WEAK UNIQUENESS FOR THE HEAT EQUATION WITH NOISE ${ }^{1}$

By Leonid Mytnik
University of British Columbia

Abstract

The uniqueness in law for the equation $\partial X_{t} / \partial t=\frac{1}{2} \Delta X_{t}+X_{t}^{\gamma} \dot{W}$ is established for $1 / 2<\gamma<1$. The proof uses a duality technique and requires the construction of an approximating sequence of dual processes.

1. Introduction. In this article we will discuss the problem of uniqueness for the stochastic partial differential equation (SPDE)

$$
\begin{equation*}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \Delta X_{t}+X_{t}^{\gamma} \dot{W}, \tag{1.1}
\end{equation*}
$$

with $1 / 2<\gamma<1$, where \dot{W} is two-parameter white noise on $\left(\mathbb{R}_{+} \times \mathbb{R}\right)$. The existence of a solution to (1.1) was proved in [7] by tightness arguments. By itself, (1.1) is a purely formal stochastic partial differential equation. More rigorously, we can consider the integral equation

$$
\begin{equation*}
X_{t}(x)=S_{t} X_{0}(x)+\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(x-y) X_{t}^{\gamma}(y) W(d s, d y) \tag{1.2}
\end{equation*}
$$

where $\left\{S_{t}\right\}$ is the semigroup with generator $\frac{1}{2} \Delta$, and p_{t} is the probability density function corresponding to S_{t}.

Before presenting our result, we need to introduce the following notation. Let M_{F} denote the finite measures on \mathbb{R} with weak topology and let B (resp., \bar{C}) denotethe bounded (resp., continuous bounded) Borel measurablefunctions on \mathbb{R}. In general, if F is a set of functions on \mathbb{R}, write F_{+}or F^{+}for nonnegative functions in F. For $\mu \in M_{F}$ and $f \in B$ let

$$
\mu(f)=\langle\mu, f\rangle=\int f d \mu .
$$

We will abbreviate "boundedly pointwise" by bp.
As in [7], we will consider solutions $X_{t}(x)$ to (1.2) starting from initial conditions rapidly decreasing in x. Therefore, define

$$
C_{\text {rap }}^{+}=\left\{g \in \bar{C}: g \geq 0,|g|_{p} \equiv \sup _{x} e^{p|x|} g(x)<\infty \forall p>0\right\} .
$$

Note that further we will consider $L^{1}=L^{1}(\mathbb{R})$ (which obviously contains $C_{\text {rap }}^{+}$) as a subset of M_{F} using the correspondence $\phi(x) \mapsto \phi(x) d x$. Let $\mathscr{P}\left(C_{\text {rap }}^{+}\right)$be

[^0]the set of probability measures on $C_{\text {rap }}^{+}$and define
$$
\mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right) \equiv\left\{\nu \in \mathscr{P}\left(C_{\text {rap }}^{+}\right): \sup _{x \in \mathbb{R}^{1}}\left\{\int_{C_{\text {rap }}^{+}}|\phi(x)|^{p} \nu(d \phi)\right\}<\infty\right\}, \quad p>0 .
$$

For any process X defined on some probability space (Ω, \mathscr{F}, P), let $\mathscr{F}_{t}^{X} \equiv$ $\sigma\left(X_{s}, s \leq t\right)$.

Now we are ready to present our main result. As our concern is with the proof of the weak uniqueness of the solution for (1.2), we intend to prove the following theorem.

Theorem 1.1. Assume that $\nu \equiv P\left(X_{0}\right)^{-1} \in \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$for some $p \geq 2$. Then any two solutions for the martingale problem

$$
M^{\nu}\left\{\begin{array}{l}
\text { for all } \phi \in \mathscr{D}\left(\frac{1}{2} \Delta\right)\left[\mathscr{D}\left(\frac{1}{2} \Delta\right) \text { is the domain of } \frac{1}{2} \Delta\right], \\
Z_{t}(\phi)=\left\langle X_{t}, \phi\right\rangle-\left\langle X_{0}, \phi\right\rangle-\int_{0}^{t}\left\langle X_{s}, \frac{1}{2} \Delta \phi\right\rangle d s \\
\text { is an } \mathscr{\mathscr { T }}_{t}^{X} \text { continuous square integrable martingale such that } \\
Z_{0}(\phi)=0 \text { and } \\
\langle Z(\phi)\rangle_{t}=\int_{0}^{t}\left\langle X_{s}^{2 \gamma}, \phi^{2}\right\rangle d s
\end{array}\right.
$$

have the same finitedimensional distributions, which means that M^{ν} has at most one solution.

Remark 1.2. Since $\mathscr{D}\left(\frac{1}{2} \Delta\right)$ is bp-dense in B, the standard construction allows us to extend Z_{t} to an orthogonal martingale measure $\left\{Z_{t}(\phi): t \geq 0, \psi \in\right.$ $B\}$. That is, for each $\psi \in B, Z_{t}(\phi)$ is a continuous square integrable martingale such that

$$
\begin{equation*}
\langle Z(\phi)\rangle_{t}=\int_{0}^{t}\left\langle X_{s}^{2 \gamma}, \phi^{2}\right\rangle d s \tag{1.3}
\end{equation*}
$$

Let $\mathscr{D}(Z)$ denote the set of functions
$\left\{\phi: \Omega \times \mathbb{R}_{+} \times \mathbb{R} \mapsto \mathbb{R}\right.$ which is predictable (see [9], page 292) and

$$
\left.E\left[\int_{0}^{t} \int_{\mathbb{R}} \phi(\cdot, s, y)^{2} X_{s}(y)^{2 \gamma} d y d s\right]<\infty\right\} .
$$

Proceeding as in [9], notice that for each $\phi \in \mathscr{D}(Z)$ we can define the stochastic integral

$$
\begin{equation*}
Z_{t}(\phi)=\int_{0}^{t} \int_{\mathbb{R}} \phi(s, y) d Z(s, y) . \tag{1.4}
\end{equation*}
$$

The term $Z_{t}(\phi)$ is a continuous square integrable martingale with quadratic variation

$$
\int_{0}^{t} \int_{\mathbb{R}} \phi(s, y)^{2} X_{s}(y)^{2 \gamma} d y d s
$$

The idea behind the proof is based on a duality approach. This approach suggests proving the existence of a dual process Y with values in some space E and functions $f, g \in \mathscr{B}\left(C_{\text {rap }}^{+} \times E\right)$ such that

$$
\begin{equation*}
f\left(X_{t}, y\right)-\int_{0}^{t} g\left(X_{s}, y\right) d s \text { is an } \mathscr{F}_{t}^{X} \text { martingale for each } y \in E \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\psi, Y_{t}\right)-\int_{0}^{t} g\left(\psi, Y_{s}\right) d s \text { is an } \mathscr{F}_{t}^{Y} \text { martingale for each } \psi \in C_{\text {rap }}^{+} \tag{1.6}
\end{equation*}
$$

for any solution X to M^{ν} which is independent of Y. Then Theorem 4.4.11 in [2] (which assumes also some moment conditions) shows that

$$
\begin{equation*}
E\left[f\left(X_{t}, Y_{0}\right)\right]=E\left[f\left(X_{0}, Y_{t}\right)\right] \quad \forall t \geq 0 . \tag{1.7}
\end{equation*}
$$

If $\{f(\cdot, y), y \in E\}$ is separating on $\mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$and such a process Y can be constructed for any $Y_{0} \in E$, the uniqueness of solutions to M^{ν} fol lows (see [2], Proposition 4.4.7, for this result in a more general setting).

