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CONVERGENCE IN VARIOUS TOPOLOGIES FOR STOCHASTIC
INTEGRALS DRIVEN BY SEMIMARTINGALES1

By Adam Jakubowski

Uniwersytet Mikołaja Kopernika

We generalize existing limit theory for stochastic integrals driven by
semimartingales and with left-continuous integrands. Joint Skorohod con-
vergence is replaced with joint finite dimensional convergence plus an as-
sumption excluding the case when oscillations of the integrand appear im-
mediately before oscillations of the integrator. Integrands may converge in
a very weak topology. It is also proved that convergence of integrators im-
plies convergence of stochastic integrals with respect to the same topology.

1. Introduction. Let us begin with a simple example demonstrating one
of the central difficulties in limit theory for integrals with discontinuous inte-
grators.

Example 1. Let k0�t� = |�1/2;1��t�, kn�t� = |�1/2−1/n;1��t�, n = 1;2; : : : ;
and let xn�t� = |�1/2;1��t�, n = 0;1;2; : : : . Then kn → k0 and xn → x0 in the
Skorohod space D = D��0;1�x R1�, but

∫
kn− dx

n ≡ x0 6→
∫
k0
− dx

0 ≡ 0:

[Here—and in the sequel—we consider integrals over the interval excluding
0, that is, �

∫
k− dx��t� =

∫
�0; t� k�s−�dx�s�, with k�0−� = 0.]

One can eliminate such pathological situations by assuming joint conver-
gence of �kn; xn�, that is, convergence in D ��0;1�x R2�. A very general re-
sult in this direction was proved by Jakubowski, Mémin and Pagès [(1989),
Theorem 2.6].

Theorem 0. For each n ∈ N; let Xn be a semimartingale with respect to the
stochastic basis ��n;F n; �F n

t �t∈�0;1�;Pn� and let Kn be adapted to �F n
t �t∈�0;1�

and with trajectories in D. Assume that

�Kn;Xn� →D �K0;X0�(1)
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2142 A. JAKUBOWSKI

on the space D ��0;1�x R2�. Then X0 is a semimartingale with respect to the
natural filtration generated by �K0;X0� and

∫
Kn
− dX

n →D

∫
K0
− dX

0 on D��0;1�x R1�;(2)

as well as(
Kn;Xn;

∫
Kn
− dX

n

)
→D

(
K0;X0;

∫
K0
− dX

0
)

on D ��0;1�x R3�;(3)

provided the so-called condition UT holds, that is, provided the family of ele-
mentary stochastic integrals �

∫
Hn
− dX

n�1�� with integrands bounded by 1 is
uniformly tight.

To be explicit, condition UT means that the family of all random variables
of the form

m∑
i=1

Hn
ti−1
�Xn

ti
−Xn

ti−1
�

is uniformly tight, where m ∈ N, 0 = t0 < t1 < · · · < tm = T, Hn
ti
≤ 1 and Hn

ti
is

F n
ti

-measurable for i = 0;1; : : : ;m. Condition UT was considered for the first
time in Stricker (1985). The reader may find sufficient conditions for condition
UT in Jakubowski, Mémin and Pagès (1989) and equivalent reformulations in
Mémin and Słomiński (1991). Here we shall mention only that condition UT
also plays a crucial role in approximation of solutions of stochastic differential
equations. For the corresponding results in this area as well as for interesting
examples, we refer to Słomiński (1989, 1994) and Kurtz and Protter (1991).

Theorem 0 suffices for most applications related to stability problems of
stochastic differential equations. On the other hand, within limit theory
for stochastic integrals there exist phenomena which are not covered by this
theorem.

Example 2. Normalized sums of moving averages with summable positive
coefficients of i.i.d. random variables with laws belonging to the domain of
attraction of an α-stable law (α < 2) in general do not converge in a functional
manner when D is equipped with the usual Skorohod J1 topology. However,
they do converge to an α-stable Lévy motion if we consider another, weaker
topology on D, known asM1 [see Avram and Taqqu (1992) and Skorohod (1956)
for definitions of Skorohod’s topologies].

