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BALLOT THEOREMS AND SOJOURN LAWS FOR
STATIONARY PROCESSES

By Olav Kallenberg

Auburn University

The ballot theorem and the uniform law for sojourn times, both results
known for cyclically stationary sequences and processes on a bounded index
set, are here extended to infinite, stationary sequences and to stationary
processes on �+. Our extensions contain all previously known versions as
special cases.

1. Introduction. The classical ballot theorem, first noted by Bertrand
(1887), is the elementary but remarkable fact that, if two candidates A and B
in an election are getting the proportions p and 1 − p of the votes,
the probability that A will lead throughout the counting of ballots equals
�2p−1�∨0. (The obvious underlying assumption is that the ballots are counted
one by one in random order.) Extensions and new proofs have been provided
by many authors, beginning with Barbier (1887) and André (1887). A modern
discussion based on combinatorial arguments may be found in Section III.1
of Feller (1968), and a simple martingale argument appears in Section 7.4 of
Chow and Teicher (1997).

The most recent progress in the area seems to be due to Takács (1967),
who extended the mentioned result to cyclically stationary sequences. More
generally, if X is a nondecreasing process on �0�1� with X0 = 0 such that X
has singular paths and cyclically stationary increments, we have

P	supt�Xt − t� ≤ 0� = E��1−X1� ∨ 0�	(1.1)

The latter statement is slightly stronger than the one in Section 13 of Takács’
book, but it follows by the same argument from his Theorem 1 of Section 1.
Recall that a nondecreasing function F is singular if its absolutely continuous
component vanishes and that a process X has cyclically stationary increments
if the process Yt = Xs+t − Xs has the same distribution for every s, where
s+ t is understood in the sense of addition modulo 1.

The mentioned result may be rephrased as a property of certain processes
on �+ with stationary and periodic increments. In Section 2 we show that the
periodicity assumption can be dropped, so that the statement remains true
for any nondecreasing process X on �+ with X0 = 0 possessing stationary
increments and singular paths. The extended result also contains a version
for subordinators and their mixtures, given in Section 14 of Takács (1967).
Rather than using the classical formulation in (1.1), we shall state our result
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in a more probabilistic form that reveals its true nature as a uniform law for
the minimum of t/Xt.

Another class of results requiring cyclic stationarity are the uniform laws
for various bridge-type processes on �0�1�. Here the prototype is Lévy’s (1939)
uniform law for the standard Brownian bridge B, which states that the posi-
tive and negative sojourn times

ρ± = λ	t ∈ �0�1�� ±Bt > 0�

are uniformly distributed on �0�1�. [The latter distribution is henceforth de-
noted by U�0�1�, and we use λ to denote Lebesgue measure.] A uniform law
is also known for the location of the maximum or minimum of B and both
results are closely related to the three celebrated arcsine laws for Brownian
motion, also due to Lévy (1939). A modern discussion of those classical results
appears in Chapter 11 of Kallenberg (1997).

The uniform laws for sojourn times remain valid with the same proof for
any measurable process X on �0�1� with cyclically stationary increments and
X0 = X1 = 0, provided only that

λ	t ∈ �0�1�� Xt = 0� = 0 a.s.(1.2)

Similarly, the uniform law for the maximum remains true for any separa-
ble and cyclically stationary process on �0�1�, whenever the maximum is a.s.
unique. In two recent papers, by Fitzsimmons and Getoor (1995) and Knight
(1996), the validity of these results is examined for suitable “Lévy bridges,”
that is, for the bridge-type processes obtained from an arbitrary Lévy process
X by conditioning on X1 = 0 or subtraction of the linear drift term tX1.

The uniform sojourn law may be restated as a property of cyclically station-
ary processes on �0�1�, or, equivalently, of stationary and periodic processes on
�+. In Section 3 we remove the periodicity assumption and establish a version
for any stationary and measurable process on �+, subject only to a condition
similar to (1.2). Even without the latter assumption, a uniform law holds af-
ter an appropriate randomization, which leads to corresponding bounds on the
distributions of ρ±.