Let us try to use the above method. By choosing $f(\phi, \psi)=e^{-\langle\phi, \psi\rangle}$ and applying Itô's formula, we easily obtain that

$$
\exp \left(-\left\langle\phi, X_{t}\right\rangle\right)-\int_{0}^{t} \exp \left(-\left\langle\phi, X_{s}\right\rangle\right)\left(-\left\langle\frac{1}{2} \Delta \phi, X_{s}\right\rangle+\frac{1}{2}\left\langle\phi^{2}, X_{s}^{2 \gamma}\right\rangle\right) d s
$$

is an \mathscr{T}_{t}^{X} martingale for each $\phi \in \mathscr{D}\left(\frac{1}{2} \Delta\right)_{+}$. This together with (1.5) and (1.6) suggests constructing the process Y such that

$$
\begin{equation*}
\exp \left(-\left\langle Y_{t}, \psi\right\rangle\right)-\int_{0}^{t} \exp \left(-\left\langle Y_{s}, \psi\right\rangle\right)\left(-\left\langle\frac{1}{2} \Delta Y_{s}, \psi\right\rangle+\frac{1}{2}\left\langle Y_{s}^{2}, \psi^{2 \gamma}\right\rangle\right) d s \tag{1.8}
\end{equation*}
$$

is an \mathscr{F}_{t}^{Y} martingale for each $\psi \in C_{\text {rap }}^{+}$. If such a process Y exists and all the assumptions of Theorem 4.4.11 in [2] are satisfied, then we have

$$
\begin{equation*}
E\left[\exp \left(-\left\langle Y_{0}, X_{t}\right\rangle\right)\right]=E\left[\exp \left(-\left\langle Y_{t}, X_{0}\right\rangle\right)\right] \tag{1.9}
\end{equation*}
$$

and the uniqueness for M^{ν} follows easily. Let us try to give another description [different from (1.8)] of the dual process Y we are looking for. Let Y be a solution of the stochastic partial differential equation

$$
\begin{equation*}
Y_{t}(x)=S_{t} \phi(x)+\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(x-y) Y_{s}^{1 / \gamma}(y) L(d y, d s), \quad t \geq 0 \tag{1.10}
\end{equation*}
$$

where \dot{L} is a stable noise on $\mathbb{R} \times \mathbb{R}_{+}$with nonnegative jumps and Laplace transform given by

$$
\begin{aligned}
& E\left[\exp \left(-\int_{0}^{t} \int_{\mathbb{R}} \phi(s, x) L(d x, d s)\right)\right] \\
& \quad=E\left[\exp \left(\int_{0}^{t} \int_{\mathbb{R}} \phi(s, x)^{2 \gamma} d x d s\right)\right] \quad \forall \phi \in L^{2 \gamma}(\mathbb{R} \times[0, t])_{+}
\end{aligned}
$$

If such a process Y exists, then Itô's formula yields the result
$\tilde{M}\left\{\begin{array}{l}\text { for all } \psi \in \mathscr{P}\left(\frac{1}{2} \Delta\right)_{+} \\ \quad \tilde{Z}_{t}(\phi)=\exp \left(-\left\langle Y_{t}, \psi\right\rangle\right)-\int_{0}^{t} \exp \left(-\left\langle Y_{s}, \psi\right\rangle\right)\left(-\left\langle Y_{s}, \frac{1}{2} \Delta \psi\right\rangle+\frac{1}{2}\left\langle Y_{s}^{2}, \psi^{2 \gamma}\right\rangle\right) d s \\ \text { is an } \mathscr{\mathscr { T }}_{t}^{Y} \text { local martingale. }\end{array}\right.$
Observe that \tilde{M} is just a weak form of (1.8), that is, in \tilde{M} we do not require Y to be in $\mathscr{(}\left(\frac{1}{2} \Delta\right)_{+}$and \tilde{Z} to be a martingale. It can be conjectured that the existence of the process Y satisfying local martingale problem \tilde{M} or SPDE (1.10) is sufficient to verify (1.9). Then, the "only" problem is the existence of Y solving SPDE (1.10). Note that if the exponent of the noise is less than 1 , then (1.10) belongs to the class of SPDEs that was studied by Mueller [6]. However, in our case, the exponent of L equals $2 \gamma>1$ and the existence of a solution to (1.10) is unresolved.

The approach of an approximating sequence of dual processes which was introduced in [8] allows us to avoid the proof of the existence of a solution to (1.10) and helps us in this case. The main problem is to choose the right approximating sequence of processes since when we treat convergence to processes driven by a stable noise, high moments may diverge. In Section 3 we will construct the sequence of processes $\left\{Y^{(n)}\right\}$ which satisfies the local martingale problem

$$
\tilde{M}^{(n)}\left\{\begin{array}{r}
\text { for all } \psi \in \mathscr{D}\left(\frac{1}{2} \Delta\right)_{+}, \\
\left.\begin{array}{rl}
\tilde{Z}_{t}^{(n)}(\phi)= & \exp \left(-\left\langle Y_{t}^{(n)}, \psi\right\rangle\right)-\int_{0}^{t} \exp \left(-\left\langle Y_{s}^{(n)}, \psi\right\rangle\right) \\
& \times\left(-\left\langle Y_{s}, \frac{1}{2} \Delta \psi\right\rangle+\frac{1}{2} \eta \int_{\mathbb{R}^{d}} \int_{1 / n}^{\infty}(\right.
\end{array} \quad \exp (-\lambda \phi(x))-1+\lambda \phi(x)\right) \\
\left.\quad \times \lambda^{-2 \gamma-1} d \lambda Y_{s}^{(n)}(x)^{2} d x\right) d s
\end{array}\right.
$$

is an $\mathscr{F}_{t}^{Y^{(n)}}$ local martingale,
where $\eta \equiv(2 \gamma(2 \gamma-1)) /(\Gamma(2-2 \gamma))$. Observe that $y^{2 \gamma}=\eta \int_{0+}^{\infty}\left(e^{-\lambda y}-1+\right.$ $\lambda y) \lambda^{-2 \gamma-1} d \lambda$. Hence we expect that the above local martingale problem should converge to the local martingale problem \tilde{M} as $n \rightarrow \infty$. For each n, the process $\left\{Y^{(n)}\right\}$ which satisfies $\tilde{M}^{(n)}$ will be defined in Section 3 as a solution of some SPDE driven by a point process without jumps smaller than $1 / n$. We do not give a precise definition of this SPDE here as this would require a significant amount of notation.

The rest of the paper is organized as follows. The basic tools needed for the implementation of the duality technique in our particular case are introduced in Section 2. Some simple properties of any solution to M^{ν} are also presented
in Section 2 . Section 3 contains the construction of the approximating sequence of dual processes and, by means of this sequence, we prove Theorem 1.1.
2. Properties of solutions to M^{ν} and duality tools. We start with a moment condition result.

Lemma 2.1. Assumethat $p \geq 2$ and $\nu \in \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$. Let X be any solution of the martingale problem for M^{ν}. Then for each $T>0$ we have

$$
\begin{equation*}
\sup _{t \leq T} \sup _{x \in \mathbb{R}} E\left[X(t, x)^{p}\right]<\infty \tag{2.1}
\end{equation*}
$$

The proof of Lemma 2.1 is omitted, since it is standard (e.g., the reader may adapt the arguments from the proof of Proposition 4.2 in [7]).