There exists a satisfactory theory of stochastic integration with respect to
α-stable processes [see, e.g., Janicki and Weron (1993)]. It follows that for
some naturally arising integrators the requirement of convergence in the usual
Skorohod topology may be too strong.

Example 3. Let, as in Example 1, xn�t� = |�1/2;1��t�; n = 0;1;2; : : : ; and
k0�t� = |�1/2;1��t�. The difference will be in the choice of kn:

kn�t� = |�1/2+1/n;1��t�; n = 1;2; : : : :
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As before we have kn→ k0 and xn→ x0 in D with the standard topology and
�kn; xn� 6→ �k0; x0� in D ��0;1�x R2�, but this time

∫
kn− dx

n ≡ 0→
∫
k0
− dx

0 ≡ 0:

Example 4. The preceding example may seem to be artificial and related
to the extremely simple structure of the processes involved. To convince the
reader that the example illustrates a general rule, let us consider a much less
obvious fact.

Let X be a semimartingale on ��;F ; �F t�t∈�0;1�;P� and let K be adapted
to �F t�t∈�0;1� and with trajectories in D. Choose a partition τ = �0 = t0 < t1 <
t2 < · · · < tm = 1� of �0;1� and define τ-discretizations of the integrand K:

Kτ�t� =K�tk� if tk ≤ t < tk+1; k = 0;1; : : : ;m− 1;

Kτ�1� =K�1�:
(4)

Then it follows from the “dominated convergence” theorem [see Dellacherie
and Meyer (1980), VIII.14] that the elementary stochastic integrals

∫
Kτ
− dX

converge uniformly in probability to
∫
K− dX when τ condenses in a suit-

able manner. Here again the pair �Kτ;X� does not converge jointly to �K;X�
unless the relation between K and X is very special.

The purpose of the present note is to provide a criterion for finite dimen-
sional convergence of stochastic integrals and to demonstrate how this cri-
terion can be used in particular situations to obtain results on functional
convergence with respect to various topologies on the space D.

2. The results. Let us denote by →Df�Q� the finite dimensional conver-

gence over the set Q. For example, �Kn;Xn�→Df�Q� �K0;X0� means that for
every finite subset �0 ≤ t1 < t2 < · · · < tm ≤ 1� ⊂ Q,

�Kn�t1�;Xn�t1�;Kn�t2�;Xn�t2�; : : : ;Kn�tm�;Xn�tm��
→D �K0�t1�;X0�t1�;K0�t2�;X2�t2�; : : : ;K0�tm�;X0�tm��

on the space R2m.
It is finite dimensional convergence of �Kn;Xn� on a dense set Q ⊂ �0;1�

and condition UT for �Xn� that imply that X0 is a semimartingale with re-
spect to the natural filtration generated by �K0;X0� [see Jakubowski, Mémin
and Pagès (1989), Lemma 1.3]. In what follows we will use this fact without
further reference.

For k ∈ D, let Nη�k� be the number of η-oscillations of k in the interval
�0;1�. More precisely, Nη�k� ≥ m if there are points 0 ≤ t1 ≤ t2 ≤ · · · t2m−1 ≤
t2m ≤ 1 such that �k�t2j�−k�t2j−1�� > η, j = 1;2; : : : ;m. By reasons to be made
clear later we shall say that a sequence �Kn� of processes with trajectories in
D is uniformly S-tight if both ��Kn�∞ = supt∈�0;1�K

n�t�� and �Nη�Kn��, for
each η > 0, are uniformly tight sequences of random variables.
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We will also need a variant of the well-known modulus of continuity ω′′.
For k, x ∈ D, let

ω′′δ�k; x� = sup�min��k�s� − k�t��; �x�t� − x�u���x
0 ≤ s < t < u ≤ �s+ δ� ∧ 1�:

