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An identity in distribution due to Knight for Brownian motion is ex-
tended in two different ways: first by replacing the supremum of a reflect-
ing Brownian motion by the range of an unreflected Brownian motion and
second by replacing the reflecting Brownian motion by a recurrent Bessel
process. Both extensions are explained in terms of random Brownian scal-
ing transformations and Brownian excursions. The first extension is related
to two different constructions of Itô’s law of Brownian excursions, due to
Williams and Bismut, each involving back-to-back splicing of fragments
of two independent three-dimensional Bessel processes. Generalizations of
both splicing constructions are described, which involve Bessel processes
and Bessel bridges of arbitrary positive real dimension.

1. Introduction. Let B �= �Bt� t ≥ 0� �= �B�t�� t ≥ 0� be a standard one-
dimensional Brownian motion started at 0, and let Mt �= sup0≤s≤t �Bs�. Let
�Lt� t ≥ 0� be the usual local time process at 0 forB, and set τ = inf�t�Lt = 1	.
For δ > 0 let R�δ� be a BES�δ�

0 process, that is, a Bessel process of dimension δ
started at 0, which can be constructed for positive integer δ as the square root
of the sum of squares of δ independent copies of B. For x > 0, let T�δ�

x denote
the hitting time of x by R�δ�. As observed by Biane [2], a result of Knight [14],
Theorem 3, can be reexpressed as follows:

τ

M2
τ

=d T�3�
2 �(1)

where =d denotes equality in distribution. Biane [2] and Vallois [28] explained
Knight’s identity (1) by decomposing the path of the randomly rescaled process

�B�uM2
τ�/Mτ� 0 ≤ u ≤ τ/M2

τ�
into various fragments, and rearranging these fragments to make a path with
the same distribution as �R�3�

u � 0 ≤ u ≤ T�3�
2 �. Here we use similar techniques

to obtain some extensions of Knight’s identity which were announced without
proof in [20]. We also relate these identities in distribution to splicing con-
structions involving Bessel processes and their bridges for arbitrary positive
real dimension δ. See Section 2 for a brief review of the definition of these
processes.
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Let

St �= sup
0≤s≤t

Bs� It �= − inf
0≤s≤t

Bs(2)

and let At �= St + It, called the amplitude or range of the Brownian path B
up to time t.

Theorem 1. There is the identity in distribution

τ

A2
τ

=d T�3�
1 + T̂�3�

1 �(3)

where T̂
�3�
1 is an independent copy of T

�3�
1 . Moreover, τ/A2

τ is independent of
the random variable Iτ/Aτ, which has uniform distribution on 
0�1�.

Theorem 1 constitutes an extension of Knight’s identity (1), because

τ

M2
τ

= τ

A2
τ

[
max

(
Iτ
Aτ
�1 − Iτ

Aτ

)]−2

(4)

and (1) follows from Theorem 1 and (4) by a routine Laplace transform cal-
culation. A pathwise explanation and proof of Theorem 1 is provided by the
following theorem, which is proved in Section 3.

For t > 0 and a continuous function f whose domain contains the interval

0� t�, let Tf� tinf be the least s such that f�s� = inf 0≤u≤t f�u�, and let Tf� tsup the
least s such that f�s� = sup0≤u≤t f�u�.

Theorem 2. Let ρ �= TB�τinf , so Bρ = −Iτ. Define

B#�t� �= Bρ+t �mod τ� −Bρ� 0 ≤ t ≤ τ

and let σ �= TB#� τ
sup , so B#�σ� = Aτ. Then the two processes

R �= �A−1
τ B

#�uA2
τ�� 0 ≤ u ≤ σ/A2

τ�
and

R̂ �= �A−1
τ B

#�τ − uA2
τ�� 0 ≤ u ≤ �τ − σ�/A2

τ�
are independent copies of �R�3�

u � 0 ≤ u ≤ T
�3�
1 �. Moreover, the pair of pro-

cesses �R� R̂� is independent of the random variable Iτ/Aτ whose distribution
is uniform on 
0�1�.

See also [9], [10] and [29] for other decompositions of the Brownian path
involving the range process and BES�3� pieces. These results are all closely
related to Williams’ [34] construction of Itô’s law of Brownian excursions via
back-to-back splicing of two independent BES�3� fragments R and R̂ as in
Theorem 2. To describe some more general splicing results, we consider the
following construction.



RANDOM BROWNIAN SCALING IDENTITIES 1685

Construction 3. Given two continuous path processes with random finite
lifetimes and final value 1, say R �= �R�t�� 0 ≤ t ≤ η� and �R̂ �= �R̂�t�� 0 ≤
t ≤ η̂� with R�η� = R̂�η̂� = 1, construct a random element r �= �r�u�� 0 ≤
u ≤ 1� of C
0�1� by first pasting R and R̂ back-to-back and then transforming
the resulting path by Brownian scaling to have lifetime 1; that is,

r�u� �=
{
ζ−1/2R�uζ�� if 0 ≤ u ≤ V�
ζ−1/2R̂��1 − u�ζ�� if V ≤ u ≤ 1�

(5)

where ζ �= η+ η̂ and V �= η/ζ.

Observe that R and R̂ can be recovered from �r�V� via the formulas

ζ = 1/r2�V��
�R�t�� 0 ≤ t ≤ η� = �r�t/ζ�/r�V�� 0 ≤ t ≤ Vζ��
�R̂�t�� 0 ≤ t ≤ η̂� = �r�1 − t/ζ�/r�V�� 0 ≤ t ≤ �1 −V�ζ��

So any joint distribution of �R� R̂� determines a unique joint distribution of
�r�V� with rV > 0 a.s. and vice versa.

Our proof of Theorem 2 is based on case δ = 3 of the following result of
[20] and [21]. Let r�δ� be a standard BES�δ� bridge, starting at 0 at time 0 and
ending at 0 at time 1.