Our goal is to prove that any two solutions to M^{ν} have the same finitedimensional distributions. It is well known that as we deal with the solutions of the martingale problem, the problem can be transformed into the simpler one: to verify uniqueness of the one-dimensional distributions (see [2], Theorem 4.2). However, our attempt to use Theorem 4.2 in [2] directly met with some technical difficulties that we will try to describe below. Suppose that X is any solution to M^{ν} and

$$
f\left(X_{t}\right)-\int_{0}^{t} g\left(X_{s}\right) d s
$$

is an \mathscr{T}_{t}^{X} martingale. Then g will be an unbounded function on $C_{\text {rap }}^{+}$for any usual function f. [For example, we can take $f_{\phi}(X)=\exp \{-\langle X, \phi\rangle\}$ for some $\phi \in \mathscr{D}\left(\frac{1}{2} \Delta\right)_{+}$, and then the corresponding g, found by Itô's formula, is unbounded.] Hence we cannot use Theorem 4.2 in ([2], Chapter 4) since it requires that all functions be bounded. However, a careful examination of the proof of this theorem leads us to the conclusion that this condition is not essential. Therefore, we can present the following lemma (which is just the reformulation of Theorem 4.2 in [2], Chapter 4, for our case):

Lemma 2.2. Let $p \geq 2$. Suppose that for each $\nu \in \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$any two solutions X^{1}, X^{2} of the martingale problem for M^{ν} have the same onedimensional distributions. That is, for each $t>0$,

$$
\begin{equation*}
P\left\{X_{t}^{1} \in \Gamma\right\}=P\left\{X_{t}^{2} \in \Gamma\right\}, \quad \Gamma \in \mathscr{B}\left(C_{\text {rap }}^{+}\right) . \tag{2.2}
\end{equation*}
$$

Then any two solutions of the martingale problem for M^{ν} have the same finite dimensional distributions (i.e., uniqueness holds).

Proof. The proof is completely analogous to the proof of Ethier and Kurtz's Theorem 4.2 in ([2], Chapter 4). The only delicate point is that, at some point, we need the fact that if $P\left(X_{0}\right)^{-1} \in \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$, then for each time $t>0, P\left(X_{t}\right)^{-1}$ is also in $\mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$. Lemma 2.1 assures that this is the case.

As a consequence of the previous lemma, we need to verify that for each $\nu \in \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$any two solutions to M^{ν} have the same one-dimensional distributions. One approach for doing this involves the notion of an approximating sequence of dual processes which was introduced in [8]. Section 3 is devoted to the proof of the following proposition, which establishes the existence of such a sequence of processes in our case.

Proposition 2.3. For each $\nu \in \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$and each $\phi \in L^{1}(\mathbb{R})_{+}$, there exists a sequence of processes $\left\{Y^{(n)}\right\}$ taking values in M_{F} such that $Y_{0}^{(n)}=\phi$ and

$$
\begin{equation*}
E\left[\exp \left[-\left\langle\phi, X_{t}\right\rangle\right]\right]=\lim _{n \rightarrow \infty} E\left[\exp \left[-\left\langle Y_{t}^{(n)}, X_{0}\right\rangle\right]\right] \tag{2.3}
\end{equation*}
$$

for every $t \geq 0$ and each solution X to M^{ν} which is independent of $Y^{(n)}$.
Remark 2.4. The motivation for the construction of $Y^{(n)}$ was briefly discussed in the Introduction.

Remark 2.5. Note that Proposition 2.3 gives the unique characterization of one-dimensional distributions of solutions to M^{ν} via the Laplace transform. Therefore, Theorem 1.1 follows immediately from Proposition 2.3 (cf. [8], Theorem 1.7).

Define

$$
\begin{array}{r}
\bar{C}^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)=\left\{\psi \in \bar{C}\left(\mathbb{R}_{+} \times \mathbb{R}\right): \frac{\partial^{k}}{\partial t^{k}} \frac{\partial^{i}}{\partial x^{i}} \psi(t, x) \in \bar{C}\left(\mathbb{R}_{+} \times \mathbb{R}\right),\right. \\
k=0,1, i=0,1,2\} .
\end{array}
$$

The next lemma transforms the martingale problem M^{ν} into the martingale problem in the "exponential form."

Lemma 2.6. Assume that $p \geq 2$ and $\nu \in \in_{1} \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$. Let X be any solution of the martingal e problem for M^{ν}. Let $\psi \in \bar{C}^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)_{+}$and

$$
\begin{equation*}
\int_{0}^{T} \int_{\mathbb{R}} \psi(s, x)^{2} d x d s<\infty \quad \forall T>0 \tag{2.4}
\end{equation*}
$$

Then

$$
\begin{align*}
& \exp \left(-\left\langle X_{t}, \psi_{t}\right\rangle\right) \\
& \quad-\int_{0}^{t} \exp \left(-\left\langle X_{s}, \psi_{s}\right\rangle\right)\left(-\left\langle X_{s} \frac{1}{2} \Delta \psi_{s}\right\rangle+\frac{1}{2}\left\langle X_{s}^{2 \gamma}, \psi_{s}^{2}\right\rangle-\left\langle X_{s} \frac{\partial}{\partial s} \psi_{s}\right\rangle\right) d s \tag{2.5}
\end{align*}
$$

is an $\mathscr{\mathscr { T }}^{X}$ martingale.

Proof. By the usual application of Itô's formula we get that

$$
\begin{aligned}
\exp (- & \left.\left\langle X_{t}, \psi_{t}\right\rangle\right) \\
= & \exp \left(-\left\langle X_{0}, \psi_{0}\right\rangle\right) \\
& +\int_{0}^{t} \exp \left(-\left\langle X_{s}, \psi_{s}\right\rangle\right)\left(-\left\langle X_{s}, \frac{1}{2} \Delta \psi_{s}\right\rangle+\frac{1}{2}\left\langle X_{s}^{2 \gamma}, \psi_{s}^{2}\right\rangle-\left\langle X_{s} \frac{\partial}{\partial s} \psi_{s}\right\rangle\right) d s \\
& +\int_{0}^{t} \exp \left(-\left\langle X_{s}, \psi_{s}\right\rangle\right) d Z_{s}\left(\psi_{s}\right)
\end{aligned}
$$

where $Z_{s}\left(\psi_{s}\right)=\int_{0}^{t} \int_{\mathbb{R}} \psi(s, y) Z(d s, d y)$ is an \mathscr{F}_{t}^{X} square integrable martingale [see Remark 1.2: the fact that $\psi \in \mathscr{D}(Z)$ follows from Lemma 2.1 combined with condition (2.4)].

The term $\exp \left(-\left\langle X_{s}, \psi_{s}\right)\right.$) is bounded and $Z .\left(\psi_{.}\right)$is a square integrable martingale; therefore, we get that the last term in (2.6) is also a martingale. This completes the proof of the lemma.
3. Dual approximation and proof of Theorem 1.1. As we have already mentioned above, to prove Theorem 1.1 it suffices to prove Proposition 2.3 so that we need to construct some approximating sequence of processes. The motivation for our construction was briefly discussed in the Introduction.