We conclude with some general remarks on notational and other conven-
tions. Throughout the paper, we assume that the underlying probability space
� is rich enough to admit the introduction of an independent U�0�1� random
variable, when required. (If this is not the case, we may replace � by the
product space �×�0�1� with probability measure P⊗λ.) For basic definitions
associated with random measures and sets, we refer to Chapters 10 and 14 in
Kallenberg (1997). Given any stationary random process, measure, or set ξ,
we use�ξ to denote the associated invariant σ-field [Kallenberg (1997), Chap-
ter 9]. We also write ⊥⊥ for independence and 1	· · ·� for the indicator function
of the set within brackets. Finally, we adopt the notations � = 	1�2� 	 	 	�,
�+ = 	0�1� 	 	 	�, �n = 	0� 	 	 	 � n− 1� and �+ = �0�∞�.
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2. Ballot theorems. Our main result may be stated most naturally in
terms of random measures. Indeed, if X is a nondecreasing, right-continuous
process on �+ with X0 = 0, there exists a unique random measure ξ on �+
such that ξ�0� t� = Xt for all t ≥ 0, and we note that ξ is stationary iff X has
stationary increments.

Theorem 2.1. Let ξ be an a.s. singular, stationary random measure on �+
or �0�1�, and put Xt = ξ�0� t� and ρ = E�X1��ξ�. Then there exists a U�0�1�
random variable σ⊥⊥ρ such that

sup
t>0

Xt

t
= ρ

σ
a.s.(2.1)

Already the previously known version for finite intervals has numerous in-
teresting applications to queuing theory and other areas, as so amply testified
by Takács (1967). With the present extension, we are widening the domain
of validity to arbitrary stationary random measures that are either purely
atomic or singular and diffuse. The latter case is more than a curiosity, as
it applies in particular to many interesting additive functionals of stationary
Markov processes. For example, we may think of the local time at a regular,
nonsticky state of a positive-recurrent diffusion. [See, e.g. Chapters 19 and 20
in Kallenberg (1997).]

Before proceeding to a proof of Theorem 2.1, we need to justify our state-
ment by showing that singularity is a measurable property of a random mea-
sure.

Lemma 2.2. Let µ = µa + µs be the Lebesgue decomposition of a Radon
measure µ on �. Then µa and µs are measurable functions of µ. In particular,
the set of singular Radon measures is measurable.

Proof. The martingale approach in Section XI.17 of Doob (1994) yields a
product-measurable version of the Radon–Nikodym density dµa/dλ. By Fu-
bini’s theorem, the mapping µ �→ µaB is then measurable for every Borel
set B, which implies the asserted measurability of µa and hence also of µs =
µ− µa. The last assertion follows since µ is singular iff µa = 0.

The second statement can also be proved directly by a more elementary
argument. Then note that µ is singular iff, for any bounded interval I and
constant ε > 0, there exist finitely many subintervals I1� 	 	 	 � In such that
λ
⋃

k Ik < ε and µ
⋃

k Ik > µI − ε. It is clearly enough to consider rational
numbers ε and intervals I and Ik with rational endpoints, which leaves us
with a countable collection of measurable conditions. The asserted measura-
bility then follows. ✷

Our proof of Theorem 2.1 follows in relevant parts the corresponding ar-
gument in Section 2 of Takács (1967) and makes essential use of Lebesgue’s
differentiation theorem—the fact that any nondecreasing function F is differ-
entiable a.e. with a derivative F′ that agrees a.e. with the Radon-Nikodym
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derivative of the absolutely continuous component of F. For a discussion and
proof of the latter result, see, for example, Section X.4 of Doob (1994).

Proof of Theorem 2.1. It is enough to consider random measures on �+,
since the result for �0�1� will then follow by a periodic continuation of ξ. Define

At = inf
s≥t

�s−Xs�� αt = 1	At = t−Xt�� t ≥ 0	

Consider first a realization of X such that A0 is finite. Then

0 ≤ At −As ≤ t− s� s < t�

which implies that A is nondecreasing and absolutely continuous with an a.e.
derivative A′. We shall prove that A′ = α a.e.

Then fix a t ≥ 0 with αt = 0. By the continuity of A and the right-continuity
and monotonicity of X, there exists some ε > 0 such that As < s − Xs − ε
and therefore As = At whenever �s − t� < ε. Hence, A′

t = 0. Next consider a
t with αt = 1. Since A′ exists a.e. and X′ = 0 a.e. by the singularity of ξ, we
may assume that both conditions hold at t. We may also assume that t is a
cluster point of the set D = 	s� αs = 1�, since the set of isolated points is at
most countable. Choosing t1� t2� 	 	 	 ∈ D \ 	t� with tn → t, we get

Atn
−At

tn − t
= 1− Xtn

−Xt

tn − t
� n ∈ ��

and as n → ∞, it follows that A′
t = 1. Thus, we have indeed A′ = α a.e.

