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ON THE BLOCKWISE BOOTSTRAP FOR EMPIRICAL
PROCESSES FOR STATIONARY SEQUENCES

By Magda Peligrad1

University of Cincinnati

In this paper, we study the weak convergence to an appropriate Gauss-
ian process of the empirical process of the block-based bootstrap estimator
proposed by Künsch for stationary sequences. The classes of processes in-
vestigated are weak dependent and associated sequences. We also prove
that, differently from the independent situation, the bootstrapped estima-
tor of the mean of certain dependent sequences satisfies the central limit
theorem while the mean of the original sequence does not.

0. Introduction. Efron’s bootstrap (1979) provides a very important non-
parametric technique to study the sampling distribution of statistics. Bickel
and Freedman (1981) proved that the bootstrap also works for an empirical
process in the i.i.d. case. In his Remark 2.1, Singh (1981) pointed out that,
for dependent random variables, the variance of the bootstrap estimator of
the mean does not have the same asymptotic behavior as the variance of
the mean itself and therefore the inconsistencies appear. In order to compen-
sate for this deficiency, Künsch (1989) and Liu and Singh (1992) proposed a
block bootstrap to estimate the sample distribution of a statistic for general
stationary observations. The technique involves the selection of k blocks of
l consecutive observations with replacement from the blocks of observations
�Xj+1�Xj+2� � � � �Xj+l�, j = 0�1� � � � � n− l.

Several recent papers studied the consistency of the bootstrapped estimator
for the sample mean or for empirical processes under mixing types of depen-
dence. Shao and Yu (1993) established several central limit theorems a.s. con-
ditionally on the observations for the bootstrap estimator of the sample mean
for several classes of mixing sequences. In other recent papers, it was shown
that, conditionally on the observations, the bootstrapped empirical process of
mixing sequences converges weakly to a corresponding Gaussian process, al-
most surely. In papers by Naik-Nimbalkar and Rajarshi (1994) and Bühlmann
(1994), the sequences considered are strongly mixing at a polynomial rate. In
Shao and Yu (1992), the problem was solved for ρ-mixing sequences having a
logarithmic rate.

With a view toward applications, the aim of this paper is to formulate gen-
eral theorems for the weak convergence of the bootstrapped estimator of the
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empirical processes to a Gaussian process, almost surely given the observa-
tions. Theorem 2.2 gives sufficient conditions for the validity of such a result
in terms of moments, easy to verify. By verifying the conditions of Theorem 2.2
for strongly mixing sequences, we obtain the weak convergence to a Brownian
bridge of the bootstrapped empirical process under a mixing rate which sig-
nificantly improves that one used in Naik-Nimbalkar and Rajarshi (1994) and
also Bühlmann (1994). We also establish the validity of the blockwise boot-
strapped estimator for an empirical process of an associated sequence. The
limiting distribution obtained is that expected one, the same Brownian bridge
to which the empirical process of strongly mixing sequences or of associated
sequences converges, defined in Billingsley [(1968), pages 200–201]. It comes
somewhat as a surprise to discover that the sufficient conditions we use for
convergence of the blockwise bootstrapped estimator of the empirical process
are weaker than those used in establishing the convergence of an empirical
process for strong mixing or associated sequences [see Philipp (1986), Shao
(1986), Yu (1993)].

However, maybe more surprising is the following result contained also in
this paper. In the independent case, Giné and Zinn (1989) proved that the cen-
tral limit theorem (CLT) for the bootstrapped estimator for the sample mean
necessarily implies that the sample mean itself satisfies the central limit the-
orem. Here we shall prove that the situation is different in the dependent
case, and we shall point out a class of examples (Remark 2.1) for which the
blockwise bootstrapped estimator of the mean satisfies the central limit the-
orem, its variance is asymptotically equivalent to the variance of the sample
mean, but the sample mean itself fails to satisfy the CLT. For such dependent
situations, the bootstrapped estimator for the mean appears to be even more
important than for the independent case. On one hand, it allows us to con-
struct confidence intervals for the sample mean, and on the other hand, its
variance provides a consistent estimator of the variance of the sample mean,
a quantity very difficult to estimate otherwise.

1. Notations. Let �Xn�n∈Z be a stationary sequence of random variables
with common continuous distribution function F�t� = P�X0 ≤ t� on a proba-
bility space �
�� �P�. Assume 0 ≤X0 ≤ 1, which can always be arranged by
a transformation. The empirical process is defined as

Bn�t� =
√
n�Fn�t� −F�t���

where

Fn�t� =
1
n

n∑
i=1

I�Xi ≤ t�(1.1)

is the empirical distribution function of �Xn�. Under certain regularity con-
ditions [see Billingsley (1968), Deo (1973), Philipp (1986), Shao (1986), Yu
(1993)], we have that

Bn�t� →� B�t�
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in the spaces D�0�1
 endowed with Skorohod topology where B is a Gaussian
process specified by EB�t� = 0 for every t, and for every t and s,

cov�B�s��B�t�� =
∞∑

k=−∞
cov I�X0 ≤ s�Xk ≤ t��(1.2)

In addition,

lim
n→∞ cov�Bn�s��Bn�t�� = cov�B�s��B�t���(1.3)

One can see from (1.2) and (1.3) that the variance of Bn�t� is a rather compli-
cated quantity and, in order to estimate it, a consistent bootstrapping proce-
dure is desirable.

According to Künsch (1989) and further modifications by Politis and Ro-
mano (1992) and independently by Shao and Yu (1993), the block-based boot-
strap estimators of the mean and empirical process are defined as follows.

Let k and l be two integers such that n = kl. Let Tn1�Tn2� � � � �Tnk be i.i.d.
random variables each having uniform distribution on �1�2� � � � � n�. Define
the triangular array �Xni� 1 ≤ i ≤ n + l� by Xni = Xi for 1 ≤ i ≤ n and
Xni =Xi−n for n < i ≤ n+ l. In other words, we extend our sample of size n
by another l observations, namely, X1�X2� � � � �Xl.

Then the bootstrapped estimator of the mean is defined as

X∗
n = 1

k

k∑
i=1

1
l

Tni+l−1∑
j=Tni

Xj�(1.4)

and the bootstrapped estimator of the empirical process is

F∗
n�t� =

1
k

k∑
i=1

1
l

Tni+l−1∑
j=Tni

I�Xnj ≤ t��(1.5)

The bootstrapped empirical process is then defined as

B∗
n�t� = n1/2�F∗

n�t� −Fn�t�
�(1.6)

In the following text, E∗, var∗ and so on will denote the moments under the
conditional probability measure P∗ induced by the resampling mechanism,
that is, P∗ is the conditional probability given �X1�X2� � � � �Xn�.

