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LYAPOUNOV EXPONENTS AND QUENCHED LARGE
DEVIATIONS FOR MULTIDIMENSIONAL RANDOM

WALK IN RANDOM ENVIRONMENT

BY MARTIN P. W. ZERNER

ETH, Zurich

Assign to the lattice sizes z � �d i.i.d. random 2 d-dimensional vec-
Ž Ž ..tors � z, z � e whose entries take values in the open unit interval� e ��1

Ž .and add up to one. Given a realization � of this environment, let Xn n� 0
be a Markov chain on �d which, when at z, moves one step to its neighbor

Ž .z � e with transition probability � z, z � e . We derive a large deviation
principle for X �n by means of a result similar to the shape theorem ofn
first-passage percolation and related models. This result produces certain
constants that are the analogue of the Lyapounov exponents known from
Brownian motion in Poissonian potential or random walk in random
potential. We follow a strategy similar to Sznitman.

0. Introduction, notation and main results. In the present work we
obtain a large deviation principle for the position of a nearest neighbor

d Ž .random walk on the hypercubic lattice � d � 1 with site-dependent ran-
dom transition probabilities. The precise model is as follows.

d Ž Ž ..We attach to each vertex z � � a 2 d-dimensional vector � z, z � e � e ��1
where e runs over all signed canonical unit vectors of the lattice. The entries
Ž . Ž .� z, z � e are strictly positive and fulfill Ý � z, z � e � 1. We assumee

Ž Ž .. dthroughout this paper that the vectors � z, z � e , z � � , are indepen-� e ��1
dent and identically distributed random vectors on some probability space
with sample space � and probability measure �. For the sake of simplicity
we denote the elements of � by �, too. Each such � serves as environment

Ž . dfor a Markov chain X with start in x � � defined on another probabil-n n� 0
Ž .ity space with probability measure P such that � z, z � e is the transi-x, �

tion probability from z to its neighbor z � e, that is,
� �P X � x � 1,x , � 0

� �� z , z � e , if e � 1,Ž .�P X � z � e X � z �x , � n�1 n ½ 0, otherwise.
Ž .For an illustration see Figure 1. This discrete time Markov chain Xn n� 0

d Ž .on � is called random walk in random environment RWIRE . If d � 1, we
recover the classical one-dimensional RWIRE that has been extensively
studied. Some of the fundamental results concerning recurrence properties

� �and limit theorems for d � 1 are due to Solomon 17 . For d � 2 this model
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FIG. 1. Density plot of the distribution of the displacement vector X after n � 15,000 steps inn
Ž . Ž . Ž .two dimensions. The environment � is a realization of � x, x � e � � x, x � e �Ý � x, x � e� ,e�

Ž . Ž d � � .where the random variables � x, x � e x � � , e � 1 are i.i.d. and exponentially distributed
with mean 1.

� �has been introduced by Kalikow 7 . However, up to now, compared with the
one-dimensional situation, not much is known about the higher-dimensional

� � � �case. For a survey on both cases see, for example, 6 , Chapter 6 and 16 ,
Chapter III. We are interested in large deviations of X �n as n � � thatn
hold for �-almost all fixed environments �, the so-called quenched case.

� �Greven and den Hollander 5 studied in d � 1 quenched large deviations of
X �n under P . They characterized the rate function as a solution to an 0, �

variational problem involving specific relative entropy with respect to a
certain stationary Markov process and solve this variational problem in
terms of random continued fractions and Lyapounov exponents of products of

� �certain infinite random matrices. The works of Gantert and Zeitouni 4 and
� �Pisztora and Povel 14 have completed the one-dimensional quenched large

deviation picture. In the one-dimensional annealed case, that is, after averag-
ing over the environment, large deviations have been obtained by Dembo,

� � � �Peres and Zeitouni 1 and Pisztora, Povel and Zeitouni 15 .
Our approach to quenched large deviations is different. Most of the success

in the study of the one-dimensional RWIRE comes because, due to the simple
geometry of �, one is able to construct explicit solutions for certain desired
quantities or distributions. In higher dimensions this is not possible. Instead



M. P. W. ZERNER1448

we use and modify more indirect but nevertheless powerful methods which
have been developed for the study of Brownian motion in a Poissonian

� �potential by Sznitman 18, 20 , and random walk in a nonnegative random
� �potential; see 21 . The rough idea is to derive suitable shape theorems

Ž � �.analogous to those of first-passage percolation see, e.g., 8 and use these
shape theorems to deduce the large deviation principle. First, we construct
certain two-point functions which are independent of time but still contain
enough information about the properties of X at a fixed time n. Thesen
functions are defined as

�� H Ž y . de x , y , � � E e 1 x , y � � , � � � ,Ž .� x , � �H Ž y .��4

where � is a real parameter, E denotes the expectation with respect tox, �

P andx, �

� 41 H y � inf n � 0: X � y 	 �Ž . Ž . Ž .n

is the first-passage time through y. For � � 0, the two-point function
Ž . Ž .e x, y, � might be infinite. If � is strictly positive e x, y, � is simply the� �

Ž .Laplace transform of H y under the measure P at point �. For � � 0x, �

there is also an interesting interpretation of this quantity as the probability
that a ‘‘mortal’’ walker, who survives each step only with probability e��,
ever reaches y before dying. We are interested in the �-almost sure decay

Ž . � �rates of e x, y, � when x � y tends to infinity. For this reason we intro-�

duce
a x , y , � � �ln e x , y , � .Ž . Ž .� �

Ž .Figure 2 shows a contour plot of a x, 0, � for some specific realization�

Ž .and some positive �. One might see in this figure that a nx, 0 grows roughly�

linear as n � � with a slope depending on the direction x. Furthermore, one
might guess that the random contours converge after scaling to an asymptotic
shape. In fact, our first main result is the following theorem.

Ž .THEOREM A Lyapounov exponents and shape theorems . Suppose that
Ž .�ln � 0, e has finite dth moment for all nearest neighbors e of the origin 0.

� . d � . Ž . Ž .Then there exist a continuous function � : 0, � � � � 0, � , �, x � � x ,�

which is concave increasing in � and homogeneous and convex in x, and a set
� of full �-measure with the following properties.1

Ž . � �i Shape theorem: For all � � 0 and all sequences y with y � �,n n

a 0, y , � � � yŽ . Ž .� n � n 12 lim � 0 for all � � � and in L � .Ž . Ž .1� �yn�� n

Ž .ii Uniform shape theorem: For all � � 0 and all sequences x , y suchn n
Ž � � � �. � �that c x 
 y 	 y � x � � for some c � 0,n n n n

a x , y , � � � y � xŽ . Ž .� n n � n n 13 lim � 0 for all � � � and in L � .Ž . Ž .1� �y � xn�� n n

Note that the sequences x , y can be taken as a function of �.n n
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Ž .FIG. 2. Contour plot of a x, 0, � with � � 0.5. The environment � is of the same type as in�

Ž . Ž d � � .Figure 1 with random variables � x, x � e x � � , e � 1 that are uniformly distributed on the
Ž .interval 0, m with m � 1, m � 2, m � 3 and m � 4.e e e �e �e1 2 1 2

Ž .These Lyapounov exponents � x are the counterparts of the time con-�

stant of first-passage percolation and the Lyapounov exponents appearing in
Brownian motion in Poissonian potential and random walk in random poten-
tial. Their existence is a consequence of the subadditive ergodic theorem and

Ž .a supermultiplicative property of e x, y for � � 0. The Lyapounov expo-�

nents show up in the rate function of the large deviation principle we are
going to state next. It seems that our method only works if there are arbitrary
large regions where the local drifts point approximately to the origin. These
regions allow for slowing down the walk without paying an exponential
cost. The right condition to guarantee the existence of such regions is the
following.

Ž .DEFINITION. The nestling property NP is said to hold if the convex hull of
Ž .the support of the law of Ý � 0, e e contains the origin, that is,� e ��1

0 � conv supp law � 0, e e .Ž .Ýž /ž /ž /
� �e �1

Note that this convex hull is closed.
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Ž . Ž .THEOREM B Large deviation principle . Suppose that �ln � 0, e has
finite dth moment for all nearest neighbors e of the origin 0. Then X �n obeysn
the following large deviation principle with rate function:

I z � sup � z � � .Ž . Ž .Ž .�
��0

Upper bound: On a set � of full �-measure for any x � � d and any closed2
subset A � � d,

1
� �4 lim sup ln P X � nA 	 � inf I y � x .Ž . Ž .n x , � nn y�An��

Lower bound: The nestling property holds if and only if on a set � of full3
�-measure for any x � � d and any open subset B � � d,

1
� �5 lim inf ln P X � nB � � inf I y � x .Ž . Ž .n x , � nnn�� y�B

� �Here the RWIRE is supposed to start at some neighboring lattice site nx of
d � �nx if nx � � , that is, P � P . Furthermore, the set nA denotes then x, � � n x �, �

� �set of all ny with y � A.
The rate function I vanishes at the origin, is nonnegative, convex, continu-

d� � Ž . � � � � �ous, and finite on the closed 	 -unit ball B 0, 1 � x � � : x � 			 � x 	1 d
41 and infinite on its complement.