Let us introduce further notation. For each $m \in M_{F}$ and $n \geq 1, V_{t}^{(n)}(m)$ denotes the unique weak nonnegative solution of the nonlinear equation

$$
\begin{equation*}
v_{t}=S_{t} m-\int_{0}^{t} S_{t-s}\left(\frac{1}{2} b_{n} v_{s}^{2}\right) d s, \tag{3.1}
\end{equation*}
$$

where

$$
b_{n}=\frac{2 \gamma}{\Gamma(2-2 \gamma)} n^{2 \gamma-1}
$$

In the following we fix $n \geq 1$. Proposition A. 2 in [3] shows that for each $m \in$ M_{F},

$$
\begin{aligned}
V_{t}^{(n)}(m) & \in L^{2}(\mathbb{R}) \quad \forall t>0, \\
V_{.}^{(n)}(m) & \in L^{2}((0, T] \times \mathbb{R}) \quad \forall T>0, \\
w & -\lim _{t \downarrow 0} V_{t}^{(n)}(m)=m .
\end{aligned}
$$

Integrating (3.1) over the space variable, we obtain

$$
\begin{equation*}
\left\|V_{t}^{(n)}(m)\right\|_{1}=m(1)-\frac{1}{2} b_{n} \int_{0}^{t}\left\|V_{s}^{(n)}(m)\right\|_{2}^{2} d s \tag{3.2}
\end{equation*}
$$

where $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ denote the norms in $L^{1}(\mathbb{R})$ and $L^{2}(\mathbb{R})$, respectively. Moreover, adapting the arguments used in the proof of Theorem 3.1 in [1], we can get

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|V_{t}^{(n)}(m)\right\|_{1}=0 \quad \forall m \in M_{F} . \tag{3.3}
\end{equation*}
$$

Equations (3.2) and (3.3) imply that

$$
\begin{equation*}
\int_{0}^{\infty}\left\|V_{t}^{(n)}(m)\right\|_{2}^{2} d t=\frac{2}{b_{n}} m(1) \quad \forall m \in M_{F} \tag{3.4}
\end{equation*}
$$

In the following text, we adopt the convention $V_{0}^{(n)}(m)=m$.
Let (Ω, \mathscr{F}, P) be a probability space which is sufficiently rich to contain all the processes and random variables defined below.

Lemma 3.1. Assume that $p \geq 2$ and $\nu \in \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$. Let X be any solution of the martingal e problem for M^{ν} defined on (Ω, \mathscr{F}, P). Then

$$
\begin{aligned}
& E_{X}\left[\exp \left(-\left\langle V_{t}^{(n)}(m), X_{T-t}\right)\right)\right] \\
& =E_{X}\left[\exp \left(-\left\langle V_{0}^{(n)}(m), X_{T}\right\rangle\right)\right] \\
& \quad+E_{X}\left[\int_{0+}^{t}\right. \\
& \quad \exp \left(-\left\langle V_{s}^{(n)}(m), X_{T-s}\right\rangle\right) \\
& \left.\quad \times \frac{1}{2}\left(\left(b_{n}\left(V_{s}^{(n)}(m)\right)^{2}, X_{T-s}\right\rangle-\left\langle\left(V_{s}^{(n)}(m)\right)^{2}, X_{T-s}^{2 \gamma}\right\rangle\right) d s\right]
\end{aligned}
$$

for each $m \in M_{F}$ and $0 \leq t \leq T$.
Proof. For each $m \in M_{F}$, there exists $\left\{m_{k}\right\} \in M_{F}$ such that

$$
\begin{aligned}
& m_{k}(d x)=\phi_{k}(x) d x \quad\left(m_{k}\right. \text { is absolutely continuous with respect } \\
&\quad \text { to Lebesgue measure }), \\
& \phi_{k} \in \mathscr{D}\left(\frac{1}{2} \Delta\right) \cap C_{\text {rap }}^{+} \quad \forall k \geq 1, \\
& m_{k} \Rightarrow m \quad \text { in } M_{F}, \text { as } k \rightarrow \infty .
\end{aligned}
$$

Theorem A in [5] implies that, in fact, $V_{t}^{(n)}\left(m_{k}\right)$ is the strong solution of

$$
\begin{align*}
\frac{\partial v_{t}}{\partial t} & =\frac{1}{2} \Delta v_{t}-\frac{1}{2} b_{n} v_{t}^{2}, \quad t>0 \tag{3.6}\\
v_{0} & =\phi_{k}
\end{align*}
$$

In this case the function $\psi(s, x) \equiv V_{T-s}^{(n)}\left(m_{k}\right)(x)$ satisfies the conditions of Lemma 2.6, which immediately yields

$$
\begin{align*}
& E_{X}\left[\exp \left(-\left\langle V_{t}^{(n)}\left(m_{k}\right), X_{T-t}\right\rangle\right)\right] \\
& =E_{X}\left[\exp \left(-\left\langle V_{0}^{(n)}\left(m_{k}\right), X_{T}\right\rangle\right)\right] \\
& \quad+E_{X}\left[\int_{0}^{t} \exp \left(-\left\langle V_{s}^{(n)}\left(m_{k}\right), X_{T-s}\right\rangle\right)\right. \tag{3.7}\\
& \left.\quad \times \frac{1}{2}\left(\left\langle b_{n}\left(V_{s}^{(n)}\left(m_{k}\right)\right)^{2}, X_{T-s}\right\rangle-\left\langle\left(V_{s}^{(n)}\left(m_{k}\right)\right)^{2}, X_{T-s}^{2 \gamma}\right\rangle\right) d s\right]
\end{align*}
$$

for each $0 \leq t \leq T$. Let $k \rightarrow \infty$. From Proposition A. 2 in [3] we know that $V_{.}^{(n)}\left(m_{k}\right) \rightarrow V^{(n)}(m)$ in $L^{2}((0, T] \times \mathbb{R})$. The variable X takes values in $C_{\text {rap }}^{+}$. Hence we get

$$
\begin{align*}
& \lim _{k \rightarrow \infty}\left\langle V_{t}^{(n)}\left(m_{k}\right), X_{T-t}^{q}\right\rangle=\left\langle V_{t}^{(n)}(m), X_{T-t}^{q}\right\rangle \tag{3.8}\\
& \text { a.s., } \forall 0 \leq t \leq T, \quad \forall 1 \leq q<2 .
\end{align*}
$$

Now, the result is immediate from (3.8), (3.7) and the uniform integrability condition from Lemma 2.1.

Let us construct the approximating sequence of dual processes $\left\{Y^{(n)}\right\}$ as follows.

Let $\left\{\tilde{T}_{n, i}, i=1,2, \ldots\right\}$ be independent identically distributed exponential random variables with parameter $\kappa_{n}=n^{2 \gamma}(2 \gamma-1) /(\Gamma(2-2 \gamma))$ and let $\left\{Z_{n, i}, i=1,2, \ldots\right\}$ be independent \mathbb{R}_{+}-valued random variables with the distributions given by

$$
P\left(Z_{n, i} \geq b\right)=\frac{\int_{b \vee 1 / n}^{\infty} \lambda^{-2 \gamma-1} d \lambda}{\int_{1 / n}^{\infty} \lambda^{-2 \gamma-1} d \lambda} \quad \forall i \geq 1 .
$$

Note that

$$
\begin{equation*}
E\left[Z_{n, i}\right]=\frac{2 \gamma}{n(2 \gamma-1)} . \tag{3.9}
\end{equation*}
$$

We suppose that $\left\{\tilde{T}_{n, i}, i=1,2, \ldots\right\}$ and $\left\{Z_{n, i}, i=1,2, \ldots\right\}$ are mutually independent.

