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ON THE RANGE OF R2 OR R3-VALUED
HARMONIC MORPHISMS

BY F. DUHEILLE

Universite de Lyon 1´
We prove that, under some general assumptions, the range of any

nonconstant harmonic morphism from a simply connected open set U in
Rn to R3, n � 3, cannot avoid three concurrent half-lines, which is an
extension to Picard’s little theorem. To this end, we will prove two results
concerning the windings of Brownian motion around three concurrent
half-lines in R3 and the recurrence of some domains linked with the
harmonic morphism.

Ž1. Introduction. Harmonic morphisms between Euclidean spaces and
.more generally between Riemannian manifolds have been introduced by

� �Fuglede 7 in 1978, and some special cases have been studied by Baird and
Ž � �. � � � �Wood see, e.g., 1 and Gudmundsson 8 . Bernard, Campbell and Davie 2

have considered the probabilistic point of view. Let us recall the definition of
such objects.

DEFINITION 1.1. A continuous map f : U � R p, defined on a domain U of
Rn, is called a harmonic morphism if, for any open set V in R p such that

�1Ž .f V � � and for any harmonic function h on V, the composite function
�1Ž .h� f : f V � R is harmonic.

The following proposition characterizes harmonic morphisms.

PROPOSITION 1.2. Consider an open set U � Rn and a map in the class
CC 2, f : U � R p. The function f is a harmonic morphism if and only if each
coordinate f is harmonic and if their gradients are orthogonal and have thei
same norm:

² : 2�f , �f � � x � .Ž .i j i j

This proposition leads us to a precise description of harmonic morphisms
based on the dimensions of the considered Euclidean spaces. Indeed, Fuglede
� � � �7 and Baird and Wood 1 have shown the following.

Ž . nTHEOREM 1.3. i The harmonic morphisms from R to R are the har-
n � �monic functions on R 7 .
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Ž . n pii If n � p, any harmonic morphism from a domain U � R to R is
� �constant 7 .

Ž . niii If n � 2, any nonconstant harmonic morphism from a domain U � R
n n � �to R is a constant times an affine orthogonal map on R 7 .

Ž . 2iv The harmonic morphisms from U � R � C to C are the holomorphic
or antiholomorphic functions on U. More generally, complex-valued holomor-
phic functions of n complex variables are harmonic morphisms on Cn.

Ž . 3 2v Any nonconstant harmonic morphism from R to R is an orthogonal
projection from R3 on a two-dimensional subspace, composed by a holomor-

2 � �phic or antiholomorphic function on R 1 .

Harmonic morphisms admit a probabilistic interpretation. It is, in fact, a
� �generalization of a classical result of Levy 11 that claims that plane´

Brownian motion is invariant under any conformal transformation. More
� �precisely, Bernard, Campbell and Davie 2 have proved the following.

THEOREM 1.4. Let f : U � R p be a continuous map defined on a domain U
n Ž . nof R and let B be a Brownian motion on R , issued from B � b � U.t t � 0 0 0

� 4 Ž . t � Ž .� 2Note � � inf t: B � U and � t � H �f B ds, for all t � � .t 0 s
The map f is a harmonic morphism if and only if the paths of the process

Ž Ž .. pf B are Brownian paths on R , that is, there exists a Browniant 0 	 t 	�
pŽ . Ž . Ž . Ž Ž ..motion B on R , issued from B � f b , such that f B � B � t .s s� 0 0 0 t

Ž .In such a context, it is natural to search for information on the range f U
of a harmonic morphism f : U � R p, where U is a domain in Rn. In this
article, we prove that, under some general assumptions on f and U, the
range of any nonconstant R3-valued harmonic morphism f can not avoid
three concurrent half-lines, which is of course an extension to Picard’s little
theorem, according to which the range of any nonconstant entire function on

� �C avoids at most one point. Our result has already been announced in 4 .
The proof we give of this fact is based on the invariance property of Theorem
1.4, and has been inspired by the probabilistic proof of Picard’s little theorem

� � Ž � �. ndue to 3 see also 5 . However, transience of Brownian motion in R ,
n � 3, implies new technical difficulties.

