
The Annals of Probability
1998, Vol. 26, No. 2, 794–804

ON DENSITY ESTIMATION FROM ERGODIC PROCESSES1

By Terrence M. Adams and Andrew B. Nobel

Ohio State University and University of North Carolina, Chapel Hill

We consider the problem of Lp-consistent density estimation from the
initial segments of strongly dependent processes. It is shown that no pro-
cedure can consistently estimate the one-dimensional marginal density of
every stationary ergodic process for which such a density exists. A simi-
lar result is established for the problem of estimating the support of the
marginal distribution of an ergodic process.

1. Introduction. Let µ be a probability measure on the Borel subsets �
of the half-open unit interval �0�1�. A measurable transformation T� �0�1� →
�0�1� is µ-preserving if µ�T−1B� = µ�B� for each B ∈ �, and is ergodic if
for each B such that T−1B = B either µ�B� = 0 or µ�B� = 1. A sequence
X = 	X1�X2� � � �
 of random variables defined on ��0�1���� µ� is said to be
stationary and ergodic if there exists an ergodic µ-preserving transformation
T and a Borel measurable function g� �0�1� → R such that

Xi�ω� = g�Ti−1ω�� i = 1�2� � � � �

for µ-a.e. ω ∈ �0�1�. If the distribution ν = µ ◦g−1 of each random variable
Xi is absolutely continuous with respect to Lebesgue measure λ, then Xi

is distributed according to the the probability density f = dν/dλ, written
Xi ∼ f. Estimation of f from finitely many observations of the process X is
an important and well studied problem in applied and theoretical statistics.
The density estimation problem and its potential solutions can be formalized
as follows.

Problem. Given an ergodic process X = X1�X2� � � � ∈ R with Xi ∼ f, se-
lect integrable functions f̂1� f̂2� � � � such that (i) f̂n depends only on X1� � � � �Xn

and (ii)
∫ �f̂n − f�dx→ 0 in probability as n→∞.

Definition. Let R
∗ = ⋃∞

n=1 R
n contain all finite sequences of real num-

bers. A density estimation procedure is a mapping �� R
∗ → L1�R� that as-

sociates every finite sequence x1� � � � � xn ∈ R with an integrable function
��·�x1� � � � � xn�.

Remark. In what follows we restrict our attention to procedures that are
measurable, in the sense that �x1� � � � � xn� �→

∫ ���u�x1� � � � � xn�−h�u��du is a
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Borel measurable map from R
n to R for each n ≥ 1, and each h ∈ L1�R�. Aside

from measurability, no regularity conditions are imposed on the behavior of
� as a function of its input. The estimates ��·�x1� � � � � xn� may take negative
values, and need not integrate to 1.

Definition. A density estimation procedure � is weakly L1-consistent (or
simply consistent) for an ergodic process X with Xi ∼ f if as n tends to infinity∫

���u�X1� � � � �Xn� − f�u��du→ 0 in probability.

The procedure � is consistent for a family � of ergodic processes if it is con-
sistent for each X ∈ � , and is said to be universal if it is consistent for every
ergodic process X such that the distribution of X1 is absolutely continuous.
Strong consistency is defined as above, with almost sure convergence replacing
convergence in probability.

Common density estimation methods include histogram, kernel, nearest
neighbor, orthogonal series and likelihood-based procedures. For a general
account of these and other methods, see Devroye and Györfi (1985) and Sil-
verman (1986). In establishing consistency, rates of convergence and central
limit theorems for a specific procedure, most analyses assume that X1�X2� � � �
are independent and identically distributed (i.i.d.). It is known, for instance,
that suitable versions of the methods above are consistent for all or almost all
i.i.d. processes.