In this paper, we shall investigate the weak convergence of B∗
n�t� defined

by (1.6) to B�t� defined by (1.2) in the Skorohod topology on D�0�1
, almost
surely. In order to prove these results, we shall investigate first the validity
of the CLT for X∗

n defined by (1.4) when the variables are bounded. This
will be done in Theorem 2.1. Next, we provide sufficient conditions for the
weak convergence of B∗

n�t� to B�t� in the sense described above, which are
summarized in Proposition 4.1 and Theorem 2.2. Theorem 2.3 deals with the
special case of strongly mixing sequences, which is a very important class
of dependent random variables. Doukhan’s (1994) book and Bradley’s (1986)
survey paper contain many examples of such sequences including Gaussian
processes, time series, Markov chains and so on.
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Definition 1.1. Given two sub σ-algebras of � , � and �, the strong
mixing coefficient is defined as

α�� ��� = sup��P�AB� −P�A�P�B��� A ∈ � � B ∈ ���
A stationary sequence �Xn�n∈Z is called strongly mixing if αn → 0 when
n→ ∞:

αn = α�σ�Xi� i ≤ 0�� σ�Xk� k ≥ n���

The last theorem is an application of Theorem 2.2 to associated sequences
of random variables, which is a class of dependent random variables which
appears in the context of the percolation models, Ising models of statistical
mechanics and statistics in general. We refer to Newman (1984) for a survey.

Definition 1.2. A finite collection of random variablesX1� � � � �Xm is said
to be associated if, for any two coordinatewise nondecreasing functions f�g
on Rm,

cov�f�X1� � � � �Xm�� g�X1� � � � �Xm�� ≥ 0

whenever the covariance exists.

A sequence �Xi� is said to be associated if every finite subcollection is
associated.

Several notations will be used everywhere in the paper:

Sli =Xi + · · · +Xi+l−1� Sl1 = Sl�(1.7)

Xli =
1
l
�Xi + · · · +Xi+l−1�� Xl1 =Xl�(1.8)

For a stationary sequence with the distribution function F�x�, we denote

Yli�s� t� =
i+l−1∑
j=i

I�s < Xj ≤ t� − �F�t� −F�s��(1.9)

and

Yli�s� =
i+l−1∑
j=i

I�Xi ≥ s� − �1 −F�s���(1.10)

The notation � is sometimes used to replace the Vinogradov symbol 0.
The paper is organized in the following way. Section 2 contains the state-

ments of the main results. In Section 3, we prove some preliminary results.
Sections 4 and 5 contain the proofs of the theorems.

2. Results. Our first theorem is a step in proving the convergence to the
Brownian bridge of B∗

n�t�. It provides sufficient conditions for the convergence
in distribution to the normal distribution P∗-almost surely for the sample
mean and it also has interest in itself.
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Theorem 2.1. Assume �Xn�n∈Z is a stationary sequence of random vari-
ables such that the variables are bounded almost surely. Denote µ = EX0 and
assume l = ln, k = kn are sequences of integers such that

l2/n→ 0� l→ ∞ as n→ ∞ and n = lk�(2.1)

Assume �Xn� satisfies

var
( n∑
i=1

Xi

)/
n→ σ2 > 0 as n→ ∞(2.2)

and

1
n

n∑
i=1

��Xi − µ� + · · · + �Xi+l−1 − µ��2

l
→ σ2 a.s. as n→ ∞�(2.3)

Then, for X∗
n defined by (1.4), we have

var∗�√n X∗
n� → σ2 a.s. as n→ ∞(2.4)

and
√
n�X∗

n −Xn� →� N�0� σ2� P∗-a.s. as n→ ∞�(2.5)

The following result provides sufficient conditions for the existence of a
blockwise bootstrapped estimator of the mean which satisfies the conclusions
of the above theorem. One can easily see that if �Xn� is a stationary and
ergodic sequence of bounded random variables, one can construct a sequence
ln�w� → ∞ as n→ ∞ for which the conclusions (2.4) and (2.5) of Theorem 2.1
hold [with ln replaced by ln�w�].

If we restrict even more the dependence considering the class of strong
mixing random variables, the situation is different. For strong mixing random
variables, a similar result holds with ln deterministic, selected to be the same
for all trajectories. In general, the size of ln which assures the consistency
for strong mixing sequences is related to the size of the mixing coefficients.
In the next result, we are rather interested in the weakest possible condi-
tions which, imposed to the strong mixing coefficients, will still permit the
construction of a blockwise bootstrapped estimator of the mean satisfying the
conditions of Theorem 2.1. The condition (2.6) we impose next is optimal in
the context of the law of large numbers for bounded strong mixing sequences
as proved by Berbee (1987).

Proposition 2.1. Assume �Xn� is a strongly mixing stationary sequence
of bounded random variables satisfying (2.2). Assume that the strong mixing
coefficients satisfy ∑

n

αn
n
<∞�(2.6)

Then there is a sequence ln → ∞ such that the conclusions (2.4) and (2.5) of
Theorem 2.1 hold.
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Remark 2.1. Proposition 2.1 shows that, for a large class of dependent ran-
dom variables, there is a blockwise bootstrapped estimator of the mean whose
variance can be used by (2.2) and (2.4) to approximate the limiting variance of
the sample mean. Moreover, the bootstrapped estimator satisfies the central
limit theorem almost surely. However, the mean itself,Xn, does not necessarily
satisfy the CLT. Bradley (1989) constructed a stationary sequence, bounded,
pairwise independent, strongly mixing at a rate α�n� = O�1/n� and such that
Sn/

√
n does not converge in distribution to a nondegenerate normal distribu-

tion. This example satisfies, of course, all the conditions of Corollary 2.1 and
Proposition 2.1. As a matter of fact, for this example the conclusions (2.4) and
(2.5) hold for any sequence ln → ∞ such that

ln = O(
n1/2�log n�−3)� ln = l�2k� for 2k ≤ n < 2k+1�(2.7)

Remark 2.2. Condition (2.2) is satisfied by a variety of stochastic pro-
cesses. A large class of examples are provided by processes for which the spec-
tral density exists and is continuous at the origin. In this case, σ2 = 2πf�0�
[Ibragimov and Linnik (1971), Theorem 18.2.1]. Sufficient conditions for the
validity of (2.2) in terms of the covariances of sums of variables in disjoint
sets are discussed in recent papers by Bradley (1992) and Bradley and Utev
(1994). One aspect of the statistical importance of Theorem 2.1 is that, by its
conclusion, (2.4) provides an alternative estimator for σ2, a quantity hard to
estimate. This estimator can also be used to test (2.2) or (2.3), while (2.5) is
useful to construct confidence intervals for σ2.