Theorem 4 ([20] and [21], Theorem 3.1). Referring to Construction 3, for
each real δ > 0 the following conditions (i) and (ii) are equivalent:

(i) R and R̂ are two independent BES�δ�
0 processes, each run until its first

hit of 1.
(ii) The law of r is determined by the formula

P�r ∈ dw�=21−δ/2�
(
δ

2

)−1(
sup

0≤u≤1
wu

)δ−2
P�r�δ� ∈dw�� w∈C
0�1�(6)

and V = Tr�1sup.

Formula (6) is meant to indicate the following absolute continuity relation
between the laws of r and r�δ� on C
0�1�: for every nonnegative Borel measur-
able function F defined on C
0�1�,

P
F�r�� = P
D�r�δ��F�r�δ����
where the density factor D�w� at path w is

D�w� = 21−δ/2�
(
δ

2

)−1(
sup

0≤u≤1
wu

)δ−2
�

Here P stands for the probability measure and expectation operator on some
background probability space where processes under consideration are de-
fined. Throughout the paper, similar notation will be used to describe absolute
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continuity relationships between the laws of various processes. See also [37]
regarding other absolute continuity relationships related to random Brownian
scaling operations.

For δ = 2 the density factor in (6) reduces to 1, so condition (ii) of Theorem 4
reduces to

r =d r�2� and V = Tr�1sup�

For δ = 3, the standard BES�3� bridge r�3� has the same distribution as a
standard Brownian excursion [32]. See [4], [35] and [38] regarding the close
connection between this case of Theorem 4 and the functional equation for
Riemann’s zeta function. In Section 4 we establish the following analog of
Theorem 4 for splicing of two Bessel processes at their last hits of 1 instead
of their first hits of 1.

Theorem 5. In Construction 3, for each δ > 2 the following conditions (i)
and (ii) are equivalent:

(i) R and R̂ are two independent BES�δ�
0 processes, each run until its last

hit of 1.
(ii) The joint law of r and V is determined by the formula

P�r ∈ dw� V ∈ dv� = cδ wδ−4
v P�r�δ� ∈ dw�dv�(7)

where w ∈ C
0�1�, v ∈ �0�1�, and

cδ =
�δ− 2�2

��δ/2� 2−δ/2 = ν

��ν� 21−ν with ν = δ− 2
2
�(8)

In this result the density factor in (7) reduces to 1 only if δ = 4. Then
condition (ii) simplifies to:

r =d r�4� and V is independent of r with uniform distribution on �0�1�.
Theorems 4 and 5 are probabilistic equivalents of the following two the-

orems, which express identities between σ-finite measures on appropriate
spaces.

Theorem 6 [34, 18, 4, 21]. For each δ > 0, on the space $ex of continuous
nonnegative paths with a finite lifetime, starting and ending at 0, the same
σ-finite measure %δ is determined by either of the following two descriptions:

Description I. Conditioning on the lifetime t: First pick t according to the
σ-finite density 2−δ/2��δ/2�−1t−δ/2 dt on �0�∞�; then given t, pick ω according
to the law of a BES�δ� bridge from 0 to 0 over time t.

Description II. Conditioning on the maximum m: First pick m according to
the σ-finite density m1−δ dm on �0�∞�; then given m, construct ω by joining

back to back two independent BES�δ�
0 processes, each run until it first hits m.
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For each ε ∈ �0�2� and C > 0, when the local time process of BES�ε�
0 is

normalized as occupation density relative to the speed measure 2Cxε−1 dx on

�0�∞�, Itô’s law for excursions of BES�ε�
0 away from 0 is �2 − ε�2C%4−ε.

In particular, for δ = 3, the measure %3 is Itô’s law for excursions of �B�
away from zero for the local time process defined by occupation density of B
at 0 relative to Lebesgue measure. Theorem 6 in this case was indicated by
Williams [34], Section II.67. The extension to other dimensions δ was obtained
in [18], [4] and [21]. The last sentence of the theorem was indicated without
attention to normalization constants in [18], and with an incorrect normaliza-
tion constant (4 instead of 2) in [4], formula (3h). For δ ∈ �0�2� ∪ 
4�∞� the
measure %δ is not an excursion law in the sense of Itô [11]. Nonetheless these
measures have some interesting properties [18, 21]. Due to the Ray–Knight
description of Brownian local times, the measure 4%4 is the distribution of the
square root of the total local time process of a path governed by the Brown-
ian excursion law %3. Consequently, %4 appears also in the Lévy–Khintchine
representation of the infinitely divisible family of squares of Bessel processes
and Bessel bridges [18, 17]. As will be seen in Section 4, the simple form of
Theorem 5 for δ = 4 is also closely connected to the Ray–Knight description
of Brownian local times.

The next theorem gives an alternative characterization of the measures %δ
for all δ > 2 by generalizing a result of Bismut [5] for δ = 3. The constant cδ
involved is the same as in (8).

Theorem 7. For each δ > 2 the same σ-finite measure Mδ on $ex × �0�∞�
is determined by each of the following two ways of picking a point �ω�a� from
$ex × �0�∞�.

Description I′. Conditioning on the lifetime t of ω: First pick t according to
the σ-finite density cδt

−δ/2+1 dt on �0�∞�; given t, pick ω from the distribution
of a BES�δ� bridge from 0 to 0 over time t, pick u from the uniform probability
distribution on �0� t�, independently of ω, and let a = ω�u�.

Description II′. Conditioning on the level a: First pick a according to the
σ-finite density 2a3−δda on �0�∞�; then given a, construct ω by joining back-

to-back two independent BES�δ�
0 processes, each run until it last hits a.

The marginal distribution of ω induced by Mδ has density t�ω� relative to the
measure �δ− 2�2%δ, where t�ω� is the lifetime of the path ω.

