the opposite event has a small probability . Next we ‘‘fix’’ the paths of X

and X 2. If the trace of X 2 is ‘‘larger’’ than that of X 1, then the process Y 1

Ž 1. 2which is already conditioned to avoid X will be likely to hit X . In the

opposite case, Y 3 will be likely to hit X 1.

PROOF OF PROPOSITION 4. We will divide the proof into several steps and

reuse the notation introduced in the outline of the proof.
Ž .Step 1 Notation and definitions . Let D be the connected component of

1 1D 0, 1 R X 0, T XŽ . Ž .ž /CŽ0 , 1.

Ž .such that C 0, 1 ; ­D. Again let

˜ 2D s x , x g R : x - 0, 0 - x - 1 .Ž .� 41 2 1 2

If y1
f D, then X 1

1 l Y 1
1 / B. In view of the inequality we0 w0,T Ž X .x w0,T ŽY .xC Ž0,1. C Ž0,1.

are trying to prove, we may concentrate on the opposite event; that is, we will

condition X 1 on

E s y1 g D .� 41 0

1Ž Ž 1..Let z s X T X . The point z corresponds to two distinct prime0 CŽ0, 1. 0

ˆ ˆX
ends z and z in D. Let z and z denote the endpoints of the connected0 0 1 2

Ž . 1component of D l C 0, « which contains y . It is easy to see that, almost0

w Ž .xsurely, z / z . Hence using, e.g., Proposition 2.14 in Pommerenke 19921 2

ˆ ˆ ˆthe prime ends z and z corresponding to z and z are also distinct; z and1 2 1 2 1

ẑ divide the set of prime ends of D into two nonempty parts M and M ,2 1 2
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ˆ ˆX ˆŽ .and as C 0, 1 ; ­D, z and z are on the same side, say, in M . Now fix z , a0 0 1 3

prime end of D in M .2

˜Ž .We choose cf. Section 2.6 an analytic one-to-one mapping f from D onto D
ˆ ˆX ˆŽ� 4. �Ž . Ž .4 Ž .such that f z , z s 0, 0 , 1, 0 and f z s y`. Then, intuitively speak-0 0 3

y1 ˆ ˆŽ . Ž�Ž . 4.ing, C 0, 1 ; f x , x g ­D: x s 0 , and z and z are mapped onto1 2 1 1 2

˜d ˜utwo points which lie on different half-lines ­D and ­D , where

df
d˜ ˜­D s x , x g ­D : x s 0 ,Ž .� 41 2 2

df
u˜ ˜­D s x , x g ­D : x s 1 .Ž .� 41 2 2

Let

˜ ˜ ˜D s D d s x , x g D : d - x - 1 y d ,Ž . Ž .� 41 1 1 2 2

y1 ˜D s f D .Ž .1 1

Ž .The value of the parameter d g 0, 1r4 will be chosen later in the proof.
Ž .Suppose that 0 - a - 1r2 the value of a will be specified later , and let m0

be the largest integer k such that ak ) « . For k s 1, 2, . . . , m , let JD be a0 k

Ž k .connected component of D l C 0, a which must be crossed by every contin-
Ž . Ž .uous path in D which connects C 0, « and C 0, 1 . We may and will assume

D Ž .that J ’s are chosen so that every continuous path starting from C 0, « andk

Ž . D Dgoing to C 0, 1 in D must intersect J before J for every k. Similarly, letk ky1
D1 Ž k . DJ be a connected component of D l C 0, a which is a subset of J andk 1 k

Ž .which must be crossed by every continuous path in D which connects C 0, «1
df dfD D D D1 1˜ ˜Ž . Ž . Ž .and C 0, 1 . We will write J s f J and J s f J .k k k k

Ž . Ž .Step 2 Choosing a value for a . Suppose that z s z , 1r2 for some1

z - y1 and that G is a continuous path which has one endpoint on each set1

˜u ˜d ˜�Ž . Ž .4­D and ­D and intersects x , x g D: x g z y 1, z q 1 . Without loss1 2 1 1 1

�Ž .of generality assume that the intersection point belongs to K s x , x :1 2

.4 Ž .x s z y 1, x F 1r2 . Note that there is a q ) 0 such that i Brownian1 1 2 0