Remark 2.3. A result of type (2.5) in probability for strong mixing se-
quences of random variables satisfying the central limit theorem was obtained
independently by Radulovic (1995).

We provide next some general sufficient conditions in terms of moments for
convergence of the blockwise bootstrapped estimator of the empirical process of
a stochastic process to a corresponding Brownian bridge. The proof is based on
a more general result in terms of almost sure convergences given in Section 4.

Without loss of generality, we assume in the next three theorems 0 ≤X0 ≤ 1
because this can be always achieved by a transformation.

Theorem 2.2. Let �Xn�n∈Z be a stationary sequence of random variables.
Let ln, kn be sequences of natural numbers satisfying

nh � l� n1/3−a for some 0 < h < 1
3 − a� 0 < a < 1

3 �(2.8)

ln = l�2k� for 2k ≤ n < 2k+1, ln → ∞ as n→ ∞ and n = knln.
Assume there are two constants C1 and C2 such that, for some γ > 0 and

every 0 ≤ s� t ≤ 1,

sup
n>m

∣∣∣∣
n∑
i=m

cov�I�s < X0 ≤ t�� I�s < Xi ≤ t��
∣∣∣∣ ≤ C1m

−γ�(2.9)
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and for every 1 ≤m ≤ n,

var
( m∑
i=1

Y2
lni
�s� t�

)
≤ C2ml

4
n(2.10)

[where Yli�s� t� is defined by (1.9)].
Then

B∗
n�t� →� B�t� as n→ ∞(2.11)

P∗-almost surely in the Skorohod topology on D�0�1
, where B is a Brownian
bridge with the covariance structure given by (1.2). Moreover, if the distribution
of X0 is continuous, P∗�B�t� ∈ C�0�1
� = 1.

We shall verify the conditions of Theorem 2.2 for classes of strong mixing
or associated random variables and we shall establish the following two theo-
rems. The first one improves on the mixing rates used in the papers by Naik-
Nimbalkar and Rajarshi (1994) or Bühlmann (1994). As a special feature, the
conditions imposed to the strongly mixing coefficients in Theorem 2.3 or to the
covariances of the associated sequence in Theorem 2.4 are both weaker than
those used in the best known results so far, which establish the convergence
of Bn�t� →� B�t� for these classes of processes [Shao (1986), Yu (1993)].

Theorem 2.3. Assume �Xn� is a strongly mixing stationary sequence of
random variables. Assume that ln satisfies (2.8) and∑

m>n

αm = O�n−γ� for some γ > 0�(2.12)

Then the series in (1.2) is convergent and the conclusion (2.11) of Theorem 2.2
holds.

Theorem 2.4. Assume �Xn� is a stationary associated sequence of random
variables and X0 has a continuous bounded density. Assume that ln satisfies
(2.8) and

∞∑
i=m

cov1/3�X0�Xi� = O�m−γ� for some γ > 0�(2.13)

Then the series in (1.2) is convergent and the conclusion (2.11) of Theorem 2.2
holds with P∗�B�t� ∈ C�0�1
� = 1.

3. Preliminary results. In this section, we fix a realization of the
stochastic process, �xi�. Therefore, the randomness is due only to resampling
procedure. By using the notations (1.4) and (1.8), we have the following.

Proposition 3.1. Let �xi�i≥1 be a bounded sequence of real numbers. Let
k and l be integers such that n = kl and

l2/n→ 0 as n→ ∞�(3.1)
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For each n, let �Tn1�Tn2� � � � �Tnk� be i.i.d. uniform on �1�2� � � � � n� and �xn1�
xn2� � � � � xn� l+n� = �x1� x2� � � � � xn� x1� x2� � � � � xl�. Assume

Vn = 1
k

n∑
i=1

�xli − xn�2 → σ2 > 0 as n→ ∞�(3.2)

Then
√
n�x∗n − xn� →� N�0� σ2� as n→ ∞�

Proof. It is obvious that we have the representation

x∗n = 1
k

k∑
j=1

( n∑
i=1

I�Tnj = i�xli
)
�(3.3)

By (3.3) and the definition of xni, 1 ≤ i ≤ n+ l, we have

Ex∗n = xn�
Using now the independence of �Tnj�j and the fact that the sets �I�Tnj = i��
1 ≤ i ≤ n� are disjoint, we obtain

var�x∗n� =
1
k2

k∑
j=1

E

( n∑
i=1

I�Tnj = i��xli − xn�
)2

= 1
k2

k∑
j=1

n∑
i=1

EI�Tnj = i��xli − xn�2

= 1
kn

n∑
i=1

�xli − xn�2�

Therefore,

var�√nx∗n� =
1
k

n∑
i=1

�xli − xn�2�

and by condition (3.2), we have

lim
n→∞ var�√nx∗n� = σ2 > 0�(3.4)

Denote Unj = �√n/k�∑n
i=1 I�Tnj = i��xli−xn� and notice that �Unj�1≤j≤k are

independent and
√
n�x∗n − xn� =

∑k
j=1Unj.

By (3.4), in order to establish the CLT we have only to check the Lindeberg
conditions, which is equivalent in this setting to proving that

E max
1≤j≤k

U2
nj → 0 as n→ ∞�(3.5)

Once again, by the fact that �I�Tnj = i�� 1 ≤ i ≤ n� are disjoint and xi’s are
bounded, we have, for every 1 ≤ j ≤ k,

�Unj� ≤
√
n

k
max
1≤i≤n

�xli − xn� = O
(√
n

k

)
�
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whence

U2
nj = O

(
l2

n

)
�

which proves (3.5) by (3.1). ✷

In order to state the next propositions, we denote by f∗n�t� the expression
in (1.5) with Xni replaced by xni and also

Z∗
n�t� =

√
n�f∗n�t� − fn�t���(3.6)

We shall also use the notations

fli�s� =
1
l

i+l−1∑
j=i

I�xj ≤ s�� fn�s� = fn1�s��

fli�s� t� = fli�s� − fli�t�� fn�s� t� = fn1�s� t��

Vn�s� t� = var�Z∗
n�t� −Z∗

n�s���

Proposition 3.2. Let �xi�1 ≤ i ≤ n�, �xni� 1 ≤ i ≤ n + l� and �Tni�1 ≤
i ≤ k� as in Proposition 3.1, 0 ≤ xi ≤ 1 for every 1 ≤ i ≤ n. Assume

for some 0 < a < 1
2 � l = O�n1/2−a�� n = kl�(3.7)

and there are constants K > 0, 0 < b < 1, c > 0, such that, for every s and t
in �0�1
 and every n ≥ 1, we have

Vn�s� t� =
1
k

n∑
i=1

�fli�s� t� − fn�s� t��2 ≤K��s− t�b + n−c��(3.8)

Then Z∗
n�t� defined by (3.6) is tight, that is, for every ε�η > 0 there is a δ,

0 < δ < 1 and N0 such that, for every n ≥N0,

P
(

sup
�t−s�<δ

�Z∗
n�t� −Z∗

n�s�� ≥ ε
)
≤ η�

and as a consequence, ifY is taken as a limiting distribution on a subsequence,
P�Y ∈ C�0�1
� = 1.