If the nestling property does not hold then the appropriate rate function is
supposed to depend also on Lyapounov exponents � with negative �. This�

� �can be shown in the one-dimensional situation; see 5 . However in d � 2 our
method breaks down without the nestling property since we loose in general

Ž .the supermultiplicativity of e x, y for � � 0 and thus cannot even apply the�

subadditive ergodic theorem to construct � for negative �.�

Let us now describe how the present article is organized. In Section 1 we
use the subadditive ergodic theorem to prove the existence of the Lyapounov

Ž . Ž .exponents � x as limits of a 0, nx �n as n � �. Section 2 is independent� �

of Section 1. It uses a martingale method to produce an upper bound on the
Ž .variance of a x, y, � with respect to the environment. This bound is used in�

Ž .Section 3 to extend the existence of limits of a nx, ny �n from the case�

x � 0, which is provided by the subadditive ergodic theorem, to the case
x � 0. These limits along parallel shifts are one ingredient for the proof of the

Ž .uniform shape theorem 3 in Section 3. The other ingredient is the maximal
lemma of Section 3 that enables us to patch up the Lyapounov exponents for
different directions. In Section 4 we derive three other equivalent formula-
tions of the nestling property that will be useful in Section 5 where we prove
Theorem B. We remark that the uniform shape theorem and Section 2 could
be omitted if one is interested only in large deviations with fixed starting

Ž .point x � 0 see Remark 1 after the proof of Theorem B . In the last section
� �we show how part of the results obtained in 5 in the one-dimensional setting

follow from Theorem B.
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� �We close this section with some general notation. By x for x �
Ž . d � � � �x , . . . , x � � we always mean the l -norm of x, that is, x � 			 � x .1 d 1 1 d

� � d�1 � �The 	 -unit sphere will be called S . Open 	 -balls with center x and
Ž . Ž .radius r are designated by B x, r , closed balls by B x, r . For any sites

x, y � �d the relation x � y means that x and y are adjacent, that is,
� � � � � �x � y � 1. The Euclidean norm is called 	 . By x we mean the lattice2

� �site with minimal 	 -distance from x with some deterministic rule for
�� � �breaking ties. Note that always x � x 	 d�2. If we apply a function

Ž . df x, y, . . . which has originally been defined solely for x, y, . . . � � to
d Ž� � � � . � � � �x, y, . . . � � we always mean f x , y , . . . . A is the set of all x with

x � A; e , . . . , e are the canonical unit vectors of � d. To simplify the notation1 d
� � � �of expectations, we use the abbreviation E Z, A � E Z 	 1 . We useA

c , c , . . . to denote arbitrary positive constants, which depend only on dimen-1 2
Ž Ž ..sion d and the distribution of � 0, e . If a constant c is to depend one� 0 i

Ž .some other quantity x, this will be made explicit by c x .i

1. Lyapounov exponents. We start with two basic observations about
Ž .a x, y : the triangle inequality and conditions for integrability.�

Ž . dLEMMA 1 Triangle inequality . For any x, y, z � � , � � 0 and � � �,

6 a x , y , � 	 a x , z , � � a z , y , � .Ž . Ž . Ž . Ž .� � �

Ž .If d � 1 and z is located between x and y then equality holds in 6 .

˜ Ž . � Ž . 4PROOF. Let H y � inf n � H z : X � y 	 � be the first time afterz n
˜Ž . Ž . Ž .H z at which the walk reaches y. Note that H y � H y . Consequently wez

Ž .get for � � 0 by the strong Markov property applied to H z ,

˜ ˜e x , y , � � E exp ��H y , H y � �Ž . Ž . Ž .Ž .� x , � z z
7Ž .

� e x , z , � e z , y , �Ž . Ž .� �

Ž .and thus 6 . If d � 1 and x 	 z 	 y or y 	 z 	 x then any path from x to y
˜ Ž . Ž .must pass through z such that H y � H y . Thus in this case we havez

Ž . Ž .equality in 7 and 6 . �

� Ž .� Ž .LEMMA 2 Integrability of a x, y . Let � � 0 and p � 1. Then a x, y, �� �
d Ž .has finite pth moment for any x, y � � if �ln � 0, e has finite pth moment

Ž .for all e � 0. If �ln � 0, e is integrable for all e � 0 then the family
Ž . � � Ž d .a x, y, � � y � x x, y � � , x � y is uniformly integrable and�

� � � �8 y � x � 	 � a x , y , � 	 y � x � � max � �ln � 0, eŽ . Ž . Ž .ž /�
e�0

for all x, y � �d. Here � denotes the expectation operator corresponding to �.
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PROOF. Let x, y � �d with x � y and � � 0. Then for any nearest neigh-
Ž . � �bor path x � x , x , . . . , x � y from x to y with minimal length n � y � x ,0 1 n

e x , y , � � E exp ��H y , X � x m � 0, . . . , nŽ . Ž . Ž .Ž .� x , � m m

n

� exp ��n � x , xŽ . Ž .Ł m� 1 m
m�1

and hence
na x , y , � 1Ž .�

9 	 � � ln � x , x .Ž . Ž .Ý m� 1 m� �y � x n m�1

Ž . pŽ . Ž . pŽ .This shows that a x, y � L � holds if �ln � 0, e � L � for all e � 0.�

Moreover, for any 
 � 0 by Jensen’s inequality,
n1

� � � 
 � � ln � x , xŽ .Ý m� 1 mž /n m�1 �
n1

	 � � � 
 � ln � x , xŽ .Ž .Ý m� 1 m �n m�1

	 max � � � 
 � ln � 0, e ,Ž .Ž .�
e�0

Ž .which tends to zero as 
 � � if �ln � 0, e is integrable for all e � 0. This
Ž .proves the statement about uniform integrability. With 
 � 0 and 9 we get

Ž . � Ž .�the right inequality of 8 . For the lower bound on � a x, y, � observe that�

Ž . � � Ž . Ž � �.H y � y � x under P and hence e x, y, � 	 exp �� y � x for allx, � �

Ž .� � � which implies the left inequality in 8 . �

Ž .We now introduce the Lyapounov exponents � x .�

Ž .PROPOSITION 3 Lyapounov exponents . Let � � 0 and suppose that
Ž .�ln � 0, e has finite expectation for all e � 0. Then there exists a nonrandom

d � . Ž .function � : � � 0, � such that on a set � � of full �-measure and in� 4
1Ž . dL � for all x � � ,

1 1
lim a 0, nx , � � lim � a 0, nx , �Ž . Ž .� �n nn�� n��

10Ž .
1

� inf � a 0, nx , � � � x .Ž . Ž .� �nn��

Ž .Here � x is concave increasing in � and homogeneous and convex in x.�

Furthermore, it is jointly continuous in � and x and satisfies for all x � � d,

� � � �11 � x 	 � x 	 � � max � �ln � 0, e x .Ž . Ž . Ž .ž /�
e�0

PROOF. Let � � 0, x � �d and consider the doubly indexed sequence
Ž . � Ž .�a nx, mx , 0 	 n 	 m, n, m � � of integrable see 8 random variables.� 0

ŽThis process satisfies the conditions of the subadditive ergodic theorem see
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� � .11 , page 277 thanks to ergodicity properties and translation invariance of
Ž . Ž .�. Consequently there is some finite constant � x � 0 such that 10 is�

1Ž . Ž . Ž . dfulfilled �-a.s. and in L � . This and 8 imply 11 for all x � � . Further-
Ž . Ž .more, it is easy to conclude from 10 and 6 that

12 � qx � q� x and � x � y 	 � x � � yŽ . Ž . Ž . Ž . Ž . Ž .� � � � �

d Ž . Ž .holds for any 0 � q � � and x, y � � . By setting � x�q � � x �q we� �

extend � first to a function on �d and then by continuity to a function on � d
�

Ž . Ž . d Ž .which satisfies 11 and 12 for any q � 0 and x, y � � . Hence � x is�

Ž .homogeneous and convex in x. It increases with � since a 0, x, � increases�

and is concave in � due to Holder’s inequality which implies¨
1�2 1�2e 0, x , � 	 e 0, x , � e 0, x , � .Ž . Ž . Ž .Ž� �� .�2 � �1 2 1 2

Ž .As a consequence the map � � � x is lower semicontinuous. On the other�

� Ž .�hand, by dominated convergence � a 0, x, � depends continuously on �.�
d Ž . Ž .Therefore for x � � due to 10 , � � � x is upper semicontinuous as�

infimum of continuous functions. This implies continuity for arbitrary x � � d.
Ž .Moreover, it now follows from a Dini-type argument that � x is jointly�

continuous in � and x. �

REMARK 1. Due to the triangle inequality, the two-point function a�

induces a random distance function
13 d x , y , � � max a x , y , � , a y , x , �� 4Ž . Ž . Ž . Ž .� � �

for � � 0. If � � 0, d might be only a semimetric or even identically�

vanishing as, for example, in the case of the usual simple random walk with
d 	 2.

Unlike the Lyapounov exponents of Brownian motion in Poissonian poten-
� � � �tial 20 , Chapter 5, Theorem 2.5, or random walk in random potential 21 ,

Ž .Theorem 8, � x is in general not invariant under reflection at the origin,�

Ž Ž .. Žsince we did not assume any invariance of the distribution of � 0, e for ane
. � Ž . Ž .4example see Figure 2 . Thus the exponential decay rate max � x , � �x of� �

Ž . Ž .d nx as n � � may differ from � x .� �

REMARK 2. In the one-dimensional case the proof of Lemma 1 shows that
Ž .equality in 6 holds also for negative �. Note that in this case both sides of

Ž .6 may equal �� if � is less than some critical value. Thus for d � 1 the
ergodic theorem gives us � also for negative �. However, we shall not make�

use of these exponents in the present work.