Theorem 1. For each n ∈ N; letXn be a semimartingale with respect to the
stochastic basis ��n;F n; �F n

t �t∈�0;1�;Pn� and let Kn be adapted to �F n
t �t∈�0;1�

with trajectories in D. Let Q ⊂ �0;1�, 0;1 ∈ Q; be dense. Suppose condition UT
holds for �Xn�; �Kn� is uniformly S-tight and we have joint finite dimensional
convergence over Q. Then

�Kn;Xn�→Df�Q� �K
0;X0�;(5)

where both K0 and X0 have trajectories in D. Further, suppose there are no
oscillations of the Kn preceding oscillations of the Xn. Then

lim
δ↘0

lim sup
n→∞

Pn�ω′′δ�Kn;Xn� > ε� = 0; ε > 0:(6)

Then we have ∫
Kn
− dX

n→Df�Q�
∫
K0
− dX

0:(7)

The proof (as well as proofs of other results below) is deferred to the next
section.

Remark 1. Stricker (1985) proved that condition UT implies uniform S-
tightness. Hence all methods of verifying condition UT also apply to uniform
S-tightness as well.

It was announced in the Introduction that Theorem 1 may serve as a tool
for identification of the limit in various kinds of functional convergence of
stochastic integrals. By “functional” we mean convergence in distribution with
respect to any topology τ on D such that relative compactness (in law) and fi-
nite dimensional convergence over a dense subset Q ⊂ �0;1�, 0, 1 ∈ Q, imply
convergence in law. By the result due to Topsøe (1969), Skorohod’s J1 topol-
ogy is functional in our sense. On the other hand, the so-called pseudopath
topology considered by Meyer and Zheng (1984) is not “functional,” for it is
known that convergence of sequences in this topology is just the convergence
in (Lebesgue) measure, and it is easy to find a sequence �xn� ⊂ D which con-
verges in measure to x0 ≡ 0 and is such that xn�q� → 1 for each rational
q ∈ �0;1�.

Corollary 2. Suppose all assumptions of Theorem 1 are in force and we
know that the laws of stochastic integrals

∫
Kn
− dX

n are relatively compact
when D is equipped with some topology τ generating “functional” convergence.
Then the sequence �

∫
Kn
− dX

n�n∈N converges in law with respect to τ (and the
limiting process is

∫
K0
− dX

0).
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Given uniform τ-tightness of Xn’s, the task of verifying uniform tightness
of �

∫
Kn
− dX

n�n∈N can be quite easy. This is so, for instance, in Theorem 6
below. For metric topologies on D we have, however, results more direct than
Corollary 2. We begin with the classical Skorohod J1 topology, to emphasize
the generality of the present approach.

Theorem 3. Let the Kn, Xn and Q be as in Theorem 1. Suppose �Xn�
satisfies condition UT, �Kn� is uniformly S-tight and finite dimensional con-
vergence (5) holds. If (6) is satisfied and Xn →D X0 on the space �D;J1�, then
on the space �D ��0;1�x R2�;J1�,

�Xn;
∫
Kn
− dX

n� →D �X0;
∫
K0
− dX

0�:(8)

Remark 2. Comparing to Theorem 0, we require very weak convergence
of the Kn (in S-topology—see below) and much less information on the joint
convergence–finite dimensional convergence and (6).

Remark 3. In Section 3.3 we provide a direct proof of Theorem 3, based
on the a.s. Skorohod representation. There exists, however, a more traditional
approach. Theorem 1 identifies finite dimensional distributions of the limit for∫
Kn
− dX

n. Hence given Theorem 1, for (8) to be proven we need only uniform
J1-tightness of the sequence of stochastic integrals. This can be obtained,
for instance, by use of Proposition 4.3 of Kurtz and Protter (1991), which, in
turn, is based on the technique of inverse time-change developed by Kurtz
(1991). In fact, an inspection of the latter paper shows that S-tightness is
equivalent to the existence of strictly increasing Cn, with Cn �F n

t �-adapted,
such that �Cn�t�� is uniformly tight for each t > 0 and, defining γn�t� =
C→n �t� = inf�ux Cn�u� > t�, �Kn ◦ γn� is relatively compact in the Skorohod
J1 topology.