Proof. The proof of tightness is based on the approach used by Naik-
Nimbalkar and Rajarshi (1994).

Notice that, similarly to (3.3), we have the following representation:

Z∗
n�t� −Z∗

n�s� =
k∑
j=1

Unj�s� t��

where, for each 1 ≤ j ≤ k,

Unj�s� t� =
√
n

k

n∑
i=1

I�Tnj = i��fli�s� t� − fn�s� t��
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is a triangular array of independent random variables and, after a simple
computation, we obtain by (3.8),

Vn�s� t� = var�Z∗
n�t� −Z∗

n�s��

= 1
k

n∑
i=1

�fli�s� t� − fn�s� t��2

= O��s− t�b + n−c��

(3.9)

and also by (3.7),

�Unj�s� t�� = O
(√
n

k

)
= O

(
l√
n

)
= O�n−a��(3.10)

Therefore, by Bennett’s inequality [Pollard (1984), page 192], for every η > 0,

P��Z∗
n�t� −Z∗

n�s�� > η� ≤ 2 exp
( −η2

C1��s− t�b + n−c�B
(

C2n
−a

C1��s− t�b + n−c�
))
�

where B�x� is continuous and decreasing and B�0+� = 1. This is the key
step in applying now a restricted chaining argument given in Theorem 2.6 in
Pollard (1984) applied with the semimetric d�s� t� = C3�t − s�b/2, 0 < b < 1,
and the covering number N�δ�d�T� = 1+��δ/C3�−2/b
, where �x
 denotes the
integer part of x and T = �0�1
. We shall not give here the detail of the proof.
We just notice that (3.9) and (3.10) are the only ingredients needed to make
the arguments in Naik-Nimbalkar and Rajarshi (1994), clearly expressed at
pages 990–992, work in our context. ✷

Proposition 3.3. Assume all the conditions of Proposition 3.2 are satisfied
and in addition, for every s� t in �0�1
,

lim
n→∞Vn�s� t� exists�(3.11)

Then, for every s� t in �0�1
, we have that

lim
n→∞

1
k

n∑
i=1

�fli�s� − fn�s���fli�t� − fn�t�� = g�s� t�(3.12)

exists and

Z∗
n�t� →� B�t� on D�0�1
�(3.13)

where B�t� is a Brownian bridge with the covariance structure g�s� t� given by
the limit in (3.12) and P�B�t� ∈ C�0�1
� = 1.

Proof. In order to prove Proposition 3.3, we mention that Proposition 3.2
implies that Z∗

n�t� is tight, and if Y is a limiting process on a subsequence,
then P�Y ∈ C�0�1
� = 1. According to Theorems 15.4 and 15.5 in Billingsley
(1968), we have only to prove that the finite-dimensional distributions ofZ∗

n�t�
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converge weakly to the corresponding ones of the Brownian bridge B�t�. We
show first that (3.11) implies (3.12).

By the fact that

var�Z∗
n�t� −Z∗

n�s�� = varZ∗
n�s� + varZ∗

n�t� − 2 cov�Z∗
n�t��Z∗

n�s���

it is easy to see by (3.9) that

Vn�s� t� = Vn�0� t� +Vn�0� s� −
2
k

n∑
i=1

�fli�s� − fn�s���fli�t� − fn�t���

By (3.11), the limits limn→∞Vn�s� t�, limn→∞Vn�0� s� and limn→∞Vn�0� t� all
exist, and as a consequence, the limit in (3.12) exists, too. Moreover, we have

cov�Z∗
n�t��Z∗

n�s�� =
1
k

n∑
i=1

�fli�s� − fn�s���fli�t� − fn�t���(3.14)

Now let 0 ≤ t1 < t2 < · · · < tm ≤ 1 and let α1� α2� � � � � αm be real numbers. We
have to prove only that

m∑
u=1

αuZ
∗
n�tu� →�

m∑
u=1

αuB�tu� as n→ ∞�

Remark that

m∑
u=1

αuZ
∗
n�tu� =

√
n

k

k∑
j=1

n∑
i=1

I�Tnj = i�
m∑
u=1

αu�fli�tu� − fn�tu���

Denote yi =
∑m
u=1 αuI�xi ≤ tu� and apply now Proposition 3.1 with xi replaced

by yi. We obtain

m∑
u=1

αuZ
∗
n�tu� →� N�0� σ2� as n→ ∞�

provided the following limit exists:

σ2 = lim
n→∞ var

m∑
u=1

αuZ
∗
n�tu��(3.15)

To prove (3.15), we use the trivial computation

var
( m∑
u=1

αuZ
∗
n�tu�

)
=

m∑
u=1

α2
u varZ∗

n�tu�

+ 2
m−1∑
u=1

m∑
v=u+1

αuαv cov�Z∗
n�tu��Z∗

n�tv���
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By (3.12), (3.14) and (3.4), it follows that

σ2 = lim
n→∞ var

( m∑
u=1

αuZ
∗
n�tu�

)

=
m∑
u=1

α2
ug�tu� tu� + 2

m−1∑
u=1

m∑
v=u+1

αuαvg�tu� tv�

= var
( m∑
u=1

αuB�tu�
)
�

where B�u� is the desired Brownian bridge. This convergence proves (3.15)
and completes the proof of this proposition. ✷

4. Proofs of Theorems 2.1 and 2.2. In this section, we consider, in-
stead of the sequences of numbers �xi� from the preceding section, the se-
quences of random variables �Xi�. If we fix w and denote xi = Xi�w�, all
the propositions of Section 3 can be viewed as a behavior of a fixed trajectory
X1�w��X2�w�� � � � � Fixing the variables �Xk�, recall that P∗, E∗, var∗, re-
fer to the probability, expected value, variance, conditioned on �Xk�. In other
words, if we replace in Propositions 3.1–3.3 P with P∗, xi = Xi�w� and as-
sume, according to the case, that the conditions (3.2), (3.8) or (3.12) hold almost
surely, then the results in all these three propositions also hold almost surely
under P∗.

