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CRITICAL PROBABILITIES FOR SITE
AND BOND PERCOLATION MODELS

BY G. R. GRIMMETT1, 2 AND A. M. STACEY 2 , 3

University of Cambridge

Ž .Any infinite graph G � V, E has a site percolation critical probabil-
ity psite and a bond percolation critical probability pbond. The well-knownc c
weak inequality psite � pbond is strengthened to strict inequality for ac c
broad category of graphs G, including all the usual finite-dimensional
lattices in two and more dimensions. The complementary inequality psite

c
Ž bond .�� 1� 1 � 1 � p is proved also, where � denotes the supremum ofc

the vertex degrees of G.

Ž .0. Introduction and results. Let G � V, E be an infinite connected
graph. Our target in this paper is to study the relationship between site and
bond percolation on G, and particularly to prove inequalities between the two
critical probabilities psite, pbond of these models. To date, the only generalc c
inequality of this type appears to be the weak inequality psite � pbond, validc c
for all connected graphs G. Our principal purpose here is to extend the
coupling arguments used in proving this weak inequality, and to exploit
recently developed methods for proving strict inequalities, in order to obtain
the inequality psite � pbond for a certain broad category of graphs.c c

Several difficulties arise in this program, under two general headings.
First, a method is required for utilizing the ‘‘strict inequality’’ methods of

Ž .Aizenman and Grimmett 1991 in the ‘‘nonstatic’’ setting which occurs when
studying stochastic couplings of site and bond percolation. Second, there are
graph-theoretic complications in applying such techniques to general graphs.

We shall give two theorems about strict inequalities, rather than one only.
Our first such result is Theorem 1, which applies specifically to hypercubic

Ž .lattices in d � 2 dimensions; this will be proved using a relatively straight-
forward construction. Although this construction may in principle be ex-

Ž .tended with some combinatorial complications to certain other graphs on an
ad hoc basis, it does not seem to be easy to adapt it to a broad general class of
graphs. Therefore, we have separated out in Theorem 2 our more general
result, the proof of which requires substantially deeper ideas than that of
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Theorem 1. Since �d is the major playground for percolation, Theorem 1 and
its proof are valuable in their own right.

We present next a description of the two percolation models in question. In
Žthe bond percolation model on G, we are provided with a collection X :e

.e � E of independent Bernoulli random variables, each having the same
Ž .mean p, indexed by the set E of edges or ‘‘bonds’’ . If X � 1, we say that thee

Žedge e is open; otherwise, it is called closed. Given any two vertices or
. Ž .‘‘sites’’ x and y, we say that y can be reached from x and we write x � y if

there exists a path of open edges from x to y. Let 0 denote a specific vertex of
Ž .G, called the ‘‘origin.’’ The random set of vertices which can be reached from

the origin is denoted by C :0

� 4C � x � V : 0 � x .0

The principal event of interest is that of C being infinite, and we define0

bond � �� p � � C � � ,Ž . Ž .p 0

� 4Ewhere � denotes the appropriate product probability measure on 0, 1 . Wep
Ž . Ž .refer the reader to Durrett 1988 and Grimmett 1989, 1997 for further

information and standard results concerning percolation. The ‘‘bond critical
bond bondŽ .probability’’ p � p G is defined asc c

pbond G � sup p : � bond p � 0 ,� 4Ž . Ž .c

so that

� 0, if p � pbond ,cbond� pŽ . bond½ � 0, if p � p .c

Ž .In the site percolation model, we have instead a collection Y : x � V ofx
Bernoulli random variables, each with mean p, indexed by the set of vertices
of G. If Y � 1, we say that vertex x is active; otherwise, we say that x isx
inactive. In this model, we say that vertex y can be reached from vertex x
Ž .written x � y if there exists a path from x to y consisting of active vertices

Ž .only in particular, x and y are required to be active . We make similar
definitions to those in the bond model, obtaining thus a site percolation

siteŽ . site siteŽ .probability � p , and a site critical probability p � p G .c c
It is natural to ask whether there exists any relationship between the site

and bond percolation models on some fixed graph. It is known that, for any
graph G,

0.1 psite G � pbond G ;Ž . Ž . Ž .c c

Ž .see Hammersley 1961 for a statement of this result; see Oxley and Welsh
Ž . Ž .1979 and Kesten 1982 for proofs. In fact a stronger result is true, namely
that, for any p and any fixed graph G and starting vertex 0, it is the case that

siteŽ . bondŽ .� p � p� p ; in this sense, percolation does not occur so readily in the
site model as in the bond model. This last inequality follows from a fairly
obvious coupling argument, which we shall present during the proof of
Lemma 5.
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Ž .We may ask for conditions under which the inequality in 0.1 is strict. If
the graph in question is a tree, then necessarily the site and bond critical
probabilities are equal. In this case, if we declare the starting vertex 0 to be
automatically active for the site model, then the site and bond models are
essentially identical, in the sense that C has the same distribution for both0
models. Furthermore, we may make certain changes to a tree without chang-
ing the values of its critical probabilities; one example of such a change is the
addition of finitely many edges. One sees in this way that there exist infinite,
connected graphs which are not trees, for which the site and bond critical
probabilities are equal. However, it is reasonable to suppose that for a broad
category of graphs G, including all the standard finite-dimensional lattices in
two or more dimensions, the strict inequality

0.2 psite G � pbond GŽ . Ž . Ž .c c

Ž .is valid. No general derivation of this is known. The only cases for which 0.2
is known appear to arise either through special properties of the graph in

� 2 Ž .question such as self-duality in the case of � , see Higuchi 1982 and Toth´
Ž .� � Ž . �1985 or via explicit numerical bounds see Hughes 1996 , pages 182�183 .

Ž .Certain two-dimensional inequalities were proved by Kesten 1982 , using
somewhat elaborate techniques.

Of greatest interest perhaps is the case when G is the d-dimensional
hypercubic lattice with vertex set �d and edge set � d.

siteŽ d . bondŽ d .THEOREM 1. Let d � 2. We have that p � � p � .c c

The strict inequality of Theorem 1 is valid for a much wider range of
graphs than just the hypercubic lattices. As remarked above, these two
critical probabilities are equal for trees, but one might reasonably expect
them to be distinct for graphs which have, in some appropriate sense, a
positive density of cycles. It is not immediately clear what the best way is to
make this notion precise for graphs having little or no symmetry, so we
restrict our attention for the moment to graphs having a large number of
automorphisms.

Ž .Let G � V, E be an infinite connected graph. We call G locally finite if all
vertices have finite degree, and we assume henceforth that this holds. We

Ž . Ž .denote by � G the supremum of the vertex degrees of G. Let Aut G denote
the group of automorphisms of G. This group acts on the vertex set V in the
obvious way. We say that G is finitely transitive if this group action has only
finitely many orbits. Finite transitivity is true of all graphs commonly re-
ferred to as ‘‘lattices’’ and has the additional appeal of being a purely
graph-theoretic property: it does not depend on any particular embedding of
the graph in Euclidean space.

We call an edge e of G a bridge if the removal of e disconnects G; we say
that G is bridgeless if it contains no bridges. Connected bridgeless graphs
with at least three vertices are also known as 2-edge-connected graphs.
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THEOREM 2. Let G be an infinite, finitely transitive, connected, locally
finite, bridgeless graph. Then either:

Ž . siteŽ . bondŽ .i p G � p G � 1; orc c
Ž . bondŽ . siteŽ .ii 0 � p G � p G � 1.c c

Ž . ŽPart i applies, for example, to an infinite ladder the product of � with
. Ž . dK , and part ii to � for d � 2. This theorem is applicable to graphs whose2

growth functions are bigger than polynomials, and in particular to the Cayley
graphs of many groups. Percolation on such graphs has been studied recently
by several authors; see the papers and references of Benjamini and Schramm
Ž . Ž .1996 and Benjamini, Lyons, Peres and Schramm 1997 . A more general
version of Theorem 2, which does not require the graph to have any nontriv-
ial automorphisms, is given in Theorem 10.