2. Notations and main result. Let us give a few notations: let h:
U � R be a harmonic function on a domain U of Rn. For any unbounded open
set V � U, we note

� �M r , V , h � sup h x ; x 	 r and x � V� 4Ž . Ž .
and

ln M r , V , hŽ .
I V , h � lim inf .Ž .

ln rr��

� �Let us recall the definition of a recurrent set 13 .
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DEFINITION 2.1. A Borelian set C in Rn is recurrent for the Brownian
Ž . nmotion B in R if and only if, �-almost surely, for all A � 0, theret t � 0
Ž . Ž .exists � � � A such that B � � C. Otherwise, the set C is transient.�

DEFINITION 2.2. Consider a Borelian set C in Rn and a Brownian motion
Ž . nB on R issued from B � b � C. The set C is polar if and only if,t t � 0 0 0

Ž Ž ..�-almost surely, the path B � does not visit C.t t � 0

Our main result is the following.

THEOREM 2.3. Consider a simply connected domain U in Rn such that
n Ž . p � 4R 
 U is polar. Let f � f , . . . , f : U � R , n � p, p � 2, 3 , be a har-1 p

Ž . nmonic morphism, and let B be a Brownian motion in R issued fromt t � 0
B � b � U. We suppose that:0 0

Ž . �� � Ž .� 2	 Almost surely, H �f B ds � ��;0 1 s
Ž . �1Ž .
 The set f H admits a recurrent connected component for some open

half-space H in R p.

Then:

Ž . Ž . 2i If p � 2, f U avoids at most one point in R 
 H.
Ž . 3ii If p � 3, for all x � R 
 H,0

card u � S2 , x � R�u � R3 
 f U � H 	 2,Ž .� 4Ž .0

where S2 is the unit sphere in R3.

Ž . Ž .REMARK. Assumptions 	 and 
 are always checked if f is a polyno-
mial harmonic morphism.

Ž .The hypothesis 
 involves only one coordinate function of the harmonic
morphism, which is in fact a harmonic function. We give here a condition, on

Ž .harmonic functions, that implies hypothesis 
 .

THEOREM 2.4. Let h be a harmonic function on U where U is a domain
n �1Ž � .of R of polar complement. Then any connected component C of h R�

Ž .such that I C, h is finite and such that any point in � C is regular for C,
is recurrent.

One could think that, for any harmonic function h on Rn, one at least of
�1Ž � . �1Ž � .the connected components of h R or of h R is recurrent. The follow-� �

ing example shows this is false.

EXAMPLE. Consider the function h: R4 � R defined by

'3 th x , y , z , t � cos x cos y cos z e .Ž .
This function is clearly harmonic on R4, but no connected component of

�1Ž � . �1Ž � .h R or of h R is recurrent.� �
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3. Proof of Theorem 2.3. As our method can also be used to solve the
case p � 2, we will study more carefully the case p � 3. This theorem is
based on two essential facts. We will prove that Brownian paths in R3 get
more and more tangled in their windings around three concurrent half-lines.
An argument based on homotopy allows us to conclude.

Notation. Later on in this article, we will note E � R3 
 � 3 D , wherei�1 i
D , D , D are three concurrent half-lines.1 2 3

DEFINITION 3.1. Let us note T the border of the infinite trihedral defined
by the three concurrent half-lines D , i � 1, 2, 3, and consider a curvei

� ��: 0, t � E.

Ž . Ž .i We will say that � is unwound in E around the three half-lines if�0, t �
˜ � �there exists a curve �: 0, 1 � E such that:

˜ ˜Ž . Ž . Ž . Ž . Ž .a � 0 � � t , � 1 � � 0 ;
˜Ž . Ž � � .b card � 0, 1  T 	 2;
˜Ž .c � �� is homotopic to a point in E.�0, t � �0, 1�

Otherwise, we will say � is wound in E.
Ž . � .ii We will say that a curve �: 0, �� � E comes wound if, for all t big

enough, the curve � is wound.�0, t �

Then we can state the following result.

3Ž .THEOREM 3.2. Let B be an R -valued Brownian motion issued fromt t � 0
Ž Ž ..a point B � b � E. Then, �-almost surely, the path B � comes0 0 t t � 0

wound around the three concurrent half-lines D , D , D .1 2 3

REMARK. As straight lines are polar sets for three-dimensional Brownian
motion, the winding of Brownian paths around three half-lines is well
defined.

