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WEAK UNIQUENESS FOR THE HEAT EQUATION WITH NOISE1

By Leonid Mytnik

University of British Columbia

The uniqueness in law for the equation ∂Xt/∂t = 1
2�Xt +X

γ
t Ẇ is es-

tablished for 1/2 < γ < 1. The proof uses a duality technique and requires
the construction of an approximating sequence of dual processes.

1. Introduction. In this article we will discuss the problem of uniqueness
for the stochastic partial differential equation (SPDE)

∂Xt

∂t
= 1

2
�Xt +Xγ

t Ẇ	(1.1)

with 1/2 < γ < 1, where Ẇ is two-parameter white noise on �R+ × R�. The
existence of a solution to (1.1) was proved in [7] by tightness arguments. By
itself, (1.1) is a purely formal stochastic partial differential equation. More
rigorously, we can consider the integral equation

Xt�x� = StX0�x� +
∫ t

0

∫
R

pt−s�x− y�Xγ
t �y�W�ds	dy�	(1.2)

where �St	 is the semigroup with generator 1
2�, and pt is the probability

density function corresponding to St.
Before presenting our result, we need to introduce the following notation.

Let MF denote the finite measures on R with weak topology and let B (resp.,
C) denote the bounded (resp., continuous bounded) Borel measurable functions
on R. In general, ifF is a set of functions on R, writeF+ orF+ for nonnegative
functions in F. For µ ∈MF and f ∈ B let

µ�f� = 〈
µ	f

〉 = ∫
fdµ�

We will abbreviate “boundedly pointwise” by bp.
As in [7], we will consider solutions Xt�x� to (1.2) starting from initial

conditions rapidly decreasing in x. Therefore, define

C+
rap =

{
g ∈ C� g ≥ 0	 gp ≡ sup

x
epxg�x� <∞ ∀p > 0

}
�

Note that further we will consider L1 = L1�R� (which obviously contains C+
rap)

as a subset of MF using the correspondence φ�x� �→ φ�x�dx. Let � �C+
rap� be
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the set of probability measures on C+
rap and define

�p�C+
rap� ≡

{
ν ∈ � �C+

rap�� sup
x∈R

1

{∫
C+

rap

φ�x�pν�dφ�
}
<∞

}
	 p > 0�

For any process X defined on some probability space ��	� 	P�, let � X
t ≡

σ�Xs	 s ≤ t��
Now we are ready to present our main result. As our concern is with the

proof of the weak uniqueness of the solution for (1.2), we intend to prove the
following theorem.

Theorem 1.1. Assume that ν ≡ P�X0�−1 ∈ �p�C+
rap� for some p ≥ 2. Then

any two solutions for the martingale problem

Mν




for all φ ∈ � � 1
2��

[
� � 1

2�� is the domain of 1
2�

]
	

Zt�φ� =
〈
Xt	φ

〉− 〈
X0	 φ

〉− ∫ t
0

〈
Xs	

1
2�φ

〉
ds

is an � X
t continuous square integrable martingale such that

Z0�φ� = 0 and

�Z�φ��t =
∫ t

0

〈
X2γ
s 	φ

2〉ds
have the same finite-dimensional distributions, which means that Mν has at
most one solution.

Remark 1.2. Since � � 1
2�� is bp-dense in B, the standard construction al-

lows us to extend Zt to an orthogonal martingale measure �Zt�φ�� t ≥ 0	 ψ ∈
B	. That is, for each ψ ∈ B, Zt�φ� is a continuous square integrable martin-
gale such that

�Z�φ��t =
∫ t

0

〈
X2γ
s 	φ

2〉ds�(1.3)

Let � �Z� denote the set of functions{
φ� �× R+ × R �→ R which is predictable (see [9], page 292) and

E

[∫ t
0

∫
R

φ�·	 s	 y�2Xs�y�2γ dyds

]
<∞

}
�

Proceeding as in [9], notice that for each φ ∈ � �Z� we can define the stochastic
integral

Zt�φ� =
∫ t

0

∫
R

φ�s	 y�dZ�s	 y��(1.4)

The term Zt�φ� is a continuous square integrable martingale with quadratic
variation ∫ t

0

∫
R

φ�s	 y�2Xs�y�2γ dyds�
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The idea behind the proof is based on a duality approach. This approach
suggests proving the existence of a dual process Y with values in some space
E and functions f	g ∈ ��C+

rap ×E� such that

f�Xt	y� −
∫ t

0
g�Xs 	y�ds is an � X

t martingale for each y ∈ E(1.5)

and

f�ψ	Yt� −
∫ t

0
g�ψ	Ys�ds is an � Y

t martingale for each ψ ∈ C+
rap(1.6)

for any solution X to Mν which is independent of Y. Then Theorem 4.4.11 in
[2] (which assumes also some moment conditions) shows that

E
[
f�Xt	Y0�

] = E[
f�X0	Yt�

] ∀t ≥ 0�(1.7)

If �f�·	 y�	 y ∈ E	 is separating on �p�C+
rap� and such a process Y can be

constructed for any Y0 ∈ E, the uniqueness of solutions toMν follows (see [2],
Proposition 4.4.7, for this result in a more general setting).