We make next some remarks concerning strict inequalities. There exist
many situations in which a weak inequality between critical points may be
established but where the corresponding strict inequality is elusive. There
seems to be only one general method for proving such inequalities, namely

Ž . � Ž .�that described by Aizenman and Grimmett 1991 see also Menshikov 1987 .
Using this approach, Aizenman and Grimmett were able to prove strict
inequalities for certain percolation and Ising systems, and Bezuidenhout,

Ž .Grimmett and Kesten 1993 proved similar results for general Potts and
random-cluster models. The latter results were extended to many-body inter-

Ž .actions by Grimmett 1994 . Strict inequalities can be strangely difficult to
prove, even in situations when the weak inequality is nearly a triviality. The
methods used here lead also to quantified versions of the strict inequalities of
Theorems 1, 2 and 10, but the bounds obtained thus seem to be of limited
interest.

Our third main result is an inequality complementary to that of Theo-
rem 2.

Ž .THEOREM 3. Let G be a connected graph satisfying � � � G � �. Then

��1site bondp � 1 � 1 � p .Ž .c c

The inequality of Theorem 3 may well not be the best possible, although
Ž .we have not been able to improve on it. We deduce from 0.1 and Theorem 3

that, for graphs with bounded degree, psite � 1 if and only if pbond � 1. It isc c
easy and standard to prove by counting paths that

1
site bond0.3 p , p � ,Ž . c c � � 1

site Žand we deduce in this case that p is nontrivial in the sense that it liesc
. bond Žstrictly between 0 and 1 if and only if p is nontrivial. This fact may bec

.established by other arguments also.
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We prove Theorem 1 in Section 1 and Theorem 3 in Section 2. In Section 3,
Ž .we present a discussion of the problem of proving 0.2 in general. Finally, we

prove Theorem 2 in Section 4.

1. Proof of Theorem 1. The basic approach used in our proof of Theo-
rem 1 is the ‘‘enhancement’’ technology developed by Aizenman and Grim-

Ž .mett 1991 . They considered the following situation. Suppose that we are
given two percolation processes, one of which is an ‘‘enhancement’’ of the
other. We now ask whether or not the enhanced process has a critical
probability which is strictly less than that of the original. Aizenman and

Ž .Grimmett 1991 developed a technique for showing that, subject to certain
conditions, such strict inequality is valid. One approach would therefore be to

Žfind a way in which a bond model may be viewed as an enhancement in the
.sense of Aizenman and Grimmett of the site model on the same graph.

Rather than do this, we propose instead to find an enhancement of the site
model which lies ‘‘strictly beneath’’ the bond model. The required inequality
will then follow.

We do not give full details of the arguments of Aizenman and Grimmett
Ž .1991 , but present instead a summary, as follows. The enhancements consid-
ered by them are defined by translation-invariant rules which are applied
systematically about the underlying graph. To describe this precisely, let us
restrict our attention for the moment to site percolation on �d. Given R � 0,
we define the box

d d � �� � � 4B R � �R , R � x � � : x � R ,Ž .

� � � � � 4 Ž . d dwhere x � max x : 1 � i � d for x � x , x , . . . , x � � . Let S 	 � .i 1 2 d
� 4SThe set � � 0, 1 is called the set of configurations on S. We shall think ofS

a configuration � in either of two ways: as a 0�1 vector � indexed by S, or
Ž . � Ž . 4alternatively as the subset � � � x � S: � x � 1 of vertices of S which

are active under �. This defines a one�one correspondence between vectors �
Ž . � 4� d Ž .dand subsets � � . We write � � � � 0, 1 , and C R � � , the set of� BŽR .

Ž . Ž .all configurations on B R . When convenient, we think of C R as the set of
Ž .subsets of B R .

We now define the relevant type of enhancement. Let R be a positive
Ž . Žinteger the range of the enhancement , let s satisfy 0 � s � 1 the enhance-

. Ž . Ž . Ž .ment density and let f : C R � C R the enhancement function . Then, for
Ž . Ž .� � � and � � � � , we define f 0, � to be the evaluation of f on the

Ž . Ž . Ž Ž . .restriction of � to B R , that is, f 0, � � f B R 
 � . We extend this to a
Ž . ddefinition of f x, � , for each x � � , by considering the configuration in-

duced by � on the box centered about x:

f x , � � f � 
 B R � x � x � x .Ž . Ž .Ž .Ž .Ž .
The enhanced configuration is then obtained from � by activating the en-

� Ž . �hancement i.e., declaring all vertices in f x, � to be active if and only if a
certain coin flip shows heads. More precisely, given �, � � �, we define the
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Ž .enhanced configuration �* �, � by

�* � , � � � � � f y , � � .Ž . Ž . Ž .Ž .�½ 5
Ž .y : � y �1

Then we introduce probabilities. Let 0 � p � 1 as usual. On the product
space � � �, we put the product probability measure � � � � � , whichp, s p s
is to say that

� A � B � � A � BŽ . Ž . Ž .p , s p s

Ž .for any events A, B 	 �. We now define � p, s to be the probability that the
origin belongs to an infinite cluster of the enhanced configuration �*, that is,

� p , s � � � , � : 0 lies in an infinite connected subset of �* � , � .� 4Ž . Ž . Ž .Ž .p , s

There is an important categorization of enhancements. Following Aizen-
Ž .man and Grimmett 1991 , we shall say that an enhancement is essential if

there exists a configuration � with the following property: there exists no
Ž . Ž .doubly infinite path in the graph induced by � � , but there exists a doubly

Ž . Ž Ž ..infinite path in � � � f 0, � � . We shall make use of the following theo-
Ž .rem, taken from Aizenman and Grimmett 1991 .

THEOREM 4. Suppose d � 2 and let s � 0. For any essential enhancement
d Ž Ž . site �of the site percolation model on � , there exists a nonempty interval 	 s , pc

Ž .of values of p on which � p, s � 0.

This theorem is also valid for bond percolation and with some work a
� Ž .�version of it may be proved for certain other graphs see Grimmett 1994 .

We now specify the required enhancement. Let e , . . . , e denote the usual1 d
d Ž . Ž .unit vectors of � : e � 1, 0, 0, . . . , 0 , e � 0, 1, 0, 0, . . . , 0 and so on. Given a1 2

vertex y � �d, we define four pairwise disjoint sets of vertices close to y as
follows:

1 � 4PP � y � e : 1 � i � d ,y i

PP 2 � y � e � e : 1 � i � j � d ,� 4y i j

1 � 4NN � y � e : 1 � i � d ,y i

NN 2 � y � e � e : 1 � i � j � d .� 4y i j

Thus, PP1 � NN1 is precisely the set of neighbors of y. Given a configuration �,y y
Ž . 1 2 1 2we say that y is a qualifying vertex if y � � � and PP � PP � NN � NN 	y y y y

Ž .� � . For �, � � �, our enhanced configuration is

�* � , � � � � � y : y is a qualifying vertex and � y � 1 .� 4Ž . Ž . Ž .
It is easy to see that this constitutes an essential enhancement. We shall

Ž .refer to �* or the law it induces on the space of configurations as simply
Ž .enhanced site percolation with parameters p and s, and we write � p, s to

denote the corresponding percolation probability of the enhanced configura-
tion. See Figure 1 for a sketch of the enhancement.
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FIG. 1. A representation of the enhancement described, when d � 2. Each copy of the configura-
tion on the left is replaced, with probability s, by the configuration on the right. Filled circles
indicate active sites. Other sites can be either active or inactive.

Ž 2 . bondŽ .LEMMA 5. � p, p � � p .

Our proof of this lemma begins with a certain ‘‘dynamic coupling’’ which
Ž .shows that bond percolation dominates ordinary i.e., unenhanced site perco-

lation in the following sense: we start with a bond process, and we construct a
site process from it in such a way that any pair of vertices which are
connected by a path in the site process were already connected by a path in
the bond process. This coupling is not new and, although slightly unwieldy to
describe formally, is a natural one which is valid for all graphs. At the second
stage of the proof, we will observe that, in the construction of the site process,
certain bonds were ignored, and that these bonds may be used to enhance the

Žensuing site process in the required way. Since the coupling is ‘‘dynamic,’’
.exactly which bonds were ignored depends on the bond configuration.