In this section, we shall analyze the conditions (3.2), (3.8) and (3.12) which
require now to prove almost sure results for some functions of the random
variables �Xi�. Our goal is to give general sufficient conditions in terms of
moments in order for the required almost sure results to hold.

For the proof of Theorem 2.1, we need the following well-known lemma
which is a consequence of Theorem 3.7.6 of Stout (1974). This lemma was also
used by Shao and Yu (1993).

Lemma 4.1. Let �ξn� be a sequence of random variables with Eξn = 0 for
every n ≥ 1 and supn≥1Eξ

2
n <∞. Assume there is a constant C > 0 such that,

for any n ≥ 1,

sup
k>0
E

( k+n∑
i=k+1

ξi

)2

≤ Cn�(4.1)

Then

lim
n→∞

�∑n
i=1 ξi�

n1/2 log2 n
= 0 a.s.

4.1. Proof of Theorem 2�1. In order to prove Theorem 2.1, we shall verify
the conditions of Proposition 3.1. By using the notation (1.8), we have only to
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prove the almost sure variant of (3.2), namely,

Vn = 1
k

n∑
i=1

�Xli −Xn�2 → σ2 a.s. as n→ ∞�(4.2)

Without any loss of generality, we assume that Xi’s are all centered �µ = 0�.
Simple computations show that

Vn = 1
k

n∑
i=1

�Xli�2 − n
k
�Xn�2

= 1
n

n∑
i=1

S2
li −ES2

li

l
+ varSl

l
− lX2

n�

(4.3)

One can see now that by (2.3), the first term in (4.3) converges to 0 almost
surely. By Lemma 4.1 applied to �Xn� and by the size of l given in (2.1), the
last term in (4.3) is approaching 0 almost surely as n → ∞. Condition (2.2)
shows that the limit in (4.3) is σ2 almost surely. Therefore, Proposition 3.1
applies and the result follows. ✷

We shall base the proof of Proposition 2.1 on the following lemma, which
can be found in Rio [(1995), inequality (5.1) on page 936] or in Peligrad [(1994),
Theorem 2.2], with δ = ∞.

Lemma 4.2. Assume �Xn�n∈Z is a strongly mixing sequence of centered ran-
dom variables such that, for every i, �Xi� < C a.s. Then there is a universal
constant K such that, for every x > 0 and every n,

P
(

max
1≤i≤n

�Si� > x
)
≤Kx−2

( n∑
i=1

EX2
i +C2n

n∑
i=1

αi

)
�

4.2. Proof of Proposition 2�1. As before, we assume without loss of gener-
ality µ = 0. By Theorem 2.1, we have only to prove that there is a sequence
ln → ∞ satisfying (2.1) and such that

1
n

n∑
i=1

S2
li −ES2

li

l
→ 0 a.s. as n→ ∞�(4.4)

We remark that �Sli�i is a strong mixing sequence of random variables satis-
fying �Sli� < Cl a.s. for every i, where C is such that �Xi� < C a.s. The strong
mixing coefficients associated to the sequence �Sli�i will be denoted by αi and
obviously,

αi

{
≤αi−l� for i ≥ l�
≤1� for 1 ≤ i < l�(4.5)
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By Lemma 4.2, stationarity and (4.5), we get, for every n ≥ 1, l = ln, for some
numerical constants K1 and K2,

P

(
max
1≤i≤n

∣∣∣∣
i∑
j=1

S2
lj −ES2

lj

∣∣∣∣ > x
)
≤K1x

−2
(
nES4

l + nl4
n∑
i=1

αi

)

≤K2x
−2nl5

n∑
i=1

αi�

(4.6)

In order to establish (4.4) by the Borel–Cantelli lemma, it is sufficient to show
that, for every ε > 0,

∞∑
k=1

P

(
max

2k≤n<2k+1

1
n

∣∣∣∣
n∑
i=1

S2
li −ES2

li

l

∣∣∣∣ ≥ ε
)
<∞�

Without restricting the generality, we shall consider that ln = l�2k� for 2k ≤
n < 2k+1.

Relation (4.6) implies

P

(
max

2k≤n<2k+1

1
n

∣∣∣∣
n∑
i=1

S2
li −ES2

li

l

∣∣∣∣ ≥ ε
)

≤ P
(

max
1≤n≤2k+1

∣∣∣∣
n∑
i=1

(
S2
l�2k�� i −ES2

l�2k�� i
)∣∣∣∣ ≥ ε2kl�2k�

)

= 0
(

2−kl3�2k�
2k∑
i=1

αi

)
�

and the result follows if ln can be constructed to satisfy

∑
n

l3n
∑n
i=1 αi
n2

<∞�

By an elementary argument, we see that the existence of such a sequence ln
is guaranteed under the condition (2.6).

We shall base the proof of Theorem 2.2 on the following result.

Proposition 4.1. Let �Xn�n∈Z be a stationary stochastic process, 0 ≤X0 ≤
1, with a continuous distribution function F�t�. Assume l satisfies (2.8) with 1

3
replaced by 1

2 and the series (1.2) is convergent for every s and t. Assume also
the following conditions are satisfied: there is K1 > 0, d > 0, 0 < b < 1, such
that, for every 0 ≤ s� t ≤ 1 and every n,

σn�s� t� =
var�∑n

i=1 I�s < Xi ≤ t��
n

≤K1��s− t�b + n−d��(4.7)

sup
s� t∈�0�1


1
n

∣∣∣∣
n∑
i=1

Y2
li�s� t� −EY2

li�s� t�
l

∣∣∣∣ = O�n−g� a.s. as n→ ∞�(4.8)

for some g > 0.
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Then (2.11) holds, that is, B∗
n�t� →� B�t� as n→ ∞, P∗-a.s. where B�t� is

defined by (1.2) and P∗�B�t� ∈ C�0�1
� = 1, where C�0�1
 are the continuous
functions on �0�1
.

Proof. By a standard transformation, we may assume without loss of
generality that X0 is uniformly distributed on �0�1
.