For δ ∈ �2�4�, Theorem 7 can be read from Theorem 6 by application to
BES�4−δ� of a generalization of Bismut’s result to an arbitrary recurrent strong
Markov process, given in [16], Section II. In Section 4, Theorem 7 is deduced
for all δ > 2 by application of Theorem 5.

The rest of this paper is organized as follows. In Section 2 we briefly re-
view the definition and basic properties of Bessel processes which underlie
our study. Section 3 presents the proof of Theorem 2. The splicing results of
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Theorems 5 and 7 are established in Section 4, followed in Section 5 by some
corollaries for Bessel bridges. Section 6 presents another extension of Knight’s
identity, in which the reflecting Brownian motion �B� is replaced by a recur-
rent BES�δ� process with dimension δ ∈ �0�2�. See also [21], [23], [22] and
[24] for the study of related laws of both heights and lengths of excursions of
Brownian motion and Bessel processes. For yet another extension of Knight’s
identity, involving the process ��Bt�−µLt� t ≥ 0� for µ > 0, see [36], Chapter 9
and [6].

2. Preliminaries on Bessel processes. The construction of BES�δ�
0 as

the radial part of a δ-dimensional Brownian motion for δ = 1�2�3 � � � makes
evident the Pythagorean property of Bessel processes: for positive integers δ
and ε, the sum of squares of independent BES�δ� and BES�ε� processes is the
square of a BES�δ+ε� process. As shown by Shiga–Watanabe [27], the family
of BES�δ� processes for all real δ ≥ 0 can be constructed by extension of this
Pythagorean property to all nonnegative real δ and ε. See [18], [25] and [21] for
further background. Typical properties of Bessel processes are consequences
of the Brownian representation for positive integer δ which have natural ex-
tensions to all δ > 0. In particular, for each real δ > 0, the BES�δ�

0 process
R�δ� inherits the familiar Brownian scaling property from integer dimensions
which underlies all the results of this paper: for every c > 0,

�c−1/2R
�δ�
ct � t ≥ 0� =d �R�δ�

t � t ≥ 0��
A standard BES�δ� bridge, denoted r�δ�, is a process

�r�δ�u � 0 ≤ u ≤ 1� =d �R�δ�
u � 0 ≤ u ≤ 1 �R�δ�

1 = 0��

where R�δ� is a BES�δ�
0 . Such a process is conveniently constructed as

r
�δ�
u �= �1 − u�R�δ�

u/�1−u�� 0 ≤ u < 1�(9)

For an account of the basic properties of bridges derived from a nice Markov
process such as BES�δ�, see [7].

3. Results for one-dimensional Brownian motion. For a suitable
real-valued path with either finite or infinite lifetime ζ, say w = �wt� 0 ≤
t ≤ ζ�, and a random time T = T�w� ≤ ζ, let �LT�w�x�� x ∈ R� denote the
process of local times of w at time T parameterized by the space variable x,
as determined for all x ∈ R almost surely by the occupation density formula∫ T

0
f�ws�ds =

∫ ∞

−∞
f�x�LT�w�x�dx

for all nonnegative Borel functions f and continuity in x. It is well known [25]
that such a local time process exists for arbitrary T�w� ≤ ζ and almost all w
with respect to the laws of various processes under consideration here, such
as fragments of Brownian motion, Brownian bridges and Bessel processes. To
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illustrate the notation, for B a Brownian motion, the local time process of B
at 0 is �Lt� t ≥ 0� defined by Lt �= Lt�B�0�.

3.1. Proof of Theorem 2. The proof is based on the following two lemmas.

Lemma 8 [3]. Let X�u� �= Buτ/
√
τ�0 ≤ u ≤ 1 where τ is an inverse local

time at 0 for the Brownian motion B. Then

P�X ∈ dw� =
√

2
π

1
L1�w�0�

P�Bbr ∈ dw�� w ∈ C
0�1�(10)

where Bbr is a standard Brownian bridge.

For w ∈ C
0�1� let

S1�w� �= sup
0≤u≤1

wu� I1�w� = − inf
0≤u≤1

wu� A1�w� = S1�w� + I1�w��

Lemma 9. For a random element X of C
0�1� let U �= TX�1inf and define
another random element r of C
0�1� by

rt �=XU+t�mod 1� −XU� 0 ≤ t ≤ 1�

If X has the distribution (10) on C
0�1� then I1�X�/A1�X� and r are inde-
pendent; the distribution of I1�X�/A1�X� is uniform on 
0�1�, while

P�r ∈ dw� =
√

2/πS1�w�P�r�3� ∈ dw�� w ∈ C
0�1��(11)

Proof. Note first from the construction of U and r that for any random
element X of C
0�1� admitting a jointly continuous local time process and
such that X0 =X1 = 0, there are the identities

I1�X� = r1−U� A1�X� = S1�r�� L1�X�0� = L1�r� r1−U��(12)

Let P govern X with distribution (10), and let Pbr govern X as a standard
Brownian bridge. For an arbitrary nonnegative product measurable function
g�w�x�, w ∈ C�0�1�, x ∈ �0�1�, we can use (12) to evaluate

P
g�r� I1�X��� =
√

2
π
Pbr

[
g�r� I1�X��
L1�X�0�

]
=

√
2
π
Pbr

[
g�r� r1−U�
L1�r� r1−U�

]
�(13)

According to results of Vervaat [30] and Biane [1], under Pbr the random
elementsU and r are independent, withU uniform on 
0�1�, and r a standard
BES�3� bridge. Combined with the occupation density formula for local times
of r, this implies that L1�r� x�, x ≥ 0 serves as a Pbr conditional density for
r1−U given r:

Pbr�r1−U ∈ dx � r� = L1�r� x�dx� x ≥ 0�
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Because L1�r� x� is strictly positive for x ∈ �0� S1�r�� and zero otherwise, Pbr

almost surely, the rightmost expectation in (13) can be evaluated by condition-
ing on r to yield

P
g�r� I1�X��� =
√

2
π
Pbr

[∫ S1�r�

0
g�r� y�dy

]
�(14)

wherePbr governs r as a standard BES�3� bridge. The conclusions of the lemma
now follow by application of this formula with

g�r� I1�X�� = h�r�k�I1�X�/S1�r�� = h�r�k�I1�X�/A1�X��
for arbitrary nonnegative measurable functions h and k. ✷

Suppose now, as in the previous two lemmas, that X is the segment of B
on the interval 
0� τ� rescaled to have lifetime 1 by Brownian scaling, and r
is the nonnegative path with lifetime 1 obtained by cyclic rearrangement of
increments of X. Equivalently, r is the process with lifetime 1 obtained by
Brownian scaling of the process B# in Theorem 2. Put V �= Tr�1sup = σ/τ for σ
as in Theorem 2. Then it is easily checked that the pair of processes �R� R̂�
corresponding to �r�V� via Construction 3 can be presented as in Theorem 2
and that Iτ/Aτ = I1�X�/A1�X�. According to Lemma 9, the distribution of
�r�V� is as in part (ii) of Theorem 4 for δ = 3. The conclusion of Theorem 2 is
now apparent as a consequence of Lemma 9 and Theorem 4. ✷

4. Splicing of Bessel bridges. The following lemma records a variation
of the Ray–Knight description of the local time process of B in the space
variable at the inverse local time τ.

Lemma 10. The processes

�Lτ�B�Sτ − v�� 0 ≤ v ≤ Sτ� and �Lτ�B�−Iτ + v�� 0 ≤ v ≤ Iτ�
are independent copies of the square of �R�4�

v � 0 ≤ v ≤ η�4�� where

η�4� �= sup
{
t� R�4�

t = 1
}
�

Proof. According to one of the Ray–Knight theorems, the processes

�Lτ�B�x�� x ≥ 0� and �Lτ�B�−x�� x ≥ 0�
are two independent squares of Bessel processes of dimension 0, each started
at 1, whose hitting times of 0 are Sτ and −Iτ respectively. In view of the duality
between Bessel processes of dimensions 0 and 4 discussed in [18], page 440,
the conclusion now follows by application of Williams’ time-reversal theorem
[33], Theorem 2.5. ✷

On the other hand, we obtain the following corollary of Theorem 2. See
also [18] for closely related appearances of the square of the standard BES�4�

bridge.
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Corollary 11. The process �A−1
τ Lτ�B�−Iτ + uAτ�� 0 ≤ u ≤ 1� is the

square of a standard BES�4� bridge; moreover this process is independent of
the uniformly distributed random variable Iτ/Aτ.

Proof. LetB# be as constructed in Theorem 2, and letB∗�v� �=A−1
τ B

#�vA2
τ�

for 0 ≤ v ≤ τ/A2
τ . Then it is easily seen that for 0 ≤ u ≤ 1,

A−1
τ Lτ�B�−Iτ + uAτ� = A−1

τ Lτ�B#� uAτ� = L�B∗� τ/A2
τ� u��(15)

where on the right side, and in some following equations, we write L�w� t� x�
instead of Lt�w�x�. According to Theorem 2, the process B∗ can be constructed
by pasting back-to-back two independent copies of �R�3�

t � 0 ≤ t ≤ T�3�
1 �, and B∗

is independent of Iτ/Aτ. It is implicit in Williams’ path decompositions [32, 33]
that the process �L�R�3��T�3�

1 � u�� 0 ≤ u ≤ 1� is the square of a standard
BES�2� bridge. Since the sum of squares of two independent standard BES�2�

bridges is the square of a standard BES�4� bridge, the conclusion follows. ✷

The simplest case of Theorem 5, when δ = 4, is now evident by compar-
ison of the results of Lemma 10 and Corollary 11. The proof of Theorem 5
for general δ > 2 is based on the known results stated in the following two
lemmas.

For ν > 0 let �ν denote a random variable with the gamma�ν� density
��ν�−1xν−1e−x for x > 0.

Lemma 12. For δ > 2 let η�δ� �= sup�t� R�δ�
t = 1	.

(i) [8] η�δ� =d 1/�2�ν� where ν = �δ− 2�/2.

(ii) [7] Conditionally, given η�δ� = v, the process �R�δ�
t � 0 ≤ t ≤ v� is a

BES�δ� bridge from �0�0� to �1� v�.

By application of (9), for z > 0,

P�r�δ�v ∈ dz� = pδ�v� z�dz�
where

pδ�v� z� �=
z2ν+1v−ν−1�1 − v�−ν−1

��ν + 1�2ν exp
(
− z2

2v�1 − v�
)

and ν = �δ− 2�/2. The next lemma is an application of results of [7].

Lemma 13. Fix δ > 0. For a process r �= �rv� 0 ≤ v ≤ 1� with continuous
paths and a random time V with values in �0�1� the following conditions (i)
and (ii) are equivalent:

(i) For 0 < v < 1 and z > 0,

P�V ∈ dv� rV ∈ dz� = ρ�v� z�dvdz
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for some joint probability density function ρ�v� z�, and conditionally given that
�V = v� rV = z�, the two processes �ru� 0 ≤ u ≤ v� and �r1−u� 0 ≤ u ≤ 1 − v�
are independent, with the first a BES�δ� bridge from �0�0� to �v� z� and the
second a BES�δ� bridge from �0�0� to �1 − v� z�.