PROOF OF LEMMA 5. We begin with a bond percolation process on �d: let
Ž d .X : e � � be a collection of independent 0�1-valued random variables. Lete
Ž d .Z : x � � be a collection of independent 0�1-valued random variables,x
independent of the X , having mean p also. In the first stage of this proof, wee

Ž d .construct from these two families a new collection Y : x � � of randomx
variables, which constitutes a site percolation process with density p. This
last process will have the property that, for x, y � �d, if y cannot be reached

Ž .from x in the bond process X , then neither can y be reached from x in thee
Ž . siteŽ . bondŽ .site process Y ; this will show that � p � � p .x

Let e , e , . . . be an enumeration of the edges of �d and let x , x , . . . be an0 1 0 1
enumeration of its vertices. We wish to define the Y in terms of the X andx e

Ž .the Z , and we shall do so by a possibly transfinite, but definitely countabley
recursion. We start with a formal description of the recursion, and then give a
somewhat more informal description.

Ž .Suppose at some stage that we have defined the set Y : x � XX , where XXx
d Ž .is a proper subset of � . At the start we have XX � �. Let YY be the set of

Žvertices not in XX which are adjacent to some currently active vertex i.e., a
. Žvertex u � XX with Y � 1 . If YY � �, then let y be the first vertex in theu
.sense of our enumeration not in XX , and set Y � Z . If YY � �, we let y bey y

the first vertex in YY and let y
 be the first currently active vertex adjacent to
it; we then set Y � X ; here, uv denotes the edge joining two neighborsy y y 


u, v. Repeating this procedure will eventually exhaust all vertices x � �d,
and assign values to all the variables Y .x
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Ž .This algorithm begins at x , and builds up a possibly infinite active0
cluster together with a neighbor set of inactive vertices. When the cluster at
x is complete, another vertex is selected as a new starting point, and the0
process is iterated. Note that this recursion is transfinite, since infinitely
many steps are needed in order to build up any infinite active cluster.

We now make two key observations about our construction of the variables
Y . First, for each vertex x, the probability that Y � 1, conditional on anyx x
information about the values of those Y determined prior to the definition ofy
Y , is equal to p. Based upon this observation one may prove, with a littlex

Ž d .care, that the random variables Y : x � � are independent with mean p,x
which is to say that they constitute a site percolation process on �d.

Second, it is evident from the manner of the construction that if there
Žexists an active path between two vertices, then there exists a possibly

.longer path of open bonds. Therefore, we have succeeded in coupling a bond
and a site process with the required domination property.

We shall now adapt this construction in order to obtain a suitable coupling
of bond percolation with an enhanced site percolation process obtained from
the Y . Before giving a precise definition of the new coupling, we explain thex
central idea. Suppose that y is a qualifying vertex in the sense of the
definition of enhanced site percolation. Then Y � 0 and Y � 1 for all x � PP1

y x y
2 1 2 1 2 Ž 1 2 .� PP � NN � NN . Note that all the vertices of PP � PP resp. NN � NN musty y y y y y y

Ž . Ž Ž ..lie in the same site percolation cluster C � C y resp. C � C y . If1 1 2 2
C � C , then the activation of y makes no difference to the connectivity1 2
properties of the graph except at y. If C � C , then activating y effectively1 2
joins C and C together. Since Y � 0, it is the case that at most one edge e1 2 y

Žincident with y was examined in the sense that the value of X wase
.considered in the determination of the Y . Therefore, there exists at least oneu

unexamined edge joining y to PP1; let the first such edge in our enumerationy
Ž . Ž .be e � e y . Likewise, there exists a first unexamined edge, f � f y say,

joining y and NN 1. We adopt the following enhancement: we declare y to bey
active if and only if X � X � 1. This has the effect of adding y into thee f
enhanced configuration with probability p2. Acting thus for all qualifying
vertices y yields an enhanced site percolation; the independence of the
enhancement at different qualifying vertices follows from the fact that the

Ž . Ž .sequence of all e y and f y contains no repetitions. Furthermore, the above
enhancement cannot join any two vertices which are not already joined by an
open path in the bond model: activating y has the effect of connecting y to

Ž . Ž .the clusters C y and C y and to no others, and this activation of y occurs1 2
only in situations where y is already joined to both of these clusters in the
bond model.

It is fairly straightforward to present a formal description of the informal
account above. In order to obtain the appropriate enhancement, we require a

Ž d .family H : y � � of independent Bernoulli random variables, havingy
2 Ž .parameter p and independent of the family Y . We only require the H forx y

Ž .qualifying vertices y, and we may simply set H � X X , where e y andy eŽ y . f Ž y .
Ž .f y are given as above.
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We have now given a coupling of bond percolation and an enhanced site
percolation with the property that any two vertices which are in the same
cluster of the enhanced site process are in the same cluster of the bond
process. In particular, if the cluster containing the origin in the enhanced
vertex process is infinite, then the cluster containing the origin in the bond
process is infinite also. The required inequality follows. �

PROOF OF THEOREM 1. We use the notation of the proof of Lemma 5. Note
1 sitefirst that the enhancement presented there is essential. Let s � p . Byc2

Ž . Ž site. Ž . Ž .Theorem 4, there exists 	 s � p such that � p, s � 0 for all p � 	 s .c
� Ž . 4 site 2 2 Ž 2 . Ž .Let max 	 s , s � p � p . Since p � s , we have that � p, p � � p, sc

bondŽ . site bond� 0. Therefore, by Lemma 5, � p � 0, whence p � p � p as re-c c
quired. �

Ž .2. Proof of Theorem 3. Let G � V, E be an infinite, connected, locally
Ž . Ž .finite graph. We let � x be the degree of the vertex x, so that � � � G �

� Ž . 4sup � x : x � V . We construct a coupling of a site and bond model on G. As
above, we begin with a bond process with density p on G together with an

Ženumeration x , x , . . . of V, and we shall construct a site process or more0 1
.precisely, one component of a site process, together with its boundary .

Rather than give all the formalities of the proof, we give an informal account
which may easily be made rigorous.

We begin at stage 0 with the first vertex x in the enumeration of V0
Ž .called the ‘‘origin’’ , and we declare it to be active if and only if at least one of
the bonds incident with it is open; otherwise, we declare it to be inactive. If
x is inactive, then we stop; otherwise, we continue to the next stage. Note0
that

Ž . �� x 0� x is active � 1 � 1 � p � 1 � 1 � p .Ž . Ž . Ž .p 0

Ž .At each subsequent stage stage n, say we consider the vertex, v say,
which is the earliest vertex in the enumeration out of those which have not
yet been considered and which are adjacent to some vertex which has been
considered and declared active; if there are no such vertices, then we stop. We
declare v to be active if and only if there exists at least one open bond joining
v to some vertex which has not yet been considered; otherwise, we declare v
to be inactive. Writing FF for the history of the process up to this stage, wen
have that

� ��12.1 � v is active  FF � 1 � 1 � p � 1 � 1 � p ,Ž . Ž . Ž . Ž .p n

where � is the number of edges of G joining v to vertices not already
considered.

In this way, we build up precisely one component C of active vertices
Ž .which may be finite or infinite ; furthermore, every neighbor of every active

Ž .vertex in C is eventually considered i.e., declared active or inactive . Note,
however, that some vertices which belong to the component containing 0 in
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the bond process may have been declared inactive in the ensuing site process.
Nevertheless, it is easy to see that if the component containing the origin in
the bond process is infinite, then so is C. In order to see this, suppose that C
is finite. Define its external boundary  C to be those vertices which are note
in C but which are adjacent to a vertex in C; that is,  C comprises preciselye
those vertices which have been considered and which have been declared
inactive. Then there exists no open edge in the bond process which leads from
a vertex in C �  C to a vertex outside C �  C. Therefore, the componente e
containing the origin in the bond process is contained in C �  C, which is ae
finite set.

In the construction of C, each vertex other than the origin was declared
Ž .��1 Ž .active with conditional probability at most 1 � 1 � p ; see 2.1 . This

implies that the site process is stochastically dominated by an independent
Ž .��1site percolation model on G, having density 1 � 1 � p and conditioned

on the origin being active. It follows that
Ž .��1 � xsite bond02.2 � 1 � 1 � p � 1 � 1 � p � p .Ž . Ž . Ž . Ž .� 4Ž .