Numerous results also have been obtained for dependent random vari-
ables under various mixing conditions. Roussas (1967) and Rosenblatt (1970)
studied the consistency and asymptotic normality of kernel density estimates
from Markov processes. Similar results, under substantially weaker condi-
tions, were obtained by Yakowitz (1989). Ahmad (1979) established the strong
consistency of orthogonal series estimates under α mixing conditions. Györfi
(1981) showed that there is a simple kernel-based procedure � that is strongly
L2-consistent for every stationary ergodic process X = 	Xi
∞i=−∞ such that
(i) the conditional distribution of X1 given 	Xi� i ≤ 0
 is absolutely con-
tinuous with probability 1, and (ii) the corresponding conditional density h
satisfies E

∫ �h�u��2 du <∞.
Castellana and Leadbetter (1986) studied pointwise consistency and central

limit theorems for kernel density estimates using a dependence index based
on the difference between joint bivariate densities and the product of their
marginals. Györfi and Masry (1990) established the strong L1 consistency
of multivariate recursive kernel density estimates for both ρ and α mixing
processes under weak conditions on the mixing coefficients. Hall and Hart
(1990) established convergence rates for kernel density estimates from infinite
order moving average processes. The cited papers contain many additional
references to research in this area.

In spite of these positive results, difficulties can arise in estimating den-
sities from strongly dependent processes. These difficulties are most clearly
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seen in the case of histogram estimates based on regular partitions, in which
the error that results from estimating the probability of a cell by its relative
frequency is magnified by the inverse of the cell width. Shrinking cell widths
ensuring consistent density estimates for any i.i.d. process can be fixed in
advance of the data. To obtain consistent estimates for families of strongly de-
pendent processes, the cell widths must shrink in a data-dependent fashion.
In a result attributed to Shields, it was shown by Györfi, Härdle, Sarda and
Vieu (1989) that there exist cell widths, suitable for every i.i.d. process, such
that the associated histograms fail to produce consistent density estimates
from a suitably constructed ergodic process. Györfi and Lugosi (1992) exhib-
ited an ergodic process X for which a standard kernel density estimate with
bandwidths hn → 0 and nhn →∞ fails to be consistent.

Taken together, these positive and negative results lead to the following
question, which was asked by Györfi (1981) and Györfi and Lugosi (1992):

Is there some (measurable) procedure � that is weakly
Lp-consistent for every stationary ergodic X having a one-
dimensional marginal density?

Our principal result, given in Theorem 1 below, shows that the answer to
this question is “No.” In preliminary work, based on different methods than
those developed here, Yakowitz and Heyde (1997) have announced a similar
negative result for the case p = 2.

In light of Theorem 1, one may ask about the existence of solutions to
the more general problem of estimating the marginal distribution of an er-
godic process. The answers depend on the type of estimation. The classical
Glivenko–Cantelli theorem, which relies only on the convergence of relative
frequencies to probabilities, extends easily to the ergodic case. Devroye and
Gyorfi (1990) have shown that there is no universal procedure for estimating
the marginal distribution of an i.i.d. process in the total variation norm. On the
other hand, for the family of i.i.d. processes whose marginal distributions are
absolutely continuous, there is an L1-consistent density estimation scheme,
which provides distribution estimates consistent in total variation. The dis-
cussion following Theorem 1 shows that, for the family of ergodic processes
with absolutely continuous marginal distributions, there is no distribution es-
timation scheme consistent in total variation. In fact, it is shown in Corollary 3
that, for such processes, one cannot even estimate the Lebesgue measure of
the support of their marginal distribution.

The next section contains two positive results intended to highlight the
distinction between collections of densities and families of dependent pro-
cesses. Section 3 is devoted to the statement and proof of Theorem 1. Section 4
presents several corollaries, including two results on estimating the support
of the marginal distribution of an ergodic process.

2. Two positive results. For i.i.d. processes there is a one to one cor-
respondence between collections of densities and collections of processes. No
such relation exists in the dependent case, where the investigation of consis-
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tency involves constraints on the candidate densities and constraints on the
structure of the underlying processes. For suitably restricted families of can-
didate densities, no assumptions concerning the dependence of the process are
necessary. Let α� 	1�2� � � �
 → �0�∞� be nondecreasing and let � �α� contain
all those densities f� R → R such that, for each i ≥ 1, the variation of f
on �−i� i� is at most α�i�. Nobel, Morvai and Kulkarni (1996) established the
following result.

Theorem A. Let α�·� be known. Then there is a strongly consistent pro-
cedure � for the family � of all ergodic processes X such that X ∼ f with
f ∈ � �α�.

This result suggests that the existence of a consistent estimation procedure
for a family of strongly dependent processes might require a compactness type
condition on the set of candidate densities. The next result shows that this is
not the case. In particular, one can almost surely distinguish between the
members of any countable family of ergodic processes.