Remark 4. The crucial property (6) [or (19) below] holds if either theXn or
Kn are C-tight, that is, are uniformly J1-tight with all limiting laws concen-
trated on C��0;1�x R1�. Hence our Theorem 3 generalizes Theorem 4.7 of Kurtz
and Protter (1991) and is a step in a similar direction as their Theorem 4.8,
with dramatically simpler formulation.

Without any change in the proof one can obtain limit results for a variety
of topologies on D. Let ρ be a metric on D such that the topology Oρ generated
by ρ is coarser than Skorohod’s J1 topology, but rich enough to preserve the
same family of Borel subsets. This guarantees that all probability measures on
�D;Oρ� are tight and that Xn →D X0 on �D;Oρ� if and only if Xn, n = 0, 1,
2; : : : ; admit the almost surely convergent Skorohod representation on the
Lebesgue interval ��0;1�;B�0;1�; l�. In addition we assume that ρ satisfies

ρ�x;y� ≤ C�x− y�∞; x; y ∈ D(9)

for some C > 0.
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From the point of view of limit theorems it is natural to consider only
metrics which are consistent with convergence of elementary integrals. To
explain this notion, take a partition τ = �0 = t0 < t1 < t2 < · · · < tm = 1�, a
sequence aτ = �a0; a1; : : : ; am� ∈ Rm and x ∈ D and define

(∫
aτ− dx

)
�t� =

m∑
k=1

ak−1�x�tk ∧ t� − x�tk−1 ∧ t��:

The consistency means that for every τ and every sequence �an�τ → �a0�τ (in
Rm), ρ�xn; x0� → 0 implies

ρ

(∫
�an�τ− dxn;

∫
�a0�τ− dx0

)
→ 0:(10)

(At least metrics generating Skorohod’s topologies J1 and M1 are consistent
with convergence of elementary integrals.)

Let us say that ρ is compatible with integration if all of the above require-
ments are satisfied.

Theorem 4. Let the Kn, Xn and Q be as in Theorem 1 and let metric
ρ on D be compatible with integration. Suppose �Xn� fulfills condition UT,
�Kn� is uniformly S-tight and finite dimensional convergence (5) holds. If (6)
is satisfied and Xn →D X0 on the space �D;Oρ�; then on the same space,

∫
Kn
− dX

n →D

∫
K0
− dX

0:(11)

Remark 5. Suppose all processes are defined on the same probability space
��;F ;P� and in assumptions of Theorem 4 we replace relation (5) with

Kn�t� →P K0�t�; Xn�t� →P X0�t�; t ∈ Q(12)

and Xn →D X0 with

lim
n→∞

P�ρ�Xn;X0� > ε� = 0; ε > 0:(13)

Then it follows from the proof of Theorem 4 that (11) changes to

lim
n→∞

P

(
ρ

(∫
Kn
− dX

n;
∫
K0
− dX

0
)
> ε

)
= 0; ε > 0:(14)

In a similar way one can transform Theorem 1.

Dealing with metrics ρ generating topologies strictly finer than Skorohod’s
J1 topology is difficult since such topologies (if of any interest) may be non-
separable. Despite this, we have a result for the convergence uniformly in
probability, generalizing Theorem 1.9 of Mémin and Słomiński (1991).
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Theorem 5. Let Kn’s, Xn’s and Q be as in Theorem 1, with the addi-
tional assumption that all processes are defined on the same probability space:
��n;F n;Pn� = ��;F ;P� . Suppose condition UT holds for Xn’s, the sequence
�Kn� is uniformly S-tight, (6) is satisfied and

Kn�t� →P K0�t�; t ∈ Q;
�Xn −X0�∞ →P 0:

(15)

Then also
∥∥∥∥
∫
Kn
− dX

n −
∫
K0
− dX

0

∥∥∥∥
∞
→P 0:(16)