Let us admit for a while Theorem 3.2 and deduce from it Theorem 2.3.
Ž .Assume that f U avoids three concurrent half-lines D , D , D included1 2 3

�Ž .in the half-space H a, b and that a connected component C of the open set
�1Ž �Ž .. nf H a, b is recurrent. We will build, using Brownian motion on R , a

closed curve � in U whose image by f : U � E � R3 
 �3 D is not homo-i�1 i
Ž .topic to a point in E thanks to Theorem 3.2 , which is absurd. Indeed, as we

have supposed U simply connected, the closed curve � is homotopic to a point
and its image under the continuous map f should be homotopic to a point

Ž .in f U .
Ž . nLet B be a Brownian motion on R . We will suppose B � b � Ct t � 0 0 0

and note:

 � � �  , B does not visit Rn 
 U .� 4Ž .0 t t�0

n Ž .As R 
 U is polar, P  � 1.0
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Ž Ž ..By Theorem 3.2, the paths of f B come wound almost surely aroundt t � 0
the three half-lines, because the paths of this process are Brownian paths in

3 Ž .R , and the assumption 	 implies we find whole Brownian paths. Let us
note:

 � � �  , there exists S � 0, f B is wound for all t � S .� 4Ž .1 � �0, t � �

Ž .We have then P  � 1.1
Set

 � � �  , � A � 0, �� � , A � A , B � C .� 4Ž .2 �

Ž . Ž .As we supposed C recurrent, we have P  � 1, and P      � 1.2 0 1 2
Ž . �Fix then � �      . For such an �, there exists � � � � � R0 1 2

Ž . Ž Ž Ž ...such that for all t � � � , the path f B � is wound in E. We cans s��0, t �
Ž . Ž . Ž .then choose � � � � � such that B � is in C.�

The set C is connected and open: it is then arcwise-connected, and there
Ž . Ž . Ž .exists a curve � in C linking B � and B � . The curve f � closes the� 0

Ž .path f B according to the rules of Definition 3.1. By definition of � ,�0, � �
Ž . Ž .the closed curve f B �� can not be homotopic to a point in f U � E. The�0, � �

curve B �� forms the announced curve.�0, � �

4. Proof of Theorem 3.2. Let D , D , D be three concurrent half-lines1 2 3
3 � � �in R , issued from 0. We note D � R u with u � 1, i � 1, 2, 3. Consideri i i

the map
� : R3 
 D � R2 � D�

1 1

² :x � x , u u1 1
x � � x � .Ž .

� � ² :x � x , u1

LEMMA 4.1. The map � is a harmonic morphism from R3 
 D to R2.1

� �Indeed, � is the composite map of �: x � x� x and of the stereographic
projection of pole u onto the plane orthogonal to D through 0. The image by1 1
� of an R3-valued Brownian motion is a time change of a spherical Brownian
motion and the image by the stereographic projection of a spherical Brownian
motion is a time change of a plane Brownian motion: the paths of the image
by � of an R3-valued Brownian motion are plane Brownian paths. Theorem
1.4 allows us to claim that � is a harmonic morphism.

Ž 3 3 . 2 � Ž . Ž .4LEMMA 4.2. We have � R 
 � D � R 
 � u , � u .i�1 i 2 3

One can easily check that the inverse image by � of any point in R2 is a
half-line issued from 0, and distinct from D , which proves this lemma.1

We can now prove Theorem 3.2. To that effect, consider a Brownian motion
3 3Ž . Ž Ž .. .B in R issued from B � b � � D . The process � B is at t � 0 0 0 i�1 i t t � 0

� Ž . Ž .4time change of a Brownian motion on the plane minus � u , � u , and the2 3
change of time converges almost surely to �� as t � ��. We will now use a
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� � Ž � � � �.result of McKean 12 see also 3 and 5 according to which plane Brown-
ian motion comes wound around two different points.

Ž .LEMMA 4.3. Let B be a plane Brownian motion issued from B � bt t � 0 0 0
and x , x , two distinct points in R2, different from b . Then, �-almost surely,1 2 0

Ž . Ž . Ž Ž ..there exists T � � 0 such that for all t � T � , the path B � iss 0 	 s	 t
2 � 4wound in R 
 x , x .1 2

REMARK. One can easily define the winding of any unbounded curve in R2

minus two points as one did in R3 minus three half-lines.

2Ž Ž .. � Ž . Ž .4Let T be a time such that � B is wound in R 
 � u , � u fors 0 	 s	 t 2 3
all t � T, and choose any curve � in R3 
 �3 D that closes the pathi�1 i
Ž .. Ž .B according to the rules of Definition 3.1. As the curve � � closess 0 	 s	 t
Ž . Ž .� B , the plane closed curve � B �� can not be homotopic to a point�0, t � �0, t �

2 � Ž . Ž .4in R 
 � u , � u . Hence, the closed curve B �� is not homotopic to a2 3 �0, t �
point in R3 
 � 3 D , which proves that R3-valued Brownian motion comesi�1 i
wound around three concurrent half-lines in R3.

