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WEAK LIMITS OF PERTURBED RANDOM WALKS AND THE
EQUATION Y, = B, + asuplY,: s <t} + BinflY,: s < #}!

By BURGESS Davis

Purdue University

Let a and B be real numbers and f € Cy[0,). We study the exis-
tence and uniqueness of solutions g of the equation g(¢) = f(¢) +
asupy . ., 8(s) + Binfy.,., g(s). Carmona, Petit, Le Gall, and Yor
have shown existence (or nonexistence) and uniqueness for some a, 8. We
settle the remaining cases. We study the nearest neighbor walk on the
integers, which behaves just like fair random walk unless one neighbor
has been visited and the other has not, when it jumps to the unvisited
neighbor with probability p. If p < 2/3, we show these processes, scaled,
converge to the solution of the equation above for Brownian paths, with
a=B=02p-1/p.

1. Introduction. If f is a real-valued function on [0, ©), we put f*(¢) =
supy ..., f(s) and f*(¢) =inf,_,_, f(s), and also we use * and * to denote
maxima and minima of sequences. We study the existence and uniqueness of
solutions g of the equation

(1.1 g(t) = f(t) + ag*(¢) + Bg*(¢), t=0.

Here « and B are real numbers and f is a continuous function vanishing at
0, an assumption always in force whenever (1.1) is discussed, without further
mention. This equation was first studied by Le Gall (1986), and more re-
cently, in a paper that will hereafter be referred to as CPY, by Carmona,
Petit and Yor (1994). Let p = aB/((1 — a)(1 — B)). It is shown in CPY that if
either @ > 1 or B > 1, there are f for which (1.1) has no solution, while if
a <1, B<1and |p| <1, there is a unique solution for every f. From now on
we assume « < 1 and B8 < 1. Le Gall and Yor (1992) study a closely related
equation, essentially (1.1) with 8 = —. Their methods adapt to prove exis-
tence of solutions of (1.1) for all «, B, f. This is more carefully explained
before the statement of our Lemma 2.3. In Section 2 we prove results which,
when combined with those mentioned, yield the following theorem.

THEOREM 1.1. If |p| < 1, (1.1) has a unique solution for each f. If |p| > 1,
there is at least one solution of (1.1) for each f and there are functions f = f, 8
with more than one solution.
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Our contribution to this theorem is the uniqueness when |p| = 1 and the
nonuniqueness when | p| > 1. Our methods in the | p| = 1 case adapt to settle,
affirmatively, the a« = 1/2 case of the question asked at the end of Le Gall
and Yor (1992).

If |pl <1, we show, with the aid of a result from CPY, that there is a
constant C = C, , such that if g, and g, solve (1.1) for f; and f,, respec-
tively, then sup, _,lg,(s) — g,(s)| < Csup, _,Ifi(s) — f3(s)]. This is not true if
| pl = 1, when there can be a “butterfly effect.” There are functions f; and f,,
which agree in [&,») and which never differ by more than &, such that
g1 — &, is unbounded. This is discussed further at the end of Section 2.

CPY shows that if |p| < 1, then the solution of (1.1) for Brownian paths,
that is, the process Y*# =Y =Y,, ¢t > 0, defined by

(12) Y, = B, + a¥ + BY/?,

where B = B,, t > 0, is Brownian motion started at 0, is adapted to the
filtration of B. It is easy to extend this result to the cases |p| = 1, using the
proof of the existence and uniqueness of solutions of (1.1) for these «, 8.

In Section 3 we show that if |p| < 1, the solution Y of (1.2) can be identified
as the weak limit of a discrete process. If Z = Z,, Z,,... is a discrete time
stochastic process, we identify it with the continuous time process on [0, ®)
which results from linearly interpolating: Z, = Z, + (¢t — nlZ,,, — Z,], if
n<t<n+1

THEOREM 1.2. Define the integer-valued stochastic process X, ;=X =
X, X1, Xo,... by Xy =0,P[X,,, =X, +1X,,i<n]l=1-P[X, =X, —
1X,,i<nl=%ifn=00rX* <X <X*;5 =1/2—a)ifn>0and X, =
X* =1-1/2-B)ifn>0and X, = X'

Then if |pl < 1, the processes (1/Vn)X,,, t = 0, converge weakly to Y* P.

The o = 0 (and B = 0) cases of Theorem 1.2 have been proved by Werner
(1994). It seems very likely that the analog of Theorem 1.2 for | p| = 1 holds,
but our proof does not extend to this case. It is also likely that, for all « and
B, the processes X, ;, converge weakly, but it is not clear that the limit
process can be constructed a.s. path by path by solving (1.2). Several people
have suggested that the excursion theory of Perman (1995), for the solutions
of (1.2) when a = 0, may help settle the remaining weak convergence ques-
tions.

If o =B <0, the processes X, , can be realized as the simplest of the
reinforced random walks: if we assign a weight of 1 to each “bond” (i,i + 1)
which has not been crossed by X, , and assign weight 1 — a to bonds which
have been crossed, then X, , may be described as jumping up or down with
probabilities proportional to the weights of the connecting bonds. See Davis
(1990) for more details. Recent papers at least partly concerned with rein-
forced random walk include Diaconis (1988), Pemantle (1988, 1992), Davis
(1989), Sellke (1994a, b), Toth (1994, 1995, 1996) and Othmer and Stevens
(1995). Bolthausen and Schmock (1994) proved weak convergence for a
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different kind of non-Markovian walk. Harrison and Shepp (1981) proved
weak convergence of the (Markovian) walk which behaves like fair random
walk except at zero, where it goes up with probability p.