In fact, in Theorem 1 we have more than finite dimensional convergence
only: the stochastic integrals already “functionally” converge with respect to an
ultraweak topology on D, introduced in Jakubowski (1994) and called there the
S topology. This non-Skorohod sequential topology is not metrizable, but it is
still good enough to build a satisfactory theory of convergence in distribution.
In particular, we make the following observations:

1. K ⊂ D is S-relatively compact iff

sup
k∈K

sup
t∈�0;1�

�k�t�� ≤ CK < +∞; sup
k∈K

Nη�k� ≤ Cη < +∞; η > 0:(17)

2. The σ-field BS of Borel subsets for S coincides with the usual σ-field gen-
erated by projections (or evaluations) on D: BS = σ�πtx t ∈ �0;1��.

3. The set P �D; S� of S-tight probability measures is exactly the set of distri-
butions of stochastic processes with trajectories in D: P �D; S� = P �D�, and
for a family �Kn� of stochastic processes, uniform tightness with respect
to S coincides with the uniform S-tightness introduced at the beginning of
this section.

4. The S topology is weaker than Skorohod’s J1 topology. Since the latter is
Polish, S is Lusin in the sense of Fernique. Even more is true: �D; S� is a
linear topological space and so is completely regular.

5. On P �D� there exists a unique sequential topology O � ∗⇒� (where
∗⇒ de-

notes the convergence determining the topology) which is finer than the

S-weak topology and for which
∗⇒-relative compactness coincides with uni-

form S-tightness. In particular, for O � ∗⇒� both the direct and the converse
Prohorov’s theorems are valid.

6. Let Xn

∗→D X0 mean that the laws of processes Xn converge in our

sense: L �Xn�
∗⇒ L �X0�. Suppose Xn

∗→D X0. Then in each subsequence
�Xnk

�k∈N one can find a further subsequence �Xnkl
�l∈N such that:

(a) �X0� ∪ �Xnkl
x l = 1;2; : : :� admits the usual a.s. Skorohod representa-

tion on ��0;1�;B�0;1��.
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(b) Outside some countable subset of �0;1� all finite dimensional distribu-
tions of �Xnkl

� converge to those of X0.

There are many S-continuous functionals. As examples, mappings of the
form D 3 x 7→

∫ 1
0 8�x�s��dµ�s� ∈ R1, where µ is a finite atomless measure on

�0;1� and 8 is continuous, may serve.

Theorem 6. Under the assumptions of Theorem 1 we have
∫
Kn
− dX

n →D

∫
K0
− dX

0

on the space �D; S�.

We have noticed that uniform S-tightness implies convergence of finite
dimensional distributions outside a countable subset of �0;1� and for some
subsequence. By Remark 1, condition UT also possesses this property. Hence
under tightness assumptions only, we can always extract a subsequence
�Knk;Xnk� and a dense set Q′ ⊂ R1, 1 ∈ Q′, for which joint finite dimensional
convergence over Q′ holds. It is, however, possible that 0 6∈ Q′, and this fact
may influence the convergence of stochastic integrals.

Example 5. Let kn�t� = 1, n = 0;1;2; : : : ; and let xn�t� = |�1/n;1��t�,
n = 1, 2; : : : ; and x0�t� ≡ 1. Then all assumptions of Theorem 1 are satisfied,
except that (5) holds for Q′ = �0;1�. However, for any t > 0,

(∫
kn− dx

n

)
�t� = xn�t� 6→ 0 =

(∫
k0
− dx

0
)
�t�:

[Recall that by our convention �
∫
k− dx��t� =

∫
�0; t� k�s−�dx�s�.]

There is an easy way to overcome this difficulty. Let us consider an embed-
ding D ��0;1�x R1� 3 x 7→ x̃ ∈ D ��−1;1�x R1� given by

x̃�t� =
{x�t�; if t ∈ �0;1�;

0; if t ∈ �−1;0�;
(18)

and let

ω̃′′δ�k; x� = ω′′δ�k̃; x̃�;
with ω′′δ redefined on D ��−1;1�x R1� in a natural manner.