The required inequality follows. �

3. Strict inequality for more general graphs. We discuss next the
problem of proving strict inequality for general graphs. Even finitely transi-
tive graphs can contain cycles which do not affect the percolation probabili-
ties. Take, for example, an infinite binary tree, and attach a triangle to each
vertex. No infinite self-avoiding path can make use of these additional edges
Ž .except, perhaps, at its start , so the percolation probabilities are unaffected.
To avoid these inessential parts of a graph, we make a further definition and
some associated observations.

We say that a vertex x is 2-connected to infinity if G has at least two
Žinfinite paths which are disjoint except at their common endvertex x. Note

�that throughout we use path to mean a finite or infinite, possibly doubly
�infinite sequence of distinct vertices, each adjacent to the next in the

.sequence. We say that G is 2-connected to infinity if every vertex x has this
property. The following lemma gives a useful characterization of vertices
which are 2-connected to infinity. The ‘‘only if’’ part is trivial; the proof of the
‘‘if’’ part requires just an easy amendment to the proof of the vertex form of
Menger’s theorem, otherwise known as the Max-Flow�Min-Cut Theorem
� Ž .�see, e.g., Bollobas 1979 , and we omit it.´

LEMMA 6. Let G be an infinite, locally finite, connected graph. A vertex x
Ž .of G is 2-connected to infinity if and only if there exists no vertex y � x with

the property that all infinite paths starting at x pass through y.

Ž .Let Sk G denote the subgraph of G induced by the set of all vertices
Ž .which are 2-connected to infinity; we call Sk G the skeleton of G. The

following proposition shows that, by replacing G by its skeleton, we can
restrict our attention to graphs which are 2-connected to infinity.



G. R. GRIMMETT AND A. M. STACEY1798

PROPOSITION 7. Let G be an infinite, locally finite, connected graph. Then
Ž . Ž .Sk G is itself a connected possibly empty graph which is 2-connected to

infinity. Furthermore:

Ž . Ž . Ž . bondŽ . siteŽ .i if Sk G is empty and � G � �, then p G � p G � 1;c c
Ž . Ž . Ž .ii if Sk G is nonempty, then G and Sk G have the same bond and site

critical probabilities.

Ž .PROOF. Suppose x � Sk G . Then x lies on a doubly infinite path in G,
Ž .and clearly all the vertices on this path belong to Sk G . Hence x lies on a

Ž . Ž .doubly infinite path in Sk G . This demonstrates that Sk G is 2-connected to
Ž .infinity. It is equally easy to see that Sk G must be connected.

Ž . Ž .Next, we introduce some notation. For x � Sk G , let f x denote a vertex
Ž .y � x with the property that all infinite paths of G, starting at x, pass

Ž .through y. If there exist more than one such y, then we assign f x to be one
Žof these according to some predetermined rule according to a fixed ordering

.of the vertices of G, perhaps . We write B for the set of all vertices of Gx
Ž .which can be reached from x along paths which do not use f x .

Ž . Ž . Ž .We prove ii first. Suppose that Sk G � �, and let x � Sk G . Clearly,
Ž .any infinite path of Sk G from x is also an infinite path of G. We shall now

prove the converse. Let xx x ��� be an infinite path of G, and suppose that1 2
Ž .there exists some x with x � Sk G . Either x � B or not. If x � B , thenj j x xj j

Ž .x � Sk G , a contradiction. If x � B , then x cannot be joined by disjointx jj

paths to x and to infinity, since all such paths must pass through the vertex
Ž . Ž .f x . This is a contradiction, and we deduce that x � Sk G for all j.j j

Ž .Therefore, the path xx x ��� lies in Sk G . It follows that x lies in an infinite1 2
Ž . Ž .open bond or site path of Sk G if and only if it lies in such a path of G.
Ž .Claim ii follows.

Ž .Suppose now that Sk G � �, and let x be a vertex of G. Consider the0
Ž .sequence x , x , x , . . . defined by x � f x . Clearly, the x are distinct;0 1 2 j�1 j j

furthermore, we may find a subsequence x , y , y , . . . no two of which are0 1 2
adjacent. Now, in the site percolation model, if any y is inactive, then therej

siteŽ .is no percolation from x ; it follows that, if p � 1, then � p � 0, as0
Žrequired. Similarly, in the bond percolation model, if any y is isolated i.e.,j

.all incident edges are closed , then there is no percolation from x . If p � 1,0
then since G has bounded degree, the probability that any vertex is isolated
is bounded away from zero, and, since no two y are adjacent, the correspond-j

bondŽ .ing ‘‘isolation events’’ are independent; hence, � p � 0 if p � 1, and
Ž .claim i follows. �

Proposition 7 does not require that G be finitely transitive; we remark
that, if we make this additional assumption, then it is not hard to show
Ž . Ž .using ideas related to those above that Sk G is nonempty. We will not need
this fact, however.

A graph which is connected but which is not a tree must contain some
cycle; if the graph is finitely transitive, then ‘‘equivalent’’ cycles must occur
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throughout the graph and so, under every reasonable interpretation, the
graph contains a positive density of cycles. Provided that the vertices of these
cycles lie in doubly infinite paths, they appear to be of greater assistance to
bond percolation than to site percolation.

CONJECTURE 8. Let G be an infinite, finitely transitive, connected, locally
Ž . Ž .finite graph whose skeleton Sk G is not a tree. Then G satisfies either i or

Ž .ii of Theorem 2.

Note that the conditions of the conjecture imply that G has bounded
Ž . bonddegree. Furthermore, if i of Conjecture 8 does not hold, then 0 � p �c

site Ž . Ž .p � 1, by 0.1 , 0.3 and Theorem 3. Theorem 2 amounts to this conjecturec
subject to the extra condition that G be bridgeless.

The following corollary of Theorem 2 is immediate by applying Proposi-
tion 7.

COROLLARY 9. Let G be an infinite, finitely transitive, connected, locally
Ž . Ž .finite graph whose skeleton is bridgeless. Then G satisfies either i or ii of

Theorem 2.

It is easy to see that the skeleton of any bridgeless graph is itself
bridgeless, and so any graph satisfying the conditions of Theorem 2 is
actually covered by Corollary 9. This corollary may be improved substan-
tially. Our proof of Theorem 2 does not depend strongly on the assumption of
finite transitivity. With only minor modifications, the proof yields the follow-
ing.

THEOREM 10. Let G be an infinite, connected, locally finite graph, and
suppose that the skeleton of G is of bounded degree. Suppose further that there

Ž .exist constants M and K such that every path of length M in Sk G contains
Ž .an edge which is part of a cycle of length at most K. Then G satisfies either i

Ž .or ii of Theorem 2.

There remain graphs which satisfy the conditions of Conjecture 8 and yet
are not covered by Theorem 10, and we present two such graphs. Our first
example is tree-like. We start with the infinite tree in which every vertex has
degree 4, T . We then color the vertices pink or brown in such a way that4
every vertex has precisely two pink neighbors and two brown neighbors;
there is essentially only one way to do this. We then consider the pink
vertices in turn, replacing each vertex with a 4-cycle and connecting each of
what were the vertex’s neighbors with a different vertex of the 4-cycle. The
resulting graph, which we call T � , is roughly illustrated in Figure 2.4

The graph T � certainly satisfies the conditions of Conjecture 8, yet it4
contains infinite paths all of whose edges are bridges. A graph such as this,
however, can be tackled by considering its partition into blocks, where a
block is either a bridge or a maximal 2-connected subgraph. When the blocks
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FIG. 2. Part of the graph T � which contains infinite paths of bridges.4

are themselves finite, as in the case of T � , percolation on the graph may be4
regarded as a multitype branching process, in much the same way as
percolation on a homogeneous or periodic tree may be regarded as a branch-
ing process. In such cases, the percolation probabilities may be calculated

Ž .explicitly, and methods similar to those of Oxley and Welsh 1979 may be
utilized in order to establish general results concerning the equality or
inequality of bond and site critical probabilities.

It is not too hard, however, to construct graphs satisfying the conditions of
Conjecture 8 which are vertex-transitive and 2-connected to infinity, and
contain bridges, and yet have infinitely many infinite blocks. Some such
graphs contain doubly infinite paths which cannot be locally modified to
contain any edge which is part of a cycle. These graphs do not appear to yield
either to enhancement technology, or to branching process comparisons, and
the corresponding question of strict inequality remains open. Here is an

Ž . 2example of such a graph G � V, E . Let T be the binary tree, and � the
square lattice. The graph G may be defined informally as follows. We start
with a binary tree T. At each vertex t of T, we ‘‘hang’’ a copy of �2 by
identifying t with the origin of this copy. Now, at each vertex of each copy of
�2, we attach a copy of T by its root, and so on. This amounts to constructing
the ‘‘free product’’ T ��2.