Our study of the processes X,, , and Y*# was motivated by Nester (1994),
where stopping times for the processes X, ;, when a = B, were studied.
Many of Nester’s results translate immediately to results about the limiting
processes Y* ¢, of course only in the a < ; case for now, since Theorem 1.2
does not cover other «. Nester’s formulas, in common with the formulas in
CPY, are very pretty and often involve beta densities. For example, Nester’s
results show the probability that Y* ¢ equals a before it equals —b, if
a,b>0,is [0/t (1 — ) dt/ (it (A — t)"* dt.

2. Proof of Theorem 1.1. Recall that @« and 8 will both be assumed to
be less than 1, often without mention. If g and f satisfy (1.1), that is, if g
solves (1.1) for f, then our assumptions that f is continuous and vanishes at
zero are easily seen to imply that g has these properties. Positive absolute
constants which depend only on o and B8 are usually denoted by ¢ and C;
subscripts will be used to denote dependence on various quantities. We put
at=max(a,0), a V b = max(a, b) and a A b = min(a, b). If A is a function
on [a, b] we let h*la, b] = max,_,_, h(x) and h*[a,b] = min,_,_, h(x).
Let C,[0, ) denote the continuous functions on [0, ®) which vanish at 0.

LEMMA 2.1. Let g solve (1.1) for fand let 0 < a < b < «. Then
g*[a,b] — g*[a,b] <max[1,(1 - a) ", (1-8) ]

(2.1)
x(f*[a,b] - f*a, b]).

PrROOF. Suppose, first, that g achieves its minimum in [a, b] before it
achieves its maximum; that is, there exist @ < s < r < b such that g#[a, b]
= g(s) and g*[a, b] = g(r). Since g#(s) = g#(r), subtracting the version of
(1.1) with ¢ = s from the version with ¢ = r gives

g(r) —g(s) =f(r) —f(s) + a(g*(r) —8*(s)).
If a <0, this gives g(r) — g(s) < f(r) —f(s); if 0 < @ < 1, it gives (g(r) —
g — a) < f(r) — f(s), since g*(r) — g*(s) = g(r) — g*(s) < g(r) — g(s).
These inequalities give (2.1) in this case. The case where g achieves its
minimum before it achieves its maximum is similar. O

COROLLARY 2.2. Let f € Cy[0,>). Suppose that f,, n > 1, converges uni-
formly to f on compact subintervals of [0,°) and that g, solves (1.1) for f,.
Then there is a subsequence m(n), n > 1, of integers such that mny M 21,
converges uniformly on compact subintervals of [0, ). The limit Of & () SOlveS

(1.1) for f.

PrOOF. Lemma 2.1 and the fact that f,, n > 1, is equicontinuous and
uniformly bounded on compact subintervals of [0, ) imply that g,, n > 1, is
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also equicontinuous and uniformly bounded. Thus the Arzela—Ascoli theorem
and a diagonalization argument give the desired sequence g,,.,), n > 1. Since
the functions g, ,, converge uniformly, say to g, gk ,(t) and g} (¢
converge to g*(¢t) and g*(t), respectively, for each ¢ > 0. This implies g
solves (1.1) for f. O

Our proof of the following lemma, the key for existence, resembles the
proof of Proposition 6.2 of Le Gall and Yor (1992).

LEMMA 2.3. Suppose either of the following two conditions hold:

(a) Thereare 6 > 0, ¢ # 0, such that f(x) =cx,0 < x < 6.
(b) There are 6> 0, ¢ # 0, such that f(x) =0, 0 <x < §/2, and f(x) =
c(x —(8/2), 6/2 <x < 6.

Then (1.1) has a solution for f.

Proor. We remark that in (a), the “0 < x < §” stands for “if 0 <x < §.”
We omit “if’s” throughout the paper. If g € C,[0,%) solves (1.1) for f, then
both the following hold:

If [a,b] c[0,*) and if g(x) > g%(a), x €[a, ], and if
s = inf{t > a: g*(a) = g(¢)}, then g(¢) — g(a) = f(¢) — f(a),

(22) a<t<b,ifs>b,whileifs <b, g(t) — gla) = f(t) - fla),
a<t<s, and g(t) —g(s) =ft) — f(s) + al — a)?!
max,_,_(f(x) — f(s), s <t <b.

If [a,b] c[0,©) and if g(x) <g*(a), x €[a,b], and if
r=inf{t > a: g%(a) = g(t)}, then g(t) — g(a)=f(t) —

(23) fla), a<t<b, if r>b, while if r<b, gt) —gla) =
f&) —fla), a<t<r, and g(t) —g(r)=Ff@t) — f(r) +
B —B) tmin,_, _,(f(x) —f(r), r<t<b.