According to Proposition 3.3, we have only to verify (3.8) and (3.11) with
xk replaced by Xk�w�. In this context, Vn�s� t� = var�B∗

n�t� −B∗
n�s�� and the

conditions (3.8) and (3.11) translate to

lim
n→∞Vn�s� t� exist a.s.�(4.9)

and for some K > 0, depending only on trajectory, 0 < b < 1 and c > 0, we
have

Vn�s� t� ≤K��s− t�b + n−c� a.s.(4.10)

for each s and t and n→ ∞.
By the same kind of computations leading to (4.3), we get the following

expansion:

Vn�s� t� =
1
n

n∑
i=1

Y2
li�s� t� −EY2

li�s� t�
l

+ var
∑l
i=1 I�s < Xi ≤ t�

l

− l
( �∑n

i=1 I�s < Xi ≤ t� − �t− s��
n

)2

= I + II + III�

(4.11)

Because of (4.7), by stationarity and Lemma 4.1, the last term in (4.11) is
convergent to 0 a.s., and by (4.8), the first term of Vn�s� t� is convergent to 0
a.s. For the middle term, we use the fact that the convergence of the series in
(1.2) implies that

σ�s� t� =
∞∑

i=−∞
cov�I�s < X0 ≤ t�� I�s < X�i� ≤ t��

is convergent for every s� t.
By stationarity,

lim
l→∞

var
∑l
i=1 I�s < Xi ≤ t�

l
= σ�s� t�

and (4.9) follows.
In order to verify (4.10), we use the expansion (4.11). As a consequence of

(4.8), we obtain

sup
s� t∈�0�1


I = O�n−g� a.s. for some g > 0 as n→ ∞�

By (4.7) and (2.8),

II ≤K1��s− t�b + l−d� ≤K1��s− t�b + n−hd� a.s.
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In order to evaluate III, let Mn = l1/2+εn for some 0 < ε < 2a/�1 − 2a�, 0 < a <
1/2. For s and t fixed between 0 and 1, let u be such that �u− 1�/Mn < s ≤
u/Mn and let v be such that �v− 1�/Mn < t ≤ v/Mn. If we denote

Gn�s� t� = Fn�s� t� − �t− s� = 1
n

n∑
i=1

I�s < Xi ≤ t� − �t− s��

we can easily verify that

�Gn�s� t� −Gn�u� v�� ≤ max
1≤u≤Mn

�Gn�u− 1� u�� + 2
Mn

�

which implies

sup
s� t

III = sup
s� t
lG2

n�s� t� ≤ 4 max
1≤u� v≤Mn

lG2
n�u� v� +

4l
M2
n

= A+B�

By the selection of Mn and (2.8),

B = 4l
M2
n

� l−2ε � n−2εh�

It remains to prove that A = 0�n−g� for some g > 0 as n → ∞. Denote
Mk =M2k+1 . In order to prove this, we shall apply the Borel–Cantelli lemma,
according to which it is enough to estimate

∞∑
k=0

P
(

max
2k≤n<2k+1

max
1≤u� v≤Mk

nglnG
2
n�u� v� > ε

)

≤
∞∑
k=0

Mk∑
u=1

Mk∑
v=1

P
(

max
1≤n≤2k+1

l2kG
2
n�u� v� > ε2−kg

)
�

(4.12)

By stationarity, condition (4.7) assures the applicability of Corollary 3.1 in
Moricz, Serfling and Stout (1982); therefore, applying first Chebyshev’s in-
equality and after the above-mentioned theorem, we get

P
(

max
1≤n≤2k+1

l2kG
2
n�u� v� > ε2−kg

)
� l2k2k�1+g��log 2k�2

22k
� l2k2kg

2k
k2

for every u� v. Therefore, by the selection of M and l, the sum in (4.12) does
not exceed

∞∑
k=0

M2
kl2k2

kg

2k
k2 �

∞∑
k=0

�2k��1+ε��1−2a�2kg

2k
k2�(4.13)

One can easily see from the definition of a and ε that there is a g > 0 such
that the series in (4.13) is convergent.

These three estimates show that (4.10) is verified and we have the desired
result by Proposition 3.3. ✷

For proving Theorem 2.2, we need the following lemma.
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Lemma 4.3. Assume �Xi�i≥1 is a stationary sequence of random variables
uniformly distributed on �0�1
, satisfying (2.9). Then, there is a positive con-
stant K1 such that, for every 0 ≤ s ≤ t ≤ 1, we have∣∣∣∣

∞∑
i=−∞

cov�I�s < X0 ≤ t�� I�s < X�i� ≤ t��
∣∣∣∣ ≤K1�t− s�γ/�1+γ��(4.14)

and there is a positive constant K2 such that, for every 0 ≤ s ≤ t ≤ 1 and every
n ≥ 1,

var�∑n
i=1 I�s < Xi ≤ t��

n
≤K2

(�t− s�γ/�1+γ� + n−γ)�(4.15)

Proof. We divide the sum (4.14) in a sum with i running between −u and
u, and the sums of the other variables where u is a natural number. We get,
by (2.9) and the fact that X0 is uniformly distributed,∣∣∣∣

∞∑
i=−∞

cov�I�s < X0 ≤ t�� I�s < X�i� ≤ t��
∣∣∣∣

≤ 2u sup
i≥0

∣∣cov�I�s < X0 ≤ t�� I�s < Xi ≤ t��
∣∣

+ 2
∣∣∣∣

∞∑
i=u+1

cov�I�s < X0 ≤ t�� I�s < Xi ≤ t��
∣∣∣∣

� u�t− s� + �u+ 1�−γ�
The relation (4.14) follows by selecting u to be the integer part of �t−s�−�1/�γ+1�
.
Relation (4.15) follows easily from (4.14) and (2.9). ✷

4.3. Proof of Theorem 2�2. We shall assume first X0 has a uniform distri-
bution on �0�1
, and we shall check the conditions of Proposition 4.1, (4.7) and
(4.8). Lemma 4.3 indicates that condition (4.7) is satisfied.