Let � = 	X�1��X�2�� � � �
 be a countable family of stationary ergodic pro-
cesses indexed by 	1�2� � � �
, each defined on the same probability space
���� � µ�. Assume that the elements of � are distinct in the sense that no
two processes have the same k-dimensional marginal distributions for each
k ≥ 1. The following result, which shows that one can distinguish between
the processes in � , can be found in Barron (1985), who gave two proofs using
martingale theory. The proof below relies on the ergodic theorem.

Lemma 1. There exists a procedure �� R
∗ → 	1�2� � � �
 such that for each

process X�l� ∈ � the cardinality of 	n� ��X�l�
1 � � � � �X

�l�
n � �= l
 is finite with

µ-probability 1.

Note. It follows from Lemma 1 that there is a consistent density estima-
tion procedure � for a countable family of ergodic processes whose marginal
densities form a dense subset of the collection of all densities on R.

Proof of Lemma 1. Fix i �= j. By assumption there exists k ≥ 1 and a
k-dimensional Borel set Ai�j such that

εi� j =
∣∣∣µ{(X�i�

1 � � � � �X
�i�
k

) ∈ Ai�j

}− µ
{(
X
�j�
1 � � � � �X

�j�
k

) ∈ Ai�j

}∣∣∣ > 0�

For each n ≥ k let Dn�i� j� contain all those vectors �x1� � � � � xn� ∈ R
n such

that∣∣∣∣∣ 1
n− k+ 1

n−k+1∑
l=1

I
{�xl� � � � � xl+k−1� ∈ Ai�j

}− µ
{(
X
�i�
1 � � � � �X

�i�
k

) ∈ Ai�j

}∣∣∣∣∣ < εi�j

2
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Fix m ≥ 2 for the moment. By the ergodic theorem there exists an integer nm

such that for each i �= j with 1 ≤ i, j ≤m,

µ
{(
X
�i�
1 � � � � �X

�i�
nm

) ∈ Dc
nm
�i� j�} ≤ 1

m3
(1)

and

µ
{(
X
�j�
1 � � � � �X

�j�
nm

) ∈ Dnm
�i� j�} ≤ 1

m3
�(2)

Restricting i, j to 1� � � � �m, let Bm�i� =
⋂

j �=i Dnm
�i� j� and define sets

Fm�i� =
⋂
j �=i

Bm�j�c ∩ Bm�i�� i = 1� � � � �m− 1�

Fm�m� =
(m−1⋃

i=1

Fm�i�
)c

�

so that Fm�1�� � � � �Fm�m� form a partition of R
nm . Let n1 = 1, F1�1� = R and

assume without loss of generality that nm > nm−1.
Given a sequence of numbers x1� � � � � xn, find the largest integer m such that

n≥nm. If �x1� � � � � xnm
� ∈Fm�l�, then set ��x1� � � � � xn�= l. For nm ≤n<nm+1

the procedure attempts to distinguish between X�1�� � � � �X�m�. If X�l� ∈ � , then
for each m > l,

µ
{(
X
�l�
1 � � � � �X

�l�
nm

)
/∈ Fm�l�

}
≤ µ

{(
X
�l�
1 � � � � �X

�l�
nm

) ∈ Bc
m�l�

}+∑
k �=l

µ
{(
X
�l�
1 � � � � �X

�l�
nm

) ∈ Bm�k�
}
�

By virtue of (1) and (2), each term on the right-hand side of the inequality is
less than m−2 and, consequently,

∞∑
m=1

µ
{
��X�l�

1 � � � � �X
�l�
nm
� �= l

}
<∞�

Therefore, ��X�l�
1 � � � � �X

�l�
nm
� �= l for finitely many m with µ-probability 1, and

the result follows. ✷

Ornstein and Weiss (1990) described a universal procedure that will esti-
mate a Bernoulli process (in the d̄ sense) from finite initial segments of almost
every sample path. They also gave several counterexamples showing there is
no procedure that gives d̄-consistent estimates of every finite alphabet sta-
tionary ergodic process.