To see (2.2), note that the only nontrivial part concerns the formula for
g(t) — g(s) when s < b. Now (1.1) gives

f(t) —f(s) = (&(t) —&(s)) — a(g*(t) —&*(s)),

which equals (1 — a)(g*(¢) — g*(s)) when g(#) = g*(#) and is smaller than
(1 — aXg*(t) — g*(s)) when g(t) < g*(¢). Thus g(¢) = g*(¢) exactly for those
¢t for which f(¢) = max,_,_, f(x). This verifies g(¢) — g(s) = f(¢) — f(s) +
a(l — @) 'max,_,_(f(x) —f(s)if s <t <b and g(¢) = g*(¢). To verify it
for other ¢ € [s, b], let ¢, = sup{x < ¢: g(x) = max,_,_,g(y)} and use its
truth for ¢, and the fact that, by (1.1), f(¢) — f(¢,) = g(¢) — g(¢,). The proof
that (1.1) implies (2.3) is similar.



WEAK LIMITS OF PERTURBED RANDOM WALKS 2011

It is also true that (2.2) and (2.3) imply that g solves (1.1) for f, provided
g € Cy[0,). We just sketch this argument. To show (1.1) it suffices to prove
(2.4) and (2.5):

If[a, b] € [0,%) and g(x) > g*(a), x € [a, b], then g(b) —
g(a) = f(b) — fla) + a(g*(b) — g*(a)).
If[a, b] c[0,») and g(x) < g*(a), x € [a, b], then g(b) —
gla) = f(b) — f(a) + B(g#(b) — g¥(a)).

(2.4)
(2.5)

That (2.4) and (2.5) imply (1.1) is not difficult: fix ¢, let 0 < & < ¢ and break
[, t] into disjoint intervals [a, b] on which either g(x) > g#(a) or g(x) <
g*(a). Take the results of (2.4) and (2.5) on these intervals and add them.
Then let ¢ —» 0. To show (2.2) implies (2.4), let s be as in (2.2) and observe
the implication is trivial if s > b, while if s < b, let 6 = max{t € [s, b]:
g*(t) = g(t)}). Then g(s) — gla) = f(s) — fla), g(b) —g(6) = f(b) — f(6)
and, recalling the discussion after (2.3), g(0) — g(s) = g*(b) — g*(a) =
(1 — a)"1(f(#) — f(s)). Adding these three expressions gives (2.4). The proof
that (2.3) implies (2.5) is similar.

We prove part (a) of Lemma 2.3 first. Suppose ¢ > 0. We construct g by
putting g(x) =cx/(1 — a), 0 <x < §, and then using (2.2) and (2.3) as a
recipe for constructing g(¢) for ¢ > 8. Since g(8) = g*(8) > g#(5), (2.2)
dictates g(¢), 8§ <t <y, where y = inf{lx > §: g(x) = g#(x)}. Then (2.3) dic-
tates g(#), y <t <z = inflx > y: g(x) = g*(x)} and so on. The ¢ < 0 case is
very similar. Part (b) of Lemma 2.3 is established in a similar way by first
explicitly exhibiting a solution on [0, 6], which is 0 on [0, §/2] and linear on
[6/2,6]. O

COROLLARY 2.4. There is at least one solution of (1.1) for every f.

ProoF. Suppose, first, that there is a sequence ¢, | 0 such that f(¢,) # 0.
Let f,(t) =tf(¢,)/t,, 0 <t <t,, and f,(¢) =f(¢), t > ¢, Then Lemma 2.3
guarantees that (1.1) has a solution for f,, and Corollary 2.2 gives a solution
for f. If f is not the 0 function, but /=0 on [0, §] for some § > 0, let
g=supis: f(¢)=0,0<t<s}, put g =0 on [0, ¢] and for ¢ > ¢ mimic the

argument above. Of course, if f is the 0 function, we may take g = f. O

The proof of Theorem 1.1 will be completed by proving three propositions,
each of which treats some of the «, B not covered by the CPY results. Recall
these results settled the issue for |p| < 1. Our propositions consider, respec-
tively, p=1, p= —1 and |p| > 1.

Our methods will also handle the parts of Theorem 1.1 proved in CPY.

LEMMA 2.5. Let g, and g, be solutions of (1.1) for f and suppose t > 0
and f*(t) > f*(t). It cannot happen that both g,(t) = g¥(t) and g,(t) = g¥(¢).
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PrOOF. First note that g#(¢) < g¥(¢), because, since f is not identically
zero on [0, t], neither is g;. Thus if g,(¢) = g7(¢), there is 0 < s < ¢ such that
g(s) <gi() and g(r) #gf(r), s<r <t. Then (2.2) implies f(¢) =
max,_,, f(r) > f(s). Similarly, if g,(¢) = g5(¢), thereis 0 < y < ¢ such that
f(y)>min, _,_, f(r) =f(¢). O

LEMMA 2.6. Let 0 <p <. Let a,, 0 <k <n, and b,, 0 <k <n, be
sequences of numbers such that b,,, — b, = —pla,,; —a;), n>0. Then
pa, + b, =pa, +b,,0 <k <n.

The proof of Lemma 2.6 is immediate.

ProposiTION 2.7. If 0 < a <1 and B =1 — «a, then there do not exist two
different solutions of (1.1) for any f.

ProoF. Think of f as fixed. We assume that f*(¢) — f*(¢t) > 0, t > 0.
Only minor alterations in our proof are required if this does not hold. Let g,
and g, be solutions of (1.1) for f. We will prove

(2.6) 81(0) — 85(b) <g1(a) — g;(a), 0<a<b.