(ii) The joint law of r and V is given by the formula

P�r ∈ dw� V ∈ dv� = f�v�wv�P�r�δ� ∈ dw�dv�(16)

wherew ∈ C
0�1�, v ∈ �0�1�, for some nonnegative measurable function f�v� z�.
When these conditions hold, f and ρ are related by the formula

f�v� z� = ρ�v� z�/pδ�v� z� dvdz almost everywhere�(17)

Proof. That (i) implies (ii) with f defined by (17) can be read from Propo-
sition 4 of [7] applied to the Bessel bridge with the additive functional At = t.
It is clear that any joint law for �r�V� of the form (16) for some nonnega-
tive f can be achieved in this way for ρ defined by the equality (17), so (ii)
implies (i). ✷

Proof of Theorem 5. Because the transformation involved is a bijection,
it suffices to show that (i) implies (ii). Suppose (i) holds. According to Lemma
12, conditionally on their lifetimes η and η̂ the processes R and R̂ are inde-
pendent Bessel bridges from 0 to 1 with the given lengths. After the scaling op-
eration to construct r, the images of these processes are bridges of lengths η/ζ
and η̂/ζ from 0 to 1/

√
ζ. Lemma 13 now yields the conclusion with fδ�v� rv�

instead of cδrδ−4
v where fδ�v� z� = ρδ�v� z�/pδ�v� z� with ρδ�v� z� the joint den-

sity at �v� z� of(
η

η+ η̂ �
1√
η+ η̂

)
=

(
�̂ν

�ν + �̂ν
�

(
1

2�ν
+ 1

2�̂ν

)−1/2)
for �ν and �̂ν independent gamma�ν� variables with ν = �δ − 2�/2. But ele-
mentary calculations show that fδ�v� z� = cδzδ−4, and (ii) follows. ✷

Proof of Theorem 7. In Description II′, given a, denote by ηa and η̂a
the last hitting times of a by the two independent BES�δ�

0 processes. So by
construction a = ωv where v �= ηa and the lifetime t of ω is t = ηa + η̂a.
Let ω be the path ω standardized by Brownian scaling to have length 1.
Note that ωv = a/√t, and that �ω�a� is a measurable function of �a�ω� v�.
Description II′ specifies the σ-finite marginal distribution 2a3−δda for a, and
given a a conditional probability distribution for �ω�v�. By Brownian scaling
and Theorem 5, this conditional probability distribution of �ω�v� given a does
not depend on a and is identical to the distribution of �r�V� described by (7). It
follows from Fubini’s theorem that for every nonnegative measurable function
6 = 6�a�ω� v�, the integral of 6 with respect to the σ-finite joint distribution
of �a�ω� v� determined by Description II′ equals

P�δ�
∫ ∞

0
da2a3−δ cδr

δ−4
U 6�a� r�U��(18)
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whereP�δ� denotes expectation with respect to a probability distribution which
governs r as a standard BES�δ� bridge and U as an independent random vari-
able with uniform distribution on �0�1�. The lifetime t = t�ω� is recovered
from �a�ω� v� as t = a2/ω2

v. Apply (18) with 6�a�ω� v� = 7�a2/ω2
v�ω� v�, and

make the change of variable t = a2/r2
U in the integral, to deduce that for ev-

ery nonnegative measurable function 7 = 7�t�ω� v�, the integral of 7 with
respect to the distribution of �t�ω� v� induced by that of �a�ω� v� determined
by Description II′ equals

P�δ�
∫ ∞

0
dt cδ t

1−δ/27�t� r�U��(19)

However, this is precisely the integral of 7�t�ω� v� with respect to the joint
distribution of �t�ω� v� specified by Description I′. ✷

We now discuss further the correspondence between probability laws for
�R� R̂� and for �r�V� induced by Construction 3. Instead of considering the
distribution of �r�V� corresponding to R and R̂ which are independent copies
of a BES�δ�

0 run until its last hit of 1, we ask the following question: assuming
that R̂ is an independent copy of R, how must R be distributed so that r is a
standard BES�δ� bridge and V is independent of r? This question is answered
by the following variation of Theorem 5, which coincides with that theorem
for δ = 4, but which is valid for all dimensions δ > 0 rather than just δ > 2.

Theorem 14. For each δ > 0, there is a unique distribution Fδ on �0�1�
and a unique distribution Qδ for a process with finite lifetime, such that the
following two conditions are equivalent:

(i) r is a standard BES�δ� bridge and V is independent of r with distribu-
tion Fδ;

(ii) R and R̂ are independent with common distribution Qδ.

The distribution Fδ is beta�δ/4� δ/4�; when R has distribution Qδ the life-
time T of R is distributed like �2�δ/4�−1, and given T the process R is dis-

tributed like a BES�δ� bridge starting at �0�0� and ending at �T�1�.

For the proof of this theorem, we introduce the following notation. For two
random variables W and Y with W > 0 and Y ≥ 0, call a process �Xt� 0 ≤
t ≤ T� a BES�δ�

0 �W�Y� bridge if �T�XT� =d �W�Y� and given �T�XT� the
process X is distributed like a BES�δ� bridge starting at �0�0� and ending at
�T�XT�; that is, for all v�y > 0,

�Xt� 0 ≤ t ≤ T �T = v� XT = y� =d �R�δ�
t � 0 ≤ t ≤ v �R�δ�

v = y��
For δ > 2 let Q′

δ be the law of an unconditioned BES�δ�
0 process Rδ stopped at

its last hit of 1. According to Lemma 12,

Q′
δ is the law of a BES�δ�

0 ��2��δ−2�/2�−1�1� bridge�
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The distribution Qδ, defined in Theorem 14 for all δ > 0 rather than just
δ > 2, is the law of a BES�δ�

0 ��2�δ/4�−1�1� bridge. These distributions Q′
δ and

Qδ are mutually absolutely continuous for each δ > 2, but they are identical
only if �δ − 2�/2 = δ/4; that is, δ = 4. The following variation of Lemma 13
simplifies the proof of Theorem 14.