We shall verify now (4.8). Let us recall the notation Yli�s� t� =
∑i+l−1
j=i I�s <

Xj ≤ t� − �t − s�. Let M =Mn = l1/2+εn , where ε < 9a/2�1 − 3a�, and a is as
in (2.8). For s� t fixed, let u� v be two integers such that �u− 1�/M < s ≤ u/M
and �v− 1�/M < t ≤ v/M. Denote

Di�s� t� = Yli�s� t� −Yli
(
u

M
�
v

M

)

and

Vn�s� t� =
1
n

n∑
i=1

Y2
li�s� t� −EY2

li�s� t�
l

�

Simple arithmetic involving the use of the trivial inequality 2�xy� ≤ ax2 +
�1/a�y2 for every x�y and a > 0 shows that, for every 0 < d < 1, we have

Y2
li�s� t� ≤ �1 + d�Y2

li

(
u

M
�
v

M

)
+

(
1 + 1

d

)
D2
i �s� t�(4.16)
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and

Y2
li�s� t� ≥ �1 − d�Y2

li

(
u

M
�
v

M

)
+

(
1 − 1

d

)
D2
i �s� t��(4.17)

By subtracting from (4.16) the expected value in (4.17), and then by subtract-
ing from (4.17) the expected value in (4.16), we obtain two other relations. By
adding these new relations for 1 ≤ i ≤ n and dividing by 1/nl, we obtain

�Vn�s� t�� ≤ 2
(∣∣∣∣Vn

(
u

M
�
v

M

)∣∣∣∣+ dvarSl�u/M�v/M�
l

+ d−1
[

1
nl

n∑
i=1

�D2
i �s� t� +ED2

i �s� t��
])
�

(4.18)

By (4.15), we can find a positive constant K3 such that

varSl�u/M�v/M�
l

≤K3�(4.19)

In order to evaluate the other terms from the right-hand side of (4.18), we
shall prove that, for some δ > 0, we have

max
1≤u� v≤M

∣∣∣∣Vn
(
u

M
�
v

M

)∣∣∣∣ ≤K�w� · n−δ a.s.(4.20)

for a certain constant K�w� depending only on the trajectory.
According to the Borel–Cantelli lemma, we have to show that

∑
k

P

(
max

2k<n≤2k+1
max

1≤u� v≤M
nδ

∣∣∣∣Vn
(
u

M
�
v

M

)∣∣∣∣ > ε
)
<∞�(4.21)

Each term of this sum is majorated by

M∑
v=1

M∑
u=1

P

(
max

1≤n≤2k

1
2k�1−δ�

1
l2k

∣∣∣∣
n∑
i=1

(
Y2
li

(
u

M
�
v

M

)
−EY2

li

(
u

M
�
v

M

))∣∣∣∣ > ε
)
�

We remark that, by Corollary 3.1 in Moricz, Serfling and Stout (1982) and by
stationarity, the condition (2.10) implies that, for every x > 0 and every s and
t, we have

P

(
max
1≤j≤n

∣∣∣∣
j∑
i=1

(
Y2
li�s� t� −EY2

li�s� t�
)∣∣∣∣ > x

)
� x−2l4nn�log n�2�

This estimate, together with the definition of M = Mn, proves that the sum
in (4.21) is bounded by

∑
k

M2
2k
l42k · 2k · k2

l22k2
2k�1−δ� � ∑

k

l3+2ε
2k k2

2k−2δ
�
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Now, by the selection of ε and the condition (2.8) imposed to l, one can easily
see that the selection of δ > 0 is possible such that the sum in (4.21) is
convergent.

Now we show that an η > 0 can be found such that, for a constant C�w�,
we have

sup
s�t

1
nl

n∑
i=1

D2
i �s� t� ≤ C�w�n−η a.s.(4.22)

Since for every 1 ≤ j ≤ n,

−I
(
v− 1
M

<Xj ≤
v

M

)
≤ I�s < Xj ≤ t� − I

(
u

M
< Xj ≤

v

M

)

≤ I
(
u− 1
M

<Xj ≤
u

M

)
�

we note that, for every s� t,

�Di�s� t�� ≤ max
1≤u≤M

∣∣∣∣Yli
(
u− 1
M

�
u

M

)∣∣∣∣+ 2l
M
�

By taking into account that �a+b�2 ≤ 2�a2 +b2� and the definition of Vn�s� t�,
we deduce that

1
nl

n∑
i=1

D2
i �s� t� � max

1≤u≤M
Vn

(
u− 1
M

�
u

M

)

+ max
1≤u≤n

EY2
l1��u− 1�/M�u/M�

l
+ l

M2
�

(4.23)

The relation (4.22) follows from (4.23) after using (4.20), (4.15) and the defi-
nition of M and l.

From (4.23), conditions (2.8), (2.10) and the definition of M, we also have,
for some γ > 0 and C > 0,

1
nl

n∑
i=1

ED2
i �s� t� ≤ Cn−γ�(4.24)

To complete the proof, we just notice that, by (4.18), (4.19), (4.20), (4.22) and
(4.24), we are able to select d = dn = n−β for 0 < β < min�η� γ� such that
(4.8) is verified for some g < min�δ�β� �η− β�� �γ − β��. ✷

Suppose now that X0 has an arbitrary continuous distribution F�x�. In
a routine manner as in Billingsley [(1968), page 197], or in Naik-Nimbalkar
and Rajarshi [(1994), page 993], ξi = F�Xi� has a uniform distribution and
satisfies (2.9) and (2.10). Therefore, the conclusion of Theorem 2.2 holds, and
if B∗

n�t� is the bootstrapped empirical process for ξi, then B∗
n�F�t�� = B∗

n�t�
and the arguments continue exactly as in Billingsley [(1968), page 197], and
we obtain the result of Theorem 2.2 with P∗�B�t� ∈ C� = 1.
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If the distribution of X is not continuous, we define [Billingsley (1968),
page 142] a generalized inverse ϕ�s� = inf�t� s ≤ F�t��. The mapping theorem
(5.1) from Billingsley (1968) still applies, but the limiting distribution will not
be in C with probability 1 if F has discontinuities.

5. Proofs of Theorems 2.3 and 2.4. Both of these theorems will be
proved by applying Theorem 2.2. They require several lemmas which lead
to the validity of (2.9) and (2.10).

Lemma 5.1 [Ibragimov and Linnik (1971), Theorem 17.2.1]. AssumeX and
Y are two random variables such that �X� <M a.s. and �Y� < N a.s. Then

� cov�X�Y�� ≤ 4MNα�σ�X�� σ�Y���

Lemma 5.2 [Bagai and Prakasa Rao (1991), Roussas (1991)]. Assume
�X�Y� is an associated vector of random variables each having a continuous
bounded density. Then� for some C ≥ 0�

sup
u� v

�P�X ≤ u�Y ≤ v� −P�X ≤ u�P�Y ≤ v�� ≤ C cov1/3�X�Y��

Lemma 5.3. Let �Y1�Y2�Y3�Y4� be an associated vector of bounded ran-
dom variables �Yi� < l for i = 1�2�3�4. Then

cov�Y1Y2�Y3Y4� ≤ 4l2
∑

i∈�1�2�

∑
j∈�3�4�

cov�Yi�Yj��

Proof. By Lemma (3.1)(ii) in Birkel (1988), for every function h� R→ R
bounded differentiable with bounded derivative,

cov�h�Y1�h�Y2�� h�Y3�h�Y4�� ≤ �h�2
∞ · �h′�2

∞
∑

i∈�1�2�

∑
j∈�1�2�

cov�Yi�Yj��

We select now h�x� a differentiable increasing function, −2l ≤ h�x� ≤ 2l
for every x such that h�x� = x for −l ≤ x ≤ l, h�x� is concave upwards
on �−∞�−l� and concave downwards on �l�+∞�. For this selection, because
h�Yi� = Yi, �h′�∞ ≤ 1 and �h�∞ ≤ 2l, we obtain this result. ✷

Next we shall prove the following lemma for strong mixing sequences.