Recalling that A is absolutely continuous, we obtain a.s.,
∫ t

0
αsds =

∫ t

0
A′

sds = At −A0� t ≥ 0	(2.2)

As t → ∞, we have Xt/t → ρ a.s. by the pointwise ergodic theorem, and so
At/t → �1− ρ� ∨ 0 a.s. Applying the same result to the left-hand side of (2.2),
we get a.s.,

P�supt>0�Xt/t� ≤ 1��ξ� = P�supt≥0�Xt − t� = 0��ξ�
= P�A0 = 0��ξ�(2.3)

= E�α0��ξ� = �1− ρ� ∨ 0	

Now define

σ = ρ

supt�Xt/t�
on 	0 < ρ < ∞�

and put σ = ϑ otherwise, where ϑ is U�0�1� and independent of X. Relation
(2.1) holds automatically on the set 	0 < ρ < ∞�, and it is also true on the
complement since Xt ≡ 0 a.s. when ρ = 0 and Xt/t → ∞ a.s. when ρ = ∞. To
verify the distributional claims, we may apply (2.3) to the process rX/ρ for
arbitrary r ≥ 0 to get

P�σ ≥ r�ρ� = P�r supt�Xt/t� ≤ ρ�ρ� = �1− r� ∨ 0 a.s.
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Since a similar relation holds trivially for ϑ, we conclude that σ is condition-
ally U�0�1� given ρ. Thus, σ is U�0�1� and independent of ρ. ✷

From Theorem 2.1 we may easily deduce the corresponding discrete-time
result. Here (2.1) holds only with inequality and will be supplemented by a
sharp relation of the classical type.

Corollary 2.3. Let ξ = �ξ1� ξ2� 	 	 	� be a finite or infinite, stationary se-
quence of �+-valued random variables, and put Sk = ∑

j≤k ξj and ρ =
E�ξ1��ξ�. Then there exists a U�0�1� random variable σ⊥⊥ρ such that

sup
k>0

Sk

k
≤ ρ

σ
a.s.

If the ξk are �+-valued, then also

P�supk>0�Sk − k� = −1��ξ� = �1− ρ� ∨ 0 a.s.

Proof. Define Xt = S�t+τ� where τ is U�0�1� and independent of �ξk�. By
Theorem 2.1 applied to X or its periodic extension, there exists some U�0�1�
random variable σ⊥⊥ρ such that a.s.

sup
k>0

Sk

k
≤ sup

t>0

S�t�
t

≤ sup
t>0

Xt

t
= ρ

σ
	

If the ξk are �+-valued, then the same result yields a.s.,

P�supk>0�Sk − k� = −1��ξ� = P�supt≥0�Xt − t� = 0��ξ�
= P�supt>0�Xt/t� ≤ 1��ξ�
= P�ρ ≤ σ ��ξ� = �1− ρ� ∨ 0	 ✷

3. Sojourn laws. For any measurable process X on �+ or �0�1�, the as-
sociated sojourn times $±

t above and below X0 are given by

$±
t = λ	s < t� ±�Xs −X0� > 0�� t ∈ �+ or �0�1�	(3.1)

In discrete time, we use the same definition with λ replaced by the counting
measure on �+ or �n. Recall that a process X on �0�1� or �n is (cyclically)
stationary if the shifted process Yt = Xs+t has the same distribution for every
s, where s+ t means addition modulo 1 or n, respectively.

Theorem 3.1. For any stationary, measurable process X on �+ or �+, the
ratios $±

t /t converge a.s. toward some limits ρ±. Furthermore, if γ is U�0�1�
and independent of X, the quantity

σ = ρ− + γ�1− ρ+ − ρ−�(3.2)

is again U�0�1�. This remains true for any stationary and measurable process
on �0�1� or �n, if we define ρ± as $

±
1 or $

±
n /n, respectively.
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Before proving this result, we note that (3.2) implies ρ− ≤ σ ≤ 1 − ρ+. In
particular, ρ+ and ρ− are both U�0�1� when

lim
t→∞

t−1λ	s < t� X0 = Xs� = 0 a.s.�

or, for processes on �0�1�, when λ	s� X0 = Xs� = 0 a.s. This clearly cannot
occur for processes on �n. If X is a measurable process on �0�1� with cyclically
stationary increments, we may apply the theorem to the stationary process
Yt = Xτ+t where τ isU�0�1� and independent ofX. Noting that the associated
random variables ρ± have the same distributions as λ	s� ±Xs > 0�, we obtain
the classical uniform laws.