Upon letting a go to zero, (2.6) gives g,(b) < g,(b) and, of course, switching
the roles of g; and g,, we get g,(b) > g,(b), verifying the proposition.
For ¢ > 0, define

A(t) = g1(t) —go(t),  *A(t) =g7(¢) —85(2),
PH(t) = [(g5(2) —g5(1)) — (8%(t) —&:(1))] = A(z) — *A(¢)
and
P(t) = [(&:(t) —gt(t)) — (82(t) — g4 (1))].

We say that an interval I =[c,d] C[0,%) is positive if g(t) > gf(c),
c<t<d,i=1,2, and we say that I is negative if g,(¢) < g¥(c), c <t <d,
i = 1,2. Equation (2.2) implies

gi(d) —gi(e)=(1-a)"’

27 x[*(Le.d]) = f(e) = (8¥(c) —gi(e))]

i =1,2,[c,d] positive.
To see this, note that gf(d) — g¥(c) = g¥(d) — g#(¢), where ¢t = inf{s < d:
g;(s) = g¥(c)}. Then, recalling the argument in the paragraph after (2.3), (2.2)
gives g,(s) = g¥(s) if and only if f(s) =f*[c,s], if ¢ <s <d, and (2.7)
follows. Equation (2.7) implies that *A(d) — *A(c) lies between 0 and
(1 — @) P*(c), inclusive. Now (2.2) gives

gi(d) —g;(c) =f(d) — f(c) + a(g(d) — g} (c)),

(2.8) . .
i =1,2,[c,d] positive.
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Subtracting the i = 2 version of (2.8) from the i = 1 version gives

(2.9) A(d) — A(c) = a(*A(d) — *A(c)), [¢c, d] positive,
which in turn gives

(2.10) P*(d) — P (c) = (a—1)(*A(d) — *A(¢)), [c, d] positive.

Also, (2.9), (2.10) and the fact that neither g7 nor gZ changes on a positive
interval yield

P7(d) =P (c) = A(d) — A(c)
(2.11) «
a—1
The sentence before (2.8), together with (2.10), shows it cannot happen that
both P*(¢) >0 and P*(d) <0 or that both P*(¢c) <0 and P*(d) > 0.
Furthermore,
(2.12) IP*(d)l < |P*(¢)l, [ec,d] positive.
A mirror set of equalities and inequalities holds for negative intervals. In
particular, we have, recalling /(B —1=a — 1/a),
P*(d) = P"(c) = A(d) — A(c)
(2.13)

(P*(d) —P*(c)), [ec,d] positive.

%I(P—(d) — P (¢)), [c, d] negative.

Also we have
(2.14) I[P~ (d)l < IP(¢)l, [e,d] negative,

and it cannot happen that both P (¢) >0 and P (d) <0 or that both
P~ (c) <0and P (d) > 0if [c, d] is negative.

IfOo<r<s,wesayr=a,<a, <a, < -+ <a, = s is a positive—negative
decomposition of [r, s] if each interval [a;, a; ], 1 <i < n, is either positive
or negative, and we let [|[r, s]|| be the fewest such intervals possible. The
following construction, here called the canonical decomposition, not only
shows each interval has a positive—negative decomposition, but constructs
one which clearly has no more than 2||[r, s]|| intervals. Call ¢ positive if
either g¥(¢) = g,(¢) or g5 (¢) = g,(¢), and call ¢ negative if either g¥(¢) = g,(¢)
or g#(t) = g,(t). Take a, = r, a; = min(inf{t > a,: ¢ is positive or negative}, s)
if a, <s; take a, = min(inf{¢ > a,: ¢ is negative}, s) if @, is positive and
a, = min(inf{¢ > a;: ¢ is positive}, s) if a; is negative; if a, < s, let a; be the
next negative or positive number, depending on whether a, is positive or
negative and so on. This process eventually yields an a; equal to s, since
otherwise Lemma 2.5 would be contradicted because the limit of positive
(negative) numbers is positive (negative). We also observe that if [u,v] C
[r,s], then the intersection of [u,v] with the intervals in the canonical
decomposition of [r, s] gives a positive—negative decomposition of [«, v] with
at most 2||[u, v]|| intervals in it.
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Let 0 < & < a. We prove
(2.15) A(b) — A(a) <C (IP* (&)l + 1P (e))ll[a, b]ll.

Before proving (2.13), we note that both P*(g) - 0 and P (¢) > 0as € - 0,
so that (2.15) implies (2.6).

To prove (2.15), first consider the case where both P*(g) > 0 and P (¢) >
0. Let £ =s, <s; < -+ s, = b, where [s;,s;,1], 0 <i <n, are all the inter-
vals which arise by intersecting the intervals in the canonical decomposition
of [ &, b] with both [ £, a] and [a, b]. Then one of the s; is a; designate it by s,,,.
The two sequences P*(s;), 0 <i <n, and P (s;), 0 <i < n, are nonnegative
by the sentences just before (2.12) and after (2.14), and by (2.11) and (2.13)
they satisfy the conditions of Lemma 2.6, with p = a/(1 — a), a, = P*(s;)
and b, = P~(s,). Thus both P*(s;) and P~ (s;) are no larger than C (P*(s,)
+ P~ (sy) = C(IP*(&)| + I[P (&)|) and we have, using (2.11) and (2.13),

AB) — A@)l = T 1A(sy. 1) — A(sy)|
k=m

(2.16) < ni C,(IP*(sp)l + [P~ (sp)l)
k=m

<C,(n —m)(IP* (&)l + [P~ (&)l
< C,l[a,b]lI(IP* (&)l + [P~ (&))).