2. Fluctuations around the mean value. The main result of this
section is the following theorem.

Ž . Ž .THEOREM 4 Upper bound on fluctuations . Suppose that �ln � 0, e is
square integrable for all e � 0 and let � � 0. Then for some finite constant
Ž .c � ,1

� � d14 Var a x , y , � 	 c � x � y for all x , y � � .Ž . Ž . Ž .Ž .� 1
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� � Ž . � � � �The proof is similar to that of 9 , 1.13 , 19 , Theorem 2.1 and 21 ,
Theorem 11. We use a lemma that gives us upper bounds on how much
Ž .a 0, y, � can change when � is changed at a single site. One bound is�

formulated in terms of the transformed path measure

�1yˆ15 P � e x , y , � exp ��H y 1 P ,Ž . Ž . Ž .Ž .x , � , � � �H Ž y .��4 x , �

Ž .under which the process X is roughly speaking a ‘‘mortal’’ RWIRE thatn n� 0
starts at x, is conditioned to reach y and survives each step with probabil-
ity e��.

Ž . dLEMMA 5 Rank-one perturbation formula . Let � � 0, z � � and � , �1 2
Ž . Ž .� � such that � x, u � � x, u for all x � z and u � x. Then for all1 2

y � �d,

e 0, y , �Ž .� 2

e 0, y , �Ž .� 116Ž .
y ��ˆ� max P H y 	 H z , 1 � e min � z , u .Ž . Ž . Ž . Ž .½ 50, � , � 21 u�z

PROOF. We only need to consider the case where the quotient on the left
Ž . Ž .side of 16 is less than 1 since the right member of 16 is at most 1. In

particular we may assume that y � z and y � 0 and that even in the case
d � 1 there is some path from the origin to z that does not touch y because

Ž . Ž . Ž .otherwise e 0, y, � and e 0, y, � do not depend on � z, u and thus� 1 � 2 i
coincide. By the strong Markov property,

e 0, y , � � E exp ��H y , H y � H zŽ . Ž . Ž . Ž .Ž .� 2 0, � 2

�E exp ��H z , H z � H yŽ . Ž . Ž .Ž .0, � 2

� E exp ��H y , H y � �Ž . Ž .Ž .z , � 2

� E exp ��H y , H y � H zŽ . Ž . Ž .Ž .0, � 1

e z , y , �Ž .� 2�E exp ��H y , H z � H yŽ . Ž . Ž .Ž .0, � 1 e z , y , �Ž .� 1

and consequently,

e 0, y , �Ž .� 2
1 �

e 0, y , �Ž .� 1
17Ž .

e z , y , �Ž .� 2y yˆ ˆ� P H y 	 H z � P H z � H y .Ž . Ž . Ž . Ž .0, � , � 0, � , �1 1e z , y , �Ž .� 1

Ž .Since both summands on the right-hand side of 17 are nonnegative, this
Ž . Ž .implies the first part of inequality 16 . For the second part, observe that 17

Ž . Ž .also implies e z, y, � �e z, y, � 	 1 because otherwise the right-hand� 2 � 1
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ˆyŽ . � Ž . Ž .�side of 17 would be strictly greater than 1 due to P H z � H y � 0.0, �, � 1

Hence

e 0, y , �Ž .� 2

e 0, y , �Ž .� 1

e z , y , �Ž .� 2 y yˆ ˆ� P H y 	 H z � P H z � H yŽ . Ž . Ž . Ž .ž /0, � , � 0, � , �1 1e z , y , �Ž .� 1
18Ž .

e z , y , �Ž .� 2� .
e z , y , �Ž .� 1

By counting the returns to z before the first visit of y and using the strong
Markov property again, we get for i � 1, 2,

E exp ��H y , H y � H zŽ . Ž . Ž .Ž .z , � 2i19 e z , y , � � ,Ž . Ž .� i 1 � E exp ��H z , H z � H yŽ . Ž . Ž .Ž .z , � 2 2i

Ž . � Ž . 4where H z � inf n � H z : X � z is the time of the second visit of z. We2 n
Ž .estimate the denominator in 19 for i � 2 from above by 1 and for i � 1 from

Ž . ��below by c � � 1 � e and thus get, by partition over the first step,2

e z , y , �Ž .� 2

e z , y , �Ž .� 1

E exp ��H y , H y � H zŽ . Ž . Ž .Ž .z , � 22� c �Ž .2 E exp ��H y , H y � H zŽ . Ž . Ž .Ž .z , � 21

Ý � z , u exp �� E exp ��H y , H y � H zŽ . Ž . Ž . Ž . Ž .Ž .u� z 2 u , � 2� c �Ž .2 Ý � z , u exp �� E exp ��H y , H y � H zŽ . Ž . Ž . Ž . Ž .Ž .u� z 1 u , � 1

max � z , u E exp ��H y , H y � H zŽ . Ž . Ž . Ž .Ž .u� z 2 u , � 2� c �Ž .2 Ý � z , u max E exp ��H y , H y � H zŽ . Ž . Ž . Ž .Ž .u� z 1 v � z v , � 1

max E exp ��H y , H y � H zŽ . Ž . Ž .Ž .u� z u , � 2� c � min � z , wŽ . Ž .2 2 max E exp ��H y , H y � H zw�z Ž . Ž . Ž .Ž .v � z v , � 1

� c � min � z , w .Ž . Ž .2 2
w�z

Ž . Ž .This and 18 yield the second part of 16 . �

PROOF OF THEOREM 4. Fix x, y � �d and � � 0. We use a martingale
Ž . � Ž .�method by representing a x, y, � � � a x, y, � as a sum of martingale� �

differences. To this end we introduce an arbitrary but fixed enumeration x ,k
k � �, of �d and let FF , k � � , be the �-field generated by the 2 dk randomk 0

Ž .variables � x , z , 1 	 i 	 k, z � x . Here FF denotes the trivial �-field.i i i i 0
� Ž . � �Then the martingale M � � a x, y, � FF , k � 0, converges �-a.s. and ink � k

1Ž . Ž . Ž .L � to a x, y, � as k � �. Moreover a x, y, � is square integrable due to� �

Lemma 2 with p � 2. Hence the convergence of the martingale takes place
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2Ž . Ž . � Ž � � .�also in L � . Note that M � can be represented as � a x, y, �, �k � � k
where � denotes the expectation with respect to the variable � and the�

� � Ž .environment � � �, � � � is a mixture of � and � for which � x , 	˜ ˜k i
Ž . Ž .agrees with � x , 	 if i 	 k and with � x , 	 otherwise. Thusi i

2
2Var a x , y , � � � M � M � � M � MŽ . Ž .Ž . Ý Ý� k k�1 k k�1ž /

k�1 k�1

2� �e x , y , � , �Ž .k�1�	 � � � ln .Ý � � ž /� �e x , y , � , �Ž .k�k�1

20Ž .

Ž .By symmetry in the kth variable in 20 , those configurations for which the
Ž .quotient in 20 is not greater than one provide at least half of the value of

Ž . Ž .20 such that 20 is, thanks to Lemma 5, less than
2

��2 � � � ln 1 � e min � x , u ,Ž . Ž .Ý � � kž /ž u�xkk�1

1yP̂ H y 	 H x �Ž . Ž .x , � , � � , � � k 2k

2
yˆ�� � � ln P H y 	 H x ,Ž . Ž .ž /� � x , � , � � , � � kk

1yP̂ H y 	 H x � .Ž . Ž .x , � , � � , � � k 2k /
Ž .2Since ln x 	 1 � x for 1�2 	 x 	 1, this is smaller than

2 1
�� yˆ2 � ln 1 � e min � x , u � P H y � H x �Ž . Ž . Ž . Ž .Ý � k � x , � , � kž /ž 2u�xkk�1

yˆ�� P H y � H xŽ . Ž .� x , � , � k /
2

��	 2 2� ln 1 � e min � 0, u � 1Ž . Ž .� ž /ž /u�0

yˆ� � P H y � H xŽ . Ž .Ý � x , � , � k
k�1

yˆ� c � � E � k � 1: H x � H y� 4Ž . Ž . Ž .3 � x , � , � k

c �Ž .3 yˆ	 � ln E exp �� k � 1: H x � H y� 4Ž . Ž .� x , � , � kž /�

� c � � a x , y , � � ln EŽ . Ž .4 � � x , �

� exp � � k � 1: H x � H y � H y .� 4Ž . Ž . Ž .kž /ž /
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Since the rightmost expectation is smaller than one, this is less than
� �c � � a x , y , � 	 c � y � x ,Ž . Ž . Ž .4 � � 1

Ž .due to 8 . �

3. Maximal lemma and shape theorems. The next lemma plays the
Ž � �role of the maximal lemmas of first-passage percolation e.g., 8 , Lemmas

Ž . Ž .. Ž� � � �3.5 , 3.6 , Brownian motion in a Poissonian potential 18 , Lemma 1.3, 20 ,
.Chapter 5, Lemma 2.6 and random walk in a nonnegative random potential

Ž� � . Ž .21 , Lemma 7 . For the definition of the random metric d recall 13 .�

Ž . Ž .LEMMA 6 Maximal lemma . Suppose that �ln � 0, e has finite dth
Ž .moment for all e � 0 and let � � 0. Then there are a constant c � and a set5

Ž . Ž .� � of full �-measure such that for all � � � � and for all 0 � � � �5 5
Ž .there is some finite number R � , � such that

d � � � � � �21 sup d x , y , � : y � � , y � x 	 � x � c � � xŽ . Ž . Ž .� 4� 5

d � � Ž .for all x � � with x � R � , � .