Theorem 7. Let Kn and Xn be as in Theorem 1. Suppose that condition
UT holds for �Xn�; the Kn are uniformly S-tight and

lim
δ↘0

lim sup
n→∞

Pn�ω̃′′δ�Kn;Xn� > ε� = 0; ε > 0:(19)

Then along some subsequence �nk�;
∫
Knk− dXnk →D

∫
K0
− dX

0(20)
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on the space �D; S�;whereK0 has trajectories in D andX0 is a semimartingale.
If, in addition, �Xn� is uniformly Oρ-tight for a metric ρ compatible with
integration, then (20) may be strengthened to convergence on �D;Oρ�

Remark 6. Theorem 7 may be viewed as a specific criterion of compactness
for sets of stochastic integrals: the closure (in a suitable topology) still contains
stochastic integrals only.

3. Proofs.

3.1. Basic lemma.

Lemma 8. Suppose �Kn� is uniformly S-tight, �Xn� satisfies condition UT
and (6) holds. Then for any sequence τm = �0 = tm;0 < tm;1 < · · · < tm;km = 1�
of partitions of �0;1� such that

�τm� = max�tm;k − tm;k−1x k = 1;2; : : : ; km� → 0;(21)

we have

lim
m→∞

sup
n
P

(
sup
t∈�0;1�

∣∣∣∣
∫
�Kn�τm− dXn�t�−

∫
Kn
− dX

n�t�
∣∣∣∣>ε

)
=0; ε>0:(22)

Proof. Recall that �Kn�τm is the discretization of Kn given by formula (4).
If n ∈ N is fixed and m→∞, then by the dominated convergence theorem,

lim
m→∞

P

(
sup
t∈�0;1�

∣∣∣∣
∫
�Kn�τm− dXn�t� −

∫
Kn
− dX

n�t�
∣∣∣∣ > ε

)
= 0; ε > 0:(23)

It follows that we may replace
∫
Kn
− dX

n with
∫
�Kn�τmn− dXn if mn is large

enough. Summarizing, it is enough to prove that for each ε > 0 and mn such
that �τmn

� < �τm�,

lim
m→∞

sup
n∈N

P

(
max
t∈�0;1�

∣∣∣∣
∫
�Kn�τm− dXn�t� −

∫
�Kn�τmn− dXn�t�

∣∣∣∣ > ε
)
= 0:(24)

Let us fix η > 0, n ∈ N, τm and τmn
, �τmn

� < �τm�. To make the formulas more
readable, let us change the notation slightly and set

τm = �0 = t0 < t1 < · · · < tkm = 1�;
τmn
= �0 = s0 < s1 < · · · < skmn = 1�:

For k = 1; : : : ; km and j = 0;1;2; : : : define

σk;0 = tk−1;(25)

σk; j+1 = min�sl−1 ≥ σk; jx �Kn�sl−1� −Kn�σk; j�� > η� ∧ tk:(26)
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(We use the convention that min \ = 1.) Then for t ∈ �0;1� we can decompose
∫
�Kn�τm− dXn�t� −

∫
�Kn�τmn− dXn�t�

=
k∑
i=1

∞∑
j=1

∑
σi; j−1≤sl−1<σi; j

(
Kn�σi;0� −Kn�sl−1�

)

×
(
Xn�sl ∧ t� −Xn�sl−1 ∧ t�

)
:

Let us observe that
∑

σi; j−1≤sl−1<σi; j

(
Kn�σi;0� −Kn�sl−1�

)(
Xn�sl ∧ t� −Xn�sl−1 ∧ t�

)

=
∑

σi; j−1≤sl−1<σi; j

(
Kn�σi;0� −Kn�σi; j−1�

)(
Xn�sl ∧ t� −Xn�sl−1 ∧ t�

)

+
∑

σi; j−1≤sl−1<σi; j

(
Kn�σi; j−1� −Kn�sl−1�

)(
Xn�sl ∧ t� −Xn�sl−1 ∧ t�

)