If P"(¢) <0 and P (&) <0, then P"(s;))<0and P (s;))<0,1<i<n,
and so (2.11) and (2.13) imply that A(s,,,) — A(s,) < 0, implying A(d) —
A(a) < 0. Alternatively, we could mimic the argument just given, to bound
[A(B) — Aa).

Finally, if one of P*(&), P~ (&) is positive and one is negative, (2.11)—(2.14),
together with the comments before (2.12) and after (2.14), imply that if
m = inf{k: P*(s,) and P~ (s,) have the same sign}, then |[P*(s;, )| < [P*(s,)|
and [P (s;, DI < [P (s), 0 <i <m — 1. Now if m = o, [A(s,, ;) — A(sy)| <
C(P* (sl + P (s)D) < C(IP*(&)l + IP~(&)]), and an analysis very similar
to (2.16) gives (2.15). In addition, if m < o, (2.11)-(2.14) imply that

|P+(sm)| + |P7(Sm)| = Ca(ler(Smfl)l + |P7(Sm71)|)
< C,(IP* (&)l + 1P (&)l).
Furthermore, |[P*(s,,, )| + IP (s, )| < C (P (s, )| + IP (s,)D, k> 0, by

the argument that led to the statement just before (2.16). Thus, once again,
an analysis similar to (2.16) gives (2.15). O

LEMMA 2.8. Let 0 <p < » and suppose a,,ay,...,a, and by, by,..., b,
are real numbers which satisfy the following condition. For each k,0 < k < n,
either all of a1 — a, = p(b, .1 — b,), la, 1| < la,l and a;,_ 1a, = 0 or all of

ak+1 - ak = _p(bk+1 - bk)’ |bk+1| < |bk| and bk+1bk > O hold Then
la,| + plb,l < lagl + plbgl, 1<k<n.
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The proof, by induction, of this lemma is immediate.

PrOPOSITION 2.9. If p = —1, there do not exist two different solutions of
(1.1 for any f.

ProoF. Suppose, with no loss of generality, that « > 0, so B8 < 0. Let g,
and g, be two solutions for f. Define A(¢), P*(¢), P~(¢) and positive and
negative intervals symbolically exactly as they were defined in the proof of
Lemma 2.8 and define @ (¢) = —P(#). All the equations, inequalities and
discussion appearing between (2.8) and (2.12) inclusive still hold. In addition,
(2.11) gives

-[@7(d) — @ (c)] = A(d) — A(e)

(2.17) o -
= (P7(d) —P7(c)), [c, d] positive.

a—1

We also have, by reasoning very similar to that which led to (2.11),
P7(d) = P*(c) = A(d) — A(c)
(2.18)

B _ _ .
m(Q (d) —Q (c)), [¢c, d] negative.

Mirroring the comments before (2.12), if [¢, d] is negative, it cannot happen
that both @ (¢) > 0 and @ (d) < 0 or that both @ (¢) < 0 and @ (d) > 0,
and |Q(d)| < |Q(e)l.

The rest of the proof of Proposition 2.9 closely models the proof of Proposi-
tion 2.7. We fix [a, b] and again make the additional assumption that
F*@) — 7 () >0,t>0.Let0 <e<a<bandlet e=s,<s; < =+ <s,, =b
be constructed exactly as they were in the proof of Proposition 2.8. Let
a;=P*(s))and b, =Q (s;),and p =(a— 1/a= —-B/(B— 1. If[s,,s;,,4]
is negative, the comments after (2.14) imply that either b, > b,.; > 0 or
b, <b,,; <0, and (2.17), (2.12) and the comments after (2.14) show that if
[sy, Sp+1] is positive, either a, > a,,, >0 or a, < a,,,; < 0. Together with
(2.17) and (2.18) this shows Lemma 2.8 applies. The remainder of the argu-
ment is virtually identical to the proof of Proposition 2.7 and is omitted. O

The following proposition provides the rest of the proof of Theorem 1.1.

ProposITION 2.10. If |p| > 1, there is a function f, ;= f for which (1.1)
has at least two solutions.

ProOF. We prove the case p < —1 and then briefly discuss the case p > 1.
We assume, without loss of generality, that « > 0. If f is a piecewise linear
function on [0, ¢], it is easy to see there is a unique piecewise linear solution
g of (1.1) “on [0, t].” These solutions may be found explicitly as in the proof of
Lemma 2.3.
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We now construct two functions f; and f, on [0, ®) by recursively defining
them on successively larger intervals. We define P*(¢), @ (¢) and A(%)
symbolically exactly as they were defined in the proof of Proposition 2.8,
where g, and g, are the piecewise linear solutions of (1.1) on these intervals
for f; and f,, respectively. Put f1(#) = 0,0 <¢ <1, and f,(#) = y{,0 <t <
1/2, fo(¢) = (y/2) — 6(¢ — (1/2)),1/2 <t < 1, where y, 5 > 0 are chosen so
that g,(1) =0, g#(1) =0 and g3(1) = 1. Of course g,(t) =0,0 <t <1, so
P*(1) =1 and @ (1) = 0. We now define A(¢) == f,(t) — f,(1) = f,(t) — f,(1),
thereby defining f; and f, on the rest of [0, %].