˜ ˜d�Ž . 4motion starting from z can exit D through x , x g ­D : x - z y 11 2 1 1

Ž .without hitting K with probability q ) 0, and ii Brownian motion starting0

˜ ˜d�Ž . 4from z can exit D through x , x g ­D : x ) z y 1 without hitting K1 2 1 1

with probability q ) 0. At least one of these events implies that the trajec-0

˜tory of the process intersects G. Hence the harmonic measure of G in D with

respect to z is greater than q .0
D̃Ž .Suppose that 1 - k - m and find a point z s z , 1r2 g J . Let v s0 1 k

y1Ž . < < kf z . We have v s a . Now choose a ) 0 so small that the probability that

a Brownian motion starting from v makes a closed loop around 0 before
Ž ky1. Ž kq1.leaving D 0, a R D 0, a is greater than 1 y q . If such a closed loop0

is made, the process hits the boundary of D before hitting JD j JD . Itky1 kq1

follows that the harmonic measure of JD j JD in D with respect to v isky1 kq1

less than q . By the conformal invariance of the harmonic measure we see0
D̃ D̃ ˜that the harmonic measure of J j J in D with respect to z is less thanky1 kq1

D̃ D̃q . Hence, the paths J and J are separated by0 ky1 kq1

˜x , x g D : x g z y 1, z q 1 .Ž . Ž .� 41 2 1 1 1
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Ž 1 2 . 1Step 3 Comparing the trajectories of X and X . Assume now that X

is fixed and that E holds. Let L be the connected component of D l1 k 1

w Ž ky1. Ž kq1.x D1 2D 0, a R D 0, a which contains J . Recall that X is a Browniank
1 Ž .motion independent of X and starting from a point of C 0, « . Let

df
1

2A s X l L / B ,� 4k w0,T Ž X .x kC Ž0 ,1.

df
2 kq6 2 2A s D L , r a l X 0, T X s B ,Ž .Ž .½ 5k k 1 CŽ0 , 1.

df
1 2A s A j A ,k k k

where r ) 0 is a constant which will be chosen below. We introduce stopping1

times

T s inf t : X 2 t g C 0, a4 kq2 ,Ž . Ž .D1 ½ 5
k

T s inf t ) T : X 2 t g C 0, a4 kq2 andŽ . Ž .Dj jy1½
k

< 2 < < 2 <X t / X T , j ) 1.Ž . Ž .jy1 5
df

2� Ž . w x4Let us consider the processes V s X t , t g T , T . We will now use aj j jq1

technique we shall reuse several times in this proof. We first condition on the

value of the finite sequence

J s X 2 T .Ž .Ž .j jF1

Conditional on J, all the processes V are independent h-processes. We thenj

use this independence to obtain estimates of a conditional probability. How-

ever, we then finally remove the conditioning, noticing that these estimates

are in fact independent of the value of J.

ŽConditional on J, each process V is an h-process in a domain D 0,j
4 ky2 . Ž 4 kq6. Ž 4 kq2 .a R D 0, a starting from a point of C 0, a . The strong Markov

Ž .property and part a of Section 4.1 show that if one of the V ’s starts fromj

Ž 4 kq2 . Ž 4 kq6.C 0, a and hits D L , r a at a point z, then it makes a closed loop4 k 1

Ž 4 kq6. Ž 4 kq2 .around D z, r a before hitting C z, a r16 with probability greater1

Žthan p p and the corresponding r will be chosen below; note that the way1 1 1

.r is chosen does not depend on J . If such a loop occurs, V intersects L . A1 j 4 k

Ž 4 kq10.similar argument applies when V hits D L , r a . This shows thatj 4 kq4 1

the conditional probability of A is greater than p , given any value of J.4 k 1

The event A is determined by the processes V whose paths lie insidej4 k

Ž 4 ky2 . Ž 4 kq6. Ž 4 ky6. Ž 4 kq2 .D 0, a R D 0, a or D 0, a R D 0, a . This implies that,
Ž .conditional on J, all the events A are independent and that4 k k F m r40