3. A counterexample. It is shown below that there is no universal den-
sity estimation procedure for ergodic processes. We restrict ourselves through-
out to processes X = 	X1�X2� � � �
, defined on ��0�1����, and of the form
Xi�ω� = Tiω. For our purposes, this restriction implies no loss of generality.
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Given a procedure � that is assumed to be universal, we exhibit an er-
godic process 	Xi
 having uniform marginal distribution, such that �� · �
X1� � � � �Xn� fails to converge. The process 	Xi
 fools the procedure into
believing that it is seeing a process with an oscillatory marginal distribution,
and it does this infinitely often. In fact, the assumed universality of � is the
key to its failure. The process 	Xi
 is constructed using the method of cutting
and stacking, an introduction to which can be found in Shields (1991) and
Friedman (1970).

3.1. Pairwise cutting and stacking. A column of height m and width b is
an ordered collection C = 	Ij� 1 ≤ j ≤m
 of m disjoint intervals Ij = �aj� aj+
b� ⊆ �0�1� each having length b. One views the intervals Ij as being stacked
on top of one another, with I1 on the bottom and Ij placed directly above Ij−1.
Associated with every column C is a transformation TC�

⋃m−1
j=1 Ij →

⋃m
j=2 Ij

that maps each point in the first m−1 levels of C to the point directly above it:

TC�aj + s� = aj+1 + s�

for each s ∈ �0� b� and each 1 ≤ j < m.
A column C′ is said to be a 2-cut of C if it is obtained by cutting C in half

vertically and then stacking the intervals to the right of the cut directly on
top of those to the left. Thus C′ is twice as high and half as wide as C, and is
of the form C′ = 	I′1� � � � � I′2m
, where

I′j =




[
aj� aj +

b

2

)
� if 1 ≤ j ≤m�

[
aj−m +

b

2
� aj−m + b

)
� if m+ 1 ≤ j ≤ 2m�

Note that the associated transformation TC′ is an extension of TC, in that
TC′ �ω� = TC�ω� for ω ∈ ⋃m−1

j=1 Ij. In particular, TC′ maps the left half of Im
to the right half of I1.

Let C = 	I1� � � � � Im
 be an initial column with support U = ⋃m
j=1 Ij and

let C1�C2� � � � be successive 2-cuts of C. Then the mappings TC1
�TC2

� � � � form
a chain whose limit

T∗C�ω� = lim
n→∞TCn

�ω�

is defined for each ω ∈ U. Each map TCn
is measurable and such that

λ�T−1
Cn
A� = λ�A� for each Borel subset A of �0�1�. As the range and domain of

TCn
increase to U, the limit T∗C is measurable and preserves the normalized

restriction of Lebesgue measure to U. In addition, it follows from Theorem
6.2 of Friedman (1970) that T∗C is ergodic. If the initial column C = 	�0�1�
,
then T∗C is the von Neumann–Kakutani adding machine [cf. von Neumann
(1932)].

For each k ≥ 1 let πk be the partition of �0�1� into k left closed, right
open subintervals of length 1/k. Let �k be the collection of bijections
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φ� 	1�2� � � � � k
 × 	1�2
 → π2k. Each element φ ∈ �k uniquely describes two
disjoint columns

C1 = 	φ�i�1�� 1 ≤ i ≤ k
 and C2 = 	φ�i�2�� 1 ≤ i ≤ k

of height k composed of intervals from π2k. Conversely, any two such columns
can be described by an element of �k. Let Uj =

⋃k
i=1 φ�i� j� be the support

of Cj and define probability measures

µ
j
φ�A� = 2λ�A ∩Uj�� j = 1�2�

with corresponding densities f
j
φ�x� = 2IUj

�x�. Define the transformation

Tφ�ω� =
{
T∗C1

�ω�� if ω ∈ U1�

T∗C2
�ω�� if ω ∈ U2�

It follows from the remarks above that Tφ is ergodic and measure-preserving
on ��0�1���� µ

j
φ� for j = 1�2. Let � = ⋃∞

k=1 �k and let �1 contain all those
stationary ergodic processes on ��0�1���� µ

j
φ� of the form Xi�ω� = Ti−1

φ ω with
φ ∈ � and j = 1, 2.

3.2. Principal result.

Theorem 1. No density estimation procedure � is weakly L1 consistent for
every ergodic process having an absolutely continuous marginal distribution.