Lemma 5.4. Assume �Xn� is a stationary strong mixing sequence of
bounded, centered random variables. Then

var
( n∑
j=1

�Xj + · · · +Xj+l−1�2
)
� nl4

n∑
i=1

αi�

Proof. We recall the notation Sli =Xi+ · · · +Xi+l−1. Obviously, we have

�Sli� = O�l��(5.1)
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We have the following estimate:

var
( n∑
j=1

S2
lj

)
≤

n∑
j=1

ES4
lj + 2

n−1∑
j=1

n∑
i=j+1

cov�S2
lj� S

2
li�

=
n∑
j=1

ES4
lj + 2

n−1∑
j=1

j+l∑
i=j+1

cov�S2
lj� S

2
li�

+ 2
n−1∑
j=1

n∑
i=j+l+1

cov�Y2
j�Y

2
i �

= I + II + III�

(5.2)

By (5.1) and Lemma 5.1, we have

I� nl2ES2
l � nl3

n∑
i=1

αi�

We also have, by Lemma 5.1,

cov�S2
lj� S

2
li� ≤ ES2

ljS
2
li � l2ES2

li � l3
n∑
i=1

αi�

whence

II � nl4
n∑
i=1

αi�

Observe now that S2
lj and S2

li which appear in III are i − j + l steps apart,
and by Definition 2.1 and Lemma 5.1, we get, for i ≥ j+ l,

� cov�S2
lj� S

2
li�� � αi−j+ll

4�

Therefore,

III � l4n
n∑
i=1

αi�

and we have the desired estimate by adding the estimates for I, II and III
in (5.2). ✷

Lemma 5.5. Let �Xn� be a stationary sequence of associated random vari-
ables with continuous bounded density such that∑

n

cov1/3�X0�Xn� <∞�(5.3)

Then, for every 1 ≤m ≤ n,

var
( m∑
j=1

Y2
lj�s� t�

)
�ml4�
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Proof. Observe that Yli�s� defined by (1.10) is an associated sequence
bounded by l and

Ylj�s� t� = Ylj�s� −Ylj�t��
Also,

Y2
lj�s� t� −EY2

lj�s� t� = �Y2
lj�s� −EY2

lj�s�� + �Y2
lj�t� −EY2

lj�t��
− 2�Ylj�t�Ylj�s� −EYlj�t�Ylj�s���

whence

var
( m∑
j=1

Y2
lj�s� t�

)
� var

( m∑
j=1

Y2
lj�s�

)
+ var

( m∑
j=1

Y2
lj�t�

)

+ var
( m∑
j=1

Ylj�s�Ylj�t�
)
�

For every s ≤ t, we have the estimate

var
( m∑
j=1

Ylj�s�Ylj�t�
)
=

m∑
j=1

var�Ylj�s�Ylj�t��

+ 2
m−1∑
i=1

m∑
j=i+1

cov�Yli�s�Yli�t��Ylj�s�Ylj�t���
(5.4)

By the boundedness of Yli�s�, we get

m∑
j=1

var�Ylj�s�Ylj�t�� �ml4�(5.5)

According to Lemma 5.3, we also have

cov�Yli�s�Yli�t��Ylj�s�Ylj�t�� � l2
∑

v∈�s� t�

∑
w∈�s� t�

cov�Yli�v�Ylj�w���(5.6)

Now, as a consequence of Lemma 5.2, we obtain uniformly in v�w,

m∑
j=i+1

cov�Yli�v��Ylj�w�� � l2
∞∑
n=1

cov1/3�X0�Xn��(5.7)

By introducing the results of the relations (5.5), (5.6) and (5.7) in (5.4), we
obtain the conclusion of this lemma. ✷

5.1. Proof of Theorem 2�3. Lemma 5.1 and (2.12) give the following esti-
mate:

∞∑
i≥m

� cov�I�s < X0 ≤ t�� I�s < Xi ≤ t��� ≤
∞∑
i≥m
αi �m−γ�
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which verifies the condition (2.9) of Theorem 2.2, while Lemma 5.4 applied to
the sequence I�s < Xi ≤ t� − �F�t� −F�s�� establishes the validity of (2.10).
Theorem 2.3 follows then as a consequence of Theorem 2.2. ✷

5.2. Proof of Theorem 2�4. Similarly as above, we see that Lemma 5.5 guar-
antees the validity of (2.10) in Theorem 2.2, while Lemma 5.2 and condition
(2.13) show that (2.9) holds. ✷

5.3. Proof of Remark 2�1. We have to prove that, for the example men-
tioned in Remark 2.1, the conclusion of Theorem 2.1 holds for every ln satis-
fying (2.7). By Lemma 5.4, for every 1 ≤m ≤ n,

var
( m∑
j=1

S2
lnj

)
�ml4n

n∑
i=1

αi�(5.8)

By Moricz, Serfling and Stout (1982) and stationarity, for every x ≥ 0, (5.8)
implies

P

(
max
1≤j≤n

∣∣∣∣
j∑
i=1

�S2
lni

−ES2
lni
�
∣∣∣∣ ≥ x

)
� x−2n�log n�2l4n

n∑
i=1

αi�(5.9)

Now we repeat the arguments from the proof of Proposition 2.1 with the max-
imal inequality (4.6) replaced by (5.9) and obtain

lim
n→∞

�∑n
j=1�S2

lnj
−ES2

lnj
��

n1/2l2n�
∑n
i=1 αi�1/2 log2 n

= 0 a.s.(5.10)

The example from Remark 2.1 satisfies the relation αi � 1/i. Therefore,

n1/2l2n

( n∑
i=1

αi

)1/2

log2 n� n1/2l2n log3 n�

and a selection of ln as in (2.7) guarantees that the condition (2.3) in Theo-
rem 2.1 is satisfied. Therefore, the conclusion of Theorem 2.1 follows for this
particular example under (2.7). ✷
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