Ž < .P A J ) p for any J.4 k 1
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Let N be the number of integers k - m r4 such that A holds, and let0 4 k

m s m r4. Conditional on J, we may give a lower bound for N just as we1 0

would do it for a sequence of Bernoulli trials. Let q s 1 y p . Recall that1 1

y
2 2x y

exp y dx F exp y ,H ž / ž /2 2y`

Ž .for y F y1. We have for large m i.e., for small « ) 00

2
m p 1 u y m pŽ .m p r21 1 1 11 1

P N - J - exp y duHž / ž /3 2m p q2p m p q'y` 1 1 11 1 1

21 yvŽ .ym p r2 r m p q'1 1 1 1 1s exp dvH ž /' 22py`

1 ym p1 1
F exp .ž /' 8q2p 1

As this last estimate is in fact independent of J, we can remove the

conditioning.

< < w xRecall that log «rlog a g m , m q 1 . We now choose p - 1 so large1 1 1

that, for some g ) 0, « ) 0,1 1

m p1 1 5< <P N - g log « - P N - - « ,Ž .1 ž /3

for all « - « . We also fix some r ) 0 which corresponds to our choice of p1 1 1

Ž .in a way determined in part a , Section 4.1. Let us stress that r does not1

depend on d at all. We set

< <E s N G g log « ,� 42 1

and we finally have

< 1 5
22 P E X , E - « ,Ž . Ž .X 2 1

for all « - « , where « is some deterministic constant.1 1

Ž 1 2 . 1 2Step 4 Intersections of Y and X . Assume now that both X and X

are fixed, and that E and E hold. By a slight abuse of notation, in this step1 2

of the proof, we will use the symbol Y 1 to denote a Brownian motion starting
1 Ž .from y and conditioned to hit C 0, 1 before hitting any other part of ­D.0

1 ˜1 ˜Hence, Y is an h -process. Let Y denote a process in D obtained by a2
1 ˜1Ž .time-change from f Y so that the quadratic variation of Y on the time

˜1 ˜Ž .interval t , t is equal to t y t . Then Y is an h -process in D for some1 2 2 1 3

positive harmonic function h .3

Let MM be the set of m’s such that A1 holds. For every m g MM, choose a4 m
m � 2 4 m Ž m m. Ž m.2point z in X l L . We will write z s z , z s f z . Let˜w0,T Ž X .x m 1 2C Ž0,1.

m ˜ mL s x , x g D : x s z y 1r2 ,Ž .� 42 1 2 1 1

m ˜ mL s x , x g D : x s z y 1 ,Ž .� 44 1 2 1 1

m ˜ mL s x , x g D : x s z q 1Ž .� 45 1 2 1 1
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and

m ˜ m mK s x , x g D : z y 1r2 - x - z q 1r2 ,Ž .� 41 1 2 1 1 1

m ˜ m mK s x , x g D : z y 1 - x - z q 1 .Ž .� 44 1 2 1 1 1

m n D̃Note that if n ) m and n g MM, then L lies to the left of L because J5 4 4 my1
D̃ ˜�Ž . Ž .4and J are separated by a set x , x g D: x g z y 1, z q 1 for4 my3 1 2 1 1 1

some z .1

Ž m m m.Let L s D L j L j L . We now repeat a part of the argumentmg MM 2 4 5

from the previous step. First we define stopping times

˜1T s inf t : Y t g L ,Ž .� 41

˜1 ˜1 ˜1T s inf t ) T : Y t g L and Y t / Y T , j ) 1,Ž . Ž . Ž .½ 5j jy1 1 1 jy1

˜1 ˜1Ž . Ž .where Y t denotes the first coordinate of Y t . Let us consider the pro-1

cesses
df

1˜V s Y t , t g T , T .Ž .½ 5j j jq1

Again, conditional on

J9 s Y 1 T ,Ž .Ž .j jG1

Ž .the processes V are independent h-processes.j jG 0

˜ ˜1If m g MM, let C be the event that the process Y makes a closed loopm
m m Ž .around z within K . By part b , Section 4.1, conditional on J9, if V starts4 j

from a point of Lm, it makes a closed loop around K m within K m with2 1 4

probability greater than q ) 0, where q depends only on d . Hence, using2 2

˜cthe independence and unconditioning, the probability of F C is smallermg MM m

Ž .N1 1than 1 y q , where N is the number of m’s such that A holds.2 1 4 m
1 ˜Let us express this statement in terms of Y . If C holds for m g MM, thenm