=
(
Kn�σi;0� −Kn�σi; j−1�

)(
Xn�σi; j ∧ t� −Xn�σi; j−1 ∧ t�

)

+
∑

σi; j−1≤sl−1<σi; j

(
Kn�σi; j−1� −Kn�sl−1�

)(
Xn�sl ∧ t� −Xn�sl−1 ∧ t�

)
:

Finally, we have
∫
�Kn�τm− dXn�t� −

∫
�Kn�τmn− dXn�t�

=
k∑
i=1

∞∑
j=2

(
Kn�σi;0� −Kn�σi; j−1�

)(
Xn�σi; j ∧ t� −Xn�σi; j−1 ∧ t�

)

+
k∑
i=1

∞∑
j=1

∑
σi; j−1≤sl−1<σi; j

(
Kn�σi; j−1� −Kn�sl−1�

)

×
(
Xn�sl ∧ t� −Xn�sl−1 ∧ t�

)

= Inη�t� +Jnη�t�:
Using definitions of Nη�·� and ω′′δ�·; ·� given at the beginning of Section 2 and
taking into account that for fixed ω in the sum Inη�t;ω� there are no more
than Nη�Kn�ω�� nonzero summands, we can estimate

sup
t∈�0;1�

�Inη�t�� ≤Nη�Kn� sup
1≤i≤km

j∈N; t∈�0;1�

{
max��Kn�σi;0� −Kn�σi; j−1��;

�Xn�σi; j ∧ t� −Xn�σi; j−1 ∧ t���
×min��Kn�σi;0� −Kn�σi; j−1��;

�Xn�σi; j ∧ t� −Xn�σi; j−1 ∧ t���
}

≤Nη�Kn�2
(
�Kn�∞ + �Xn�∞

)
ω′′�τm��K

n;Xn�:
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Since condition UT implies tightness of �Xn�∞ [see, e.g., Jakubowski, Mémin
and Pagès (1989), Lemma 1.2] we see that when η is fixed and �τm� → 0, then
supt∈�0;1� �Inη�t�� converges in probability to 0 uniformly in n.

It remains to prove that, by the choice of η, the random variables
supt∈�0;1� �Jnη�t�� can be made as small as desired (in probability, uniformly
in n). However, the processes η−1Jnη are elementary stochastic integrals
appearing in the definition of condition UT. By Jakubowski, Mémin and Pagès
[(1989) Lemma 1.1], the family of random variables �supt∈�0;1� η

−1�Jnη�t��x n ∈
N; η > 0� is uniformly tight and we obtain the required property. 2

3.2. Proof of Theorem 1. If Q is not countable, replace it with its proper
countable dense subset containing 0 and 1. Let us choose a sequence �τm� of
partitions of �0;1� such that �τm� → 0, τm ⊂ τm+1 ⊂ Q, m = 1;2; : : : ; and
∪∞m=1τm = Q.

Let Q0 = �q1 < q2 · · · < qr� ⊂ Q and let m be so large that Q0 ⊂ τm = �0 =
t0 < t1 < · · · < tkm� and

sup
n
P

(
sup
q∈Q0

∣∣∣∣
∫
�Kn�τm− dXn�q� −

∫
Kn
− dX

n�q�
∣∣∣∣ > ε

)
< ε(27)

for n = 0;1;2; : : : (the latter by Lemma 8). For each t ∈ τm the integral∫
�Kn�τm− dXn�t� is a continuous function of the vector

�Kn�0�;Xn�0�;Kn�t1�;Xn�t1�; : : : ;Kn�tkm�;X
n�tkm��:

Hence (5) implies
∫
�Kn�τm− dXn→Df�τm�

∫
�K0�τm− dX0

and by Q0 ⊂ τm also
∫
�Kn�τm− dXn→Df�Q0�

∫
�K0�τm− dX0:(28)

The theorem follows now by (27) and (28).

3.3. Proofs of Theorems 3–5. We shall prove Theorem 4 first.
A variant of the Skorohod representation theorem is necessary.

