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UNPREDICTABLE NEAREST NEIGHBOR PROCESSES

By Christopher Hoffman

University of Maryland

Benjamini, Pemantle and Peres constructed nearest neighbor pro-
cesses which have predictability profiles that decay faster than that of the
simple random walk. Häggström and Mossel found processes with even
faster decaying predictability profiles. We prove that the rate of decay
achieved by Häggström and Mossel is optimal.

1. Introduction. Benjamini, Pemantle and Peres [1] constructed a class
of nearest neighbor processes on the integers which are in a certain sense
more random than simple random walk. That is, given the past of the process,
it is more difficult to predict what the value of the process will be at a time
in the distant future than it is to predict where a simple random walk will
be at that time. To make this precise we define the predictability profile of a
process.

Definition 1.1. For a sequence of random variables S = �Si�i≥0 taking
values in Z, we define its predictability profile �PRES�j��j≥1 by

PRES�j� = sup P�Si+j = z	S0� � � � � Si
�
where the supremum is over all z ∈ Z, all i ≥ 0 and all histories S0� � � � � Si.

Thus PRES�j� is the maximal chance of guessing S correctly j steps into
the future, given the past of S. The predictability profile of simple random
walk on Z is asymptotic to Cj−1/2 for some C > 0.

For any α < 1, Benjamini, Pemantle and Peres constructed a nearest neigh-
bor process Sα taking values in Z such that PRESα

�j� < Cαj
−α. This result

was extended by the following theorem of Häggström and Mossel.

Theorem 1.1 (Häggström and Mossel [4]). For any decreasing positive se-
quence �f�j��∞j=1 such that

∞∑
j=1

f�j�
j

< ∞�

there exists a constant C < ∞ and a nearest neighbor walk S = �Si�i≥0 on Z

such that

PRES�j� ≤
C

jf�j�
for all j ≥ 1.
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The processes constructed in [1] were used to give a new proof of Grimmet,
Kesten and Zhang’s theorem [1] that simple random walk on the unique in-
finite percolation cluster on Z

3 is transient. The processes constructed in [4]
were used to show the transience of simple random walk on infinite percola-
tion clusters on certain subgraphs of Z

3. These include the “2+ε dimensional”
wedge graphs

��x�y� z� 	 	z	 ≤ 	x	ε�
for any ε > 0. They also included

�α = ��x�y� z� 	 	z	 ≤ �log 	x	�α�
for any α > 2. Simple random walk is transient on the graphs �α if and only
if α > 1 (see [3]). Thus for 1 < α ≤ 2, simple random walk on the graph �α

is transient, but it is unknown whether simple random walk on percolation
clusters on the graph �α is transient or recurrent. This paper does not resolve
that question. It does show that the method of [1] cannot be extended to prove
that percolation clusters on these graphs are transient.

Benjamini, Pemantle and Peres also obtained a bound for how fast the
predictability profile of a nearest neighbor process on Z can decay. It is clear
the predictability profile of a nearest neighbor process on the integers can
decay no more rapidly than 1/j+ 1. Benjamini, Pemantle and Peres showed
that for nearest neighbor processes the predictability profile cannot decay at
a rate O�1/j�. They did this by showing that for any process there exists
another process with the same predictability profile so that the sequence of
random variables �Si − Si−1� is stationary and ergodic. The ergodic theorem
shows that the predictability profile of such a process cannot decay at a rate
O�1/j�.

In this paper we sharpen the result in [1] and prove that the condition given
by Häggström and Mossel is sharp.

Theorem 1.2. For any positive sequence �f�j��∞j=1 such that
∑∞

n=1 f�kn� =
∞ for some integer integer k > 1, there exists no nearest neighbor process
S = �Si�i≥0 on Z such that

PRES�j� ≤
1

jf�j�
for all j ≥ 1. In particular the theorem holds for any decreasing positive se-
quence f�j� such that

∑∞
j=1�f�j�/j� = ∞.