PROOF. We split the proof into two parts, d � 2 and d � 1. In the
multidimensional case d � 2 for each pair x, y � �d, x � y there are 2 d

Ž i. Ž Ž i. Ž i. Ž i. Ž i. .self-avoiding nearest neighbor paths x � x � x, x , x , . . . , x � y0 1 2 m i
� �from x to y, each containing m 	 y � x � 8 edges and being pairwise sitei

disjoint except for the starting and end points x and y. For each i �
� 41, . . . , 2 d ,

Ž i.e x , y , � � E exp ��H y , X � x for all n � 0, . . . , mŽ . Ž .Ž .� x , � n n i

m �1i
Ž i. Ž i.� exp ��m � x , xŽ . Ž .Łi n n�1

n�0

m �1i
Ž i.� �� exp �� y � x � 8 min � x , z .Ž .Ž . Ž .Ł n

Ži.n�0 z�xn

Hence, by independence and identical distribution of the transition vectors
and pairwise site disjointness of the paths for any t � 0,

22 � a x , y , � � ln min � x , z � tŽ . Ž . Ž .�
z�x

2 d� �y�x �8

� �	 � � ln min � ne , z � t � � y � x � 8Ž . Ž .Ý 1
z�ne1n�1

� �y�x �8

23 	 � � c � ln min � ne , zŽ . Ž .Ý 6 1
z�ne1n�1

2 d

� �� t � � � c y � x � 8Ž . Ž .Ž .6 �
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� Ž .� Ž .with c � � �ln min � 0, e . Since 22 still holds after interchanging x6 e� 0
and y on its right-hand side we get, by Chebyshev’s inequality and square

Ž .integrability of �ln � 0, e ,

2 d
� �y � x � 8 Var �ln min � 0, eŽ .Ž . Ž .e� 0

� a x , y , � � t 	 2Ž .�̂ 2ž /� �t � � � c y � x � 8Ž . Ž .Ž .6 �24Ž .
2 d� �c y � x7	 	 � ,Ž .4 d� �t � c � y � xŽ .Ž .8 �

Ž . � Ž . Ž . Ž .where a x, y, � � max a u, v, � � ln min � u, z : u, v ��̂ � z � u
�Ž . Ž .44x, y , y, x .

Ž . Ž . � �Now 21 follows in exactly the same way from 24 as in the proof of 21 ,
Ž . Ž .Lemma 7 where 21 follows from 20 . The idea is to take for fixed 0 � � � �

� � d�1some finite subset Z of the 	 -unit sphere S such that the open balls
Ž . d�1 dB z,� with center z � Z and radius � cover S . Then for any large x � �

Ž � �. Ž .the closed ball B x, � x is completely contained in the open ball B nz, 3� n
	 � �
 Ž .with n � x for some z � Z. Hence the supremum in 21 is, thanks to the

Ž .triangle inequality 6 , less than

2 sup d nz , y , � : z � Z, y � B nz , 3� n� 4Ž . Ž .�

25 	 2 sup a nz , y , � : z � Z, y � B nz , 3� n� 4Ž . Ž . Ž .�̂

26 �2 sup �ln min � y , u : z � Z, y � B nz , 3� n .Ž . Ž . Ž .½ 5
u�y

Ž .Since the dth moment of �ln � 0, e is finite for all e � 0, the supremum in
Ž . Ž .26 is �-a.s. of order o n thanks to the Borel�Cantelli lemma. The supre-

Ž . Ž .mum in 25 is under control, too, because it is �-a.s. less than 5c � � n for n8
Ž . Ž .large. Indeed, the probability that it is bigger than 5c � � n is due to 24 for8

n � d�� less than

� � 2 d� �c y � nz7Ý Ý 4 d� �� �5c � � n � c � y � nzŽ . Ž .Ž .z�Z � Ž .�y� B nz , 3� n 8 8 �

2 dc 4� nŽ .7	 � B nz , 3� nŽ .Ý 4 dc � � nŽ .Ž .z�Z 8

	 c �, � n�d ,Ž .9

which is summable since d � 2. The Borel�Cantelli lemma completes the
Ž .proof of 21 for d � 2.

In the case d � 1, a is additive in the sense of the last statement of�

Ž . � ŽLemma 1. Thus the supremum in 21 is dominated by max d x, x ��

� � . Ž � � .4 Ž .� x , � , d x, x � � x , � . Hence it suffices to construct a constant c �� 5
such that

� � � �27 d x , x � � x , � 	 c � � xŽ . Ž . Ž .� 5
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Ž .�-a.s. for large x. We only consider the case with �� in 27 and x � 0. To do
�Ž . �this we define recursively x � 0 and x � 1 � � x � 1 and observe0 n�1 n

that
x �xn�1 n

a x , x , � 	 � � ln � x � k � 1, x � k ,Ž . Ž .Ý� n n�1 n n
k�1

Ž .Ž .which is �-a.s. less than c � x � x for n large since x grows10 n�1 n n
Ž � � .geometrically fast see, e.g., 13 , Section 6.8.5 . An analogous statement holds

Ž .for a x , x , � . Hence �-a.s. for x large enough and n with x 	 x 	 x ,� n�1 n n n�1

d x , x � � x , � 	 d x , x , � 	 c � x � x 	 c � � x . �Ž . Ž . Ž . Ž . Ž .� � n n�2 10 n�2 n 5

It has been shown in Proposition 3 that the subadditive ergodic theorem
Ž .gives us the existence of the limit of a 0, ny, � �n as n � � where the�

starting point is fixed. This assertion would suffice for the proof of the usual
Ž . Ž .shape theorem 2 . However, for the uniform shape theorem 3 we need a

Ž .partially stronger version of 10 that gives us convergence along parallel
shifts.

Ž .LEMMA 7. Let � � 0 and suppose that the dth moment of �ln � 0, e is
Ž . dfinite for all e � 0. Then on a set � � of full �-measure for all x, y � � ,6

a nx , ny, �Ž .�
28 lim � � y � x .Ž . Ž .�nn��

� �The proof is exactly the same as that of 21 , Lemma 14. The idea for d � 2
is to use Chebyshev’s inequality, the bounds on the variance of Theorem 4,

Ž . Ž . 2the Borel�Cantelli lemma, and 10 to prove 28 for the subsequence n . The
Ž .statement for the full sequence then follows from the triangle inequality 6

Ž .and the maximal lemma. For d � 1 the claim follows from 10 and the
additivity of a as stated in Lemma 1.�

We now come to the proof of Theorem A.

PROOF OF THEOREM A. The proof goes along the same line as the proofs of
� �21 , Theorem 8, Theorem 13, Corollary 18. For completeness we shall give

Ž .here the proof of the uniform shape theorem 3 , which is slightly more
Ž . Ž .involved than that of the simple shape theorem 2 and includes 2 as a

Ž . Ž .special case if � � 0. The reason 2 is also valid for � � 0, whereas 3 is only
Ž .proved for strictly positive �, is that our proof of 3 uses Lemma 7 which

Ž . Ž .assumes � � 0, whereas the proof of 2 only makes use of 10 and thus holds
1Ž .for all � � 0. Observe that L � convergence follows from �-a.s. convergence

by uniform integrability provided by Lemma 2. Let us prove �-a.s. conver-
Ž . Ž .gence in 3 first for some fixed � � 0. To this end we fix some � � � � �7

Ž . Ž . Ž . d� �  � � see Lemmas 6 and 7 and some c � 0 and let x , y � � be5 6 n n
Ž � � � �. � �arbitrary sequences such that c x 
 y 	 y � x holds for all n andn n n n

� �such that y � x tends to infinity as n goes to infinity. We may assumen n
� � � � � � � �without loss of generality that either x 	 y for all n or y 	 x for alln n n n

� � � �n. We only treat the case x 	 y since the other one is similar. Due ton n
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compactness of Sd�1 and of the unit interval we may assume furthermore
� � d�1 � � � � � �y � y � e � S and x � y � r � 0, 1 . If there are infinitely manyn n y n n

� � d�1x � 0 let us assume x � x � e � S for those n with x � 0, otherwisen n n x n
let e � Sd�1 be arbitrary.x

Now let 0 � � � � and choose v , v � Sd�1  �d, M � � and q � q �qx y 1 2
Ž � d � � � �� 0, 1 with q , q � � such that Mv , Mv � � , v � e , v � e � � ,1 2 x y x x y y

� �and q � r � � . We approximate x and y by the lattice verticesn n

� � � �y yn n� �d dx � q Mv � � and y � q Mv � � ,n 1 x n 2 yq M q M2 2

	 
 Ž .where z denotes the largest integer 	 z see Figure 3 .
Then for n large enough we have

� � � � � � � � � � � � � � � �29 y � y 	 y � y v � y v � y � � y � q M � 2� yŽ . n n n n y n y n n 2 n

and
� � � � � � � � � � � � � � � � � �x � x 	 x � x v � x v � y qv � y qv � xn n n n x n x n x n x n

4�
�� � � � � � � � � �� � x � � y � q M � 3� y 	 x 	 4� yn n 1 n n nq

30Ž .