Let us try to use the above method. By choosing f�φ	ψ� = e−�φ	ψ� and
applying Itô’s formula, we easily obtain that

exp
(−〈
φ	Xt

〉)− ∫ t
0

exp
(−〈
φ	Xs

〉)(−〈 1
2�φ	Xs

〉+ 1
2

〈
φ2	X2γ

s

〉)
ds

is an � X
t martingale for each φ ∈ � � 1

2��+. This together with (1.5) and (1.6)
suggests constructing the process Y such that

exp
(−〈
Yt	ψ

〉)− ∫ t
0

exp
(−〈
Ys	ψ

〉)(−〈 1
2�Ys	ψ

〉+ 1
2

〈
Y2
s 	 ψ

2γ〉)ds(1.8)

is an � Y
t martingale for each ψ ∈ C+

rap. If such a process Y exists and all the
assumptions of Theorem 4.4.11 in [2] are satisfied, then we have

E
[
exp

(−〈
Y0	Xt

〉)] = E[
exp

(−〈
Yt	X0

〉)]
(1.9)

and the uniqueness forMν follows easily. Let us try to give another description
[different from (1.8)] of the dual process Y we are looking for. Let Y be a
solution of the stochastic partial differential equation

Yt�x� = Stφ�x� +
∫ t

0

∫
R

pt−s�x− y�Y1/γ
s �y�L�dy	ds�	 t ≥ 0	(1.10)

where L̇ is a stable noise on R × R+ with nonnegative jumps and Laplace
transform given by

E

[
exp

(
−
∫ t

0

∫
R

φ�s	 x�L�dx	ds�
)]

= E
[
exp

(∫ t
0

∫
R

φ�s	 x�2γ dxds

)]
∀φ ∈ L2γ(

R × �0	 t�)+�
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If such a process Y exists, then Itô’s formula yields the result

M̃




for all ψ ∈ � � 1
2��+

Z̃t�φ� = exp�−〈
Yt	ψ

〉� − ∫ t
0

exp�−〈
Ys	ψ

〉�(−〈
Ys	

1
2�ψ

〉+ 1
2

〈
Y2
s 	 ψ

2γ〉)ds
is an � Y

t local martingale.

Observe that M̃ is just a weak form of (1.8), that is, in M̃we do not requireY to
be in � � 1

2��+ and Z̃ to be a martingale. It can be conjectured that the existence
of the process Y satisfying local martingale problem M̃ or SPDE (1.10) is
sufficient to verify (1.9). Then, the “only” problem is the existence of Y solving
SPDE (1.10). Note that if the exponent of the noise is less than 1, then (1.10)
belongs to the class of SPDEs that was studied by Mueller [6]. However, in our
case, the exponent of L equals 2γ > 1 and the existence of a solution to (1.10)
is unresolved.

The approach of an approximating sequence of dual processes which was
introduced in [8] allows us to avoid the proof of the existence of a solution
to (1.10) and helps us in this case. The main problem is to choose the right
approximating sequence of processes since when we treat convergence to pro-
cesses driven by a stable noise, high moments may diverge. In Section 3 we
will construct the sequence of processes �Y�n�	 which satisfies the local mar-
tingale problem

M̃�n�




for all ψ ∈ � � 1
2��+,

Z̃
�n�
t �φ� = exp�−�Y�n�

t 	 ψ�� −
∫ t

0
exp�−�Y�n�

s 	 ψ��

×
(
−〈
Ys	

1
2�ψ

〉+ 1
2η

∫
R
d

∫ ∞

1/n

(
exp�−λφ�x�� − 1 + λφ�x�)

× λ−2γ−1 dλY
�n�
s �x�2 dx

)
ds

is an � Y�n�
t local martingale,

where η ≡ �2γ�2γ − 1��/�'�2 − 2γ��. Observe that y2γ = η
∫∞

0+�e−λy − 1 +
λy�λ−2γ−1 dλ. Hence we expect that the above local martingale problem should
converge to the local martingale problem M̃ as n→ ∞. For each n, the process
�Y�n�	 which satisfies M̃�n� will be defined in Section 3 as a solution of some
SPDE driven by a point process without jumps smaller than 1/n. We do not
give a precise definition of this SPDE here as this would require a significant
amount of notation.

The rest of the paper is organized as follows. The basic tools needed for the
implementation of the duality technique in our particular case are introduced
in Section 2. Some simple properties of any solution to Mν are also presented



972 L. MYTNIK

in Section 2. Section 3 contains the construction of the approximating sequence
of dual processes and, by means of this sequence, we prove Theorem 1.1.