1 m Ž 4 mq2 . Ž 4 my2 .Y makes a closed loop around z between C 0, a and C 0, a

and, consequently, the trajectories of Y 1 and X 2 intersect. Thus,

h N1 2 1 22 1<1 23 P Y l X s B X , X , E , E F 1 y q .Ž . Ž .1 ž /w0 ,T ŽY .x w0,T Ž X .x 1 2 2Y C Ž0 ,1. C Ž0 ,1.

Ž .Step 5 Choosing a value for d . The parameter d will depend on r1

Ž D1chosen in Step 3. We want to choose d ) 0 so small that, for every k, D J ,k
kq6 .r a r2 intersects both1

df df
u y1 u d y1 d˜ ˜­D s f ­D and ­D s f ­D .Ž . Ž .

Ž D1 kq6 . u Ž D1Take any d - 1r2. If, for all k, D J , r a r2 l ­D / B and D J ,k 1 k
kq6 . dr a r2 l ­D / B, then we are done. Suppose that one of these state-1

ments, say, the first one, is not true for a certain k. An argument similar to
Ž .that in part c , Section 4.1, shows that it is possible to find a p ) 0

Ž . Ž D1 kq6 .depending on r but not on k or a , a point z g D J , r a r2 and a1 k 1

Brownian motion Z starting from z which makes a closed loop around JD1
k

Ž D1 kq6 .inside D J , r a r2 with probability greater than p. The conformalk 1
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invariance of Brownian motion implies that with probability greater than p,

a certain Brownian motion makes a closed loop around JD1 before leavingk
D1 kq6 ˜uŽ Ž ..f D J , r a r2 and hence before hitting D . It follows from the definitionk 1

D̃1of J that its closure intersects both the upper and lower parts of thek

˜boundary D . Now we can take d ) 0 so small that any Brownian motion1
D̃1

starting from any point cannot make a closed loop around J without hittingk

˜u­D with probability more than pr2. With this choice of d , we must have
Ž D1 kq6 . u Ž D1 kq6 . dD J , r a r2 l ­D / B and D J , r a r2 l ­D / B.k 1 k 1

Ž 3 1. 1 2Step 6 Intersections of Y and X . Assume once more that X and X

are fixed and that E and E hold. In view of the probability we are going to1 2

w Ž .x 3estimate i.e., 4 , we can also restrict ourselves to the case where y g D,0

since otherwise, Y 3 intersects necessarily X 1. Consider an m such that A2
4 m

holds. In view of the previous step, every continuous path starting from
Ž . Ž . 2C 0, « l D and going to C 0, 1 without hitting the trajectory of X must

intersect

df
1 D 4 mq61

1K s X j D J , r a r2 .Ž .m w0,T Ž X .x 4 m 1C Ž0 ,1.

3 Ž . 2Let us condition the process Y to hit C 0, 1 before hitting the path of X .

Then Y 3 is an h -process. Let U be the hitting time of K by Y 3. By part4 m m

Ž . Ž D1 4 mq6 .c , Section 4.1, an h -process, starting from a point of D J , r a r2 ,4 4 m 1

Ž D1 4 mq6 .can make a closed loop around D J , r a r2 before leaving4 m 1

Ž D1 4 mq6 .D J , 3r a r4 with probability greater than some fixed q ) 0. Making4 m 1 3

such a loop implies intersecting the path of X 1 in view of the fact, proved in
Ž D1 4 mq6 . uthe previous step, that D J , r a r2 l ­D / B. The strong Markov4 m 1

property applied at U shows that Y 3 intersects the trajectory of X 1 withm

probability greater than q .3
3 1 Ž 4 m.Let F be the event that Y intersects the path of X within D 0, a Rm

Ž 4 mq1.D 0, a . By applying the strong Markov property at the stopping time Um

we see that if A2 holds, then the event F happens with probability greater4 m m

than q given F F c, where the intersection is taken over j such that A2
3 j) k j 4 j

holds. Let N be the number of m such that A2 holds. Then we obtain, as2 4 m

Ž .in 3 ,

Nh 3 1 1 24 2<3 14 P Y l X s B X , X , E , E F 1 y q .Ž . Ž .3 ž /Y w0,T ŽY .x w0,T Ž X .x 1 2 3C Ž0 ,1. C Ž0 ,1.