� � � �and consequently by c y 	 y � x ,n n n

� � � � � � � � � � � � � �31 y � x 	 y � y � y � x � x � x 	 5��c � 1 y � x .Ž . Ž .n n n n n n n n n n

Ž .Using the triangle inequality 6 and suppressing for brevity the � depen-
Ž .dence in the notation, we estimate a x , y from above by� n n

a x , y 	 a x , x� � a x� , y� � a y� , yŽ . Ž . Ž . Ž .� n n � n n � n n � n n

	 d x , x� � a x� , y� � d y� , yŽ . Ž . Ž .� n n � n n � n n

FIG. 3. Sketch for the proof of the uniform shape theorem.
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and from below by
a x , y � a x� , y� � a x� , x � a y , y�Ž . Ž . Ž . Ž .� n n � n n � n n � n n

� a x� , y� � d x� , x � d y , y� .Ž . Ž . Ž .� n n � n n � n n

Thus we get
� � � �a x , y � � y � x 	 d x , x � d y , yŽ . Ž . Ž . Ž .� n n � n n � n n � n n

� � � � � �� a x , y � � y � xŽ . Ž .� n n � n n32Ž .
� � � �� a y � x � � y � x .Ž . Ž .� n n � n n

Ž . Ž .We use the maximal lemma and the estimates 30 and 29 to bound the first
Ž .two summands on the right-hand side of 32 from above, getting

� � � � � �d x , x 	 4c � � y and d y , y 	 2c � � yŽ . Ž . Ž . Ž .� n n 5 n � n n 5 n

Ž .for n large. For the third term on the right side of 32 we use Lemma 7 and
Ž .estimation 31 , which yield

� � � � � � � � � � � �a x , y � � y � x � o y � x � o y � x .Ž . Ž . Ž . Ž .� n n � n n n n n n

Finally, by the triangle inequality for � , the fourth term, is for large n less�

than
max � x� � x , � x � x� � max � y� � y , � y � y�� 4 � 4Ž . Ž . Ž . Ž .� n n � n n � n n � n n

� �	 c � � y ,Ž .11 n

Ž . Ž .where we used the bounds of 11 for � and once more the estimates 30 and�

Ž . � � � �29 . Consequently and by c y 	 y � x , we get that the left-hand side ofn n n
Ž . Ž . � �32 is less than c �, c � y � x for n large. Letting � tend to zero yields12 n n

Ž . Ž .convergence in 3 for our fixed but arbitrary � � � � .7
Ž .This implies convergence in 3 for all � � 0 and all � � � �1

Ž .� � � which has full �-measure. Indeed, let � � � , � � 0 and0 � �� � 7 1
� � 0 be arbitrary where � need not be rational. Due to the joint continuity of
Ž . Ž . Ž .� x there are � , � � � with 0 � � � � � � such that � x � � x � �� 1 2 1 2 � �2 1d�1 Ž .for all x � S . Using the monotonicity of a � a x , y , � and � �  n n 

Ž .� y � x in  we get n n

� � � �a � � 	 a � a � a � � � � � �Ž .� � � � � � � �1 1 1 1

� �	 a � � � � � a � a � � � 2 � � �Ž . Ž . Ž .� � � � � � � �2 2 1 1 1 1 2 1

� � � �	 o y � x � 2� y � x ,Ž .n n n n

Ž . Ž .due to � � � �  � � . The claim now follows by letting � tend to zero.7 1 7 2
�

4. Nestling walks. In this section we give three further conditions, each
Ž .of which is equivalent to the nestling property NP .

Ž .PROPOSITION 8. The nestling property NP is equivalent to each of the
following conditions:

Ž .I For all � � 0 there is some 2 	 n � � such that
�� n� �� P X � 0 � e � 0.0, � n
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Ž . Ž .II On a set of full �-measure, e x, y, � � � for all � � 0 and all�

x, y � �d with x � y.
Ž .III On a set of full �-measure

� �ln P X � 00, � n
lim sup � 0.

nn��

Ž . Ž . Ž .Of course, NP can be checked much more easily than I � III as soon as
Ž . Ž .the distribution of the local drifts Ý � 0, e e is known. However, Ie� 0

Ž .especially will help us to proof the lower large deviation estimate 5 in the
next section. The term ‘‘nestling property’’ is supposed to describe figuratively

Ž .the behavior of a random walker who in the sense of III sticks to the
starting point roughly comparable to a young bird that often returns to its
nest before it finally leaves it.

Ž .EXAMPLE 1. Let � � 0 e � 0 be independent random variables withe
Ž .probability distribution � and define � 0, e � � �Ý � . If inf supp � 	e e e�� 0 e� e

Ž Ž ..sup supp � for all e � 0, then the distribution of � 0, e has the�e e� 0
Ž .nestling property NP . The environments underlying Figure 1 and 2 are of

this type.

Ž� � .EXAMPLE 2. Kalikow 7 , Lemma 1 showed that any RWIRE is either
� ��-a.s. recurrent or �-a.s. transient; that is, P X � 0 infinitely often0, � n

equals either �-a.s. one or �-a.s. zero. In the recurrent case the nestling
� �property is fulfilled. Indeed, otherwise P X � 0 would be less than0, � n

Ž .exp �� n for some � � 0 and all n greater than some N � � on a set of1
Ž . �positive �-probability due to III . Therefore on this set P X � 0 for some0, � n

�n � N would be strictly less than one for some N � � in contradiction to2 2
the recurrence.

However, even in the transient case the nestling property may hold. See
� � � � � � � �7 , Example 2, for an example in two dimensions and 17 , 6 , 16 for the
classification of recurrence and transience in one dimension.

Ž . � �REMARK. If NP does not hold, then P X � 0 decays with strictly0, � n
positive exponential decay rate � . In general it is impossible to give ac

Ž .formula for � just in terms of the distribution of the local drifts Ý � 0, e e.c e� 0
For example, let d � 2 and consider the nonrandom environment � with

1 2 1� 0, e � � 0, �e � � � , � 0, e � � � , � 0, �e � � � ,Ž . Ž . Ž . Ž .1 1 2 25 5 5

Ž . Ž .where � � 0, 1�5 is a parameter. Then Ý � 0, e e � e �5 does not de-e� 0 2
Ž � �pend on � . However it follows from Cramer’s theorem see, e.g., 2 , Theo-´

.rem 2.2.30 that in the nonrandom constant case
d

� � �ln 2 � 0, e � 0, �e ,' Ž . Ž .Ýc i i
i�1

which does depend on � for our particular choice of �.



QUENCHED LARGE DEVIATIONS FOR MULTIDIMENSIONAL RWIRE 1463

For the proof of Proposition 8 we need the following simple geometric
observation.

LEMMA 9. There is a constant 0 � c � 1 just depending on the dimen-13
d � 4 � �sion d such that for all x � � � 0 there is some y � x with y 	2x x

� �x � c .2 13

� 4 � �PROOF. Assume x � 0 and choose i � 1, . . . , d which maximizes x .i
Ž .Now set y � x � sign x e . Thenx i i

22 2 2� � � � � � � � � �x � y x � x � 1 2 x � 1Ž .2 2x i i i
� � � �x � y � � �2 2x � � � � � � � � ' '� � � �x � y x � y d x � d x2 2 2 2x x i i

1 1 1
� � �  c . �13' ' '� �d 2 d x 2 di

Ž . Ž .PROOF OF PROPOSITION 8 NP � I . The idea is to construct a finite
Ž .environment of the origin in which the local drifts Ý � x, x � e e pointe� 0

from x as best as possible into the direction of the origin. This environment
tends to push the random walker back to the origin and thus prevents the
walker from leaving the origin’s neighborhood too early.

To be precise, let � � 0. Without restriction we may assume � � 1. The
proof consists of two parts. In the first one we prove the following statement:

d � �There exists a continuous function F: � � 0, 1
Ž . � �with bounded support, F 0 � 1 and � A � 0, where

33Ž .
�� �3 dA� � � � : F y � x , y �e F x for all x�� .Ž . Ž . Ž .Ý½ 5

y�x

In the second part we use a submartingale argument to complete the proof
Ž .of I .

Ž . � Ž . �1. Choose � � 0, 1 such that � � 0, e � � � 0 for all e � 0. We use the
constant c of Lemma 9 to define13

� c �13 22 d� � � 4� � � 0, G x � 1 � � x for x � � and F � max G , 0 .Ž . 216
d � �Obviously F is a continuous function from � to 0, 1 with bounded support

Ž . � �and F 0 � 1. For the proof of � A � 0 consider the event

1 c �13
� �B � � � � : x � x , x � e e 	 1 for all x 	 � ,Ž .Ý 2½ � 2e�0

1 c � 113 d� �� x , y � � for all � � x 	 , y � x x � � .Ž . Ž .2 5� 2 �
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Ž .Note that 1�� � c ��2 is positive due to � , c , � � 1. Thanks to NP we13 13
have

� x � x , x � e e 	 1 � 0Ž .Ý
e�0

for all x � �d. Therefore and due to the choice of � we get by independence
� �that � B � 0. Hence it suffices to show B � A. To this end, let � � B and

x � �d. We want to show

34 F y � x , y � e�� �3F x .Ž . Ž . Ž . Ž .Ý
y�x

� � Ž .If x � 1��, this is obvious since in this case F x � 0.2
� � � � � �Now assume 1�� � c ��2 � x � 1��. Then y 	 x � c � 1��2 2 213 x 13

� c with the notations of Lemma 9. This implies, on the one hand,13
2 21 c � �c �13 132F x 	 1 � � � � �c � � 	 �c � ,Ž . 13 13ž /ž /� 2 2

and on the other hand,
21 22F y � 1 � � � c � 2�c � �c � �c .Ž . Ž .x 13 13 13 13ž /�

Hence

F y � x , y � F y � x , y � �c � � F x � e�� �3F xŽ . Ž . Ž . Ž . Ž . Ž .Ý x x 13
y�x

Ž .because of � � B, which proves 34 .
� �Finally we consider the case x 	 1�� � c ��2 in which2 13

2�c � �c �13 13
35 F x � �c � � � .Ž . Ž . 13 ž /2 2

� �By Taylor’s expansion there are � � 0, 1 such thate

F y � x , yŽ . Ž .Ý
y�x

� G x � e � x , x � eŽ . Ž .Ý
e�0

� G x � �G x � � e e � x , x � eŽ . Ž . Ž .Ž .Ý e
e�0

� G x � 2� 2 x � � e e� x , x � eŽ . Ž . Ž .Ý e
e�0

� F x � 2� 2 x � x , x � e e � 2� 2 � e 	 e � x , x � e ,Ž . Ž . Ž . Ž .Ý Ý e
e�0 e�0

which is due to � � B and � 	 1,e
� �

2 2 2� F x � 2� � 2� � 1 � F x � F x � 4�Ž . Ž . Ž .ž /2 2
� �c � � c �13 13�� ��� e F x � � 4� � e F x ,Ž . Ž .
2 2 16
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Ž . �� Ž .where we used 35 and 1 � ��2 � e for � � 0, 1 . This completes the proof
Ž . Ž .of 34 and 33 .