2. Properties of solutions to M � and duality tools. We start with a
moment condition result.

Lemma 2.1. Assume that p ≥ 2 and ν ∈ �p�C+
rap�. Let X be any solution of

the martingale problem for Mν. Then for each T > 0 we have

sup
t≤T

sup
x∈R

E �X�t	 x�p� <∞�(2.1)

The proof of Lemma 2.1 is omitted, since it is standard (e.g., the reader may
adapt the arguments from the proof of Proposition 4.2 in [7]).

Our goal is to prove that any two solutions to Mν have the same finite-
dimensional distributions. It is well known that as we deal with the solutions
of the martingale problem, the problem can be transformed into the simpler
one: to verify uniqueness of the one-dimensional distributions (see [2], Theo-
rem 4.2). However, our attempt to use Theorem 4.2 in [2] directly met with
some technical difficulties that we will try to describe below. Suppose that X
is any solution to Mν and

f�Xt� −
∫ t

0
g�Xs�ds

is an � X
t martingale. Then g will be an unbounded function on C+

rap for any
usual function f. [For example, we can take fφ�X� = exp �− �X	φ�	 for some
φ ∈ � � 1

2��+, and then the corresponding g, found by Itô’s formula, is un-
bounded.] Hence we cannot use Theorem 4.2 in ([2], Chapter 4) since it re-
quires that all functions be bounded. However, a careful examination of the
proof of this theorem leads us to the conclusion that this condition is not
essential. Therefore, we can present the following lemma (which is just the
reformulation of Theorem 4.2 in [2], Chapter 4, for our case):

Lemma 2.2. Let p ≥ 2. Suppose that for each ν ∈ �p�C+
rap� any two solu-

tionsX1,X2 of the martingale problem forMν have the same one-dimensional
distributions. That is, for each t > 0,

P
{
X1
t ∈ '

} = P {
X2
t ∈ '

}
	 ' ∈ �

(
C+

rap

)
�(2.2)

Then any two solutions of the martingale problem for Mν have the same finite-
dimensional distributions (i.e., uniqueness holds).

Proof. The proof is completely analogous to the proof of Ethier and
Kurtz’s Theorem 4.2 in ([2], Chapter 4). The only delicate point is that, at
some point, we need the fact that if P�X0�−1 ∈ �p�C+

rap�, then for each time
t > 0, P�Xt�−1 is also in �p�C+

rap�. Lemma 2.1 assures that this is the case. ✷
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As a consequence of the previous lemma, we need to verify that for each
ν ∈ �p�C+

rap� any two solutions to Mν have the same one-dimensional distri-
butions. One approach for doing this involves the notion of an approximating
sequence of dual processes which was introduced in [8]. Section 3 is devoted to
the proof of the following proposition, which establishes the existence of such
a sequence of processes in our case.

Proposition 2.3. For each ν ∈ �p�C+
rap� and each φ ∈ L1�R�+, there exists

a sequence of processes �Y�n�	 taking values in MF such that Y
�n�
0 = φ and

E
[
exp

[−〈
φ	Xt

〉]] = lim
n→∞E

[
exp

[−�Y�n�
t 	X0�

]]
(2.3)

for every t ≥ 0 and each solution X to Mν which is independent of Y�n�.

Remark 2.4. The motivation for the construction of Y�n� was briefly dis-
cussed in the Introduction.

Remark 2.5. Note that Proposition 2.3 gives the unique characterization
of one-dimensional distributions of solutions toMν via the Laplace transform.
Therefore, Theorem 1.1 follows immediately from Proposition 2.3 (cf. [8], The-
orem 1.7).

Define

C
1	2�R+ × R� =

{
ψ ∈ C�R+ × R�� ∂

k

∂tk
∂i

∂xi
ψ�t	 x� ∈ C�R+ × R�	

k = 0	1	 i = 0	1	2
}
�

The next lemma transforms the martingale problem Mν into the martingale
problem in the “exponential form.”

Lemma 2.6. Assume that p ≥ 2 and ν ∈ �p�C+
rap�. Let X be any solution

of the martingale problem for Mν. Let ψ∈C1	2�R+ × R�+ and

∫ T
0

∫
R

ψ�s	 x�2 dxds <∞ ∀T > 0�(2.4)

Then

exp
(−〈
Xt	ψt

〉)

−
∫ t

0
exp

(−〈
Xs	ψs

〉)(−
〈
Xs

1
2
�ψs

〉
+ 1

2

〈
X2γ
s 	 ψ

2
s

〉−
〈
Xs

∂

∂s
ψs

〉)
ds

(2.5)

is an � X
t martingale.
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Proof. By the usual application of Itô’s formula we get that

exp
(−〈
Xt	ψt

〉)
= exp

(−〈
X0	 ψ0

〉)

+
∫ t

0
exp

(−〈
Xs	ψs

〉)(−
〈
Xs	

1
2
�ψs

〉
+ 1

2

〈
X2γ
s 	 ψ

2
s

〉−
〈
Xs

∂

∂s
ψs

〉)
ds

+
∫ t

0
exp

(−〈
Xs	ψs

〉)
dZs�ψs�	

(2.6)

where Zs�ψs� =
∫ t

0

∫
R
ψ�s	 y�Z�ds	dy� is an � X

t square integrable martingale
[see Remark 1.2: the fact that ψ ∈ � �Z� follows from Lemma 2.1 combined
with condition (2.4)].