By taking f�j� = c/ log j we can see that it is impossible for a nearest
neighbor process to have a predictability profile that decays on the order
of O�log j/j�. On the other hand, by Theorem 1.1, there are nearest neigh-
bor processes that have predictability profiles which decay on the order of
O��log j�1+ε/j� for any ε > 0. Similarly, it is impossible for a nearest neighbor
process to have a predictability profile that decays like O��log j��log log j�/j�
but possible to have one that decays like O��log j��log log j�1+ε/j�.
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2. Proof. First we sketch the idea of the proof. We will force a contradic-
tion by showing that certain predictability profiles force P(Si+n−Si < −n� > 0
for large n. Choose some large integer k. The predictability profile and the fact
that S is a nearest neighbor process gives us an upper bound for P�Si+k−Si >
tk	S0� � � � � Si� for each t ∈ �−1�1
, which is uniform over the choice of i and
past S0� � � � � Si. Consider the distribution which assigns probability PRE�k� to
1�1− 1/k� � � � �1− ��1/PRE�k��− 1�/k and probability 1−PRE�k��1/PRE�k��
to 1 − �1/PRE�k��/k, where �x� is the greatest integer less than or equal to
x. Call this distribution D1 and its mean m1. The distribution D1 has the
property that

PD1
�x > t� ≥ P�Si+k −Si > tk	S0� � � � � Si�

for every t ∈ �−1�1
, integer i and past S0� � � � � Si. This inequality is a simple
consequence of the predictability profile.

Now for each t we want to find uniform bounds on P�Si+k2 − Si >
tk2	S0� � � � � Si�. To do this we take the distribution D1, convolve it with
itself k times and then rescale it so that distribution is supported in the
interval �−1�1
. We call the rescaled convolution D̃2. Because of the in-
equalities that D1 satisfies, the distribution D̃2 provides upper bounds for
P�Si+k2 −Si > tk2	S0� � � � � Si�, for any t� i� and S0� � � � � Si�

Now we employ a flattening procedure to the rescaled convolution D̃2, to
make a distribution D2. The distribution D2 will provide even better esti-
mates for P�Si+k2 − Si > tk2	S0� � � � � Si� than we got with D̃2. The flattening
procedure is done as follows. Take the largest t such that

PD̃2
�x = t� > PRE�k2��

Create a new distribution that decreases the probability assigned to t to
PRE�k2� and increases the probability assigned to t−1/k2 by the same amount
as the probability assigned to t was decreased by. This new distribution still
provides bounds for

P�Si+k2 −Si > tk2	S0� � � � � Si��
Then we repeat this procedure until we have a distribution that assigns to
every t probability at most PRE�k2�. Call this distribution D2 and its mean m2.

Next we take the distribution D2, convolve it with itself k times, and rescale
it to form D̃3. Then we perform a flattening procedure like the one described
above to create D3 which provides bounds for P�Si+k3 − Si > tk3	S0� � � � � Si�.
This procedure is repeated forming distributions Dn. At each stage we give
upper bounds on σ2�Dn� and mn, the mean of the distribution Dn. We con-
tinue until we force the means of distributions less than −1. This implies that
P�Skn − S0 < kn� > 0, which contradicts the fact that �S�i≥0 is a nearest
neighbor process.

Vaguely speaking, this process succeeds in forcing the distributions to be
supported on smaller and smaller t for the following reason. The rescaled
convolutions take mass from the edges of the distribution and concentrate it
near its mean. Then we use the predictability profile to flatten the convolution,
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moving the extra mass leftward. So mass from the right-hand side of the
distribution gets moved to the middle by the convolution and to the left by
the flattening, while the mass at the left gets moved to the center by the
convolution and then back to the left by the flattening. The net effect is that
under each iteration of this procedure the mean of the distribution has been
decreased. It turns out that the amount that the mean of the nth distribution
is less than the mean of the �n−1�st distribution is proportional to f�kn�. Thus
if

∑
f�kn� = ∞, the distance we can move the means of the distributions is

unbounded.
To make this precise we assume that PRES�j� = 1/jf�j�. This causes no

loss of generality because, if this is not the case, then we can define g�j� =
1/PRES�j�j. Then g�j� ≥ f�j� so

∑
g�kj� = ∞ for some k > 1 and the

theorem still applies.
Now pick a k such that

∑
f�kj� = ∞. For technical reasons we need to

choose a subsequence ni and do the flattening procedure along the sequence
Dni

� Pick an l so that kl > 20�000� If
∑

f�kn� = ∞ then there exists a q < l so
that

∑
j f�kq+jl� = ∞. For notational reasons we assume q = 1. This causes

no loss of generality. Set n1 = 1. Given ni−1, pick ni to be the smallest integer
greater than ni−1 so that ni ∈ 1 + lZ and f�kni−1�/f�kni� ≤ 2�ni−ni−1�/l.