Lemma 9. For each subsequence nk there exists a further subsequence nkl
and random elements L0;L1; : : : with values in RQ and Y0;Y1; : : : with values
in �D;Oρ� and defined on the Lebesgue interval such that

(
�L0�q�;Y0�q��q∈Q;Y0) ∼

(
�K0�q�;X0�q��q∈Q;X0)

for each l = 1;2; : : : ;
(
�Ll�q�;Yl�q��q∈Q;Yl

)
∼
(
�Knkl �q�;Xnkl �q��q∈Q;Xnkl

)

and for almost every ω ∈ �0;1�;
Ll�q;ω� → L0�q;ω�; Yl�q;ω� → Y0�q;ω�; q ∈ Q;
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and

ρ�Yl�ω�;Y0�ω�� → 0:

Proof. We have separate information on joint finite dimensional conver-
gence and convergence on �D;Oρ�. By tightness of both components, in each
subsequence we may extract a further subsequence such that the joint con-
vergence holds. Let �Ul;Vl;Zl� be the Skorohod representation for such a
subsequence. In particular, we have

�Vl;Zl� ∼
(
h�Xnkl �;Xnkl

)
;(29)

where hx D→ RQ is a measurable mapping given by h�x� = �x�q��q∈Q. Hence
(29) implies that Vl = h�Zl� l-a.s. and so the lemma follows. 2

Because of Lemma 9 we may and do assume that ρ�Xn�ω�;X0�ω�� →
0 and that Kn�q;ω� → K0�q;ω�, Xn�q;ω� → X0�q;ω�, q ∈ Q. Using the
consistency of ρ with respect to elementary integrals we get for each fixed τm,

ρ

(∫
�Kn�τm− dXn;

∫
�K0�τm− dX0

)
→ 0 a.s.

Further, by (9) and (22) we have for each ε > 0 and as m→∞,

sup
n∈N

P

(
ρ

(∫
�Kn�τm− dXn;

∫
Kn
− dX

n

)
> ε

)

≤ sup
n∈N

P

(∥∥∥∥
∫
�Kn�τm− dXn −

∫
Kn
− dX

n

∥∥∥∥
∞
>
ε

C

)
→ 0:

Similarly, by (23)

P

(
ρ

(∫
�K0�τm− dX0;

∫
K0
− dX

0
)
> ε

)

≤ P
(∥∥∥∥
∫
�K0�τm− dX0 −

∫
K0
− dX

0

∥∥∥∥
∞
> ε

C

)
→ 0 as m→∞; ε > 0:

Hence
∫
Knkl− dXnkl →D

∫
K0
− dX

0 on �D;Oρ�. This concludes the proof, for
nkl was a subsequence of an arbitrary subsequence nk. 2

The proof of Theorem 5 is essentially the same (except it does not require
reduction via the a.s. Skorohod representation).

3.4. Proof of Theorem 6. It has been proved in Jakubowski (1994) that the

convergence
∗⇒ in P �D� (induced by theS topology) is “functional” in our sense.

That is, finite dimensional convergence and relative
∗⇒-compactness imply

∗⇒-
convergence. Hence in view of (7) it suffices to prove S-uniform tightness of
�
∫
Kn
− dX

n�. Using Lemma 1.6 of Mémin and Słomiński (1991), we check
that the processes �

∫
Kn
− dX

n� satisfy condition UT. Now the result already
mentioned due to Stricker (1985) (see Remark 1) gives us S-uniform tightness
of �

∫
Kn
− dX

n� and finishes the proof of Theorem 6. 2
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3.5. Proof of Theorem 7. Let us embed our processes into the space
D ��−1;1�x R1� via mapping (18). Then we have finite dimensional conver-
gence on Q1 = Q ∪ �−1;0�. Since the left end of the interval of integration
belongs to Q1, it is possible to apply the previous results. It remains to observe
that

∫
�−1; t�

Kn�s−�dXn�s� =
∫
�0; t�

Kn�s−�dXn�s�; n = 1;2; : : : : 2
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