Lemma 15. Fix δ > 0. Suppose that r is a standard BES�δ� bridge and that
V ∈ �0�1� is independent of r. Then

R is a BES�δ�
0 �V/r2

V�1� bridge� R̂ is a BES
�δ�
0 ��1 −V�/r2

V�1� bridge�

and these two processes are conditionally independent given �V�rV�.

Proof. This follows easily from the inhomogeneous Markov property of r,
according to which for each fixed time u ∈ �0�1� and y ≥ 0, the two processes
�rt� 0 ≤ t ≤ u� and �r1−t� 0 ≤ t ≤ 1 − u� are conditionally independent given
ru = y, with the first process a BES�δ�

0 �u�y� bridge and the second process a
BES�δ�

0 �1 − u�y� bridge. See [7]. ✷

Proof of Theorem 14. For r and V as in Lemma 15, that lemma shows
that R and R̂ are i.i.d. (independent and identically distributed), if and only
if r2

V/V and r2
V/�1 −V� are i.i.d. But from the representation (9),

�V�r2
V� =d �V�2V�1 −V��δ/2��

where �δ/2 is assumed independent of V. So r2
V/V and r2

V/�1 −V� are i.i.d.
iff �1 − V��δ/2 and V�δ/2 are i.i.d. It is known [31], Example 7.9 that this
condition holds if the distribution of V is beta�δ/4� δ/4�, and the converse is
evident by consideration of moments. So this condition amounts to

r2
V/V =d r2

V/�1 −V� =d 2V�δ/2 =d 2�δ/4

and the theorem follows. ✷

As a final variation on this theme, we record the following extension of
Theorems 5 and 14.

Theorem 16. Let r�δ� be a standard BES�δ� bridge. For δ > 0 and a� b ∈
�0� δ/2�, the following conditions (i) and (ii) are equivalent:

(i) R and R̂ are independent, with R a BES�δ�
0 ��2�δ/2−a�−1�1� bridge

and R̂ a BES�δ�
0 ��2�δ/2−b�−1�1� bridge.

(ii) The joint law of r and V is determined by the formula

P�r ∈ dw� V ∈ dv� = cδ� a� b va−1�1 − v�b−1wδ−2a−2b
v P�r�δ� ∈ dw�dv(20)
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where w ∈ C
0�1�, v ∈ �0�1�, and

cδ� a� b = 2a+b−δ/2
��a���b���δ/2�

��δ/2 − a���δ/2 − b���a+ b� �

Proof. This is obtained by the same method used to derive Theorem 5.
Details are left to the reader. ✷

As a check on this theorem, for δ > 2 and a = b = 1, in view of Lemma 12
we recover Theorem 5, while for δ > 0 and a = b = δ/4 we recover most of
Theorem 14. See also [36], Section 3.7, for some related results.

5. Some identities in law for Bessel bridges. We indicate in this sec-
tion some consequences for Bessel bridges of the splicing constructions consid-
ered in the previous section. Observe first, in the setting of Theorem 2, with
notation from the proof of Corollary 11, that the lifetime τ/A2

τ of the process

�B∗�v�� 0 ≤ v ≤ τ/A2
τ�

can be written as

τ

A2
τ

=
∫ 1

0
L

(
B∗�

τ

A2
τ� u

)
du�

But from (15),

L�B∗� τ/A2
τ� Iτ/Aτ� = L�B�0� τ�/Aτ = 1/Aτ�

Thus τ can be recovered from the squared BES�4� bridge in (15) and the inde-
pendent uniform random variable Iτ/Aτ as

τ = 1
�L�B∗� τ/A2

τ� Iτ/Aτ��2

∫ 1

0
L�B∗� τ/A2

τ� u�du�

Similar considerations apply to the amounts of time τ+ and τ− that B spends
in the intervals �0�∞� and �−∞�0�, respectively, up to time τ. On the other
hand, in the notation of Construction 3, we have

I− �= 1
r4�V�

∫ V
0
r2�u�du =

∫ η
0
R2�t�dt�

I+ �= 1
r4�V�

∫ 1

V
r2�u�du =

∫ η̂
0
R̂2�t�dt�

I �= 1
r4�V�

∫ 1

0
r2�u�du = I− + I+�

Thus we deduce from Lemma 10 and Corollary 11 that for �r�V� and �R� R̂�
as in Theorem 5 for δ = 4, the random variables I− and I+ are independent
with the same stable�1/2� distribution shared by τ−, τ+, τ/4 and 1/�8�1/2�,
while I has the same distribution as τ and 1/�2�1/2�. This is the case p = 2
of the following result.



1696 J. PITMAN AND M. YOR

Theorem 17. Let r be a standard BES�4� bridge, and V an independent
random variable with uniform distribution on �0�1�. For p > 0 let

J−�p� �=
∫ V

0
r2p−2
s ds� J+�p� �=

∫ 1

V
r2p−2
s ds� J�p� �=

∫ 1

0
r2p−2
s ds�

Then:

(i) The random variables p2J−�p�/r2p
V and p2J+�p�/r2p

V are independent
with the same distribution as 1/�2�1/p�;

(ii) J−�p�/J�p� has a beta�1/p�1/p� distribution, and is independent of
the random variable

r
2p
V J�p�

2p2J−�p�J+�p�
�

which has a gamma�2/p� distribution.

This result is obtained by combination of Theorem 5 with the following
lemma.

Lemma 18 ([25], page 427, Proposition (1.11)). Let �Rδ�t�� t≥0� be a
BES�δ�. For all δ > 2 and p > 0,

R
p
δ �t� = R̄δ̄

(
p2

∫ t
0
dsR

2p−2
δ �s�

)
� t ≥ 0�

where δ̄ = 2 + �δ− 2�/p and R̄δ̄ is a BES�δ̄�.

