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THE WILLS FUNCTIONAL AND GAUSSIAN PROCESSES1

BY RICHARD A. VITALE

University of Connecticut

The Wills functional from the theory of lattice point enumeration can
be adapted to produce the following exponential inequality for zero-mean
Gaussian processes:

2E exp sup X y 1r2 s F exp E sup X .Ž .Ž .t t tž /
t t

An application is a new proof of the deviation inequality for the
supremum of a Gaussian process above its mean:

1r2 a 2Ž .
P sup X y E sup X G a F exp y ,t tž / 2ž /st t

where a ) 0 and s 2 s sup s 2.t t

1. Introduction. The use of geometric methods in the study of Gaussian
processes is by now well established. Our purpose here is to identify a
surprising, and apparently deep, connection in the form of the Wills func-

Žtional. Originally introduced for bounding lattice point enumeration see
w x.23 , the Wills functional is built up from the classical quermassintegrals
Ž .‘‘projection]measure integrals’’ of Minkowski, which have effectively been

Žapplied before to Gaussian processes under the name mixed volumes or
. Ž w x w x w x w x w x w x w x w x w x w x.mixed widths e.g., 1 , 3 , 4 , 12 , 14 , 16 , 17 , 18 , 19 and 21 . Placed

in our setting, the Wills functional leads naturally to an exponential moment
inequality for Gaussian processes and, as a corollary, a deviation inequality
for the supremum of a Gaussian process above its mean. The latter is sharp
in the sense of having the best possible constant in the exponent.

In the next section, we discuss two representations for the Wills functional.
Then we turn to the exponential inequality and the deviation inequality.
Section 4 carries some finite-dimensional complements, leading to a second
proof of the deviation inequality. We conclude with some remarks in the last
section.

w x w xFor Gaussian processes and bounds in particular, see 6 and 9 .
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d Ž2. The Wills functional. Suppose that K is a convex body in R com-
. Ž . dpact, convex subset and that d x, K is the distance between x g R and K.

The Wills functional can be expressed as

21 W K s exp ypd x , K dx , dx s Lebesgue measure.Ž . Ž . Ž .H
dR

w x Ž .It was observed by Hadwiger 8 that 1 coincides with the original definition
w xof Wills 23 in terms of quermassintegrals:

d 1d
2 W K s W K .Ž . Ž . Ž .Ý jž /j v jjs0

jr2 Ž . jHere v s p rG jr2 q 1 is the volume of the unit ball B in R , and thejj

Ž . Ž . Ž .jth quermassintegral W K is equal to v rv E vol P K , wherej d dyj dyj dyj
Ž .the expectation is of the d y j -volume of the projection of K onto a random

Ž .d y j -dimensional subspace. It is of interest to consider

1d
V K s W K , 0 F j F d ,Ž . Ž .j dyjž /j vdy j

which are normalized versions of the quermassintegrals that do not depend
d Ž w x w x.on the dimension of the ambient space R e.g., 3 and 10 . Following

w xMcMullen 10 , they are known in the geometry literature as the intrinsic
w Ž .xvolumes of K in the probability literature, they have been written h K .j

Ž . Ž .Here is a sketch of the equivalence of 1 and 2 which has a probabilistic
flavor. We start with the classical Steiner formula for the volume of a parallel

Ž w xbody which itself can be established using a stochastic argument, 22 ; for
w x.the general theory, see 15 :

d d jvol K q L B s L W K ,Ž . Ž .Ýd jž /j
js0

where L G 0, or, equivalently,

d d j3 1 d x , K F L dx s L W K .Ž . Ž . Ž .Ž . ÝH jž /jdR js0

We then regard L as a random variable with density

4 f l s 1 l G 0 2plexp ypl2Ž . Ž . Ž . Ž .
Ž .and take expectations on both sides of 3 with the use of Fubini’s theorem

and the moments EL j s vy1, j s 1, 2, . . . .j
Ž w x.We also recall the following bound see 11 , which is a consequence of the
Ž w x.deep Alexandrov]Fenchel inequality see 15 :

5 W K F exp V K .Ž . Ž . Ž .1
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3. Bounds. Our main result is as follows.