Our proof of Theorem 3.1 will be based on the following lemma.

Lemma 3.2. Let the random variable τ and the random probability mea-
sure η on � satisfy P�τ ∈ ·�η� = η a.s., and let γ be U�0�1� and independent
of �τ� η�. Then the quantity σ = η�−∞� τ� + γ η	τ� is again U�0�1�.

Proof. By conditioning on η, we may reduce to the case when η is non-
random and P ◦ τ−1 = η. Consider the distribution function F�t� = η�−∞� t�
and its right-continuous inverse F−1�s� = inf	t� F�t� > s�, and let ϑ⊥⊥γ be
U�0�1�. Then τ̃ = F−1�ϑ� is again independent of γ with distribution η, and so
for convenience, we may assume that τ̃ = τ. Next we define ϑ± = F�F−1�ϑ�±�
and note that σ = ϑ− + γ�ϑ+ −ϑ−�. Write F��� for the range of F and intro-
duce the connected components Ik = �sk� tk� of the open set �0�1� \F���. For
any k we have a.s. ϑ− = sk iff ϑ ∈ Ik, and then ϑ+ = tk. Thus,

P�ϑ ≤ t�ϑ− = sk� =
t− sk
tk − sk

= P�σ ≤ t�ϑ− = sk�� t ∈ Ik	

On the other hand, if ϑ− /∈ 	s1� s2� 	 	 	�, then a.s. ϑ /∈ ⋃
k�sk� tk�, which implies

σ = ϑ. Hence, by combination, P�σ ∈ ·�ϑ−� = P�ϑ ∈ ·�ϑ−� a.s. and therefore
σ=dϑ. ✷

Proof of Theorem 3.1. We may restrict our attention to processes on �+
or �+, as the results for �0�1� or �n will then follow by periodic continuation
or may be proved directly by similar but more elementary arguments. Let the
empirical distributions ηt and the mean occupation measure η be given by

ηtB = t−1λ	s < t� Xs ∈ B�� B ∈ �� t ≥ 0�

ηB = P�X0 ∈ B��X�� B ∈ ��(3.3)

where � denotes the Borel σ-field in �. By Tucker’s (1959) extension of the
Glivenko–Cantelli theorem, we have a.s.,

lim
t→∞

supx�ηt�−∞� x� − η�−∞� x��=0�

lim
t→∞

supx�ηt�−∞� x� − η�−∞� x��=0�



BALLOT THEOREMS AND SOJOURN LAWS 2017

and so, as t → ∞,

t−1$+
t = ηt�X0�∞� → η�X0�∞��

t−1$−
t = ηt�−∞�X0� → η�−∞�X0�	

Thus, the asserted convergence holds with a.s. limits

ρ+ = η�X0�∞�� ρ− = η�−∞�X0�	
Furthermore, (3.3) yields a.s. for any B ∈ �,

P�X0 ∈ B�η� = E�P�X0 ∈ B��X��η� = E�ηB�η� = ηB�

which means that η is a regular version of P�X0 ∈ ·�η�. Since η	X0� = 1 −
ρ+ − ρ−, Lemma 3.2 shows that σ is again U�0�1�. ✷

From Theorem 3.1 we may easily deduce criteria for ρ+ and ρ− to beU�0�1�.
The following statement translates immediately into similar critera for pro-
cesses on �0�1� with cyclically stationary increments. The special case of pro-
cesses on �0�1� with exchangeable increments was first recorded by Knight
(1996).

Corollary 3.3. LetX be a stationary and measurable process on �+, �+,
�0�1� or �n with mean occupation measure η, and define ρ± as in Theorem 3.1.
Then these statements are equivalent:

(i) ρ− (or ρ+) is U�0�1�.
(ii) ρ+ + ρ− = 1 a.s.
(iii) η is a.s. diffuse.