Proof of Theorem 17. In terms of R and R̂, two independent BES�δ� pro-
cesses, with η and η̂ their respective last hits of 1, from Theorem 5 for δ = 4,
Lemma 18 and Lemma 12, we find(

p2J−�p�
r

2p
V

�
p2J+�p�
r

2p
V

)
=d

(
p2

∫ η
0
dtR

2p−2
t � p2

∫ η̂
0
dtR̂

2p−2
t

)

=d
(

1
2�1/p

�
1

2�̂1/p

)
�

where �1/p and �̂1/p are two independent gamma�1/p� variables. This is (i),
and (ii) follows by the elementary relations between beta and gamma variables
[31], Example 7.9. ✷

The simplicity of this result should be compared with the complexity of the
law of J�p�. See [12] and references therein for an approach to the law of
J�p� via Sturm–Liouville equations.

The following further corollary, whose proof is left to the reader, is a conse-
quence of Theorem 5 and Lemma 18. In two particular cases, if δ = 4 or ε = 4
we recover some instances of [25], page 444, Theorem (3.5).
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Proposition 19. LetP�δ� be an expectation operator governing r as a stand-
ard BES�δ� bridge, and let cδ be as defined by (8). Suppose δ > 2, p > 0, and
let ε �= 2 + �δ− 2�/p. Then for every nonnegative measurable function f there
is the equality

cδP
�δ�

[
f

(∫ 1

0
dur2p−2

u

)(∫ 1

0
durδ−4

u

)]
= cεP�ε�

[
f

((∫ 1

0
du�pru�2/p−2

)−p)(∫ 1

0
durε−4

u

)]
�

6. An analog of Knight’s identity for a recurrent Bessel process.
Another generalization of Knight’s identity is obtained by replacing �B� by a
BES�δ�

0 process R �= R�δ�, for some δ ∈ �0�2�, when 0 is a recurrent point
for R. Let Mt �= sup0≤s≤t Rs, let �Lt� t ≥ 0� be a local time process at 0
for R, and for s ≥ 0 set τs = inf�t� Lt > s	. Note that while the definition
of these processes �Lt� and �τs� in terms of R involves δ, this dependence is
suppressed in the notation. It is known [15] that �τs� is a stable subordinator
of index α �= 1 − δ/2, that is,

P�δ� exp�−λτs� = exp�−Ksλα�� λ > 0�(21)

where P�δ� is an expectation operator governing R as a BES�δ�
0 , and K is a

constant depending on the normalization of the local time process. By scaling,
the law of τs/M2

τs
depends neither on s nor on the choice of normalization of

local time. So we write simply τ instead of τs for some arbitrary fixed δ and s.

Theorem 20. For δ ∈ �0�2�, the distribution of τ/M2
τ for a BES�δ�

0 process

is identical to that of T
�δ�
1 +T�4−δ�

1 where T
�δ�
1 and T

�4−δ�
1 are independent.

For all δ > 0 there is the formula [13],

P�δ� exp
(
−1

2
λ2T

�δ�
x

)
= �xλ�ν

2ν��ν + 1�Iν�xλ�
where ν �= �δ− 2�/2(22)

and Iν is the modified Bessel function of index ν. So Theorem 20 amounts to
the formula

P�δ� exp
(
−λ

2

2
τ

M2
τ

)
= sin�πα�

πα

1
Iα�λ�I−α�λ�

�(23)

where α �= 1 − δ/2 ∈ �0�1�. We offer the following pathwise explanation of
Theorem 20, in the same spirit as Theorem 2. See also [19], Section 6, for a
similar construction. Let τ̃ �= τ/M2

τ and

R̃t �=
1
Mτ

R�tM2
τ�� 0 ≤ t ≤ τ̃�(24)

so the process �R̃t� 0 ≤ t ≤ τ̃� begins and ends at 0, and has maximum value
1 at time ρ̃ �= ρ/M2

τ where ρ is the a.s. unique time u in �0� τ� at which
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Ru =Mτ. Now define a rearrangement R# of the path of R̃, as follows: delete
the excursion of R̃ straddling time ρ̃, close up the gap and replace the deleted
excursion at the end. Let

D̃ �= (
first zero of R̃ after time ρ̃

) = Dρ/M2
τ�(25)

where Dρ is the first zero of R after time ρ.

Theorem 21. For R a BES�δ�
0 with δ ∈ �0�2�, the two processes

�R#�t�� 0 ≤ t ≤ τ̃ − �D̃− ρ̃�� and �R#�τ̃ − v�� 0 ≤ t ≤ D̃− ρ̃�

are independent; the first is distributed as a BES�δ�
0 up to its hitting time of 1,

and the second is distributed as a BES�4−δ�
0 up to its hitting time of 1.

As a consequence of Theorem 21, for �τ�Mτ� derived from a BES�δ�
0 process,

the decomposition

τ

M2
τ

= τ − �Dρ − ρ�
M2
τ

+ �Dρ − ρ�
M2
τ

expresses τ/M2
τ as the sum of two independent random variables, distributed

like T�δ�
1 and T�4−δ�

1 , respectively. Thus Theorem 20 is a consequence of Theo-
rem 21. In the Brownian case (δ = 1), the conclusion of Theorem 20 is easily
seen to be equivalent to Knight’s identity (1). Our formulation and proof of
Theorem 21 in this case simplifies the closely related approaches to Knight’s
identity provided by Biane [2] and Vallois [28].