Fix arbitrary $\phi \in L^{1}(\mathbb{R})_{+}$. Let $A_{t}^{(n)}$ be a Levy pure jump process with jumps $\left\{Z_{n, i}, i=1,2, \ldots\right\}$ and corresponding times of jumps given by

$$
\begin{equation*}
T_{n, i}=\sum_{k=1}^{i} \tilde{T}_{n, k} \quad \forall j \geq 1 . \tag{3.10}
\end{equation*}
$$

Assume $A_{0}^{(n)}=\langle\phi, 1\rangle$ and define $\mathscr{F}_{t}^{A^{(n)}} \equiv \sigma\left\{A_{s}^{(n)}, s \leq t\right\}$.
The random variables $\left\{T_{n, i}, i=1,2, \ldots\right\}$ and $\left\{Z_{n, i}, i=1,2, \ldots\right\}$ determine the times and heights of the jumps of the process $A^{(n)}$, and, as we will see later, they will also control the times and "masses" of the jumps of the desired process $Y^{(n)}$. However, for $Y^{(n)}$ we will also need to determine the spatial positions of the jumps. The positions of the jumps will be controlled by random variables $\left\{U_{n, i}, i=1,2, \ldots\right\}$ defined later. For their definition the following notation is important.

Let $\left\{G(f, \cdot), f \in L_{+}^{2}(\mathbb{R})\right\}$ be the collection of probability measures on \mathbb{R} such that

$$
G(f, A)=\frac{\int_{A} f^{2}(x) d x}{\|f\|_{2}^{2}} \quad \forall A \subset \mathscr{B}(\mathbb{R}) .
$$

Now we are ready to define the M_{F}-valued process $Y^{(n)}$ iteratively as follows. Let

$$
Y_{0}^{(n)}(d x)=\phi(x) d x
$$

Define the time change $\gamma(t)$ and the σ-algebra $\tilde{\mathscr{F}}_{1}^{n}$:

$$
\begin{aligned}
\gamma(t) & =\inf \left\{s: \int_{0+}^{s} \frac{1}{2}\left\|V_{u}^{(n)}(\phi)\right\|_{2}^{2} d u>t\right\}, \quad 0 \leq t \leq T_{n, 1} \\
\tilde{\mathscr{F}}_{1}^{n} & =\mathscr{F}_{T_{n, 1}}^{A^{(n)}} \vee \sigma\left(Y_{0}^{(n)}\right) .
\end{aligned}
$$

The time change $\gamma(t)$ depends on n, but to simplify the notation we do not make this dependence explicit. We use the convention inf $\varnothing=\infty$. Hence, we can see that $\gamma\left(T_{n, 1}\right)=\infty$ if and only if $\int_{0}^{\infty} \frac{1}{2}\left\|V_{u}^{(n)}(\phi)\right\|_{2}^{2} d u=Y_{0}^{(n)}(1) / b_{n} \leq$ $T_{n, 1}$. Let

$$
\begin{align*}
Y_{t}^{(n)} & =V_{t}^{(n)}\left(Y_{0}^{(n)}\right), \quad 0 \leq t<\gamma\left(T_{n, 1}\right), \\
Y_{\gamma\left(T_{n, 1}\right)}^{(n)} & =Y_{\gamma\left(T_{n, 1}\right)-}^{(n)}+Z_{n, 1} \delta_{U_{n, 1}} \quad \text { if } \gamma\left(T_{n, 1}\right)<\infty, \tag{3.11}
\end{align*}
$$

where

$$
P\left(U_{n, 1} \in \cdot \mid \tilde{\mathscr{F}}_{1}^{n}\right)=P\left(U_{n, 1} \in \cdot \mid Y_{\gamma\left(T_{n, 1}\right)-}^{(n)}\right)=G\left(Y_{\gamma\left(T_{n, 1}\right)-}^{(n)}, \cdot\right)
$$

If $\gamma\left(T_{n, 1}\right)=\infty$, the construction of $Y^{(n)}$ is finished since $Y^{(n)}$ is defined on the interval $[0, \infty)$. Otherwise, we proceed in the same way until the first time when $\gamma\left(T_{n, k}\right)$ becomes infinite. To be more precise, for each $k \geq 1$, let

$$
\begin{aligned}
& \tilde{\mathscr{F}}_{k+1}^{n}=\mathscr{F}_{T_{n, k+1}}^{A^{(n)}} \vee \sigma\left(Y_{0}^{(n)}\right) \vee \sigma\left(U_{n, j}, j \leq k\right), \\
& \gamma(t)=\inf \left\{s: \gamma\left(T_{n, k}\right)+\int_{0+}^{s-\gamma\left(T_{n, k}\right)} \frac{1}{2}\left\|V_{u}^{(n)}\left(Y_{\gamma\left(T_{n, k}\right)}^{(n)}\right)\right\|_{2}^{2} d u>t\right\}, \\
& T_{n, k} \leq t \leq T_{n, k+1}, \\
& Y_{t}^{(n)}=V_{t-\gamma\left(T_{n, k}\right)}^{(n)}\left(Y_{\gamma\left(T_{n, k}\right)}^{(n)}\right), \quad \gamma\left(T_{n, k}\right) \leq t<\gamma\left(T_{n, k+1}\right), \\
& Y_{\gamma\left(T_{n, k+1}\right)}^{(n)}=Y_{\gamma\left(T_{n, k+1}\right)-}^{(n)}+Z_{n, k+1} \delta_{U_{n, k+1}} \quad \text { if } \gamma\left(T_{n, k+1}\right)<\infty,
\end{aligned}
$$

where

$$
P\left(U_{n, k+1} \in \cdot \mid \tilde{\mathscr{F}}_{k+1}^{n}\right)=P\left(U_{n, k+1} \in \cdot \mid Y_{\gamma\left(T_{n, k+1}\right)-}^{(n)}\right)=G\left(Y_{\gamma\left(T_{n, k+1}\right)-}^{(n)}, \cdot\right)
$$

Note that, conditioning on $\tilde{\mathscr{F}}_{k}^{n}$, the random variables $U_{n, k+1}$ and $Z_{n, k+1}$ are independent. It is clear from the definition of $\gamma(t)$ and $Y^{(n)}$ that

$$
\gamma(t)=\inf \left\{s: \int_{0}^{s}\left\|Y_{u-}^{(n)}\right\|_{2}^{2} d u>t\right\}
$$

Let $T_{n}^{*} \equiv \inf \{t: \gamma(t)=\infty\}$. From the construction and (3.3) it follows that $Y_{\gamma\left(T_{n}^{*}\right)}^{(n)}(1)=Y_{\infty}^{(n)}(1)=0$. On the other hand, we can use our construction and (3.2) to see that

$$
\begin{equation*}
\left\langle Y_{\gamma(t)}^{(n)}, 1\right\rangle=A_{t}^{(n)}-b_{n} t, \quad t \leq T_{n}^{*} \tag{3.12}
\end{equation*}
$$

From (3.9) we obtain that $E\left[Z_{n, i}\right] \kappa_{n}=b_{n}$ and it follows easily that $b_{n} t$ is the compensator of $A_{t}^{(n)}$. Also $Y_{t}^{(n)}(1)>0$ for all $t>0$. This, together with (3.12), yields that, in fact,

$$
\begin{align*}
T_{n}^{*} & =\inf \left\{t: A_{t}^{(n)}-b_{n} t=0\right\} \tag{3.13}\\
P\left(T_{n}^{*}<\infty\right) & =1 \tag{3.14}
\end{align*}
$$