The term exp�−〈
Xs	ψs

〉� is bounded and Z.�ψ.� is a square integrable mar-
tingale; therefore, we get that the last term in (2.6) is also a martingale. This
completes the proof of the lemma. ✷

3. Dual approximation and proof of Theorem 1.1. As we have already
mentioned above, to prove Theorem 1.1 it suffices to prove Proposition 2.3 so
that we need to construct some approximating sequence of processes. The
motivation for our construction was briefly discussed in the Introduction.

Let us introduce further notation. For each m ∈ MF and n ≥ 1, V�n�
t �m�

denotes the unique weak nonnegative solution of the nonlinear equation

vt = Stm−
∫ t

0
St−s

( 1
2bnv

2
s

)
ds	(3.1)

where

bn =
2γ

'�2 − 2γ�n
2γ−1�

In the following we fix n ≥ 1. Proposition A.2 in [3] shows that for each m ∈
MF,

V
�n�
t �m� ∈ L2�R� ∀t > 0	

V.�n��m� ∈ L2
(�0	T� × R

) ∀T > 0	

w− limt↓0V
�n�
t �m� =m�

Integrating (3.1) over the space variable, we obtain∥∥∥V�n�
t �m�

∥∥∥
1
=m�1� − 1

2bn

∫ t
0

∥∥∥V�n�
s �m�

∥∥∥2

2
ds	(3.2)

where �·�1 and �·�2 denote the norms in L1�R� and L2�R�, respectively. More-
over, adapting the arguments used in the proof of Theorem 3.1 in [1], we
can get

lim
t→∞

∥∥∥V�n�
t �m�

∥∥∥
1
= 0 ∀m ∈MF�(3.3)
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Equations (3.2) and (3.3) imply that
∫ ∞

0

∥∥V�n�
t �m�∥∥2

2 dt =
2
bn
m�1� ∀m ∈MF�(3.4)

In the following text, we adopt the convention V�n�
0 �m� =m.

Let ��	� 	P� be a probability space which is sufficiently rich to contain all
the processes and random variables defined below.

Lemma 3.1. Assume that p ≥ 2 and ν ∈ �p�C+
rap�. Let X be any solution

of the martingale problem for Mν defined on ��	� 	P�. Then

EX
[
exp

(−〈
V

�n�
t �m�	XT−t

〉)]
= EX

[
exp

(−〈
V

�n�
0 �m�	XT

〉)]

+EX
[∫ t

0+
exp

(−〈
V

�n�
s �m�	XT−s

〉)

× 1
2

(〈
bn�V�n�

s �m��2	XT−s
〉− 〈�V�n�

s �m��2	X
2γ
T−s

〉)
ds

]
(3.5)

for each m ∈MF and 0 ≤ t ≤ T.

Proof. For each m ∈MF, there exists �mk	 ∈MF such that

mk�dx� = φk�x�dx (mk is absolutely continuous with respect

to Lebesgue measure)	

φk ∈ � � 1
2�� ∩C+

rap ∀k ≥ 1	

mk ⇒m in MF	as k→ ∞�

Theorem A in [5] implies that, in fact, V�n�
t �mk� is the strong solution of

∂υt
∂t

= 1
2
�vt −

1
2
bnv

2
t 	 t > 0	

v0 = φk�
(3.6)

In this case the function ψ�s	 x� ≡ V
�n�
T−s�mk��x� satisfies the conditions of

Lemma 2.6, which immediately yields

EX
[
exp

(−〈
V

�n�
t �mk�	XT−t

〉)]
= EX

[
exp

(−〈
V

�n�
0 �mk�	XT

〉)]

+EX
[∫ t

0
exp

(−〈
V

�n�
s �mk�	XT−s

〉)

× 1
2

(〈
bn�V�n�

s �mk��2	XT−s
〉− 〈�V�n�

s �mk��2	X
2γ
T−s

〉)
ds

]
(3.7)
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for each 0 ≤ t ≤ T. Let k → ∞. From Proposition A.2 in [3] we know that
V.�n��mk� → V.�n��m� in L2��0	T� × R�. The variable X takes values in C+

rap.
Hence we get

lim
k→∞

〈
V

�n�
t �mk�	Xq

T−t
〉 = 〈

V
�n�
t �m�	Xq

T−t
〉

a.s.	 ∀0 ≤ t ≤ T	 ∀1 ≤ q < 2�
(3.8)

Now, the result is immediate from (3.8), (3.7) and the uniform integrability
condition from Lemma 2.1. ✷

Let us construct the approximating sequence of dual processes �Y�n�	 as
follows.