Of course A(1) =0 and we put A'(¢) =1, 1 <t <¢;, where ¢; = inf{s:
P*(s) = 0}. Note that since A is increasing on [1, ¢], this interval must be
positive and so (2.17) gives P*(¢;) = 0 and @ (¢;) = —a/(1 — «). It is worth
noting that since P*(1) > 0, gi(1) — g,(1) > g¥(1) — g,(1) (of course, we
knew this anyhow) and thus the increments of both g; and g, after 1 equal
those of A until g, = g¥, after which g, increases at a faster rate than g,
until g, = g&, which occurs at ;.

Next define A'(#) = —1 on ¢; < ¢ < t,, where t, = inf{¢ > #;: @ (¢) = 0}.
Then P*(¢,) = (—a/(1 — a)—B/(1 — B)) = p using (2.18). Then define
h(t) = —1,t, <t <t,, where t; = inf{t > t,: P*(¢;) = 0} and so on. We have
P*(ty,)=p", Q (t,,)=0 and P (¢,,.,)=0, Q@ (¢y,.1)=(—a/Q — @)
XP*(t5,), n = 0.

We will show

(2.19) clpl® < ty, < Clpl", n > 0.
To prove the left-hand side of (2.19), we first note that
(2.20) IP*(s) —PH(t) <Cls—¢tl, 1l<s<t,

since, roughly, none of g, g5, gF or g% changes on [1, ») at a rate faster than
an absolute constant C, since |A'| = 1 for all but a discrete set of points. For
example, if & is even and ¢, <s <t <t,,,, h(t) — h(s) =t — s, and so (2.2)
gives 0 < g,(t) —g,(s) <C(t —s) and now (2.4) gives gi(t) —gi(s) <
C(¢t — s). Thus t,, — ty, 1 = clP"(t,,) — P"(ty, | = clp™l(t —s) and now
(2.4) gives gi(t) — gi(s) < C(t — s). Thus t,, — ¢y, 1 = clP"(ty,) —
P+(t2n71)| = C|Pn|
The right-hand side of (2.19) follows from

(2.21) ty.q —t, < Clpl"”?.
To prove (2.21), we first prove

(222) (g51(t) - gt (t)) + (g5(t) — g2(1)) < Clpl**, & = 0.

Suppose first that j is even and j/2is an even integer. Let y =y, = inf{¢ > ¢;:
g.(t) = g7 (#)}. Then g,(s) = gi(s), y <s <t;,, and ¢;,;, = inf{t > y: g,(s) =
g%(s)). Thus |pl/? = P*(t)) — P*(t;,,) = P"(y) — P*(t;,,), which in turn
equals ;. , — y, since gy(¢;,,) — g,(y) = h(t;, ) — h(y) =t, ., — .
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Now (2.2), (2.4) and (2.20) yield
gi(tj1) — &85 (t;) =87 (t+1) — &7 ()
(2.23) <C(tjy, —y) =C(P"(y) — P*(t;11))
= Clpl”%.
Since gf(t;, ) =g{(t), g§(t;, 1) =g} (t;)) and g}(¢;,,) = g5(¢)), this gives
(81 (ti1) —81(%)) + (83(;41) —85()))
+(gf(t;) — gt (t;1)) + (85(2;) — &8 (t;.1)) < Clol 2.

The proof of (2.24) for j odd and for j even when j/2 is not an integer is
similar, and adding these inequalities for j = 0 to £ — 1 gives an inequality
which immediately implies (2.22). To derive (2.21) from (2.22), let £ and % /2
be even, as the argument for other % is very similar, and let y =y, be as
defined just after (2.22). Then ¢, ., — ¢, = (¢,,; — ) + (y — ¢,). Now

y—to=gi(t) —gi(t) <gi(t) —gf(4) < Clol'””

using (2.22), and (2.23) gives ¢,,, —y < Clp/*/*.
Finally we note

(2.24)

(225) |A(t2n+1) - A(t2n)| = C|p|na n = 17
which follows from (2.11), so that
(2.26) sup lgi(s) —gx(s)l = Clpl", n=>1.

0<s<tg,4+1

Now define f! and £? by fX(¢t) = n"'f(nt) and f2(t) = n~'f,(nt). Their
solutions for (1.1) equal n 'g,(nt) and n~'g,(nt), respectively, which we
designate g7 and gJ. Pick a subsequence n(m), n > 1, of the integers, such
that fpm), fam) gnim)  ghlm) converge uniformly on compact subintervals of
[0, ). This is possible since {f}, n > 1} and {2, n > 1} are both absolutely
continuous and bounded by their explicit construction and thus so are {g},
n > 1} and {g2, n > 1} by Lemma 2.1.

Now fnl(m) and fnz(m) clearly converge to the same function, again by their
constructions. Call this function f. Corollary 2.2 guarantees that the limits of
gnmy and g2, call them g, and g,, are both solutions of (1.1) for f. Finally,
(2.26) and (2.15) guarantee that g; and g, cannot be the same function.