Define the point process ([4], I.9)

$$
p^{(n)}: D_{p^{(n)}} \subset(0, \infty) \mapsto \mathbb{R}_{+} \times \mathbb{R}
$$

with countable domain $D_{p^{(n)}}$ given by

$$
D_{p^{(n)}} \equiv\left\{T_{n, 1}, T_{n, 2}, \ldots, T_{n, k}, \ldots\right\} \cap\left[0, T_{n}^{*}\right]
$$

and

$$
p^{(n)}\left(T_{n, k}\right)=\left(Z_{n, k}, U_{n, k}\right), \quad \forall k \geq 1
$$

where ($Z_{n, k}, U_{n, k}$) are defined above.
The corresponding counting measure is defined as

$$
\begin{aligned}
N^{(n)}(t, B)=N^{(n)}((0, t] \times B) \equiv \# s \in D_{p^{(n)}} & \left.; s \leq t, p^{(n)}(s) \in B\right\} \\
& \forall t>0, \forall B \in \mathscr{B}\left(\mathbb{R}_{+} \times \mathbb{R}\right)
\end{aligned}
$$

Let $\mathscr{F}_{t}^{n} \equiv \bigcap_{\varepsilon>0} \sigma\left\{N^{(n)}(s, B) ; s \leq t+\varepsilon, B \in \mathscr{B}\left(\mathbb{R}_{+} \times \mathbb{R}\right)\right\}$ and recall that

$$
\eta=\frac{2 \gamma(2 \gamma-1)}{\Gamma(2-2 \gamma)}
$$

Lemma 3.2. The compensator of $N^{(n)}$ is

$$
\hat{N}^{(n)}\left(t, B_{1} \times B_{2}\right)=\eta \int_{0}^{t \wedge T_{n}^{*}} \frac{\int_{B_{1}} \int_{B_{2}} Y_{\gamma(s)-}^{(n)}(x)^{2} 1\left(\lambda>n^{-1}\right) \lambda^{-2 \gamma-1} d x d \lambda}{\left\|Y_{\gamma(s)-}^{(n)}\right\|_{2}^{2}} d s
$$

Proof. For all $B \in \mathscr{B}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ we have

$$
\begin{equation*}
E\left[N^{(n)}(t, B)\right] \leq E\left[N^{(n)}\left(t, \mathbb{R}_{+} \times \mathbb{R}\right)\right]=\kappa_{n} t<\infty \tag{3.15}
\end{equation*}
$$

which means that $N^{(n)}\left(t, B_{1} \times B_{2}\right)$ is an adapted integrable increasing process. By the Doob-Meyer theorem, the compensator $\hat{N}^{(n)}\left(t, B_{1} \times B_{2}\right)$ of this process exists, and it may be found as (see [2], Chapter 2 , proof of Theorem 5.1)

$$
\begin{align*}
& \hat{N}^{(n)}\left(t, B_{1} \times B_{2}\right) \\
& \quad=P-\lim _{\delta \downarrow 0} \int_{0}^{t} \frac{1}{\delta} E\left[N^{(n)}\left(s+\delta, B_{1} \times B_{2}\right)-N^{(n)}\left(s, B_{1} \times B_{2}\right) \mid \mathscr{F}_{s}^{n}\right] d s . \tag{3.16}
\end{align*}
$$

Now, use the definition of the point process $p^{(n)}$ to handle the above limit and get the desired result.

From the previous lemma and the construction of $Y^{(n)}$, it can be verified that $Y^{(n)}$, in fact, satisfies the local martingale problem \tilde{M} from the Introduction. However, we omit the derivation of this fact since we can prove Proposition 2.3 without using it directly.

Define

$$
\begin{aligned}
\tau(t) & \equiv \frac{1}{2} \int_{0}^{t}\left\|Y_{s-}^{(n)}\right\|_{2}^{2} d s \\
\tilde{\gamma}_{k}(t) & \equiv \gamma(k) \wedge t \quad \forall k \geq 1, \\
g(u, y) & \equiv \int_{0+}^{u}\left(e^{-\lambda y}-1+\lambda y\right) \lambda^{-2 \gamma-1} d \lambda \quad \forall u, y \geq 0,
\end{aligned}
$$

and check that

$$
\begin{equation*}
\tau\left(\tilde{\gamma}_{k}(t)\right)=\tau(t) \wedge k \quad \forall k \geq 1 \tag{3.17}
\end{equation*}
$$

Lemma 3.3. Assumethat $p \geq 2$ and $\nu \in \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$. Let X be any solution of the martingale problem for M^{ν}, independent of $Y^{(n)}$. Then

$$
\begin{aligned}
& E\left[\exp \left(-\left\langle Y_{\tilde{\gamma}_{k}(t)}^{(n)}, X_{T-\tilde{\gamma}_{k}(t)}\right\rangle\right)\right] \\
& \quad=E\left[\exp \left(-\left\langle Y_{0}^{(n)}, X_{T}\right\rangle\right)\right] \\
& \text { 8) } \quad-\frac{1}{2} E\left[\eta \int_{0}^{\tilde{\gamma}_{k}(t)} \exp \left(-\left\langle Y_{s-}^{(n)}, X_{T-s}\right\rangle\right)\right. \\
& \left.\quad \times \int_{\mathbb{R}}\left(Y_{s-}^{(n)}\right)^{2}(x) g\left(1 / n, X_{T-s}(x)\right) d x d s\right] \quad \forall 0 \leq t \leq T .
\end{aligned}
$$

Proof. By Lemma 3.1 we obtain that

$$
\begin{aligned}
& E_{X}\left[\exp \left(-\left\langle Y_{\gamma\left(T_{n, k+1)}\right)-}^{(n)}, X_{T-\gamma\left(T_{n, k+1}\right)}\right)\right)\right] \\
& \quad=E_{X}\left[\operatorname { e x p } \left(-\left\langle Y_{\gamma\left(T_{n, k}\right)}^{(n)}, X_{\left.\left.\left.T-\gamma\left(T_{n, k}\right)\right\rangle\right)\right]} \quad+\frac{1}{2} E_{X}\left[\int_{\gamma\left(T_{n, k}\right)+}^{\gamma\left(T_{n, k+1}\right)}\right.\right.\right.\right. \\
& \quad \exp \left(-\left\langle Y_{s-}^{(n)}, X_{T-s}\right\rangle\right) \\
& \left.\quad \times\left(\left\langle b_{n}\left(Y_{s-}^{(n)}\right)^{2}, X_{T-s}\right\rangle-\left\langle\left(Y_{s-}^{(n)}\right)^{2}, X_{T-s}^{2 \gamma}\right\rangle\right) d s\right]
\end{aligned}
$$

for each $0 \leq \gamma\left(T_{n, k+1}\right) \leq T$. (X. is continuous; hence $X_{u-}=X_{u}$ for all $u>0$.) This together with the definition of $Y^{(n)}$ implies that

$$
\begin{aligned}
& E_{X}\left[\exp \left(-\left\langle Y_{t}^{(n)}, X_{T-t}\right\rangle\right)\right] \\
& =E_{X}\left[\exp \left(-\left\langle Y_{0}^{(n)}, X_{T}\right\rangle\right)\right] \\
& \quad+\frac{1}{2} E_{X}\left[\int _ { 0 } ^ { t } \operatorname { e x p } (- \langle Y _ { s - } ^ { (n) } , X _ { T - s } \rangle) \left(\left\langle b_{n}\left(Y_{s-}^{(n)}\right)^{2}, X_{T-s}\right\rangle\right.\right. \\
& \left.\left.19) \quad-\left\langle\left(Y_{s-}^{(n)}\right)^{2}, X_{T-s}^{2 \gamma}\right)\right) d s\right] \\
& \left.\quad+\int_{0}^{\tau(t)} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}_{+}} E_{X}\left[\exp \left(-\left\langle Y_{\gamma(s)-}^{(n)}, X_{T-\gamma(s)}\right)\right)\right]\left(\exp \left(-\lambda X_{T-\gamma(s)}(x)\right)-1\right)\right] \\
& \quad \times N^{(n)}(d \lambda d x d s)
\end{aligned}
$$