Proof. Let γ and σ be such as in Theorem 3.1. From (ii) we get ρ− = σ
a.s., and (i) follows. Conversely, (i) yields

1
2 = Eσ = Eρ− +Eγ�1− ρ+ − ρ−� = 1

2 + 1
2E�1− ρ+ − ρ−��

which implies (ii). Next, recall that 1− ρ+ − ρ− = η	X0� and P�X0 ∈ ·�η� = η
a.s. Using the disintegration Theorem 5.4 in Kallenberg (1997), we obtain

E�1− ρ+ − ρ−� = Eη	X0� = EE�η	X0��η�

= E
∫
η	x�η�dx� = E

∑
x
�η	x��2�

which shows that (ii) and (iii) are equivalent. ✷

For comparison, we consider the corresponding statements for maxima and
minima. In the following result, we may think of M as the set of absolute
maxima of some underlying stationary process X on �0�1�. More precisely, let
X be a stationary, separable process on I = �0�1� and write M for the set of
points t ∈ I such that sups∈GXs = sups∈I Xs for every neighborhood G of t.

Proposition 3.4. Let M �= ∅ be a stationary, random, closed subset of
�0�1�, and define τ1 = inf M and τ2 = supM. Then τ1 ≤ σ ≤ τ2 for some
U�0�1� random variable σ . Furthermore, τ1 (or τ2) is U�0�1� iff τ1 = τ2 a.s.
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Proof. First consider any nonrandom, closed subset F �= � of the circle
T, and let γ be uniformly distributed on T. Given that γ falls in a connected
component I of Fc, its conditional distribution is clearly uniform on I. The re-
sult translates immediately into a corresponding statement for closed subsets
F �= � of � with period 1 and a U�0�1� random variable γ. Equivalently, we
may consider the location of the random set F− γ relative to the origin.

In this form, the statement extends to M − γ provided that γ⊥⊥M, and
since M − γ=dM it remains true for M. More precisely, given the length of
the random interval �τ2 − 1� τ1�, the location of the origin within the interval
is uniformly distributed. Putting

σ = τ1
1+ τ1 − τ2

≥ τ1(3.4)

whenever the denominator is positive, we may conclude that σ is conditionally
U�0�1�, given that 0 /∈ M. We also note that

σ = 1− 1− τ2
1+ τ1 − τ2

≤ 1− �1− τ2� = τ2	(3.5)

If instead 0 ∈ M, we may define σ = ϑ where ϑ is U�0�1� and independent
of M. Then σ remains U�0�1�, unconditionally, and satisfies τ1 ≤ σ ≤ τ2.

To prove the last assertion, we note that the inequalities in (3.4) and (3.5)
are strict when 0 < τ1 < τ2 < 1, and also that trivially τ1 < σ < τ2 a.s.
when 0 ∈ M. Thus, if P	τ1 < τ2� > 0, then Eτ1 < Eσ < Eτ2 and all three
distributions are different. If instead τ1 = τ2 a.s., then τ1 = σ = τ2 a.s. and
the three variables are U�0�1�. ✷

For processesX on �0�1� with exchangeable increments andX0 = 0, Knight
(1996) shows that the time τ1 of the first maximum has the same distribution
as the positive sojourn time ρ+ = λ	t� Xt > 0�, which extends a celebrated
discrete-time result of Sparre-Andersen (1953, 1954) [see, e.g., Corollary 9.20
in Kallenberg (1997)]. Assuming in addition that X1 = 0, we may conclude
that τ1 = τ2 a.s. iff 1 − ρ+ − ρ− = 0. Those results suggest that the pairs
�τ1�1− τ2� and �ρ−� ρ+� might have the same distribution.

Rather surprisingly, the latter statement is false in general. For a simple
counterexample, we may consider a process of the form

Xt =
∑
k≤n

bk1	σk ≤ t�� t ∈ �0�1��

where b1 ≤ · · · ≤ bn are nonzero constants with sum 0 and σ1� 	 	 	 � σn are
i.i.d. U�0�1� random variables. Then τ2 − τ1 = 1 holds in particular when
σ1 < · · · < σn, which occurs with the positive probability 1/n!. On the other
hand, we have ρ+ + ρ− > 0 a.s. since ρ+ + ρ− = 0 iff Xt = 0 a.e., which is
clearly impossible unless n = 0.



BALLOT THEOREMS AND SOJOURN LAWS 2019

REFERENCES
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