Ž . Ž .2. In this second part we use 33 to prove I . For any � � A the sequence

e� n �3F X n � 0Ž . Ž .n

is a submartingale under P with respect to the filtration generated by X ,0, � n
n � 0. Indeed

�E exp � n � 1 �3 F X XŽ . Ž .Ž .0, � n�1 n

� exp � n � 1 �3 F y � X , y � exp � n�3 F XŽ . Ž . Ž . Ž . Ž .Ž . Ý n n
y�Xn

because of � � A. Consequently for all n � 0,
� n �3 � n �3 � �1 � E F X 	 E e F X 	 e P X � supp FŽ . Ž .0, � 0 0, � n 0, � n

� n �3 � �� e P X � yÝ 0, � n
dy�� supp F

� n �3 d	 e � �  supp F P X � y � ,Ž .Ž . 0, � n n

Ž . d � �where y � � �  supp F is chosen to maximize P X � y . Hencen 0, � n

e�� n �3
�� n �2P X � y � � � eŽ .0, � n n

d��  supp F

Ž . dfor n � c � . Since �  supp F is finite and independent of n there is some14
dy � �  supp F and some 
 � 0 such that

�� n �236 � P X � y � � e , y � � y , A � 
Ž . Ž . Ž .0, � n n n

for infinitely many n. For this fixed y we get by the simple Markov property,

� �� P X � 0 � exp �� n � yŽ .Ž .0, � n� � y �

� � P X � y P X � 0 � exp �� n , y � � y , AŽ . Ž .0, � n y , � � y � n

� � P X � y � exp �� n�2 , P X � 0Ž .0, � n y , � � y �

� exp �� n�2 , y � � y , AŽ . Ž .n

� � P X � y � exp �� n�2 , y � � y , AŽ . Ž .0, � n n

37 � � P X � 0 	 exp �� n�2 ,Ž . Ž .y , � � y �

Ž . Ž .which is bigger than 
 for some large n due to 36 and since the term in 37
tends to zero as n � �.

Ž . Ž . dI � II . It suffices to show that for fixed x, y � � with x � y and fixed
Ž .rational � � 0 on a set of full �-measure, e x, y, � � � holds. Let 0 � � ��

Ž .�� and pick 2 	 n � � according to I . Observe that the occurrence of the
� � � �� n4event �: P X � 0 � e depends only on the environment inside a0, � n
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bounded neighborhood of the origin. Thus by the Borel�Cantelli lemma and
Ž . Ž . d � �I there is �-a.s. some z � � � with y � z � n such that

� � �� n38 P X � z � e .Ž . z , � n

In the one-dimensional case z we may assume furthermore that x lies
between z and y. Now by the strong Markov property,

e x , y , � � E exp ��H y , H z � H y � �Ž . Ž . Ž . Ž .Ž .� x , �

� E exp ��H z , H z � H y e z , y , � .Ž . Ž . Ž . Ž .Ž .x , � �

39Ž .

Ž .Since the first factor on the right side of 39 is �-a.s. positive, it suffices to
Ž .prove e z, y, � � �. This holds since for all k � �,�

� 4e z , y , � � E exp ��H y , X � z for all l � 1, . . . , k , H y � �Ž . Ž . Ž .Ž .� z , � ln

k� �� exp ��nk P X � z P H y � �Ž . Ž .z , � n z , �

� exp �� � � nk P H y � �Ž . Ž .Ž . z , �

Ž .due to 38 which tends to infinity as k � �.
Ž . Ž .II � III . Consider the power series

�
n��e 0, e , � � P H e � n e .Ž . Ž . Ž .Ý� 1 0, � 1

n�0

Ž . Ž .Now II implies for the radius r � of convergence of this series

�1�n
40 1 � r � � lim inf P H e � n , �-a.s.Ž . Ž . Ž .Ž .0, � 1

n��

Hence

� �ln P X � 00, � n
lim sup

nn��

ln P H e � n � 1, X � 0Ž .0, � 1 n� lim sup
nn��

� �ln P X � 0ln P H e � n � 1 n � 1Ž . e , � 10, � 1 1� lim sup � ,
n � 1 n nn��

Ž .which is nonnegative by 40 .
Ž . Ž . Ž .III � NP . Assume that NP does not hold. Then the origin and the

Ž .closed convex hull in NP can be separated by some hyperplane, that is,
Ž . d � �there is some � � 0, 1 and some h � � with h � 1 such that �-a.s. for2

all x � �d,

h � x , x � e e 	 �2� .Ž .Ý
e�0
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Hence for all n � �, �-a.s.,

E exp � X hŽ .0, � n�1

�� E E exp � X h XŽ .0, � 0, � n�1 n

� E � X , X � e exp � X � e hŽ . Ž .Ž .Ý0, � n n n
e�0

2	 E exp � X h � X , X � e 1 � � eh � � ehŽ . Ž . Ž .Ž .Ý0, � n n n
e�0

since e x 	 1 � x � x 2 for x � � eh � 1. By our choice of h and � the last
expression is less than

2 2E exp � X h 1 � 2� � � .Ž . Ž .0, � n

Thus we get by induction over n that �-a.s.,
n2 � �1 � � � E exp � X h � P X � 0 ,Ž . Ž .0, � n 0, � n

Ž .a contradiction to III . �

5. Large deviation estimates.

� � ŽPROOF OF THEOREM B. The proof uses the technique developed in 18 see
� � . � �also 20 , Chapter 5.4 and modified in 21 . Let us first investigate the

Ž .properties of I. It follows from 11 and the definition of I that

� � � �0 	 I z 	 z max � �ln � 0, e if z 	 1Ž . Ž .
e�0

Ž . Ž .and I z � � otherwise. Moreover I is convex thanks to convexity of � z�

in z and lower semicontinuous as a supremum of continuous functions.
� � Ž .Thus I is continuous on the closed 	 -unit ball. Finally I 0 � 0 follows from

Ž .� 0 � 0.�

Ž . ŽWe now come to the proof of the upper bound 4 . We let � � � � � see2 1
. Ž . Ž .Theorem A and assume x � A since otherwise 4 is immediate from I 0 � 0.

Moreover, since the law of X �n under P is supported on a compact setn n x, �

independent of n and since I is infinite outside a compact set, we may
assume that A is compact, too. Furthermore, we only need to consider the

Ž . Ž .case where A  B x, 1 � � because in the other case both sides of 4 equal
Ž .��. For all � � 0 with a self-explanatory extension of the definition 1 of H,

� �P X � nAn x , � n

� �� exp �n E exp ��n , X � n , AŽ . Ž .n x , � n

� � � �	 exp �n E exp ��H nA , H nA � �Ž . Ž . Ž .Ž .n x , �

� � � �� exp �n E exp ��H nA , H nA � H y � �Ž . Ž .Ž . Ž .Ž .Ý n x , �
� �y� nA

� �	 exp �n � nA e nx , y , �Ž . Ž .� n , �
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Ž . � �for some maximizing y � � nA. Observe that � nA grows just polynomi-n, �

ally with n. Therefore, by letting � � 0 vary, we see that the left-hand side of
Ž .4 is less than

1
inf lim sup � � a nx , y , �Ž .� n , �ž /n��0 n��

1
	 inf � � lim inf a nx , y , � � � y � nxŽ . Ž .� n , � � n , �žž nn����0

� inf � ny � nxŽ .� / /y�A

� inf � � inf � y � x ,Ž .�ž /
��0 y�A

Ž .where we used dist x, A � 0 and the uniform shape theorem. Thus

1
� �lim sup ln P X � nA 	 � sup inf � y � x � �Ž .Ž .n x , � n �n y�An�� ��0

41 � � sup inf � y � x � �Ž . Ž .Ž .�
y�A��0

Ž .by joint continuity of � . For the proof of 4 we therefore need to exchange
Ž . Žinfimum and supremum in 41 . This is done by a classical argument see,

� � .e.g., 20 , Section 5.4 as follows. For any � � 0,

A � A where A � z � A: � z � x � � � inf I y � x � � .Ž . Ž .� ½ 5� � �
y�A��0

From the compactness of A we can choose � , . . . , � such that A is covered1 m
Ž .by the finite collection A , i � 1, . . . , m. Applying 41 to A we see that the� �i i

Ž .left-hand side of 41 equals

1
lim sup ln P X � nA � 			 � nAn x , � n � �1 mnn��

1
� sup lim sup ln P X � nAn x , � n � inn��i�1, . . . , m

	 � inf sup inf � z � x � �Ž .Ž .�
i�1, . . . , m z� A��0 �i

	 � inf inf � z � x � �Ž .Ž .� iii�1, . . . , m z� A�i

	 � inf inf I y � x � � � � � inf I y � x .Ž . Ž .Ž .
i�1, . . . , m y�Ay� A�i

Ž .Since � is arbitrary, this proves 4 .
Ž .We now establish the equivalence of the lower estimate in 5 with the

nestling property. First we show that the nestling property as formulated in
Ž .I follows from the lower large deviation principle with rate function I. To

Ž . Ž .this end, fix � � �  � 0 see Theorem B and Lemma 6 and let � � 0. By3 5
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assumption �-a.s.,
1

� �0 � I 0 	 � inf I y 	 lim inf ln P X � n�Ž . Ž . 0, � nnn��� �y ��

1
d � � � �	 lim inf ln � y � � : y � n� max P X � y� 4 0, � nž /nn�� � �y �n�

42Ž .