Lemma 2.1. If
∑

f�kn� = ∞ then
∑

i f�kni� = ∞�

Proof. By the way that the ni were chosen, if there exists some n ∈ 1+lZ
such that ni < n < ni+1, then f�kn� ≤ f�kni�2�ni−n�/l. So

∑
n∈1+lZ� ni<n<ni+1

f�kn� ≤ f�kni�
∞∑
j=1

2−j ≤ f�kni��

By the assumption made in the previous paragraph, we have that
∑

jf�k1+lj�=
∞. The preceding argument implies that if

∑
j f�k1+lj� = ∞ then

∑
i f�kni� =

∞. Thus the lemma is true. ✷

Again, we define D1 to be the distribution that assigns probability PRE�k�
to 1�1−1/k� � � � �1−��1/PRE�k��−1�/k and probability 1−PRE�k��1/PRE�k��
to 1−�1/PRE�k��/k. For all n we set D̃n to be the rescaled version of �Dn−1�∗k,
where �Dn−1�∗k is the convolution of k copies of Dn−1. We only do the flattening
procedure for the ni. So for n /∈ ∪ni the distribution Dn = D̃n. For n ∈ ∪ni,
the distribution Dn is obtained by applying the flattening procedure described
above to D̃n.

First we repeat the properties that our distributions Dn have.

Lemma 2.2. The distribution Dn satisfies the inequality

PDn
�x > t� ≥ P

(
Si+kn −Si > tkn	S0� � � � � Si

)
�

for every t ∈ �−1�1
, integer i, and past S0� � � � � Si.
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Proof. The proof is by induction. It is easy to check that each Dn, D̃n

and intermediate distribution created in the flattening procedure satisfies the
appropriate collection of inequalities. We leave it to the reader to check the
details. ✷

The next step in the proof is bounding the variance of the distributions Dni
.

Lemma 2.3. Now σ2�Dni
� ≤ 2f�kni�2 for all i. This implies that 4σ�D̃ni

� <
�1/8�f�kni� for all i.

Proof. The proof is by induction. It is easy to check that Dn1
= D1 satisfies

this condition. This can be proved in the same way that line one is proved
below. For the inductive step we bound the variance by bounding∑�x−mni−1

�2PDni
�x��

This is done by estimating the contribution of the portion of Dni
that is greater

than or equal mni−1
, the part less than mni−1

but greater than or equal to
mni−1

− 1�25f�kni� and the part that is less than mni−1
− 1�25f�kni�.

The flattening procedure only moves mass leftward. So mass that started
out in the first region goes to points that are less than mni−1

or to points
greater than mni−1

but still closer to mni−1
. Thus the contribution of each piece

of mass to the sum above is less than or equal to its contribution to∑
x≥mni−1

�x−mni−1
�2PD̃ni

�x��

So this sum provides a bound on the contribution of the first region.
A bound over the second region is obtained by assuming that every possible

x in Dni
has probability PRE�kni�. This bound gives us

PRE�kni�
�1�25/PRE�kni ��∑

i=0

(
i

kni

)2

<

(
1

kniPRE�kni�
)2

= f�kni�2�(2.1)

The third region is many standard deviations of D̃ni
away from mni−1

so
it has little mass under D̃ni

. In fact it is so far away that the flattening pro-
cedure is unlikely to have much effect on the mass in this region. Thus the
contribution of this region is likely to be only a little more than∑

x≤mni
− 9

8f�kni �
�x−mni−1

�2PD̃ni
�x��

We will show that each piece of mass gets moved by the flattening procedure
only a small distance compared to the distance it was from mni−1

. So the
contribution of each piece to the above sum is more than half of its contribution
to