Ž . k1,k 2 , . . . , k nStep 7 Combining the estimates . Let G denote the eventj , j , . . . , j1 2 m

X j
j l Y j

j s B .D Dw0 ,T Ž X .x w0,T ŽY .xC Ž0 ,1. C Ž0 ,1.ž / ž /½ 5
jsj , . . . , j jsk , . . . , k1 m 1 n

Note that the same argument as in the first part of the proof of Lemma 2

shows that, for sufficiently small b ) 0, there exists c ) 0 such that, for all2 0
1 4 Ž .« - 1 and independently of the starting points x , . . . , y on C 0, « ,0 0

P G1,2 F k P Z1 l Z j
j F c « 2yb 2 ,Ž . D1 3 w0,S x w0,S x 01r Ž2 « . 1rŽ2 « .ž /ž /

js2,3
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Ž j j.where we have used the notation Z , S from Section 3. Similarly,
Ž 3,4. 2yb 2P G F c « .2 0

Ž . Ž . Ž .Let q s max 1 y q , 1 y q . Then q - 1 and we obtain from 3 and 44 2 3 4

that

1 < 1 2 N1 1 < 1 2
1 1P G X , X , E , E F q P G X , X , E , E ,Ž . Ž .Y 1,2 1 2 4 Y 1 1 2

3 < 1 2 N2 3 < 1 2
3 3P G X , X , E , E F q P G X , X , E , E .Ž . Ž .Y 1,2 1 2 4 Y 2 1 2

Note that q N1qN 2 s q N F « b1 for some fixed b ) 0 given the event E .4 4 1 2

Ž . Ž .Choose b , b g 0, 1 such that 2 2 q b q b ) 4 q b . Then, for « - « ,2 3 2 1 3 1

1,2,3,4 <P G E , EŽ .1,2 1 2

1 < 1 2 3 < 1 2
1 2 1 3F E P G X , X P G X , XŽ . Ž .ŽX , X Y 1,2 Y 1,2

= 2 4 < 1 2 <2 4P G l G X , X E , EŽ . .Y ,Y 1 2 1 2

N1qN 2 1,2 3,4 < 1 2 <1 2 1 3 3 4F E q P G l G X , X E , EŽ .Ž .X , X 4 Y ,Y ,Y ,Y 1 2 1 2

b1 1,2 3,4 <F « P G l G E , E .Ž .1 2 1 2

Hence, for all « - « ,1

P G1,2,3,4 s P G1,2,3,4 l EŽ . Ž .1,2 1,2 1

c1,2,3,4 <F P E l E P G E , E q P E l EŽ . Ž .Ž . Ž .1 2 1,2 1 2 1 2

b1 1,2 3,4 <F P E l E « P G l G E , EŽ . Ž .2 1 1 2 1 2

c
<q P E EŽ .Ž .2 1

F « b1 P G1,2 P G3,4 q « 5Ž . Ž .1 2

2 4qb 53F c « q « ,Ž .0

and this completes the proof of Proposition 4. I

5. Estimates of disconnection probabilities.

5.1. Unconditioned processes. We are now going to derive some conse-

quences of the results obtained in the previous section. One may note
Ž .similarities with some parts of Section 8 in Burdzy and Lawler 1990b . If K,

K 9, and K 0 are three compact sets in the plane, we will say that K
w xdisconnects K 9 from K 0 if every continuous path M: 0, 1 ª C such that

Ž . Ž .M 0 g K 9 and M 1 g K 0 intersects K. Similarly, we will say that K
w .disconnects K 9 from ` if every continuous path M: 0, 1 ª C such that