1
� �� lim inf ln P X � y0, � n nnn��

Ž . dfor some maximizing y � � � with norm less than n� . Thenn

� � � �43 P X � 0 for some m � n � P X � y P H 0 � � .Ž . Ž .0, � m 0, � n n y , �n

Ž . Ž .The first factor on the right side of 43 decays subexponentially due to 42 .
For the second factor observe that by the maximal lemma with � � 1 we have

Ž . Ž . � � � � Ž .a y , 0, � � c 0 y provided y is large enough. Thus a y , 0, � �0 n 5 n n 0 n
Ž . � � Ž .c 0 n� due to y � n� for large n. Hence by 43 ,5 n

1
� �44 lim inf ln P X � 0 for some m � n � �c 0 � .Ž . Ž .0, � m 5nn��

Ž .Since � � 0 was arbitrary, the left member of 44 is nonnegative. This
� �implies that P X � 0 decays subexponentially, too. Indeed, otherwise0, � m

� � �� mP X � 0 would be less than e for some � � 0 and large m and thus0, � m
for large n,

e�� n
�� m� � � �P X � 0 for some m � n 	 P X � 0 	 e � .Ý Ý0, � m 0, � m ��1 � em�n m�n

We now come to the proof of the opposite direction of the equivalence in the
lower large deviation principle. Let us first describe informally the rough idea
of our strategy.

One way for the walker to be at time n in the set nB is to hit the set nB
Ž .for the first time approximately at time n, that is, H nB � n. Thus we want

Ž .to derive a lower bound on the probability of the event H nB � n. Hence
there are two different cases, which we shall treat separately. In the first case
the walk, if it ever reaches nB, does this usually before time n, that is,

Ž .typically H nB � n. In the other case, the walk needs typically much more
Ž .time to reach nB than just n steps, that is, H nB � n.

Ž .In the second case which will be called the case � � 0 in the following we1
introduce, in order to force the walk to hurry up, some appropriate killing
rate � � 0 and thus get rid of those trajectories which need too much time to

Ž .reach nB. In the first case the case � � 0 it is pointless to use a positive1
killing rate since this would only accelerate the walker even more. Perhaps it
would help to choose some negative � in order to slow down the walk.
However, we are not able to handle the case of negative � for reasons
explained before. At this point the nestling property comes into play. It
guarantees the existence of a ‘‘waiting room’’ inside nB in which the walker
after entering nB can wait up to time n without paying an exponential cost.
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For the precise proof we need the following lemma that shows that under
ˆy � Ž .� Ž .P recall 15 the first-passage time H y is roughly speaking centeredx, �, �

�Ž . Ž .around the derivative � y � x of � y � x with respect to �. However, we� �

do not know whether this derivative always exists, but since � is concave�

increasing in �, the left-hand derivatives � � and the right-hand derivatives��
� � exist for all � � 0 and � � 0, respectively.��

Ž . Ž .LEMMA 10 Crossing vehicles . Suppose that �ln � 0, e has finite dth
moment for all e � 0. Then there is a set � of full �-measure such that the1

d d Ž .following holds: Let � � � , x, y � � , x � y, and x , y � � n � � with1 n n
x �n � x and y �n � y. Furthermore, let � � 0 and 0 	 
 � 
 � � suchn n 1 2
that


 � � � y � x 	 � � y � x � 
 .Ž . Ž .1 �� �� 2

Then
ynˆ45 lim P H y �n � 
 , 
 � 1.Ž . Ž . Ž .x , � , � n 1 2nn��

Ž .PROOF OF LEMMA 10. Let � � � see Theorem A . Then by the uniform1
shape theorem for any 0 �  � �,

1
ynˆlim sup ln P H y � 
 nŽ .x , � , � n 2nnn��

1
� � y � x � lim sup ln EŽ .� x , �nnn��

� exp �� �  H y exp �H y , 
 n 	 H y � �Ž . Ž . Ž . Ž .Ž . Ž .n n 2 n

	 � y � x � 
 � � y � xŽ . Ž .� 2 ��

� y � x � � y � xŽ . Ž .� ���  � 
 ,2ž /

which is negative for some small . Since a corresponding statement holds
� Ž . 4 Ž .for the event H y 	 
 n , this implies 45 . �n 1

We now assume that the nestling property holds. It suffices to construct for
d Ž .all z � � a set � z of full �-measure such that3

1
46 lim inf ln P X � nB z , r � �I z � xŽ . Ž . Ž .n x , � nnn��

Ž . d � �for all � � � z , all x � � with 0 � z � x � 1 and all r � 0. Then3
Ž . Ž .� � � � z will have the desired properties. Indeed, assume that � z3 z 3 3

has been constructed for all z � �d and let x � � d, B � � d open and
Ž .� � � . If dist x, B � 1, then nothing has to be shown because in this case3

Ž . Ž .inf I y � x � � as B is open. If dist x, B � 1 then there is for anyy � B
d Ž . � �� � 0 some z � � and some r � 0 such that B z, r � B, 0 � z � x � 1

Ž . Ž . Ž .and inf I y � x � I z � x � � since I is continuous on B 0, 1 andy � B
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Ž . Ž .infinite outside B 0, 1 . Hence the left member of 5 is greater than

1
lim inf ln P X � nB z , r � �I z � x � � inf I y � x � �Ž . Ž . Ž .n x , � nnn�� y�B

Ž . Ž . Ž .since � � � z . Then � � 0 proves 5 . Now let us construct � z . To do2 3
Ž .this, observe that, thanks to the nestling property I , there is for all 0 � � � �

Ž .some 2 	 R � � � such that the independent events
�� RŽ� . dA y , � � � : P X � y � e y � R � � 1 �Ž . Ž .Ž .� 4 Ž .y , � RŽ� .

Ž . Ž Ž . . dhave positive �-probability � � 0. Let y n, z, � , � � R � � 1 � be some
Ž Ž . .vertex with minimal distance from nz such that � � A y n, z, � , � , � . It

Ž .follows from the Borel�Cantelli lemma that on a set � z, � of full �-3
Ž .measure these y n, z, � , � exist for all n � � and satisfy

2� �47 y n , z , � , � � nz 	 ln n for n large enough,Ž . Ž . Ž .
Ž . Ž .which is only a rough upper bound. Now define � z � �  � � �3 1 0 � �� � 5

Ž . Ž . Ž . � � z, � see Theorem A and Lemma 6 and let � � � z ,0 � � � � 3 3
d � � Ž .x � � with 0 � z � x � 1 and r � 0. We must prove 46 . To this end set

� � Ž . 4u � z � x. Then � � sup � � 0: � u � 1 , which is defined to be 0 if the1 ��
Ž .supremum is taken over the empty set, is a finite number due to 11 and

� � Ž . Ž . Ž .u � 1. It maximizes � u � �, that is, � u � � � I u .� � 11

We distinguish two cases, � � 0 and � � 0 and treat first the case1 1
� � 0. Due to � � 0 and Lemma 10, most walkers that travel from nx to nz1 1

ˆn z Ž .under the law P arrive before time n in the ball nB z, r . One strategyn x, 0, �

to stay in this ball up to time n is to go to a secure place inside this ball, a
‘‘nest,’’ that can only be left at an arbitrary small exponential rate. The
existence of such a nest is guaranteed by the nestling property. So let

Ž . Ž .0 � � � �. Then due to 47 the ball with center y � y n, z, � , � andn
Ž . Ž .radius R � is finally contained in the ball nB z, r . Thus the left-hand side

Ž .of 46 is greater than

1
lim inf ln Pn x , �nn��

� �� H y 	 n , X � y 	 R � for all m � 0, . . . , n .Ž . Ž .n m�H Ž y . nn

By the strong Markov property this is greater than

1
lim inf ln P H y 	 nŽ .n x , � nnn��

1
� �� lim inf ln P X � y 	 R � for all m � 0, . . . , nŽ .y , � m nnnn��

1
� sup lim inf ln E exp ��H y , H y 	 nŽ . Ž .Ž .n x , � n nnn��0��

1 Ž .n�R �� lim inf ln P X � y .y , � RŽ� . nnnn��
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Ž .By the uniform shape theorem and 47 this is equal to

1
ynˆsup lim inf ln P H y 	 n � � z � xŽ . Ž .n x , � , � n �ž /nn��0��

1
� lim inf ln P X � yy , � RŽ� . nnR � n��Ž .

1
� sup � � u � ��R � � �� u � � � �I u � � ,Ž . Ž . Ž . Ž .Ž .� 0R �Ž .0��

Ž .where we need � � A y , � and Lemma 10 with 
 � 0 and 
 � 1. Sincen 1 2
Ž .0 � � � � was arbitrary, this proves 46 .