Let �T̃n	 i	 i = 1	2	 � � �	 be independent identically distributed exponen-
tial random variables with parameter κn = n2γ�2γ − 1�/�'�2 − 2γ�� and let
�Zn	 i	 i = 1	2	 � � �	 be independent R+-valued random variables with the dis-
tributions given by

P�Zn	 i ≥ b� =
∫∞
b∨1/n λ

−2γ−1 dλ∫∞
1/n λ

−2γ−1 dλ
∀i ≥ 1�

Note that

E
[
Zn	 i

] = 2γ
n�2γ − 1� �(3.9)

We suppose that �T̃n	 i	 i = 1	2	 � � �	 and �Zn	 i	 i = 1	2	 � � �	 are mutually
independent.

Fix arbitrary φ ∈ L1�R�+. Let A�n�
t be a Levy pure jump process with jumps

�Zn	 i	 i = 1	2	 � � �	 and corresponding times of jumps given by

Tn	 i =
i∑
k=1

T̃n	 k ∀j ≥ 1�(3.10)

Assume A�n�
0 = �φ	1� and define � A�n�

t ≡ σ�A�n�
s 	 s ≤ t	.

The random variables �Tn	 i	 i = 1	2	 � � �	 and �Zn	 i	 i = 1	2	 � � �	 deter-
mine the times and heights of the jumps of the process A�n�, and, as we will
see later, they will also control the times and “masses” of the jumps of the
desired process Y�n�. However, for Y�n� we will also need to determine the
spatial positions of the jumps. The positions of the jumps will be controlled
by random variables �Un	 i	 i = 1	2	 � � �	 defined later. For their definition the
following notation is important.

Let �G�f	 ·�	 f ∈ L2
+�R�	 be the collection of probability measures on R

such that

G�f	A� =
∫
A f

2�x�dx
�f�2

2

∀A ⊂ ��R��
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Now we are ready to define the MF-valued process Y�n� iteratively as fol-
lows. Let

Y
�n�
0 �dx� = φ�x�dx�

Define the time change γ�t� and the σ-algebra �̃ n
1 :

γ�t� = inf
{
s�

∫ s
0+

1
2

∥∥∥∥V�n�
u �φ�

∥∥∥∥
2

2
du > t

}
	 0 ≤ t ≤ Tn	1	

�̃ n
1 = � A�n�

Tn	1
∨ σ�Y�n�

0 ��
The time change γ�t� depends on n, but to simplify the notation we do not
make this dependence explicit. We use the convention inf � = ∞. Hence, we
can see that γ�Tn	1� = ∞ if and only if

∫∞
0

1
2�V

�n�
u �φ��2

2 du = Y
�n�
0 �1�/bn ≤

Tn	1.
Let

Y
�n�
t = V�n�

t �Y�n�
0 �	 0 ≤ t < γ�Tn	1�	

Y
�n�
γ�Tn	1� = Y

�n�
γ�Tn	1�− +Zn	1δUn	1 if γ�Tn	1� <∞	

(3.11)

where

P�Un	1 ∈ ·�̃ n
1 � = P�Un	1 ∈ ·Y�n�

γ�Tn	1�−� = G
(
Y

�n�
γ�Tn	1�−	 ·

)
�

If γ�Tn	1� = ∞, the construction of Y�n� is finished since Y�n� is defined on the
interval �0	∞�. Otherwise, we proceed in the same way until the first time
when γ�Tn	k� becomes infinite. To be more precise, for each k ≥ 1, let

�̃ n
k+1 = � A�n�

Tn	k+1
∨ σ�Y�n�

0 � ∨ σ�Un	j	 j ≤ k�	

γ�t� = inf
{
s� γ�Tn	k� +

∫ s−γ�Tn	k�
0+

1
2

∥∥V�n�
u

(
Y

�n�
γ�Tn	k�

)∥∥2
2 du > t

}
	

Tn	k ≤ t ≤ Tn	k+1	

Y
�n�
t = V�n�

t−γ�Tn	k�
(
Y

�n�
γ�Tn	k�

)
	 γ�Tn	k� ≤ t < γ

(
Tn	k+1

)
	

Y
�n�
γ�Tn	k+1� = Y

�n�
γ�Tn	k+1�− +Zn	k+1δUn	k+1

ifγ�Tn	k+1� <∞	

where

P�Un	k+1 ∈ ·�̃ n
k+1� = P�Un	k+1 ∈ ·Y�n�

γ�Tn	k+1�−� = G
(
Y

�n�
γ�Tn	k+1�−	 ·

)
�

Note that, conditioning on �̃ n
k , the random variables Un	k+1 and Zn	k+1 are

independent. It is clear from the definition of γ�t� and Y�n� that

γ�t� = inf
{
s�

∫ s
0

∥∥Y�n�
u−

∥∥2
2 du > t

}
�
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Let T∗
n ≡ inf�t� γ�t� = ∞	. From the construction and (3.3) it follows that