� 4THEOREM 1. Suppose that X , t g T is a bounded, zero-mean Gaussiant
process. Then

26 E exp sup X y 1r2 s F exp E sup X ,Ž . Ž .� 4t t t
t t

where s 2 s EX 2.t t

NOTE. Since the process is bounded, it is continuous in probability with
2Ž .respect to the pseudometric d t , t s E X y X . We regard sup X' Ž .X 1 2 t t t t1 2

Ž .as over a countable, dense under d subset of T. Any other countable,X
dense subset of T gives the same value for sup X almost surely.t t

Ž . � 4PROOF OF THEOREM 1. It is enough to show 6 for T s 1, 2, . . . , n , a finite
set, since the general case follows by approximation. By the Gram]Schmidt
procedure, there is a collection Z , Z , . . . , Z , d F n, of independent, stan-1 2 d
dard Gaussian variables, such that, for 1 F k F n and appropriate vectors
a ,a , . . . , a g R d,1 2 n

² :7 X s a , Z ,Ž . k k

Ž .T d ² :where Z s Z , Z , . . . , Z g R and ? , ? signifies inner product. Note1 2 d
2 5 5 2 ² : dthat EX s a and EX X s a , a . Let K ; R be the convex hull ofk k k l k l

n'� 4 Ž . Ž .A s a r 2p . Employing the natural definition of W A A nonconvexk 1
and making a change of variables at one point, we have

2W A s exp ypd x , A dxŽ . Ž .H
dR

2's exp yp inf x y a r 2p dxH k
d kR

2 2' ² : 5 5 5 5s exp sup 2p a , x y 1r2 a exp yp x dxŽ .Ž .H k k
dR k

2² : 5 5s E exp sup a , Z y 1r2 aŽ .Ž .k k
k

2s E exp sup X y 1r2 s .Ž .Ž .k k
k

Ž . Ž . Ž .Now A : K implies W A F W K , and, together with 5 , we only have to
Ž . w w xrecall that V K s E sup X e.g., 16 , Proposition 14, where it is written1 k k

Ž .xh K . I1

As a consequence, we have the sharp deviation inequality.

COROLLARY 1. Under the conditions of Theorem 1, for any a ) 0,
2 28 P sup X y E sup X G a F exp y 1r2 a rs ,Ž . Ž . Ž .t tž /

t t

where s 2 s sup s 2.t t
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Ž .The literature contains a variety of applications and results related to 8
Ž w x w x. Ž .see, e.g., 6 and 9 , often associated with Maurey and Pisier 13 . See also

w xthe antecedent 4 .

Ž .PROOF. We use the inhomogeneity of 6 in a variational argument.
� 4 Ž .Consider the process rX for fixed r ) 0. Then 6 providest

2 2E exp sup rX y 1r2 r s F exp E sup rX .Ž .Ž .t t t
t t

Since s 2 F s 2 for all t, some rearrangement givest

2 2E exp r sup X y E sup X F exp 1r2 r s .Ž .t tž /
t t

Using Markov’s inequality, we have

P sup X y E sup X G a s P r sup X y E sup X G rat t t tž / ž /
t t t t

s P exp sup rX y E sup rX G exp raŽ .t tž /
t t

2 2F exp 1r2 r s y ra .Ž .
w 2Ž 2 .y1 xMinimizing the last expression over r then yields exp ya 2s at r s

ars 2. I

4. Finite-dimensional bounds. In general, bounds which are indepen-
dent of dimension are the most useful. Still, we elaborate a dimensional one
here since it leads to a second proof of the deviation inequality. In addition, it
illustrates a different use of the Wills functional, here allied with Urysohn’s

Ž w x w x.inequality e.g., 2 ; in a probabilistic format, 20 , which we state as follows.