Ž . < Ž . <M 0 g K 9 and lim M u s ` intersects K.uª 1

Ž . Ž .6We fix x , . . . , x g C 0, 1 and a compact path-connected set L which1 6

contains these points. Now let X 1, . . . , X 6 denote six planar Brownian mo-

tions which are independent given their starting points X 1 s x , . . . , X 6 s x .0 1 0 6
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LEMMA 5. For some fixed constants c ) 0 and a ) 0, which are indepen-2 2

Ž .dent of x , . . . , x and L, for all R G 2,1 6

P X j
j j L does not disconnect 0 from ` F c Ry2ya 2 .D w0 ,T Ž < X <.x 2Rž /ž /

1FjF6

PROOF. This lemma is a consequence of Proposition 4 and of the analytic-

ity of the mapping z ª z 2. We fix a point x g L, and we define, for every0

� 4 Ž j w x. j jj g 1, . . . , 6 , a continuous path X , u g y1, 0 joining x s X to x s Xu 0 y1 j 0

Ž .in L. Without loss of generality we can assume that x g 0, ` ; C. Let0

Ž j .u , u G y1 denote the continuous determination of the argument ofu

Ž j . jX , u G y1 such that u s 0.u y1

� 4We then define, for all j g 1, . . . , 6 , the continuous square root
˜ j jŽ . Ž .X , u G y1 of X , u G y1 such thatu u

¡ x , if j s 1, 2, 3, 4,' 0
j ~X̃ sy1 ¢y x , if j s 5, 6.' 0

˜ jChoose any j F 4 and k s 5 or 6. Consider the event that the path of Xu

˜k ˜ j ˜kintersects the path of X . If X s X for some t, s, then we must haveu t s

< j < < k < j k jX s X and u y u s 2p q 4 pp for some integer p. Hence, as X st s t s y1

X k s x , X j j X k disconnects 0 from `. Therefore, for all R ) 4,y1 0 wy1,t x wy1,s x

P X j
j j L does not disconnect 0 from `D w0 ,T Ž < X <.xRž /ž /

1FjF6

F P X j
j does not disconnect 0 from `D wy 1,T Ž < X <.xRž /

1FjF6

˜ j ˜j jF P X l X s BD Dwy 1,T Ž < X <.x wy1,T Ž < X <.xR Rž / ž /ž /
1FjF4 js5,6

j j˜ ˜j j j jF P X l X s B .˜ ˜ ˜ ˜D DŽ < <.x Ž < <.xwT Ž < X <. ,T X wT Ž < X <. ,T XR R' '2 2ž / ž /ž /
1FjF4 js5,6

˜ jŽ .The X , u F 0 are independent time-changed planar Brownianu 1F jF 6

motions. Hence, Lemma 1 and Proposition 4 imply that this last probability is
y4ya1'Ž .majorized by k c R r2 for all R ) 4; Lemma 5 follows. I6 1

We now show that Lemma 5 still holds if we replace L by two paths L1 and

L2 joining, respectively, X 1 to X 2 and X 3 to X 4. Let us suppose that L1
0 0 0 0

Ž 2 . Žrespectively, L is a continuous path joining x to x respectively, x to1 2 3

.x .4
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LEMMA 6. For some fixed c ) 1 and a ) 0, which are independent of2 3

Ž . 1 2x , . . . , x , L , L , for all R G 2,1 6

P X j
j j L1 j L2 does not disconnect 0 from `D w0 ,T Ž < X <.xRž /ž /

1FjF6

F c Ry2ya 3 .3

PROOF. We first introduce some further notation. For all n G 1, we set

A s X j
j j L1 j L2 does not disconnect 0 from ` ,Dn w0,T Ž < X <.xnž /½ 5

1FjF6

B s X j
j j L1 j L2 is connectedDn w0,T Ž < X <.xnž /½ 5

1FjF6

and

Q s B R B .nq1 nq1 n

Ž j . 1 2
jIf D X j L j L is not connected, then at least one of the1F jF 6 w0,T Ž < X <.xn

three following events occur:

B1 s X j
j l X j

j s B ,D Dn w0,T Ž < X <.x w0,T Ž < X <.xn nž / ž /½ 5
js1,2 js3,4

B2 s X 5
5 l X j

j s B ,Dn w0,T Ž < X <.x w0,T Ž < X <.xn nž /½ 5
1FjF4

B3 s X 6
6 l X j

j s B .Dn w0,T Ž < X <.x w0,T Ž < X <.xn nž /½ 5
1FjF4

We deduce from Lemma 1 and Corollary 3 that, for some fixed constant c4

Ž . 1 2independent of x , . . . , x , L and L , for all n G 1,1 6

c 1 2 3 y9r4P B F P B q P B q P B F c n .Ž . Ž . Ž . Ž .Ž .n n n n 4

Ž < j <.Lemma 5 combined with the strong Markov property applied at T X ’sn

and a scaling argument imply that, for all 1 F n - N,

y2ya 2<P A Q F c NrnŽ .Ž .N n 2

and

P A l B F c Ny2ya 2 .Ž .N 1 2

Ž .We set a s min 1r4, a . Now, for all N G 3,4 2

nsN
c

P A F P B q P A l B q P Q l AŽ . Ž . Ž . Ž .Ž . ÝN N N 1 n N

ns2

y2yansN 4N
y9r4 y2ya 2F c N q c N q c P Q .Ž .Ý4 2 2 nž /nns2
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However,

nsN nsN
c c2qa 2qa4 4n P Q F n P B y P BŽ . Ž . Ž .Ž . Ž .Ž .Ý Ýn ny1 n

ns2 ns2

nsNy1
c c2qa 2qa4 4F P B q n q 1 y n P BŽ . Ž . Ž . Ž .Ž . Ž .Ž .Ý1 n

ns2

1qa4Ny1 1 q 1rnŽ .
F 1 q c 2 q aŽ .Ý 4 4

nns2

F 1 q 12c log N.4

Finally, for all N G 3,

P A F c q c 2 q 12c log N Ny2ya4 .Ž . Ž .Ž .N 4 2 4

Lemma 6 follows.

5.2. Conditioned processes. Let us now define six identically distributed
1 6 � 4independent processes W , . . . , W as follows. For all j g 1, . . . , 6 , for all

u G 0,

W j s exp yb j q iu j ,ž /u A Žu. A Žu.j j

where b j is a three-dimensional Bessel process started from 0, u j is an
w xindependent linear Brownian motion started with the uniform law on 0, 2p

Ž j .i.e., W starts with uniform distribution on the unit circle and where
Ž . u < j <y2

A u s H W dv is the usual time-change. Now we set, for all « - 1 andj 0 v

� 4for all j g 1, . . . , 6 ,

ˆ j j< <T s inf u ) 0, W s « .� 4« u

We also put

WW « , 6 s W j
j .Ž . ˆD w0 ,T x«

1FjF6

1 2 Ž . Ž 1 2 . Ž 3 4.Let L and L be two random s W , W - and s W , W -measurable0 0 0 0

paths joining W 1 to W 2 and W 3 to W 4, respectively. Then we have the0 0 0 0

following analogue of Lemma 6.

LEMMA 7. For some a ) 0, c ) 0, for all L1, L2, « - 1,5 5

P L1 j L2 j WW « , 6 does not disconnect 0 from ` F c « 2qa 5 .Ž .Ž . 5

PROOF. Recall the notation of Section 3. One has to notice, using Section

2.2.2, that, for all 1 F j F 6, the process

j ˆ j ˆ j2W , u F T y TT̂ qu « 1r2ž /1r2

has the same law as

Z j , u F S j conditional on S j - S j .� 4Ž .u 2 « 2 « 2
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Ž . y1 Ž Ž j . .Let f z s z . It is well known that uf Z , u G 0 has the same distribu-u