Y
�n�
γ�T∗

n��1� = Y
�n�
∞ �1� = 0. On the other hand, we can use our construction

and (3.2) to see that
〈
Y

�n�
γ�t�	1

〉 = A�n�
t − bnt	 t ≤ T∗

n�(3.12)

From (3.9) we obtain that E
[
Zn	 i

]
κn = bn and it follows easily that bnt is the

compensator of A�n�
t . Also Y�n�

t �1� > 0 for all t > 0. This, together with (3.12),
yields that, in fact,

T∗
n = inf

{
t� A�n�

t − bnt = 0
}
	(3.13)

P�T∗
n <∞� = 1�(3.14)

Define the point process ([4], I.9)

p�n�� Dp�n� ⊂ �0	∞� �→ R+ × R	

with countable domain Dp�n� given by

Dp�n� ≡ {
Tn	1	Tn	2	 � � � 	Tn	k	 � � �

} ∩ �0	T∗
n�

and

p�n� (Tn	k) = (
Zn	k	Un	k

)
	 ∀k ≥ 1	

where �Zn	k	Un	k� are defined above.
The corresponding counting measure is defined as

N�n��t	B� =N�n� ��0	 t� ×B� ≡ #
{
s ∈ Dp�n� ! s ≤ t	 p�n��s� ∈ B}

∀t > 0	 ∀B ∈ � �R+ × R� �
Let � n

t ≡ ⋂
ε>0 σ�N�n��s	B�; s ≤ t+ ε, B ∈ � �R+ × R�	 and recall that

η = 2γ�2γ − 1�
'�2 − 2γ� �

Lemma 3.2. The compensator of N�n� is

N̂�n��t	B1 ×B2� = η
∫ t∧T∗

n

0

∫
B1

∫
B2
Y

�n�
γ�s�−�x�21�λ > n−1�λ−2γ−1 dxdλ∥∥∥Y�n�

γ�s�−
∥∥∥2

2

ds�

Proof. For all B ∈ � �R+ × R� we have

E
[
N�n��t	B�

]
≤ E

[
N�n��t	R+ × R�

]
= κnt <∞	(3.15)
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which means thatN�n��t	B1×B2� is an adapted integrable increasing process.
By the Doob–Meyer theorem, the compensator N̂�n��t	B1 ×B2� of this process
exists, and it may be found as (see [2], Chapter 2 , proof of Theorem 5.1)

N̂�n��t	B1 ×B2�

=P-lim
δ↓0

∫ t
0

1
δ
E
[
N�n��s+ δ	B1 ×B2�−N�n��s	B1 ×B2�

∣∣� n
s

]
ds�

(3.16)

Now, use the definition of the point process p�n� to handle the above limit and
get the desired result. ✷

From the previous lemma and the construction of Y�n�	 it can be verified
that Y�n�, in fact, satisfies the local martingale problem M̃ from the Introduc-
tion. However, we omit the derivation of this fact since we can prove Proposi-
tion 2.3 without using it directly.

Define

τ�t� ≡ 1
2

∫ t
0

∥∥∥Y�n�
s−

∥∥∥2

2
ds	

γ̃k�t� ≡ γ�k� ∧ t ∀k ≥ 1	

g�u	y� ≡
∫ u

0+

(
e−λy − 1 + λy)λ−2γ−1 dλ ∀u	y ≥ 0	

and check that

τ
(
γ̃k�t�

) = τ�t� ∧ k ∀k ≥ 1�(3.17)

Lemma 3.3. Assume that p ≥ 2 and ν ∈ �p�C+
rap�. Let X be any solution of

the martingale problem for Mν, independent of Y�n�. Then

E
[
exp

(−〈
Y

�n�
γ̃k�t�	XT−γ̃k�t�

〉)]
= E[

exp
(−〈
Y

�n�
0 	XT

〉)]

− 1
2E

[
η
∫ γ̃k�t�

0
exp

(−〈
Y

�n�
s− 	XT−s

〉)

×
∫

R

(
Y

�n�
s−

)2�x�g(1/n	XT−s�x�
)
dxds

]
∀0 ≤ t ≤ T�

(3.18)

Proof. By Lemma 3.1 we obtain that

EX
[
exp

(−〈
Y

�n�
γ�Tn	k+1�−	XT−γ�Tn	k+1�

〉)]
= EX

[
exp

(−〈
Y

�n�
γ�Tn	k�	XT−γ�Tn	k�

〉)]

+ 1
2EX

[∫ γ�Tn	k+1�

γ�Tn	k�+
exp

(−〈
Y

�n�
s− 	XT−s

〉)

× (〈
bn�Y�n�

s− �2	XT−s
〉− 〈�Y�n�

s− �2	X
2γ
T−s

〉)
ds

]
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for each 0 ≤ γ�Tn	k+1� ≤ T. (X. is continuous; hence Xu− =Xu for all u > 0.)
This together with the definition of Y�n� implies that