If p > 1, a very similar argument can be made: again define two functions
f1 and f, so that they have the same differences on [1, ) and have P*(1) = 1
and P7(1) = 0, and define ¢, i > 1, and the differences of f; and f, so that
both P*(¢;) and P~(¢,) oscillate between 0 and numbers which have geomet-
rically increasing absolute value, while the absolute values of the ¢, are
controlled, using (2.11) and (2.13); then proceed as before. O

We just note that in the p > 1 we can explicitly construct a function f for
which (1.1) has one nonnegative (and nonzero) and one nonpositive solution.
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This function depends on « and B and switches slopes between +1 and —1.
If « = B, the lengths of the intervals where the function is linear increase
geometrically, approaching infinity, and decrease geometrically, approaching
zero. The basic approach is the same as above: alter the function slightly two
ways on [0, &,], show that one solution never goes below its minimum on
[0, £,] and the other never goes above its maximum on[0, ¢,] and then take
subsequential limits as ¢, — 0.

When |p| = 1, if we try to mimic the examples above, we get unbounded
differences between g, and g,, but not the geometrical increase of (2.26).

3. Proof of Theorem 1.2. The basis of our proof of Theorem 1.2 is the
following formula of CPY. If g solves (1.1) for f, then

(81) &"(1) = 7 9| f(s) = 7o sup(~(w) ~ ag”(w)) |

Let [|llr = supg . ;< plh(s)], T > 0. Throughout this section we assume |p| < 1.

ProPOSITION 3.1.  Let |p| < 1. Then if g, and g, are solutions of (1.1) for f;
and f,, respectively, we have

(3.2) lg, — gollr < ClIlfy — fullr, T >o.

PrOOF. Subtracting the version of (3.1) for f, from that for f;,
g (T) — &3 (T)

[SUP|f1(3) = f2(3)l
T

IA

1—-of,-
+ A sup [sup (—f1(u) — agf(u))
l_Bsgg usl.: ! 81
(3.3) - i‘g:(_fz(u) - ag;k(u))u
1 Bl
ST?z”ﬂ‘ﬁM+1_BEgiguxw—ﬁwﬂ
lalsu et () - 3|
1 8l L
< 1= C\{||lc1 = follr + TB”fl — follr + lplllgF — g&lir.

Upon noticing that |g¥(T) — g4(T)| may be replaced in (3.3) by any of
lg¥(t) — g%(#)], 0 <t < T, since the right-hand side of (3.3) is increasing in T',
(3.3) yields

1-B+ I8l — alpl
(1-a)(1-8)

(34) gt —&5llr(1 - lpl) < Ify = follz,
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SO
(35) g1 (t) —g5() <Cllfy = folle, 0<t<T.

Similarly we have

lgf(t) —gf(t) <Clf, —follr, O0<t<T.

We claim that the truth of (3.4) and (3.5) for all f; and f, implies the
apparently stronger inequality (3.2).
We show this by showing that if [|f; — f,llr > 0 and

(3.6) 4<K=K; ; r=Ilg, —glle/Ifi — folr,

then there are functions_f1 and f5, with solutions g, and &,, respectively,
and S > 0, such that [|f; — f,lls = [If; — f5ll7 and either |g5(S) — g5(S)| >
(K/2IF, — folls or 181(S) — g1(S) > (K/DIf, — Folls.

Suppose, first, that « > 0 and B > 0, and suppose without loss of gener-
ality that |g,(T) — g,(T)| =llg; — g,llr and that g,(T) > g,(T). Let w =
sup{x < T: (g((T) — g4,(T)) — (g(x) — go(x)) > (f((T) — fo(T)) — (fy(x) —
fa(x))}.

Note that 0 is in the set we are taking the supremum of, since K > 2. Now
either g,(w) = gi¥(w) or g,(w) = g¥(w), since otherwise (g,(w) — g,(w)) —
(gw — &) — go(w — &) < (fiw) — filw — &) — (f(w) — folw — &) for
small enough & > 0, using (2.2) and (2.3). Suppose g,(w) = g¥(w). Define f,
and f, by fi(t) =fit), t <w, fi(t) — f1(w) =& —w), t >w, and f,(¢) =
fo(8), t<w, (&) —folw)=0G—-w), t>w. Let y=inf{t > w: g,(&) =
g¥(w)}. Now g,(s) =5%(s), w<s <y, and since a >0, g,(s) — g,(s) is
increasing on (w, y) and so

gi(y) —&5(v) =&i(y) —&2(v)
> g(w) — &y(w) = g1(w) — gz (w).

However,

g1(w) —gx(w) = (8(T) —82(T)) = I(fUT) — f(w)) = (fo(T) — fo(w))l
(81(T) — go(T)) — 2lf; — fallr

1
5(&(T) —2.(T)) [by (3.6)]

%

\Y%

K
E”fl _f2||T-

Finally, note || f; — foll, = Ify = falle = Ify = follw < IIfy — f3llr and so we get
gi(y) — g5(y) = (K/2IIf; — f5ll,, which verifies the sentence containing (3.6).
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The proof if one or both of «, 8 is not positive is very similar, in fact,
somewhat easier: if both « and B are not positive, and w is defined as above,
either g (w) = g{(w) or gy(w) = gi(w). In the first case, |g{(w) — g¥(w)| >
(K/2\f, — f»ll; in the second case, |gF(w) — g*(w)| = (K/2If; — foll,. O

We use = to indicate convergence in distribution of processes and retain
the convention extending discrete time processes to and identifying them
with continuous time processes, mentioned before the statement of Theorem
1.2. For a process Z, we let Z" be the process n~'/?Z ,, ¢t > 0. We let R be fair
random walk, started at 0, let B and Y be as in (1.2) and let X be as in the
statement of Theorem 2.1. It is classical that R” = B. The continuous map-
ping theorem [see Pollard (1984), page 70] and Lemma 3.1 now give that if S
solves (1.1) for R, then S" = Y. If S had the distribution of X, this would
verify Theorem 1.2, but it does not. To circumvent this problem we find a
process U such that U” = B and such that the solution of (1.1) for U has
exactly the distribution of X.