Ž j .tion as Z , u G 0 , and sou

P Z j j f L1 j f L2 does not disconnect 0 from `Ž . Ž .D w0 ,T Ž < Z <.x1r Rž /ž /
1FjF6

s P Z j j L1 j L2 does not disconnect 0 from ` .D w0 ,T Ž < Z <.xRž /ž /
1FjF6

Ž j j . < < w Ž .xThis, Lemma 6 and the fact that P S - S s log 2r log « cf. 1 , imply2 « 2

that

6 2qa 3< <log « «
1 2P L j L j WW « , 6 does not disconnect 0 from ` F c ,Ž .Ž . 3 ž /ž /log 2 2

for all « - 1r2; Lemma 7 follows immediately. I

Ž .6. Proof of Theorem 1. Let Z s Z , t G 0 denote a planar Browniant

motion started from 0. We want to show that, for any fixed T, Z has now0,T x

frontier triple point. Note that almost surely Z and Z are not frontier0 T

points of Z .w0,T x

If z is a frontier triple point for Z , with z / Z and z / Z , then, forw0,T x 0 T

some a ) 0, there exist 0 - t - s - t - s - t - T such that z s Z s1 1 2 2 3 t1

< < < < < < < <Z s Z , z ) a, Z y z ) a, Z y z ) a and Z y z ) a, such that z ist t s s T2 3 1 2

on the boundary of a connected component of the complement of Z , whichw0,T x
Ž .intersects the circle C z, a . We will say that such a point is an a-frontier-

triple point.

A simple scaling argument shows that it suffices to prove the nonexistence

of 2-frontier-triple points. Let us now fix k ) 0; we are going to prove that
w x2K s yk, k contains almost surely no 2-frontier-triple points.

2 y2 Ž .We first fix « - 1r2. We cover K with N - 4k « discs D s D z , « of« i i

� 4radius « . We also fix an i g 1, . . . , N for a while; we define«

i < <U s inf t ) 0, Z y z s 1� 41 t i

and, for all j G 1,

i i < <V s inf t ) U , Z y z s « ,� 4j j t i

i i < <U s inf t ) V , Z y z s 1 .� 4jq1 j t i

i Ž .If z g D is a 2-frontier-triple point, then U - T ; moreover, as D z , 1 ;i 4 i

Ž . Ž . iD z, 2 , Z does not disconnect D from C z , 1 . Hence, Z does notw0, U xw0,T x i i 4

Ž .disconnect D from C z , 1 . We are now going to estimate the probability ofi i

this last event, using Lemma 7.
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We first set, for all j G 1,

i i < <s s sup t - V , Z y z s 1r2 ,� 4j j t i

i i < <t s inf t ) s , Z y z s 2« ,� 4j j t i

i i < <h s sup t - U , Z y z s 2« ,� 4j jq1 t i

i i < <s s inf t ) h , Z y z s 1r2 .� 4j j t i

We also define, for j s 1, 2, 3, s i s t i y s i and, for all u F s i ,2 jy1 j j 2 jy1

Z i ,2 jy1 s 2Z i .u s quj

We then set, for all j s 1, 2, 3, s i s r i y h i and, for all u / s i ,2 j j j 2 j

Z i ,2 j s 2Z i .u r yuj

It is easy to see, using the skew-product decomposition of Z and the

standard properties of three-dimensional Bessel processes and their relations

with Brownian motion recalled in Section 2.2, that the joint law of
Ž i, j i. ŽZ , u F s , after the usual time-change, is absolutely continuous withu j

.uniformly bounded density independent of « , see Lemma 1 with respect to
Ž .the law of WW 4« , 6 as defined in the previous paragraph.

Ž i i. w Ž i i.xMoreover, Z , r F u F s respectively, Z , r F u F s connectst 1 2 t 2 3
i,2 i,3 Ž i,4 i,5.i iZ s 2Z to Z s 2Z respectively, Z to Z outside the circle0 r 0 s 0 01 2

Ž .C z , « .i

Hence, Lemma 7 shows readily that

2qa 5
iP Z does not disconnect D from C z , 1 F c k 4« .Ž . Ž .Ž .w0 ,U x i 5 64

Consequently,

P ' z g K , z is a 2-frontier-triple pointŽ .
N«

iF P Z does not disconnect D from C z , 1Ž .Ž .Ý w0 ,U x i i4

is1

2qa 5F N c k 4«Ž .« 5 6

a22F 4k c k 4« .Ž .5 6

Ž .Therefore as this is true for all « - 1r2 , there are almost surely no

2-frontier-triple points in K. Since this is valid for all K, the theorem follows.

I
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