More formally, we construct G as follows. We write u � v to indicate that
vertices s and t are neighbors in T or in �2. We use O to denote the origin of
�2 and R to denote the root of T. We define V to be the family of all ordered

Ž . 2 � 4sequences t , x , . . . , x , t for some r � 0 with x � � � O , t � T and0 0 r�1 r i i
Ž . Žt � R for 1 � j � r. Two vertices t , x , . . . , x , t and u , y , . . . ,j 0 0 r�1 r 0 0

.y , u , with r � s, are declared adjacent if and only if one of the followings�1 s
holds:

1. r � s, t � u and x � y for i � r � 1, t � u , x � y andi i i i r�1 r�1 r�1 r�1
t � y � R;r r

2. r � s, t � u and x � y for i � r � 1, and t � u ;i i i i s s
3. r � s � 1, x � y for i � r � 1, t � u for j � r, y � O and u � R.i i j j s s
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�The edge set of G may be partitioned into the set of bridges i.e., those
Ž . �edges lying in one of the copies of T, corresponding to 2 above and the set

� 2of ‘‘lattice edges’’ i.e., those lying in one of the copies of � , corresponding to
Ž . Ž .� Ž1 or 3 . The difficulty faced by the method of enhancements see Lemma 11

.for the details of how the method operates is that one can have infinite paths
in G which cannot be locally modified to contain any edge which is part of a
cycle.

Finally, we remark that, although Theorems 2 and 10 give a general class
of graphs for which either strict inequality holds or both critical probabilities
equal 1, they give no indication of which conclusion is valid for any specific
instance. It would certainly be interesting to have a graph-theoretic condition
for distinguishing between these two cases in, say, the finitely transitive case.
A partial answer to this question is suggested by Benjamini and Schramm
Ž . Ž1996 . They conjecture that if G is the Cayley graph of an infinite finitely

. siteŽ .generated group which is not a finite extension of �, then p G � 1.c

4. Proof of Theorem 2. It does not seem too hard to adapt the proof of
Theorem 1 on a case-by-case basis in order to obtain strict inequality for most
familiar lattices. As an illustration, Figure 3 shows an example of a suitable
enhancement of site percolation on the hexagonal lattice. Some care is needed
in justifying the corresponding versions of Theorem 4 above, and the graph-
theoretic arguments have to be individually adapted for each lattice of
interest. It seems to be quite another matter to extend the conclusion to a
general class of graphs.

Rather than considering an enhancement of site percolation, it turns out to
Žbe more profitable to consider a diminishment of bond percolation i.e., a local

adjustment to the process which can only decrease the chance of percolation
.occurring , and to show that this diminished bond percolation dominates site

percolation in a suitable sense. It was a little surprising to discover that we
could not adapt the argument to find an enhancement of site percolation

FIG. 3. An enhancement of site percolation on the hexagonal lattice which is dominated by bond
percolation. The vertices marked � are active. The two vertices marked � are inactive and, with
probability s � p2, both become active. The status of other vertices is immaterial.
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which is dominated by bond percolation: there appears to be greater flexibil-
ity in making local adjustments to the bonds than there is in making

Ž .adjustments to sites. Diminishments were also used by Holroyd 1998 in a
situation where enhancements were difficult to handle.

We begin by describing the diminishment required. Suppose we have a
Ž .graph G � V, E satisfying the conditions of Theorem 2, and recall that 0

denotes the origin of G. We find an integer K such that every edge belongs to
some cycle of length at most K, and we denote by CC the set of all cycles
having length K or less. Given a bond configuration for G, we say that a
particular cycle x x ��� x x in CC is correctly configured if the following1 2 n 1
conditions all hold:

1. precisely one of the edges x x , x x , . . . , x x is closed and the others1 2 2 3 n 1
are open;

Ž . Ž . Ž2. exactly one of a and b following holds where an edge is said to be
incident with the cycle if precisely one of its two endvertices is a vertex of

.the cycle :
Ž .a precisely two of the edges incident with the cycle, x y and x z say, arei j

open and all the others are closed, with x , x , y, z all distinct;i j
Ž .b precisely one edge incident with the cycle, x y say, is open;i

3. the origin does not belong to the cycle.

Ž .Case 2b is used only as a technical device for dealing with a dull but slightly
awkward part of the proof of the forthcoming Lemma 11.

Roughly speaking, for any correctly configured cycle, our diminishment
will, with probability s, declare all the edges of the cycle to be closed.
However, if two such cycles have vertices in common, complications arise in
the proof of Lemma 12. To obviate this difficulty, we introduce a device for
selecting cycles at random, independently of everything else; we will then
only consider diminishing those randomly selected cycles. The selection proce-
dure must ensure that any cycle of size at most K is selected with a
probability bounded away from 0, and yet no two cycles with any vertex in
common are simultaneously selected.

� 4CC � 4EŽG . Ž .Let � � 0, 1 and let � � 0, 1 . Let �, � , � � � � � � �. We say
Ž .that a cycle c � CC is selected if � c � 1 and, for all c
 � CC which have some

Ž .vertex in common with c, � c
 � 0. We then define the diminished edge-set
to be

�* � , � , �Ž .
� e � E G : � e � 1 � � c � CC : c is selected,� 4 �Ž . Ž .4.1Ž .

correctly configured under � and � c � 1 ,4Ž . Ž .
where the union of a set of cycles is here regarded as meaning the set of all
edges contained in at least one of the cycles. Those cycles contributing to this
union are said to be ‘‘diminished.’’

We now place the product probability measure � � � � � � � onp, s p 1�2 s
our space � � � � �. The probabilities p and s play much the same role as
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before: p is the probability that an edge is open in the undiminished
1configuration, and s is the diminishment density. The density in the2

central measure is arbitrary, and any number r strictly between 0 and 1
would suffice. In a numerical study, it would be reasonable to choose r as
follows. Let D be the least integer such that any cycle in CC shares a vertex

Ž .�1with at most D other cycles, and set r � D � 1 . The probability that any
� Ž .�14D Ž . Ž .�1given cycle is selected is at least 1 � D � 1 � D � 1 � eD .

Ž .We write � p, s for the probability that the origin belongs to an infinite
cluster in the diminished configuration �*.

The proof of Theorem 2 now falls naturally into two parts. We must show
Ž . Ž bond .first that, if conclusion i of Theorem 2 does not hold so that 0 � p � 1 ,c

Ž .then the above diminishment changes the critical probability cf. Theorem 4 .
We must also show that site percolation with parameter p is dominated, in
some useful sense, by diminished bond percolation with a suitably chosen
nonzero diminishment density s. As in the proof of Theorem 1, the current
proof will be complete once we have proved the following two lemmas.

LEMMA 11. Let G be a graph satisfying the conditions of Theorem 2, and
bondŽ .such that p G � 1. For any s � 0, there exists a nonempty intervalc

� bond Ž .. Ž .p ,	 s of values of p on which � p, s � 0.c

LEMMA 12. Let G be a graph satisfying the conditions of Theorem 2. Then

� site p � � p , K�1 .Ž . Ž .

PROOF OF LEMMA 11. Let B be the set of vertices which can be reachedn
from 0 by a path of length n or less, and let  B be the set of vertices in Bn n
having some neighbor outside B . We let A be the event that the diminishedn n

Ž .configuration �* �, � , � contains an open path from 0 to some vertex in
Ž . Ž . Ž . Ž . B , and we write � p, s � � A . We have the � p, s �� p, s asn n p, s n n

n � �.
Ž .The event A is a cylinder event, whence � p, s is a polynomial in p, s,n n

and in particular is differentiable. Our goal is to show that, for all n
sufficiently large,

� �n n
4.2 � p , s � g p , s p , s ,Ž . Ž . Ž . Ž .

 s  p

Ž .for some function g p, s which is independent of n, and is continuous and
Ž .2strictly positive on 0, 1 .