EX
[
exp

(−〈
Y

�n�
t 	XT−t

〉)]
= EX

[
exp

(−〈
Y

�n�
0 	XT

〉)]

+ 1
2EX

[∫ t
0

exp
(−〈
Y

�n�
s− 	XT−s

〉)(〈
bn�Y�n�

s− �2	XT−s
〉

− 〈�Y�n�
s− �2	X

2γ
T−s

〉)
ds

]

+
∫ τ�t�

0

∫
R

∫
R+
EX

[
exp

(−〈
Y

�n�
γ�s�−	XT−γ�s�

〉)](
exp

(−λXT−γ�s��x�
)− 1

)]

×N�n��dλdxds�

(3.19)

for 0 ≤ t ≤ T. Note that

y2γ = η
∫ ∞

0+

(
e−λy − 1 + λy)λ−2γ−1 dλ

= ηg �1/n	y� + η
∫ ∞

1/n

(
e−λy − 1

)
λ−2γ−1 dλ+ bny ∀y ≥ 0�

Therefore

EX
[
exp

(−〈
Y

�n�
t 	XT−t

〉)]
= EX

[
exp�−〈

Y
�n�
0 	XT

〉)]

− 1
2EX

[
η
∫ t

0
exp

(−〈
Y

�n�
s− 	XT−s

〉) ∫
R

(
Y

�n�
s−

)2�x�g �1/n	XT−s�x�� dxds
]

+
∫ τ�t�

0

∫
R

∫
R+
EX

[
exp

(−〈
Y

�n�
γ�s�−	XT−γ�s�

〉)](
exp

(−λXT−γ�s��x�
)− 1

)]

×N�n��dλdxds�

− 1
2η

∫ t
0
EX

[
exp

(−〈
Y

�n�
s− 	XT−s

〉)

×
∫

R

(
Y

�n�
s−

)2�x�
∫ ∞

1/n

(
exp

(−λXT−s�x�
)−1

)
λ−2γ−1 dλdx

]
ds�

(3.20)

It is easy to check (see, e.g., Exercise 12 in [2], Chapter 6) that

1
2
η
∫ t

0
EX

[
exp

(−〈
Y

�n�
s− 	XT−s

〉)

×
∫

R

(
Y

�n�
s−

)2�x�
∫ ∞

1/n

(
exp

(−λXT−s�x�
)− 1

)
λ−2γ−1 dλdx

]
ds
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= η
∫ τ�t�

0
EX

[
exp

(−〈
Y

�n�
γ�s�−	XT−γ�s�

〉) ∫
R

1

�Y�n�
γ�s�−�2

2

(
Y

�n�
γ�s�−

)2�x�

×
∫ ∞

1/n

(
exp

(−λXT−γ�s��x�
)− 1

)
λ−2γ−1 dλdx

]
ds

=
∫ τ�t�

0

∫
R

∫
R+
EX

[
exp

(−〈
Y

�n�
γ�s�−	XT−γ�s�

〉)

× (
exp

(−λXT−γ�s��x�
)− 1

)]
N̂�n��dλdxds��

Let

Mt ≡
∫ t

0

∫
R

∫
R+
EX

[
exp

(−〈
Y

�n�
γ�s�−	X�T−γ�s��∨0

〉)

× (
exp

(−λX�T−γ�s��∨0�x�
)− 1

)]
N�n��dλdxds�

−
∫ t

0

∫
R

∫
R+
EX

[
exp

(−〈
Y

�n�
γ�s�−	X�T−γ�s��∨0

〉)

× (
exp

(−λX�T−γ�s��∨0�x�
)− 1

)]
N̂�n��dλdxds��

ThenMt is an � n
t -martingale (see [4], Chapter 2.3). Since τ�t� is not a bounded

stopping time, we use truncation arguments. The definition of γ̃k�t� together
with (3.17) and (3.20) implies that

EX
[
exp

(−〈
Y

�n�
γ̃k�t�	XT−γ̃k�t�

〉)]
= EX

[
exp

(−〈
Y

�n�
0 	XT

〉)]

−EX
[
η
∫ γ̃k�t�

0
exp

(−〈
Y

�n�
s− 	XT−s

〉)

×
∫

R

(
Y

�n�
s−

)2�x�g(1/n	XT−s�x�
)
dxds

]

+Mτ�t�∧k�

(3.21)

Whereas τ�t� ∧ k is a bounded stopping time, the optional sampling theorem
implies that Mτ�t�∧k is an � n

τ�t�∧k martingale. Taking the expectation of both
sides of (3.21), we get the desired result. ✷

Lemma 3.4. Let X be as in Lemma 3.3. Then

lim
n→∞

∣∣E[
exp

(−〈
Y

�n�
γ̃kn �t�	XT−γ̃kn �t�

〉)]−EX[exp
(−〈
Y

�n�
0 	XT

〉)]∣∣ = 0

∀0 ≤ t ≤ T	
(3.22)

where kn ≡ lnn.
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Proof. Let CT denote a constant whose value depends on T and X0. In
the following text, CT may change from line to line. Having in mind the simple
inequality