PROPOSITION 1. Suppose that K is a convex body in R d. Then
d

V KŽ .1
9 vol K F v .Ž . Ž . d ž /V BŽ .1 d

d Ž .As before, B is the unit ball in R with volume v . There is equality in 9 ifd d
and only if K is a ball.

The bound is as follows.

� 4THEOREM 2. Suppose that X , t g T is a bounded Gaussian process thatt
d Ž . ² :can be identified with A ; R via 7 . That is, for each t, X s a , Z fort t'some a g 2p A. Thent

dE sup Xt t210 E exp sup X y 1r2 s F v E q L .Ž . Ž .� 4t t d ž /V BŽ .t 1 d
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Ž .Here L has the density 4 , and there is equality if and only if the closed
convex hull of A is a ball.

PROOF. Let K be the closed convex hull of A. By Urysohn’s inequality.
d

V KŽ .1
vol K q L B F v q L .Ž .d d ž /V BŽ .1 d

We then take expectations with respect to L and express the left-hand side as
in the proof of Theorem 1. I

COROLLARY 2. For each a ) 0 and c G 1,
21 1

d11 P sup X y E sup X G a F c exp y a q 1 y E sup X .Ž . t t t2 ½ 5ž /c2st t t

For the proof, we use the following estimate. It bounds a polynomial with
an exponential, but that is sharp enough for our purpose.

LEMMA 1.
d

u
d u r cc u s v E q L F c eŽ .d d ž /V BŽ .1 d

for all u G 0, c G 1 and d s 1, 2, . . . .

Ž .PROOF. Fix c G 1. We verify the property for each c ? by induction on d.d
Ž . u r cFor d s 1, c u s 1 q u F ce . Given that the claim has been shown for1

Ž . 0r cc and noting that c 0 F ce s c, it is enough to compare derivatives.dy1 d
Ž . Ž . Ž .Using the facts that V B F V B and v d s V B v , we have1 dy1 1 d d 1 d dy1

dy1
v d udXc u s E q LŽ .d ž /V B V BŽ . Ž .1 d 1 d

dy1
u

F v E q Ldy1 ž /V BŽ .1 dy1

d
dy1 u r c d u r cF c e s c e ,

du

which completes the proof. I

� 4PROOF OF COROLLARY 2. Consider the process rX . Using the lemma andt
a variational argument similar to that for Corollary 1 leads to the assertion.

I

Ž .Setting c s 1 gives a second proof of the deviation inequality Corollary 1 .
Ž .Finally, we can tailor 11 a bit as follows: let c s 1 q 1rd and using the
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X 'Ž . Ž . Ž .Xpossibly more accessible quantity diam X s sup d t, t F 2p E sup Xt, t X t t
leads to the variant

21 1 1
P sup X y E sup X G a F exp 1 y a q diam X .Ž .t t 2 ½ 5ž / 'd q 12s 2pt t

5. Remarks.

REMARK 1. The connection we have drawn between Gaussian processes
and the Wills functional, which can be thought of as a measure of size for

w xconvex bodies, is in the spirit of 5 , which has motivated much work. For
w xfurther references on the Wills functional, see the survey 7 .

Ž .REMARK 2. Derived independently, the bound 6 is formally equivalent to
w xCorollary 1 of Tsirel’son 18 , which is proved by other means. The context

there is different, an infinite-dimensional maximum likelihood problem, and
it is presented with no reference to the bounds for Gaussian processes. In any
case, the interested reader should consult this important paper together with

w x w xthe others in its series, 17 and 19 .

Ž .REMARK 3. The corresponding left-tail bound to 8 ,

1r2 a2Ž .
P sup X y E sup X F a F exp L y ,t tž / 2ž /st t

does not seem to be accessible by the approach described here.
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