for $0 \leq t \leq T$. Note that

$$
\begin{aligned}
y^{2 \gamma} & =\eta \int_{0+}^{\infty}\left(e^{-\lambda y}-1+\lambda y\right) \lambda^{-2 \gamma-1} d \lambda \\
& =\eta g(1 / n, y)+\eta \int_{1 / n}^{\infty}\left(e^{-\lambda y}-1\right) \lambda^{-2 \gamma-1} d \lambda+b_{n} y \quad \forall y \geq 0 .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
E_{X}[& \left.\exp \left(-\left\langle Y_{t}^{(n)}, X_{T-t}\right\rangle\right)\right] \\
=E_{X}[& \left.\exp \left(-\left\langle Y_{0}^{(n)}, X_{T}\right\rangle\right)\right] \\
-\frac{1}{2} E_{X}\left[\eta \int_{0}^{t}\right. & \left.\exp \left(-\left\langle Y_{s-}^{(n)}, X_{T-s}\right\rangle\right) \int_{\mathbb{R}}\left(Y_{s-}^{(n)}\right)^{2}(x) g\left(1 / n, X_{T-s}(x)\right) d x d s\right] \\
(3.20)+\int_{0}^{\tau(t)} \int_{\mathbb{R}} \int_{\mathbb{R}_{+}} & \left.E_{X}\left[\exp \left(-\left\langle Y_{\gamma(s)-}^{(n)}, X_{T-\gamma(s)}\right)\right)\right]\left(\exp \left(-\lambda X_{T-\gamma(s)}(x)\right)-1\right)\right] \\
& \times N^{(n)}(d \lambda d x d s) \\
-\frac{1}{2} \eta \int_{0}^{t} E_{X} & {\left[\operatorname { e x p } \left(-\left\langle Y_{s-}^{(n)}, X_{T-s)}\right)\right.\right.} \\
& \left.\times \int_{\mathbb{R}}\left(Y_{s-}^{(n)}\right)^{2}(x) \int_{1 / n}^{\infty}\left(\exp \left(-\lambda X_{T-s}(x)\right)-1\right) \lambda^{-2 \gamma-1} d \lambda d x\right] d s
\end{aligned}
$$

It is easy to check (see, e.g., Exercise 12 in [2], Chapter 6) that

$$
\begin{aligned}
\frac{1}{2} \eta \int_{0}^{t} E_{X} & {\left[\exp \left(-\left\langle Y_{s-}^{(n)}, X_{T-s}\right\rangle\right)\right.} \\
& \left.\times \int_{\mathbb{R}}\left(Y_{s-}^{(n)}\right)^{2}(x) \int_{1 / n}^{\infty}\left(\exp \left(-\lambda X_{T-s}(x)\right)-1\right) \lambda^{-2 \gamma-1} d \lambda d x\right] d s
\end{aligned}
$$

$$
\begin{aligned}
=\eta \int_{0}^{\tau(t)} E_{X}[\exp (& \left.-\left\langle Y_{\gamma(s)-}^{(n)}, X_{T-\gamma(s)}\right)\right) \int_{\mathbb{R}} \frac{1}{\left\|Y_{\gamma(s)-}^{(n)}\right\|_{2}^{2}}\left(Y_{\gamma(s)-}^{(n)}\right)^{2}(x) \\
& \left.\times \int_{1 / n}^{\infty}\left(\exp \left(-\lambda X_{T-\gamma(s)}(x)\right)-1\right) \lambda^{-2 \gamma-1} d \lambda d x\right] d s \\
=\int_{0}^{\tau(t)} \int_{\mathbb{R}} \int_{\mathbb{R}_{+}} E_{X}[& \exp \left(-\left\langle Y_{\gamma(s)-}^{(n)}, X_{T-\gamma(s)}\right\rangle\right) \\
& \left.\times\left(\exp \left(-\lambda X_{T-\gamma(s)}(x)\right)-1\right)\right] \hat{N}^{(n)}(d \lambda d x d s)
\end{aligned}
$$

Let

$$
\begin{aligned}
M_{t} \equiv \int_{0}^{t} \int_{\mathbb{R}} \int_{\mathbb{R}_{+}} E_{X}[& \exp \left(-\left\langle Y_{\gamma(s)-}^{(n)}, X_{(T-\gamma(s)) \vee 0}\right\rangle\right) \\
\quad & \left.\quad\left(\exp \left(-\lambda X_{(T-\gamma(s)) \vee 0}(x)\right)-1\right)\right] N^{(n)}(d \lambda d x d s) \\
-\int_{0}^{t} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}_{+}} E_{X}[& \exp \left(-\left\langle Y_{\gamma(s)-}^{(n)}, X_{(T-\gamma(s)) \vee 0}\right\rangle\right) \\
& \left.\quad \times\left(\exp \left(-\lambda X_{(T-\gamma(s)) \vee 0}(x)\right)-1\right)\right] \hat{N}^{(n)}(d \lambda d x d s)
\end{aligned}
$$

Then M_{t} is an \mathscr{F}_{t}^{n}-martingale (see [4], Chapter 2.3). Since $\tau(t)$ is not a bounded stopping time, we use truncation arguments. The definition of $\tilde{\gamma}_{k}(t)$ together with (3.17) and (3.20) implies that

$$
\begin{align*}
& E_{X}\left[\exp \left(-\left\langle Y_{\tilde{\gamma}_{k}(t)}^{(n)}, X_{T-\tilde{\gamma}_{k}(t)}\right\rangle\right)\right] \\
& \quad=E_{X}\left[\exp \left(-\left\langle Y_{0}^{(n)}, X_{T}\right\rangle\right)\right] \\
& \quad-E_{X}\left[\eta \int_{0}^{\tilde{\gamma}_{k}(t)} \exp \left(-\left\langle Y_{s-}^{(n)}, X_{T-s}\right\rangle\right)\right. \tag{3.21}\\
& \left.\quad \times \int_{\mathbb{R}}\left(Y_{s-}^{(n)}\right)^{2}(x) g\left(1 / n, X_{T-s}(x)\right) d x d s\right] \\
& \quad+M_{\tau(t) \wedge k} .
\end{align*}
$$

Whereas $\tau(t) \wedge k$ is a bounded stopping time, the optional sampling theorem implies that $M_{\tau(t) \wedge k}$ is an $\mathscr{F}_{\tau(t) \wedge k}^{n}$ martingale. Taking the expectation of both sides of (3.21), we get the desired result.

Lemma 3.4. Let X be as in Lemma 3.3. Then

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left|E\left[\exp \left(-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{T-\tilde{\gamma}_{k_{n}}(t)}\right)\right)\right]-E_{X}\left[\exp \left(-\left\langle Y_{0}^{(n)}, X_{T}\right\rangle\right)\right]\right|=0 \tag{3.22}\\
& \forall 0 \leq t \leq T
\end{align*}
$$

where $k_{n} \equiv \ln n$.