Process U is constructed from R. We describe its construction and prop-
erties for «, B both nonpositive. The other cases are very similar. We let
A;, i > 1, be iid indicator variables with P(A; =1) = —a/(2 — a) and let
B;, i > 1, be indicator variables independent of the A; with P(B;=1) =
—-B/2 —B).Let My =R, and M, =R,,andifi > 1,put M;,,, — M, =R, ,
— R, ifeither M <M, < M*,or M; =M? and R,,, — R, = +1,or M, = M}
and R,,;, — R;= —1. Define M,,, —M;=R,,, — R, — 2A,, if M;,=M}

and R,,; — R, =1, where J(i) is the number of %, 1 <k < i, such that
M,=M; and R,,, — R, =1 Define M,,, —M,=R,,, — R, + 2By, if
M? =M, and R, , — R, = —1, where O(i) is the number of those k, 1 < & <
i, such that M, = M} and R,,, — R, = —1. Then M has exactly the distri-
bution of X. We define the process U as follows: U, ., — U, =M,,, — M
excepton{M,,, — M, =1, M, = M}, where we define U,,; — U, = (1 — a),
andon{M,,, — M, = —1, M, = M/}, where we define U, ,, — U, =
Then M is the solution of (1.1) for U. Furthermore, we have

U,

n

1-U=R,.,—R, if M, *M*orM?orn=0,
Un+1_Un_(Rn+1_Rn)=[(l_a)_1]I(Rn+1_Rn=1’AJ(rz)=0)
~2I(R,,, —R,=1,A,,, =1)
= AF if M, =M}, n>0.
Also,

Un+1 - Un - (Rn+1 _Rn) = [(_1 + ,8) + 1]I(Rn+1 _Rn = _1’ B(H)(n) = O)
+2I(R,,, — R, = —1, Bon, = 1)

= A ifM,=M* n>0.
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Thus U, - R, = L} _(A" (k) + X} _oA (k). It is easily checked that A"(k),
k>0, and A" (k), k> 0, are both martingale difference sequences, that
[A*(R)] < C, and [A~(k)| < Cg, that A"(k) = 0 except on {M, = M;*} and
that A~(k) = 0 except on {M, = M}}.

LEMMA 3.2. If X is as in the statement of Theorem 1.2, then

1Y I(X, =Xj orX}) — 0 inprobability.

ProoF. Fix M >1> 0. Let 7, = inf{k: X;j — X = M}. Clearly 7, <
a.s. Let

Top = 1nf{z

\

T X; € (XF, X7}, k>1,
Tope1 = inf{i > 75,1 X; = X or X/}, E>1

Let o, = o(X;, i < k).

Now if ¢ > 1, the conditional distribution of 75; — 75;_; given &/ is the
geometric dlstrlbutlon with parameter 1/(2 — @) on {X, =X’ }anditis
the geometric distribution with parameter 1/(2 — 8) on { i = Zx ’i } The
conditional distribution of {r,; , , — 7,,} given .%,, is stochastically no smaller
than the distribution of the time it takes fair random walk, started at 1, to
exit from (0, M). Especially if E,, is the expected time it takes random walk
started at 1 to exit (0, M), we have

\%

n n—1
limsup ) (74, — 72k1)/ Y (Topi1 — Tor) < C/Ey,
k=1

now p=1

where C is the maximum of the expectation of the two geometric variables
mentioned above. Since the sum in the denominator is smaller than r,,, this
implies

n T2n
limsup ), I(X, = X orX,f)/n < limsup ) I(X, = X or X}') /7y,

now =1 now k=1
n

= limsup Y, (7g, — Top_1)/Tan < C/Ey.
now k=1

Since sup,, E;; = %, this proves the lemma. O

Note that this lemma is equivalent to
(3.7 ®,/n — 0 1in probability,

where Q, = Y}_,I(M, = M} on M}) as., since X and M have the same
distribution.
To complete the proof of Theorem 1.2, we prove the following lemma.

LEMmMA 3.3. U” — B in distribution as n — .
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PrROOF. The proof will be accomplished by showing that sup,_,_,|U"(s)
— R"(s)| = 0 in probability for each fixed ¢. This follows from

E max (U(k) = R(k))*/n

k k 2
= E max (.ZIAJr(i) + ‘ZIA(i)) n

1<k<n

2
n+4FE

k k 2
54E( max Y, A" (k) max ZA(k)) n
1<k<n ;_4

1<k<n ;_q

slGE(ZA*(i)) n+16E(ZA(i)) n
i=1 i=1
=C,EQ,/n + C,EQ,/n >0 asn — =

The last inequality by Doob’s martingale maximal inequality [Doob (1951),
page 317] applied to the martingales Y*_ ,A*(i) and Y¢_;A"(i), and the
convergence to zero is by (3.4). O
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