ˆn zNow we treat the case � � 0. The idea is that under P the walk1 n x, � , �1

reaches nz with high probability approximately at time n such that X �n
Ž . Ž .nB z, r . This follows from Lemma 10 if � u is differentiable at � � � .� 1

� Ž .However, we do not know whether � u exists, since � might be in the at� 11

most countable set of locations � where the left-hand and the right-hand
Ž .derivatives do not coincide. So at first glance we loose control of H nz under

ˆn zP . We cope with this problem by putting in a stopover in some interme-n x, � , �1

diate point n� between nx and nz. For the first part of the journey from nx
� Ž .to n� , we use some � 	 � for which � u exists. For the second part from0 1 �0

n� to nz we use some � � � with the same property. Since we are able to2 1
control the travel times for both stretches due to Lemma 10, we are also able
to control the time needed for the whole journey from nx to nz after all. So

Ž . � Ž .let 0 � � � 1. Then there are � � 0, 1 , � � 0 and � , � such that � u and0 2 �0� Ž .� u exist and�2

� 448 max 0, � � � � � 	 � 	 � ,Ž . 1 0 1 2

� � � �49 �� u � 1 � � � u � �� , � � 1 � � r , 1 � � rŽ . Ž . Ž . Ž . Ž .� �0 2

and

50 � u � � u � � .Ž . Ž . Ž .� �2 1

Hence

X � nB z , r� 4Ž .n

� A � H nz � n 1 � � r �1, 1� 4Ž . Ž .Ž .1

� � � �� H nz � n �� u � 1 � � � u � �� , �Ž . Ž . Ž . Ž .Ž .½ 5� �0 2

� � �� A � H n� � n� � u � �� , � ,Ž . Ž .Ž .½2 �0

� � � � �inf m�H n� : X � nz �n 1�� � u � �� , � ,� 4Ž . Ž . Ž .Ž . 5m �2
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Ž . Ž .where � � 1 � � x � � z lies between x and z. Since n 	 H nz � n� r on
Ž .the event A , the left-hand side of 46 is bigger than1

1
� � lim inf ln E exp �� H nz � n� r , AŽ .Ž .Ž .1 n x , � 1 2nn��

1
� � 1 � � r � lim inf ln EŽ .1 n x , �nn��

� � �� exp �� H n� , H n� � n� � u � �� , �Ž . Ž . Ž .Ž . Ž .1 �0

1
� lim inf ln En� , �nn��

� � �� exp �� H nz , H nz � n 1 � � � u � �� , � ,Ž . Ž . Ž . Ž .Ž . Ž .1 �2

Ž .where we used the strong Markov property. We use 48 to get

�� H n� � �� H n� � � � � n� � � u � �Ž . Ž . Ž . Ž .Ž .1 0 0 1 �0

and
� � H nz � �� H nzŽ . Ž .1 2

and thus see by the uniform shape theorem that the expression from above is
greater than

51 � 1 � � r � � � � � � � u � � � � �u � � 1 � � uŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ž .1 0 1 � � �0 0 2

1
�n�ˆ � �52 � lim inf ln P H n� �n � � � u � �� , �Ž . Ž . Ž .Ž .n x , � , � �0 0nn��

1
�n zˆ � �53 � lim inf ln P H nz �n � 1 � � � u � �� , � .Ž . Ž . Ž . Ž .Ž .n� , � , � �2 2nn��

Ž . Ž . Ž . Ž .The terms in 52 and 53 vanish because of Lemma 10. Due to 48 and 49
Ž � Ž . . Ž .we have � � � � �� and � � u � � 	 1 � � r, respectively. Thus 51 is0 1 �0

greater than

� 1 � � r � � 1 � � r � � u � 1 � � � u � � uŽ . Ž . Ž . Ž . Ž . Ž .Ž .1 � � �1 2 1

� � 1 � � r � � 1 � � r � � u � �Ž . Ž . Ž .1 �1

Ž . Ž .by 50 . Again letting � � 0 proves 46 . �

REMARK 1. If one is interested only in large deviations for fixed starting
point x � 0 then one does not need the uniform shape theorem but only the

Ž .simple shape theorem. This is obvious for the proof of the upper bound 4 .
Ž .However, even in the proof of the lower bound 5 where it is natural to apply

the uniform shape theorem since we use intermediate points, one can avoid
the uniform shape theorem by using the technique developed by Sznitman

� �in the context of Brownian motion in Poissonian potentials; see 18 , Theo-
� �rem 2.1 or 20 , Theorem 5.4.2.
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REMARK 2. It is an open problem to prove or disprove differentiability or
analyticity of � with respect to � for d � 2. This problem is unsolved also�

for the Lyapounov exponents belonging to Brownian motion in a Poissonian
� � � �potential 20 or random walks in random nonnegative potentials 21 ; see

� � Ž .also 10 , Section 5 iii .

� d Ž . 4REMARK 3. The set Z � x � � : I x � 0 of zeros of the rate function is
of particular interest. Since I is nonnegative, convex and continuous on the

� � Ž .closed 	 -unit ball B 0, 1 , and infinite outside this ball, Z is a closed convex
Ž .subset of B 0, 1 . Moreover it follows from the definition of I that

Z � x � � d : � x � 0, � � x 	 1Ž . Ž .� 40 0�

Ž .since � x is nonnegative and concave in �.�

6. The one-dimensional case. In this section we assume d � 1. Since
Ž .in one dimension the process a x, y, � is additive in the sense of Lemma 1,�

we can apply the ergodic theorem instead of the subadditive ergodic theorem
and obtain

54 � �1 � � a 0, �1, � .Ž . Ž . Ž .� �

Consequently,

� �55 � x � x � a 0, sign x , �Ž . Ž . Ž .� �

d � � Ž .for all x � � and � � 0. This is the counterpart to 18 , equation 1.30 and
� � Ž . � � Ž .21 , equation 39 , and appears in a similar context in 3 , equations 5.3 and
Ž .5.4 , page 502. Moreover, by partition over the first step and the strong
Markov property we get

e 1, 0, � � e�� � 1, 0 � � 1, 2 e 2, 0, �Ž . Ž . Ž . Ž .Ž .� �

� e�� � 1, 0 � � 1, 2 e 2, 1, � e 1, 0, �Ž . Ž . Ž . Ž .Ž .� �

and thus

� 1, 0 � 1, 0 �� 1, 2Ž . Ž . Ž .
56 e 1, 0, � � � .Ž . Ž .� � �e � � 1, 2 e 2, 1, � e �� 1, 2 � e 2, 1, �Ž . Ž . Ž . Ž .Ž .� �

Ž . Ž .Note that e 2, 1, � has the same distribution as e 1, 0, � and is indepen-� �

Ž . Ž . Ž .dent of � 1, 0 and � 1, 2 . Thus 56 can be read as an implicit equation for
Ž . Ž .the distribution of e 1, 0, � in terms of � and the distribution of � 0, 1 .�

Ž .Iterating 56 we get the following continued fraction representation:

� 1, 0 �� 1, 2Ž . Ž .
e 1, 0, � � .Ž .� �e � 2, 1 �� 2, 3Ž . Ž .

�
�� 1, 2 e � 3, 2 �� 3, 4Ž . Ž . Ž .

�
�� 2, 3 eŽ .

� 			
� 3, 4Ž .



QUENCHED LARGE DEVIATIONS FOR MULTIDIMENSIONAL RWIRE 1475

´This continued fraction converges due to the theorem of Sleszynski�´
Ž � � .Pringsheim e.g., 12 , Theorem I.4.1 which states that

a1
a2

b �1 a3
b �2 b � 			3

� � � �converges if b � a � 1 for all n � �. This criterion is fulfilled heren n
because

e� � n , n � 1Ž .
� � 1

� n , n � 1 � n , n � 1Ž . Ž .
� Ž . Ž .since e � 1 � � n, n � 1 � � n, n � 1 for all n � 1. Thus the random

Ž . � �continued fraction f r, � introduced by Greven and den Hollander in 5 ,
Ž . Ž . Ž . Ž . Ž . Ž0.20 , 3.12 , 4.2 , is in our notation e 0, �1, � where � x, x � 1 � � x, xr

. Ž . Ž . Ž .� 1 and � x, x � 1 � � x, x � 1 . Hence f r, � has the same distribution
Ž .as e 0, 1, � . The further correspondence of our notation with the notation ofr

� � Ž . Ž . � � Ž . Ž .5 is as follows. Due to 54 , their log � r , 5 , 0.21 , equals �� 1 . Theirr
�1 � � Ž . � Ž . Ž . � � Ž .� , 5 , 0.22 , is � 1 and their r � , 5 , 0.23 , is our � , which maximizesc 0� 1

the supremum in the definition of the rate function; see the proof of Theorem
� � Ž .B. The nestling property is equivalent to the assumption r � 0 5 , 0.19 .c

� �Under this assumption we recover the rate function I obtained in 5 as
Ž .follows. Due to Theorem B and 55 the rate function can be written as

� �57 I x � sup x � a 0, sign x , � � � .Ž . Ž . Ž .Ž .�
��0

Ž . Ž . Ž .It follows from 55 that � x is differentiable in � � 0, � . Indeed, one could�

Ž � � .even show that it depends analytically on � compare 18 , Theorem 2.6 . We
have

��e 0, sign x , �Ž .�� sign xˆ� � � �� x � x � � x � E H sign x .Ž . Ž .� 0, � , �e 0, sign x , �Ž .�

� Ž . Ž . ŽSo if � x 	 1, then the supremum in 57 is attained at � � 0 compare0 1
� � Ž .. Ž . Ž . � �5 , first line of 0.23 . Hence in this case I x � � x � x0

� � Ž . �� � Ž . � �� �ln P H sign x � � . If � x � 1 and x � 1, then the number �0, � 0 1
Ž . � Ž . Ž � �which maximizes � x � � is characterized by 1 � � x compare 5 , sec-� �1

Ž .. Ž . Ž .ond line of 0.23 . In this case I x � � x � � . Thus we arrive at the same� 11� � Ž .expression as in 5 , 0.24 .

REMARK. In one dimension it could be possible to drop the nestling
Ž .property in the derivation of the lower bound 5 by taking into account also

Ž .exponents � for negative � see Remark 2 at the end of Section 1 . However�

we are not carrying this out here.
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