Proof of Theorem 21. The following observations (1)–(4) are conse-
quences of Itô’s excursion theory [11, 26] which are valid for any recurrent
diffusion process R starting at 0 instead of a BES�δ�

0 process R, with τ �=
inf�t� Lt > 1	 where L is a local time process of R at 0, with M the past
maximum process of R, and ρ ∈ �0� τ� defined by Mτ = Rρ. The excursion
interval of R containing ρ is denoted �Gρ�Dρ�.
(1) For each x > 0, conditionally given Mτ = x, the excursion of R over

�Gρ�Dρ� is distributed according to Itô’s excursion law given an excursion
of maximum height x, independently of the residual process with lifetime
τ − �Dρ − Gρ� obtained from the process R on 
0� τ� by excision of the
excursion over �Gρ�Dρ�.

(2) Conditionally given Mτ = x, the residual process is identical in law to

�Rt� 0 ≤ t ≤ GTx �LTx = 1��
where GTx is the time of the last zero of R before Tx, the first hitting time
of x by R.
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(3) Conditionally given Mτ = x, the excursion of height x over �Gρ�Dρ� may
be decomposed at its maximum into two independent copies of R̂ run till
time T̂x and joined back to back, where T̂x is the hitting time of x by the
diffusion R̂ started at 0 obtained as “R conditioned to reach +∞ before
returning to 0” in the usual sense of h-processes. (Williams decomposition
[33, 34]. For R a BES�δ�, it is known [18] that R̂ is a BES�4−δ�.)

By combination of (1), (2) and (3) with the last exit decomposition of R at
time GTx , which has a similar expression in terms of excursion theory, it is
clear that

(4) If the excursion attaining the maximum of R on 
0� τ� is removed and
tacked after the residual process, conditionally given Mτ = x, this rear-
ranged process of lifetime τ decomposes at its maximum [at time τ−�Dρ−
ρ�� into two independent processes, the first a copy of

�Rt� 0 ≤ t ≤ Tx �LTx = 1�

and the second a time-reversed copy of �R̂t� 0 ≤ t ≤ T̂x��

Assuming now that R is a BES�δ�
0 for some δ ∈ �0�2�, the two processes

considered in Theorem 21 are obtained from the two processes considered
above by application of Brownian scaling to obtain processes with maximum
value 1 instead of Mτ. Combined with the Brownian scaling property of R,
the above argument shows

�R#�t�� 0 ≤ t ≤ τ̃ − �D̃− G̃� �Mτ = x� =d �Rt� 0 ≤ t ≤ T1 �LT1
= x−2α��

where LT1
is the local time at 0 of R, a BES�δ�

0 , up to the time T1 = T�δ�
1 that

R first hits 1. Similarly

�R#�τ̃ − v�� 0 ≤ t ≤ D̃− ρ̃ �Mτ = x� =d �R̂t� 0 ≤ t ≤ T̂1��

where T̂1 =d T�4−δ�
1 is the hitting time of 1 by the BES�4−δ�

0 process R̂. Since
the distribution of the last path is independent of the value x of Mτ, the
independence claimed in the theorem is immediate. To finish the argument,
it only remains to check that the following relation holds for R a BES�δ�:

M−2α
τ =d LT1

where α = �2 − δ�/2�(26)

By Theorem 6, for BES�δ� the rate of excursions to hit x is cx−2α for some c
depending on the choice of normalization of local time, soLT1

is exponential�c�:

P�LT1
> B� = e−cB�(27)

But also

P�M−2α
τ > B� = P�Mτ < B

−1/2α� = e−cB�(28)
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where the second equality is a consequence of Itô’s excursion theory: in a
Poisson process with rate c B−�1/2α��−2α� = cB, the probability of no points in
time 1 is e−cB� ✷

Remark. Consider again for R a BES�δ�
0 with δ ∈ �0�2� the process R̃ with

lifetime τ̃ = τ/M2
τ derived by Brownian scaling R on 
0� τ� to have maximum

height 1, as in (24). It is natural to consider the decomposition of R̃ at its
maximum time ρ̃ = ρ/M2

τ . By symmetry under time reversal, R̃ decomposes
at time ρ̃ into an exchangeable pair of processes, say Y with lifetime ρ̃ and
Ŷ with lifetime τ̃ − ρ̃, put back-to-back. A variation of the above argument
identifies the common law of Y and Ŷ and shows they are not independent.
To see this, let L �= L̃ρ̃, the total local time at 0 of Y, L̂ = L̃τ̃ − L, the total
local time at 0 of Ŷ. A variation of the above argument shows that

�Yt� 0 ≤ t ≤ ρ̃ �L = B� =d �Ŷt� 0 ≤ t ≤ τ̃ − ρ̃ � L̂ = B�
=d �Rt� 0 ≤ t ≤ T1 �LT1

= B��

Moreover, Y and Ŷ are conditionally independent given �L� L̂�. But it is easily
seen that

�L� L̂� =d �ULT1
� �1 −U�LT1

��(29)

where U is uniform 
0�1� independent of LT1
, which has exponential�c� dis-

tribution for some c > 0. Let �R′
t� 0 ≤ t ≤ T′

1� be an independent copy of
�Rt� 0 ≤ t ≤ T1�. It follows easily that the law of �Y� Ŷ� is absolutely contin-
uous with respect to that of ��Rt� 0 ≤ t ≤ T1�� �R′

t� 0 ≤ t ≤ T′
1��, with density

c−1�LT1
+L′

T′
1
�−1 where L′

T′
1

is the local time of R′ at 0 at time T′
1.
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[11] Itô, K. (1971). Poisson point processes attached to Markov processes. Proc. Sixth Berkley
Symp. Math. Statist. Probab. 3 225–240. Univ. California Press, Berkeley.

[12] Jeanblanc, M., Pitman, J. and Yor, M. (1997). The Feynman–Kac formula and decomposi-
tion of Brownian paths. Comput. Appl. Math. 16 27–52.

[13] Kent, J. (1978). Some probabilistic properties of Bessel functions. Ann. Probab. 6 760–770.
[14] Knight, F. B. (1988). Inverse local times, positive sojourns, and maxima for Brownian mo-
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