Ž .Once 4.2 is proved, we argue in the manner of Aizenman and Grimmett
Ž . Ž .1991 as follows. Let � � 0, s . By considering the behavior of the function
Ž . Ž bond .� p, s on a small square containing the point p , s , one obtains byn c

Ž .integrating 4.2 that, for all sufficiently small � � 0, independent of n
Ž .large , we have that

� pbond � � , s � � pbond � � , s � � .Ž . Ž .n c n c



G. R. GRIMMETT AND A. M. STACEY1804

The right-hand side tends to zero as n � �, whence the left-hand side must
also do so, as required for the lemma.

Ž . Ž .We prove 4.2 via Russo’s formula. Given a configuration �, � , � and an
eŽ . Ž .edge e, we define W �, � , � to be the configuration obtained from �, � , �

Ž . Ž . Ž .by setting � e � 1; likewise, W �, � , � is obtained by setting � e � 0.e
cŽ . � Ž .�Similarly, given a cycle c � CC, we define X �, � , � resp. X �, � , � to bec

Ž . Ž .the configuration obtained by setting � c � 1 resp. 0 . We say that an edge
Ž . Ž . eŽ .e is � pivotal for an event A if W �, � , � � A and W �, � , � � A; wee

Ž . Ž .say that e is � pivotal if the reverse holds, that is, if W �, � , � � A ande
eŽ . Ž . Ž .W �, � , � � A. Similarly, a cycle c is � pivotal if X �, � , � � A andc

cŽ . Ž . Ž . cŽ .X �, � , � � A, and is � pivotal if X �, � , � � A and X �, � , � � A.c
�Ž . � �Ž . �Ž . �Ž .�We let N A resp. N A , N A , N A denote the total number of� � � �

Ž . � Ž . Ž . Ž . �� pivotal edges resp. � pivotal edges, � pivotal cycles, � pivotal cycles .
Let A � A , and note two points. First, the four random variables justn

defined are all finite, since A depends only on the states of finitely manyn
�Ž .cycles and edges. Second, N A � 0, since switching on a diminishment� n

�Ž .can never help the connectivity of the graph; however, N A can be� n
nonzero, since switching off an edge could prevent a cycle from being correctly
configured and thereby cause some further edges to be open in the diminished
configuration �*.

Writing � for expectation, the following formulas follow by applicationsp, s
� Ž . �of Russo’s formula see Grimmett 1989 , page 35 :


� �4.3 � A � � N A � � N A ,Ž . Ž . Ž . Ž .Ž . Ž .p , s n p , s � n p , s � n p


�4.4 � A � �� N A .Ž . Ž . Ž .Ž .p , s n p , s � n s

These equations may be verified either by the usual method of proof, or as
follows. Given � , Russo’s formula may be applied with the restriction that
only selected cycles may be diminished. Next, one averages over � . Since the
distribution of � is independent of p and s, the differential operators

Ž . Ž .commute with the expectation, and 4.3 � 4.4 follow.
Ž . Ž . Ž .Inequality 4.2 will follow from 4.3 � 4.4 once we have shown that

4.5 � N� A � g p , s � N� A ,Ž . Ž . Ž . Ž .Ž .Ž .p , s � n p , s � n

for some suitable g, and sufficiently large n; in fact, we assume n � K. The
Ž . Ž .main idea for proving 4.5 is much as in Aizenman and Grimmett 1991 : if

Ž .an edge e is � pivotal for A , then by making a bounded number of localn
Ž .adjustments to the configuration, we are able to create a � pivotal cycle
Ž .within a bounded distance of e. Note that there may exist � pivotal edges

for A which lie outside B .n n
Ž .Let e be an edge and let �, � , � be a configuration for which e is

Ž . Ž . Ž .� pivotal for A . We suppose for now that � e � 0 so that �, � , � � An n
eŽ .and W �, � , � � A . Suppose also that e is not within distance K�2 of then

origin. In order to make local adjustments to the edges, without resulting in
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complicated changes in whether or not cycles are correctly configured and
thereby diminishable, we wish to ‘‘switch off’’ all nearby diminishments. If, in
so doing, e ceases to be pivotal, then we will have found a pivotal cycle along

� 4the way. Let SS � c , c , . . . , c be the set of all cycles which contain somee 1 2 m
Ž .vertex within distance K of e. Let �, � , � be the configuration obtainedi

Ž . Ž . � Ž .from �, � , � by setting � c � 0 for 1 � j � i. Let I � min i � m: �, � , �j i
4 Ž .� A , with the usual convention that min � � �.n

Ž . Ž .If I � �, then c is � pivotal for A in �, � , � . Since the configurationsI n I
Ž . Ž .�, � , � are obtained from �, � , � by altering a bounded number of statei

Ž .variables, we deduce that there exists a function h p, s , continuous and1
Ž .2strictly positive on 0, 1 , such that

4.6 � e is � pivotal for A , � e � 0, I � �Ž . Ž . Ž .Ž .p , s n

� h p , s � � � 1 ,Ž . Ž .1 p , s e

where � is the number of cycles which contain some edge within distance Ke
Ž .of e and which are � pivotal for A .n

Ž .Suppose next that I � �, and denote by �, � , � 
 the altered configuration
Ž . Ž .�, � , � . Since I � �, we have that �, � , � 
 � A . It must also be the casem n

eŽ . Ž .that W �, � , � 
 � A , implying that e is � pivotal for A in the alteredn n
Ž .configuration �, � , � 
 . Let V be the set of vertices connected to the origin0

Ž .by a path consisting of edges in �* �, � , � 
 and let V be the set of vertices1
Ž .in B connected to  B by such a path. Since �, � , � 
 � A , V and V aren n n 0 1

eŽ . Ž .disjoint sets; since W �, � , � 
 � A and � c � 0 for every cycle c which
contains e or is incident with e, we must have e � v v for some vertices0 1
v � V , v � V .0 0 1 1

Let c be a cycle of length at most K which contains the edge e. Let P bee 0
Ž .a path from 0 to v consisting of edges in �* �, � , � 
 ; let P be a path from0 1

Ž .some vertex of  B to v consisting of edges in �* �, � , � 
 . Let w be then 1 i
Ž .first vertex of P i � 0, 1 lying on the cycle c . Note that the assumptioni e

that e is not within distance K�2 of 0 ensures that w � 0; we also assume0
for now that w �  B . Let y be the vertex on P immediately before w . We1 n i i i

Ž .now change the configuration �, � , � 
 within distance K of e in such a way
Ž .that c becomes � pivotal for A . We do this by setting:e n

Ž . Ž .1. � e � 0, and � f � 1 for all edges f of c other than e;e
Ž . Ž .2. � y w � � y w � 1;0 0 1 1
Ž .3. � f � 0 for any other edge f incident with any vertex of c ;e
Ž . Ž .4. � c � 1; � c � 0 for all other cycles which share a vertex with c .e e

Ž . Ž . Ž .Denote the configuration so obtained by �
, � 
, � 
 . Note that 1 � 3
Ž .ensure that c becomes correctly configured and that 4 ensures it is se-e

lected. Note that any other cycle c which becomes correctly configured,
incorrectly configured, selected or deselected by these changes must lie in SSe

Ž .and hence � 
 c � 0.
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Ž .It is not hard to see that c is a � pivotal cycle for the event A in thee n
Ž . Ž ceŽ ..configuration �
, � 
, � 
 . To see this, note that �* X �
, � 
, � 
 	

Ž . ceŽ .�* � , � , � 
 , so certainly X �
, � 
, � 
 � A . On the other hand,n
Ž .�* �
, � 
, � 
 contains the edges of P up to v , the edges of P up to v and0 0 1 1

Ž .a path from v to v within c , whence �
, � 
, � 
 � A .0 1 e n
There are several straightforward ways for dealing with the remaining two

cases, namely when e lies within distance K�2 of the origin, and when
w � B , and we consider these cases in turn. When e lies within distance1 n
K�2 of the origin, we let SS consist of all cycles containing a vertex withine
distance 3K�2 of the origin. We then define I as before, and the case I � � is
dealt with in the same way as above, with � defined as the number ofe
Ž .� pivotal cycles for A within distance 3K�2 of the origin. If I � �, then wen

Ž .declare � e � 1 and select a path P from 0 to  B consisting of edges inn
Ž .�* �, � , � 
 . Let e
 be the last edge of this path which is incident with both a

vertex inside B and a vertex outside it; such an edge certainly exists� K �2 	

because n � K. Let Q be any path within B from 0 to e
; note that it� K �2 	

may not be possible to choose Q to be a portion of P because P may exit
Ž .B several times. We now set � f � 1 for all edges f of Q, we keep� K �2 	

Ž . Ž .� e
 � 1 and we set � g � 0 for all other edges g incident with a vertex of
Ž . Ž .B . Now e
 is � pivotal for A in the configuration �, � , � 
 , and we� K �2 	 n

may proceed just as in the I � � case above.
The case when w �  B is easier. In this case, we simply do not have a1 n

Ž .vertex y and we obtain our configuration �
, � 
, � 
 exactly as above except1
Ž . Ž .that 2 above is replaced by ‘‘� y w � 1.’’ The cycle c is correctly config-0 0 e

Ž . Ž .ured with 2b from the definition at the beginning of this section holding. It
Ž .is a � pivotal cycle exactly as in the case above.