Proof. Assume that � is weakly consistent for the family �1 and let
ε1� ε2� � � � > 0 be such that

∑∞
n=1 εn < ∞. We construct an ergodic measure-

preserving transformation T on ��0�1���� λ� such that

lim sup
n→∞

∫ 1

0

∣∣�(
u�T0ω� � � � �Tn−1ω

)− 1
∣∣ du ≥ 1

2(3)

for λ-almost every ω ∈ �0�1�. The transformation T is defined by a sequence
of pairs of columns 	C�1�k �C

�2�
k � k ≥ 1
.

Let C
�1�
1 = 	�0�1/2�
 and C

�2�
1 = 	�1/2�1�
 be initial columns, having a

corresponding bijection φ1 ∈ � . By assumption, there is an integer l1 such
that each of the sets

A1�j =
{
ω�

∫ 1

0

∣∣∣�(
u�T0

φ1
ω� � � � �T

l1−1
φ1

ω
)− f

j
φ1
�u�

∣∣∣ du ≥ 1
2

}
� j = 1�2�

has measure µ
j
φ1
�A1� j� < ε1. Setting A1 = A1�1∪A1�2, it follows that λ�A1� <

ε1. Choose m1 ≥ 1 such that l1/2m1 < ε1 and let C
�j�
2 � � � � � C

�j�
m1 be successive

2-cuts of C�j�1 for j = 1, 2.
Suppose now that for some n ≥ 2 we have selected integers m1, m2� � � � �

mn−1 and formed two columns C
�1�
s�n−1� and C

�2�
s�n−1�. where s�n − 1� = n − 2 +
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∑n−1
i=1 mi. Mingle the two columns by stacking C

�2�
s�n−1� on top of C

�1�
s�n−1� and

then cutting this new column in half. Let C
�1�
s�n−1�+1 be those intervals to the

left of the cut and C
�2�
s�n−1�+1 those to the right, and let φn ∈ � be the bijection

corresponding to this new pair of columns. As � is weakly consistent for �1,
there is an integer ln for which An = An�1 ∪ An�2 with

An�j =
{
ω�

∫ 1

0

∣∣∣�(
u�T0

φn
ω� � � � �T

ln−1
φn

ω
)− f

j
φn
�u�

∣∣∣ du ≥ 1
2

}
�

has Lebesgue measure λ�An� < εn. Choose mn ≥ 1 so that s�n� = s�n − 1� +
1+mn satisfies

ln
2s�n� < εn�

and let C�j�s�n−1�+2� � � � � C
�j�
s�n� be successive 2-cuts of C�j�s�n−1�+1 for j = 1�2. Con-

tinuing in this fashion we obtain a sequence 	C�1�k �C
�2�
k � k ≥ 1
 of pairs of

columns, each having an associated transformation Tk. By construction, Tk+1
extends Tk, and the domain of Tk increases to �0�1�. The limiting transfor-
mation T� �0�1� → �0�1� is invertible and preserves Lebesgue measure. At
each mingling operation the behavior of the limiting transformation T is de-
scribed by a single column. As the width of these columns tends to zero, it
follows from Theorem 6.2 of Friedman (1970) that T is ergodic. Thus the pro-
cess Xi�ω� = Ti−1ω, i ≥ 1, is stationary and ergodic, with marginal density
f ≡ 1 on �0�1�.

At each stage k the columns C�1�k and C
�2�
k are of height 2k−1 and have width

2−k. Let R�n� l� be the union of the top l intervals of C�1�s�n� and C
�2�
s�n�. The choice

of mn insures that λ�R�n� ln�� ≤ 2εn. By design, if ω ∈ R�n� ln�c ∩ Ac
n, then

ω�Tω� � � � �Tln−1ω = ω�Tφn
ω� � � � �T

ln−1
φn

ω

and

max
j=1�2

∫ 1

0

∣∣∣�(
u�T0

φn
ω� � � � �T

ln−1
φn

ω
)− f

j
φn
�u�

∣∣∣ du < 1
2 �

Since
∫ 1

0 �1− f
j
φn
�du = 1, for each such ω,

∫ 1

0

∣∣�(
u�T0ω� � � � �Tln−1ω

)− 1
∣∣ du ≥ 1

2 �

Thus if B  = ⋂∞
r=1

⋃∞
n=r�R�n� ln� ∪ An�, then for each ω ∈ Bc,

lim sup
k→∞

∫ 1

0

∣∣�(
u�T0ω� � � � �Tkω

)− 1
∣∣ du ≥ 1

2 �

Summability of the εn insures that λ�B� = 0. This completes the proof. ✷
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Remark. A careful examination of the proof shows that, subsequent to
each mingling operation, each column consists of alternating dyadic intervals
in �0�1�. More precisely, C�j�s�n�+1 contains the intervals[