0 ≤ e−λ − 1 + λ ≤ λ
2

2
∀λ ≥ 0	

we get∣∣∣∣E
[
η
∫ γ̃k�t�

0
exp

(−〈
Y

�n�
s− 	XT−s

〉) ∫
R

(
Y

�n�
s−

)2�x�

×
∫ 1/n

0+

(
exp

(−λXT−s�x�
)− 1 + λXT−s�x�

)
λ−2γ−1 dλdxds

]∣∣∣∣
≤ η

∣∣∣∣E
[∫ γ̃k�t�

0

∫
R

(
Y

�n�
s−

)2�x� 1
2XT−s�x�2

∫ 1/n

0+
λ1−2γ dλdxds

]∣∣∣∣
≤ CTEY

[∫ γ̃k�t�
0

∫
R

(
Y

�n�
s−

)2�x�n2γ−2 dxds

]

≤ CTkn2γ−2	

where the second inequality follows from (2.1), and the third one follows from
the definition of γ̃k�t�. We will assume subsequently that k = kn = lnn. Then
we have ∣∣E[

exp
[−〈
Y

�n�
γ̃kn �t�	XT−γ̃kn �t�

〉)]−EX[exp
(−〈
Y

�n�
0 	XT

〉)]∣∣
≤ CT�lnn�n2γ−2	

(3.23)

and letting n→ ∞, we are done, since 2γ − 2 < 0. ✷

Lemma 3.5. Let X be as in Lemma 3.3. Then

lim
n→∞

∣∣E[
exp

(−〈
Y

�n�
γ̃kn �t�	X0

〉)]−EX[exp
(−〈
φ	Xt

〉)]∣∣ = 0 ∀t ≥ 0	

where φ = Y�n�
0 .

Proof. By (3.22) it is sufficient to show that

lim
n→∞

∣∣E[
exp

(−〈
Y

�n�
γ̃kn �t�	Xt−γ̃kn �t�

〉)]−E[
exp

(−〈
Y

�n�
γ̃kn �t�	X0

〉)]∣∣ = 0�

Since γ̃kn�t� ≤ t, it is obvious that

E
[
exp

(−〈
Y

�n�
γ̃kn �t�	Xt−γ̃kn �t�

〉)]−E[
exp−〈

Y
�n�
γ̃kn �t�	X0

〉)]

= E[
exp

(−〈
Y

�n�
γ̃kn �t�	Xt−γ̃kn �t�

〉)− exp
(−〈
Y

�n�
γ̃kn �t�	X0

〉)! γ̃kn�t� < t]�
Therefore,

lim
n→∞

∣∣E(
exp

(−〈
Y

�n�
γ̃kn �t�	Xt−γ̃kn �t�

〉)]−E[
exp

(−〈
Y

�n�
γ̃kn �t�	X0

〉)]∣∣ ≤ lim
n→∞P�γ̃kn�t� < t��
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However, P�γ̃kn�t� < t� ≤ P�T∗
n > kn�	 where, as we remember,

T∗
n = inf�t� A�n�

t − bnt = 0	

and P�T∗
n < ∞� = 1. It is well known that, as n goes to infinity, A�n�

t − bnt
converges weakly to L, a stable process without negative jumps. It is easy to
verify that T∗

n ⇒ T∗	 where

T∗ = inf �t� Lt = 0		
P�T∗ <∞� = 1�

This implies that �T∗
n	 n ≥ 1	 is a tight set of R+-valued random variables.

Therefore,

lim
n→∞P�T

∗
n > kn� = 0�

This completes the proof of the lemma. ✷

Proof of Proposition 2.3. Let us define Ỹ�n�
t ≡ Y�n�

γ̃kn �t�. Then Lemma 3.5
implies that �Ỹ�n�

t 	 n ≥ 1	 is the sequence of the processes such that for any
solution X to Mν, independent of Ỹ�n�

t 	 we have

lim
n→∞

∣∣E[
exp

(−〈
Ỹ

�n�
t 	X0

〉)]−E[
exp

(−〈
φ	Xt

〉)]∣∣ = 0�

Since ν ∈ �p�C+
rap� and φ ∈ L1�R�+ were arbitrary, we are done. ✷

Remark 3.6. The proof of Theorem 1.1 is now complete (see Remark 2.5).

Conclusion. We believe the method of proving uniqueness in this case
was interesting since it allowed us to avoid the difficulties associated with
the nonexistence of high moments for the stable processes. In this paper, we
did not deal with the weak convergence result for the dual processes, since
our concern was only to prove uniqueness for the specific stochastic partial
differential equation. We intend to consider the question of stochastic partial
differential equations driven by stable noise in a forthcoming paper.
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