Ž .In summary, there exists a function h p, s , continuous and strictly2
Ž .2positive on 0, 1 , such that

� e is � pivotal for A , � e � 0, I � �Ž . Ž .Ž .p , s n

� h p , s � � � 1 ,Ž . Ž .2 p , s e

4.7Ž .

for all e. Note that � is defined slightly differently according to whether ore
not e is within distance K�2 of the origin. In any case, however, � is thee

Ž . Ž .size of some subset of the set of � pivotal cycles for A which contain somen
edge within distance 2 K of e.

Ž . Ž .Combining 4.6 and 4.7 , we obtain that

� e is � pivotal for A , � e � 0 � h p , s � � � 1 ,Ž . Ž . Ž . Ž .Ž .p , s n 3 p , s e

Ž .where h � h � h . Since the pivotality of e is independent of � e , it3 1 2
follows that

1
� e is � pivotal for A � h p , s � � � 1 .Ž . Ž . Ž .Ž .p , s n 3 p , s e1 � p
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Summing over all edges e, we obtain
1

�� N A � h p , s � �Ž . Ž . Ž .Ž . Ýp , s � n 3 p , s e1 � p e

C
�� h p , s � N A ,Ž . Ž .Ž .3 p , s � n1 � p

where C is an upper bound on the number of cycles of length K or less within
Ž .distance 2 K of any one edge. This implies 4.5 as required. �

PROOF OF LEMMA 12. As in the proof of Lemma 5, we make use of the
Ž .dynamic coupling between site percolation and undiminished bond percola-

tion, and we examine where we have room to spare. We begin with some key
ideas before moving to the details of the proof, which are more complicated
than before.

We call an edge e examined if the coupling algorithm takes note of the
state of e in the relevant bond model, when constructing the associated site
model. Since each examined edge, at the moment of its examination, joins
some active vertex to some vertex whose state has not yet been determined, it
is the case that the graph of examined edges contains no cycle.

Consider a cycle c which is correctly configured. If it is correctly configured
Ž .under 2b of the definition at the beginning of this section, then any infinite

path from the origin using only open examined edges cannot use any edge of
c; in this case, one may diminish c and still remain ‘‘above’’ the site model

Ž .under construction. Suppose now that c is correctly configured under 2a of
the definition; we shall use the notation of that definition. The cycle c consists
of two disjoint paths from x to x . By the observation of the last paragraph,i j
there will be at least one edge of c which the algorithm does not examine.
Suppose this edge, and the unique closed edge of c, lie on different x xi j
paths. Then any infinite path from the origin using only open examined edges
cannot use any edge of c. On this event, we may diminish c in the original
bond model, and still remain ‘‘above’’ the site model under construction. Some
work is necessary in order to exploit these ideas rigorously.

More formally, we proceed as follows. The basic sample space is the
product

� �� 4 � 40, 1 � � � � � 1, 2, . . . , c � � ,Ł½ 5
c�CC

Ž . � �members of which are quintuples � , �, � , 	 , � ; here, c denotes the number
of edges in a cycle c. We put a product probability measure � � � � � �p p
� � � � � on this space, where � and � are themselves product1�2 1 2 1 2
measures satisfying

1
� �� 	 : 	 c � j � for c � CC and 1 � j � c ,� 4Ž .Ž .1 � �c

� �c
� � : � c � 1 � for c � CC .� 4Ž .Ž .2 K



G. R. GRIMMETT AND A. M. STACEY1808

Ž .For a configuration � , �, � , 	 , � and cycle c � CC, we define

4.8 � c � � c 1 .Ž . Ž . Ž . �	 Žc.� � c �4

Ž .Here, 1 denotes the indicator function of the event A. Note that theA
Ž Ž . .variables � c : c � CC are independent of one another and of the variables � ,

�, � .
We now explain this in words:

Ž .1. � is a 0�1-valued random variable with � � � 1 � p;
2. � is a configuration of bond percolation with density p;

Ž Ž . .3. � is a set of selection variables, one for each cycle c � CC, with � � c � 1
1� ;2

Ž . � � �44. 	 c is a random element of 1, 2, . . . , c ;
Ž Ž . . �15. � is a 0�1-valued random variable chosen such that � � c � 1 � K ;

6. all components of the vectors � , �, � , 	 , � are independent.

We shall use these random variables in order to construct a site model and
a diminished bond model. The diminished bond model is exactly that given by
Ž . �14.1 , and its diminishment density is given above as K . Next, we construct
the site model, and then we shall show that the diminished bond model
dominates the site model, in the sense that, if 0 lies in an infinite active path
of the site model, then it lies in an infinite open path of the bond model.

Ž .Suppose we are given the configuration � , �, � , 	 , � . We define edge
Ž . Ž . Ž .variables �
 e by �
 e � � e for all edges e except those belonging to

Ž .cycles which are selected. In order to define �
 e for edges belonging to
selected cycles, we shall adopt an algorithmic approach, as follows.

We start with a fixed enumeration of the vertices and of the edges and, as
in the proof of Lemma 5, we examine edges one by one, and we declare
vertices to be active or inactive as we proceed. We shall build a cluster at the

Ž .origin comprising vertices x with � x � 1, whose external boundary com-
Ž . Ž . Ž .prises vertices y with � y � 0. First, we set � 0 � � . If � 0 � 0, we stop;

otherwise, we find the earliest edge e � 0 y incident with 0, and we declare
Ž . Ž . � Ž . �� y � �
 0 y provided �
 0 y has been defined . We continue likewise,

� Ž . �building up a set of active vertices i.e., vertices y with � y � 1 and
� Ž . �inactive vertices with � y � 0 based on sequential examination of the

primed configuration �
, until either of two events occurs. If, at some point,
Ž . Ž .there exists no further unexamined edge uv such that � u � 1 and � v is

undetermined, then we stop the process. Alternatively, the algorithm may
arrive at a stage when it seeks to examine an edge e lying in a selected cycle,

Ž .and hence for which �
 e has not yet been defined. Prior to giving the
Ž .definition of such �
 e , we introduce a further concept.

Ž .Suppose c � x x ��� x x is a correctly configured cycle under part 2a of1 2 n 1
the definition at the beginning of this section; we shall use the notation of
that definition. Then x and x are the only vertices of the cycle which arei j

Ž . �joined by open bonds in � to vertices outside the cycle. The less interesting
Ž . Ž .case of 2b may be handled in several different and easier ways. For

Ž .simplicity, we create a nominal x � x and then behave as if we were inj i
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Ž . Žcase a : specifically, we let x be the earliest vertex of our cycle in our givenj
. �ordering of vertices other than x .i

Ž . Ž .The cycle c comprises two edge-disjoint paths A c , B c joining x to x .i j
� Ž .�We call an edge e of c a completing edge for the configuration � , �, � , 	 , �

if e is the first edge examined by the algorithm with the following property:
Ž . Ž .after the examination of e, either all edges in A c or all edges in B c have

now been examined. If e is not a completing edge, we simply call e a
noncompleting edge.

We now return to the operation of the algorithm on encountering an edge e
lying in a selected cycle c:

Ž . Ž .1. If c is not correctly configured, we set �
 e � � e .
2. If c is correctly configured, we set

1 , if e is the kth noncompleting� �	 Žc.� k4� edge of c examined,4.9 �
 e �Ž . Ž . �1 , if e is a completing edge.�	 Žc.� � c �4

Ž . Ž .We then perform a further step of the algorithm, defining � z � �
 e ,
where z is the endvertex of e whose status is to be determined.