∑ �x−mni−1
�2PDni

�x��
To make the bound of the third part rigorous, notice that the flattening

procedure can move a piece of mass no more than f�kni� to the left. (This can
happen only if the distribution before flattening was supported on one point.)
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So all the mass in D̃ni
which was in the interval �mni−1

− 1
8f�kni��1
 must

wind up in the interval �mni−1
− 9

8f�kni��1
 after flattening. By the inductive
hypothesis

4σ�D̃ni
� = 4σ�Dni−1

�/kni−ni−1 < 8f�kni−1�/kni−ni−1 �

The way we chose the ni implies that 4σ�D̃ni
� < 1

8f�kni�. So a Chebyshev
argument shows that there can be at most (1/16)th of the mass that is in
the interval �−1�mni−1

− 1
8f�kni�
 before flattening. Thus there can be at most

(1/16)th of the mass that is in the interval �−1�mni−1
− 9

8f�kni�
 after flattening.
Since at least (15/16)ths of the mass is in the interval �mni−1

− 9
8f�kni��1


after flattening, every piece of mass that starts out in the interval �−1�mni−1
−

9
8f�kni�
 before flattening can be moved a distance at most �1/16�f�kni�. Thus
the mass in the interval �−1�mni−1

−1�25f�kni�
 in Dni
was all in the interval

�−1�mni−1
− 9

8f�kni�
 in the distribution D̃ni
. Thus the flattening procedure

moved each piece of the mass in D̃ni
in this interval by a distance that is a

small fraction of its distance from mni−1
. So a bound on the contribution of this

portion is

2
∑

x≤mni
− 9

8f�kni �
�x−mni−1

�2PD̃ni
�x��

Adding up these three bounds gives us

σ2�Dni
� ≤ ∑

x≥mni−1

(�x−mni−1
�2PD̃ni

�x�)+ f�kni�2

+ 2
∑

x≤mni
− 9

8f�kni �
�x−mni−1

�2PD̃ni
�x�

≤ 2σ2�D̃ni
� + f�kni�2

≤ 4f�kni−1�2

kni−ni−1
+ f�kni�2

≤ 2f�kni�2�

The next to last step is due to the inductive hypothesis and the definition of
D̃ni

. The last step is possible because of the way we chose the ni. ✷

The previous lemma makes it easy to calculate how far the flattening pro-
cedure moves the mean of the distribution.

Lemma 2.4. Here mni−1
−mni

> �1/16�f�kni��

Proof. Recall from the previous proof that 4σ�D̃ni
� < 1

8f�kni�. This and
a Chebyshev estimate show that at least (15/16)ths of the mass of D̃ni

is
contained in the interval[

mni−1
− 1

8f�kni��mni−1
+ 1

8f�kni�]�
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Now we calculate an upper bound on how much mass Dni
can put in that

same interval. From this information we get a lower bound on how much the
flattening procedure moved the mean of the distribution.

PDn

(	x−mni−1
	 ≤ 1

8f�kni�) ≤ 1
4f�kni��kni�PRE�kni� ≤ 1

4 �

So 15/16 of the mass of D̃ni
was in this region before the flattening procedure

and at most 1/4 is left after the flattening is done. Thus at least half of the
mass must be moved out of this interval. So the flattening must move at least
1/4 of the mass from this interval to spots at least 1

4f�kni� to the left of the
interval. This implies that mni−1

−mni
> �1/16�f�kni�� ✷

Proof of Theorem 1.2. Lemmas 2.4 and 2.1 imply that mni
↘ −∞. So

for n large, Lemma 2.2 implies that

P�Si+kn −Si < −kn� > 0�

This is a contradiction with the fact that S is a nearest neighbor process. ✷

The same proof can be used under more general hypotheses. The proof goes
through almost verbatim for any process on the integers with bounded step
size. More generally if the process has bounded step size in one direction and
the mean of how far it can move in the other direction given any past is
uniformly bounded, then the proof also applies. The proof can also be used to
give bounds on the constants achievable in Theorem 1.1.
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[4] Häggström, O. and Mossel, E. (1998). Nearest-neighbor walks with low predictability pro-
file and percolation in 2 + ε dimensions. Ann. Probab. 26 1212–1231.

Department of Mathematics
University of Maryland
College Park, Maryland 20742
E-mail: hoffman@math.umd.edu