2r+ j− 3
2s�n�+1

�
2r+ j− 2

2s�n�+1

)
� 1 ≤ r ≤ 2s�n��

though they do not appear in their natural increasing order. It is therefore
enough to let �1 contain only those processes whose associated bijections sep-
arately re-order the even and odd intervals of some dyadic partition. The
processes in this restricted class have densities supported on alternating cells
of the kth dyadic partition of �0�1�, for some k ≥ 1.

4. Some corollaries. The transformation T constructed in the proof of
Theorem 1 is uniquely specified by the integer sequence m = �m1�m2� � � ��,
which describes the number of 2-cuts performed between successive mingling
of the columns. Thus we may write T = Tm. Let �2 be the family of processes
defined by Xi�ω� = Ti

mω for ω ∈ �0�1�, where m ranges over all sequences
of nonnegative integers. Each element of �2 is stationary and ergodic with
uniform marginal distribution on �0�1�. By virtue of Lemma 1, �2 is neces-
sarily uncountable. The following corollaries are immediate from the proof of
Theorem 1.

Corollary 1. There is no consistent density estimation procedure for � ∗ =
�1 ∪ �2.

Remark. By modifying the construction of Theorem 1, one can establish
an analogous result for a family of processes � ∗∗, each element of which is
generated by a mixing transformation T.

As �1 is countable and every process in �2 has a uniform density, there exist
consistent density estimation procedures for each family individually. Let �1
be consistent for �1 and let �2 be consistent for �2. Given these procedures,
the density estimation problem may, in principle, be solved by identifying the
family to which the observed process X ∈ � ∗ belongs. This observation and
Corollary 1 lead to counterexamples for other problems.

For a given ergodic process X = 	Xi
, define Xn
1 = X1� � � � �Xn and let

SX ⊆ R be the support of the distribution of Xi. The following results show
there is no universal procedure that will estimate SX, or even λ�SX�, from
the finite initial segments of X.

Corollary 2. There is no procedure �� R∗→� such that λ���Xn
1�1SX�→

0 in probability for every process X = 	Xi
 ∈ � ∗.

Corollary 3. There is no procedure 2� R∗ → � such that 2�Xn
1� → λ�SX�

in probability for every process X = 	Xi
 ∈ � ∗.
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Proofs. It suffices to prove Corollary 3. If such a mapping 2 existed, then
the compound procedure � defined by

��u� Xn
1� =

{
�1�u�Xn

1�� if 2�Xn
1� ≤ 3/4�

�2�u�Xn
1�� if 2�Xn

1� > 3/4�

would be consistent for � ∗, which contradicts corollary 1. Both corollaries
may also be proved directly by arguments similar to that given in Theo-
rem 1. ✷

Definition. A density estimation procedure ��·� is invariant if for every
sequence x1� x2� � � � ∈ R and every density f,

∫ ���u�x1� � � � � xn�−f�u��du→ 0
if and only if

∫ ���u�x2� � � � � xn+1� − f�u��du→ 0.

Corollary 4. For every invariant procedure � there is a process X ∈ � ∗

with Xi ∼ f such that

lim sup
n→∞

∫ 1

0
���u�Xn

1� − f�u��du > 0 a�e�(4)

Proof. If � is invariant, then for each j = 1, 2 and every function φ ∈ �
the set {

ω�
∫ 1

0

∣∣∣�(
u�T0

φω� � � � �T
n−1
φ ω

)− f
j
φ�u�

∣∣∣ du→ 0
}

is invariant under Tφ, and therefore its measure under µj
φ is either 0 or 1. As

a consequence, if (4) fails to hold for each X ∈ �1, then � is consistent for �1.
In this case the proof of Theorem 1 shows that (4) holds for some X ∈ �2. ✷
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