Proof. Let C_{T} denote a constant whose value depends on T and X_{0}. In the following text, C_{T} may change from line to line. Having in mind the simple inequality

$$
0 \leq e^{-\lambda}-1+\lambda \leq \frac{\lambda^{2}}{2} \quad \forall \lambda \geq 0,
$$

we get

$$
\begin{aligned}
& \mid E\left[\eta \int_{0}^{\tilde{\gamma}_{k}(t)} \exp \left(-\left\langle Y_{s-}^{(n)}, X_{T-s}\right\rangle\right) \int_{\mathbb{R}}\left(Y_{s-}^{(n)}\right)^{2}(x)\right. \\
& \left.\times \int_{0+}^{1 / n}\left(\exp \left(-\lambda X_{T-s}(x)\right)-1+\lambda X_{T-s}(x)\right) \lambda^{-2 \gamma-1} d \lambda d x d s\right] \\
& \leq \eta\left|E\left[\int_{0}^{\tilde{y}_{k}(t)} \int_{\mathbb{R}}\left(Y_{s-}^{(n)}\right)^{2}(x) \frac{1}{2} X_{T-s}(x)^{2} \int_{0+}^{1 / n} \lambda^{1-2 \gamma} d \lambda d x d s\right]\right| \\
& \leq C_{T} E_{Y}\left[\int_{0}^{\tilde{\gamma}_{k}(t)} \int_{\mathbb{R}}\left(Y_{s-}^{(n)}\right)^{2}(x) n^{2 \gamma-2} d x d s\right] \\
& \leq C_{T} k n^{2 \gamma-2},
\end{aligned}
$$

where the second inequality follows from (2.1), and the third one follows from the definition of $\tilde{\gamma}_{k}(t)$. We will assume subsequently that $k=k_{n}=\ln n$. Then we have

$$
\begin{align*}
& \left|E\left[\exp \left[-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{T-\tilde{\gamma}_{k_{n}}(t)}\right\rangle\right)\right]-E_{X}\left[\exp \left(-\left\langle Y_{0}^{(n)}, X_{T}\right\rangle\right)\right]\right| \tag{3.23}\\
& \quad \leq C_{T}(\ln n) n^{2 \gamma-2},
\end{align*}
$$

and letting $n \rightarrow \infty$, we are done, since $2 \gamma-2<0$.
Lemma 3.5. Let X be as in Lemma 3.3. Then

$$
\lim _{n \rightarrow \infty}\left|E\left[\exp \left(-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{0}\right)\right)\right]-E_{X}\left[\exp \left(-\left\langle\phi, X_{t}\right\rangle\right)\right]\right|=0 \quad \forall t \geq 0,
$$

where $\phi=Y_{0}^{(n)}$.
Proof. By (3.22) it is sufficient to show that

$$
\lim _{n \rightarrow \infty}\left|E\left[\exp \left(-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{t-\tilde{\gamma}_{k_{n}}(t)}\right\rangle\right)\right]-E\left[\exp \left(-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{0}\right\rangle\right)\right]\right|=0 .
$$

Since $\tilde{\gamma}_{k_{n}}(t) \leq t$, it is obvious that

$$
\begin{aligned}
& \left.E\left[\exp \left(-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{t-\tilde{\gamma}_{k_{n}}(t)}\right\rangle\right)\right]-E\left[\exp -\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{0}\right)\right)\right] \\
& \quad=E\left[\exp \left(-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{t-\tilde{\gamma}_{k_{n}}(t)}\right\rangle\right)-\exp \left(-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{0}\right)\right) ; \tilde{\gamma}_{k_{n}}(t)<t\right] .
\end{aligned}
$$

Therefore,
$\lim _{n \rightarrow \infty}\left|E\left(\exp \left(-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{t-\tilde{\gamma}_{k_{n}}(t)}\right)\right)\right]-E\left[\exp \left(-\left\langle Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}, X_{0}\right\rangle\right)\right]\right| \leq \lim _{n \rightarrow \infty} P\left(\tilde{\gamma}_{k_{n}}(t)<t\right)$.

However, $P\left(\tilde{\gamma}_{k_{n}}(t)<t\right) \leq P\left(T_{n}^{*}>k_{n}\right)$, where, as we remember,

$$
T_{n}^{*}=\inf \left\{t: A_{t}^{(n)}-b_{n} t=0\right\}
$$

and $P\left(T_{n}^{*}<\infty\right)=1$. It is well known that, as n goes to infinity, $A_{t}^{(n)}-b_{n} t$ converges weakly to L, a stable process without negative jumps. It is easy to verify that $T_{n}^{*} \Rightarrow T^{*}$, where

$$
\begin{aligned}
T^{*} & =\inf \left\{t: L_{t}=0\right\}, \\
P\left(T^{*}<\infty\right) & =1 .
\end{aligned}
$$

This implies that $\left\{T_{n}^{*}, n \geq 1\right\}$ is a tight set of \mathbb{R}_{+}-valued random variables. Therefore,

$$
\lim _{n \rightarrow \infty} P\left(T_{n}^{*}>k_{n}\right)=0 .
$$

This completes the proof of the lemma.
Proof of Proposition 2.3. Let us define $\tilde{Y}_{t}^{(n)} \equiv Y_{\tilde{\gamma}_{k_{n}}(t)}^{(n)}$. Then Lemma 3.5 implies that $\left\{\tilde{Y}_{t}^{(n)}, n \geq 1\right\}$ is the sequence of the processes such that for any solution X to M^{ν}, independent of $\tilde{Y}_{t}^{(n)}$, we have

$$
\lim _{n \rightarrow \infty}\left|E\left[\exp \left(-\left\langle\tilde{Y}_{t}^{(n)}, X_{0}\right\rangle\right)\right]-E\left[\exp \left(-\left\langle\phi, X_{t}\right\rangle\right)\right]\right|=0 .
$$

Since $\nu \in \mathscr{P}_{p}\left(C_{\text {rap }}^{+}\right)$and $\phi \in L^{1}(\mathbb{R})_{+}$were arbitrary, we are done.
Remark 3.6. The proof of Theorem 1.1 is now complete (see Remark 2.5).
Conclusion. We believe the method of proving uniqueness in this case was interesting since it allowed us to avoid the difficulties associated with the nonexistence of high moments for the stable processes. In this paper, we did not deal with the weak convergence result for the dual processes, since our concern was only to prove uniqueness for the specific stochastic partial differential equation. We intend to consider the question of stochastic partial differential equations driven by stable noise in a forthcoming paper.

Acknowledgments. I am grateful to Professor E. Perkins for numerous helpful conversations during the preparation of this work. I also thank the referee for comments and suggestions which improved the exposition.

REFERENCES

[1] Dawson, D. (1977). The critical measure diffusion process. Z. Wahr. Verw Gebiete 40 125145.
[2] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
[3] Fleischmann, K. (1988). Critical behavior of some measure-valued processes. Math. Nachr. 135 131-147.
[4] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes. North-H olland, Amsterdam.
[5] Iscoe, I. (1986). A weighted occupation time for a class of measurevalued branching processes. Probab. Theory Related Fields 71 85-116.
[6] Mueller, C. The heat equation with Levy noise. Unpublished manuscript.
[7] Mueller, C. and Perkins, E. (1992). The compact support property for solutions to the heat equation with noise. Probab. Theory Related Fieds 93 325-358.
[8] Mytnik, L. (1996). Superprocesses in random environments. Ann. Probab. 24 1953-1978.
[9] WALSH, J. (1986). An Introduction to Stochastic Partial Differential Equations. LectureNotes in Math. 1180 265-439. Springer, Berlin.

Department of Mathematics
University of British Columbia
Room 121, 1984 Mathematics Road
Vancouver, B.C.
Canada V6T 1Z2
E-mAIL: Imytnik@math.ubc.ca

[^0]: Received March 1997; revised December 1997.
 ${ }^{1}$ Supported in part by a Collaborative Projects Grant from NSERC of Canada.
 AMS 1991 subject classifications. Primary 60H15, 35R60.
 Key words and phrases. Stochastic partial differential equation, martingale problem, duality.