Ž .We note finally that the �
 e are not generally defined for all edges e.
However, they may be extended in the following manner to a full realization
of bond percolation on �d. For edges e which do not lie in selected, correctly

Ž . Ž .configured cycles, we set �
 e � � e , as before. For each selected correctly
Ž .configured cycle c, we list the edges e of c for which �
 e has not yet been

defined, in the order given by the predetermined enumeration. We label these
edges e , e , . . . , e , where l is the number of noncompleting edges of cl�1 l�2 m

Žexamined during the building up of the active cluster at the origin. So
� � � � .m � c if there was no completing edge and m � c � 1 otherwise. We treat

these edges much as if they were noncompleting edges in the previous
Ž .procedure by setting �
 e � 1 . The final result of this procedure is ai �	 Žc.� i4

Ž Ž . .family �
 e : e � E , which agrees with � except on edges of selected
correctly configured cycles; on such cycles, both � and �
 have precisely one
closed edge. If we were to apply the algorithm of the proof of Lemma 5 to the

Ž Ž ..family �
 e , the resulting active cluster at the origin would be precisely the
same as that obtained by the algorithm just described.

This terminates the construction of the algorithm applied to the configu-
Ž .ration � , �, � , 	 , � . Note that although we have defined �
 for all edges, �

has only been defined on the cluster of active vertices at the origin and their
�neighbors. We claim that the set of active vertices i.e., vertices y with

Ž . �� y � 1 has the same distribution as the cluster at 0 of a site percolation
model. In order to prove this, it suffices to show that, if we let f 
 , f 
 , . . . be a1 2
listing of the edges examined by the algorithm in building up the active

Ž . � 4cluster in order of examination then, for any � � 0, 1 , and any n,i

n�k
 k4.10 � �
 f � � for 1 � i � n � p 1 � p ,Ž . Ž . Ž .Ž .i i
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� 4 Ž .where k � � i: � � 1 . Note that 4.10 implies that each examined edge isi
open with probability p, independently of the states of previous edges exam-
ined.

Ž .In order to show that 4.10 holds, we compare the algorithm described
above, which we shall call Algorithm A, with a more familiar algorithm which
we shall call Algorithm B. The probabilities of corresponding events for the

Ž .two algorithms will be unchanged, but the corresponding version of 4.10 is
transparently valid for Algorithm B.

Algorithm B is simply the usual edge testing algorithm, employed in the
proof of Lemma 5. It uses the same predetermined ordering of vertices and

Ž .edges as Algorithm A it does not matter what this ordering is , but unlike
Algorithm A, does not behave differently on selected correctly configured

Ž .cycles. So, at each stage of the algorithm other than the start , we look for
Ž . Ž . Ž .the first edge in our ordering uv such that � u � 1 and � v is undeter-

Ž . Ž .mined, and we set � v � � uv .
We let f , f , . . . be the sequence of edges examined by Algorithm B in1 2

Ž Ž . Ž ..building up the cluster at the origin. Since the � e : e � E G are mutually
Ž .independent and independent of � , we have that 4.10 holds for Algorithm B

Ž 
 .with �
 replaced by � and f replaced by f .i i
Abbreviating ‘‘selected correctly configured cycle’’ by ‘‘SCCC,’’ let FF be the

� 4 � Ž .�-field generated by the events e is in a SCCC and � e � 1 and e is not in
4a SCCC , as e ranges over all edges of the graph, together with the single

� 4event � � 1 . We let

2, if e is in a SCCC,
� e �Ž . ½ � e , otherwise,Ž .

Ž .so that FF is generated by � and the � e . For any events A, B, we define the
conditional probability

�� 1 1 FFŽ .A B
� A  B , FF � ,Ž .

�� 1 FFŽ .B

Žwhenever the denominator is nonzero. Here, � denotes the expectation
operator and 1 the indicator function of A. Such conditional probabilitiesA

.are only defined ‘‘almost surely,’’ but we overlook this in the following.
� 4 
 � Ž 
. 4 � Ž . 4Let � � 0, 1 for i � 1, and let G � �
 f � � and G � � f � � .i i i i i i i

Ž 
 � 
 
 
 .We may compute probabilities of the form � G G 
 G 
 ��� 
 G , FFn�1 n n�1 1
as follows. If f 
 lies in a SCCC, we write c
 for this cycle, we letn�1

� 
 4 � � � �I � i � n: f � c
 and let k � c
 � I . We then have thatc
 i c



 � 
 
 

� �
 f � 1 G 
 G 
 ��� 
 G , FFŽ .Ž .n�1 n n�1 1

� 
 
 � 4� f , if � f � 0, 1 ,Ž . Ž .n�1 n�1

k � 1

�� , if � f � 2 and � � 1 for all i � I ,Ž .n�1 i c
k

�1, if � f � 2 and � � 0 for some i � I .Ž .n�1 i c
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Equality holds here also with �
, f 
, c
 replaced by �, f , c, where c is definedi i
where necessary as the SCCC containing f .n�1


 Ž 
 . Ž .We note that f � f whenever �
 f � � f for 1 � i � n. There-n�1 n�1 i i
fore, for any given � , � , . . . such that the conditional probabilities are1 2
defined,


 � 
 
 

� G G 
 G 
 ��� 
 G , FFŽ .n�1 n n�1 1

�� � G G 
 G 
 ��� 
 G , FF for all n � 1.Ž .n�1 n n�1 1

Hence, by induction on n,

 
 
 � �� G 
 G 
 ��� 
 G FF � � G 
 G 
 ��� 
 G FF for all n � 1.Ž . Ž .n n�1 1 n n�1 1

Taking expectations, we deduce that

� G
 
 G
 
 ��� 
 G
 � � G 
 G 
 ��� 
 G ,Ž . Ž .n n�1 1 n n�1 1

which is equivalent to

4.11 � �
 f 
 � � for 1 � i � n � � � f � � for 1 � i � n .Ž . Ž . Ž .Ž . Ž .i i i i

Ž . Ž .Since the equivalent of 4.10 holds for Algorithm B, we deduce 4.10 for
Ž .Algorithm A from 4.11 .

We complete the proof of Lemma 12 by showing the required domination.
� Ž . 4 � �Write I � y: � y � 1 , and suppose that I � �. There must exist an

infinite path P of edges e which were examined by the above algorithm and
Ž .for which �
 e � 1. We shall show that the diminished bond model

Ž . Ž .�* �, � , � , given in 4.1 , necessarily contains an infinite path of open edges.
First, consider edges e of P which lie in no cycle c which is both selected

Ž . Ž .and correctly configured. We have that � e � �
 e � 1, and furthermore
Ž .that e lies in no diminished cycle. Therefore, e lies in �* �, � , � .

The path P will generally visit certain selected, correctly configured cycles.
We claim that every such cycle is necessarily undiminished, and that the
segment of P within such a cycle c may be replaced by a sequence of edges of
c which are open in �. Suppose that P intersects a selected, correctly
configured cycle c � x x . . . x x . Note that the origin cannot be in a cor-1 2 n 1

Ž .rectly configured cycle, by part 3 of the definition given at the beginning of
Ž .this section. Therefore, c must be correctly configured under part 2a of the

definition. Adopting the notation of that definition, the infinite path P must
Ž .enter the cycle at either x or x say x , it must move around the cycle to xi j i j

Ž . Ž .via either A c or B c and then it must leave the cycle. Hence, either all the
Ž . Ž .edges of A c or all the edges of B c belong to P. Therefore, the path

Ž . Ž . Ž .contains some completing edge f. By 4.8 � 4.9 , if � c � 1, then necessarily
Ž . Ž .�
 f � 0, a contradiction. It follows that � c � 0, and that c was not

diminished. Since c is correctly configured, it contains a path Q joining x toc i
Ž .x , all of whose edges g satisfy � g � 1. We now replace the segment of Pj

within c by the path Q . After this has been done for every selected, correctlyc
Ž .configured cycle note that two such cycles cannot intersect , we achieve an

Ž .infinite open path of the diminished set �* �, � , � . The conclusion of Lemma
12 follows. �
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