5. Proof of Theorem 2.4. Let us first prove the following lemma.

LEMMA 5.1. Let h: U � R be a harmonic function on an open connected
�1Ž � .set of polar complement and consider a connected component C of h R .�

Ž .If � C is regular for C and if I C, h is finite, the harmonic function h
admits a continuous extension on the set C.

˚ Ž .PROOF OF LEMMA 5.1. At first, choose a point x in C 
 C. As I C, h is0
˚finite and C 
 C is polar, the harmonic function h is bounded in a vicinity of

Ž � �x in U. Hence, it admits a limit at that point see, e.g., 10 , page0
˚�.271 . We can then suppose C � C.

˜Consider now, for any r � 0, the bounded harmonic function h on C  Br r
Ž .where B is the ball of center 0 and radius r such thatr

h̃ � h on S  C ,r r

h̃ � 0 on � C  B.r

As � C is regular for C, h does exist and is unique because C is bounded.r r
˜We have then h � h on � C, except maybe on a polar set of C. By unicityr

˜of the solution of the Dirichlet problem on C  B , h � h on C  B : ther r r
Ž .harmonic function h is continuous on C and we have h x � 0 for any

x � � C.

PROOF OF THEOREM 2.4. There is no unicity for the Dirichlet problem for
the Laplacian on the domain C: the harmonic function h is nonconstant on C
and null on its border. Furthermore, we suppose that h does not grow too
fast; the set C has to be big enough, and we will show that it is recurrent.
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Ž .Let us suppose that C is transient and show that, necessarily, I C, h is
infinite.

� �We will use the following lemma, proved by Huber 9 that minorizes the
�1Ž � .growth of a harmonic function h on a connected component of h R :�

LEMMA 5.2. Let U � Rn, n � 2, be an open connected set, � � �U its
border and h: U � R, a subharmonic function such that

� x � � , lim sup h y 	 0.Ž .
y�x , y�U

Then, one of the two following properties is checked:

Ž .i We have h 	 0 on U.
Ž .ii There exist two constants K � 0 and r � 0 such that, for all r � r ,0 0

2 r �
2�n n�31 sup h x � Kr � exp 2 	 s ds�s d� ,Ž . Ž . Ž .H Hž / ž /r r� � 0 0x�U , x �r

Ž . Ž .where 	 s is the positive root of the second-degree equation 	 	 � n � 2 �
Ž . Ž .� s , � s being the first eigenvalue of the spherical Laplacian on the unit1 1

sphere S in Rn, for the Dirichlet problem on S  s�1U.

Let us apply Lemma 5.2 to the harmonic function h and the connected
open set C. We have clearly

h x � 0 for all x � � CŽ .
�and

h x � 0 for all x � C.Ž .
Ž .Here, inequality 1 becomes

r �
2 2�n n�3M r , C , h � Kr � exp 2 	 s ds�s d�Ž . Ž .H Hž /r r0 0

for all r � r , K and r being two positive constants.0 0
For all r � 2r , we deduce0

�r�22 2�n n�3M r , C , h � Kr � exp 2 	 s ds�s d�Ž . Ž .H Hž /r r0 0

r r�2n�3� � exp 2 	 s ds�s d� .Ž .H Hž /r�2 r0

This inequality implies

K dsr�22 2�n2 M r , C , h � 1 � 2 exp 2 	 s .Ž . Ž . Ž . Ž .Hž /n � 2 sr0

1 2�n� Ž . Ž .�Set K � ln K 1 � 2 � n � 2 .1 2
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Ž .From the overestimate 2 , we infer

ln M r , C , h K 1Ž . Ž .ln r�21 u� � 	 e du,Ž .Hln r ln r ln r ln r0

As C is transient, the area of S  s�1 C converges to 0 as s converges to
��, so that the first eigenvalue of this set converges to ��. The quantity
Ž . Ž .	 s converges to �� and finally, I C, h has to be infinite.

Acknowledgment. We thank the referee for having suggested to us this
short proof of Theorem 2.4. A more precise result on the growth of h can be

Ž � �.obtained using Wiener’s test see, e.g., 13 and an isoperimetric inequality
� �on the unit sphere S proved by Friedland and Hayman 6 .
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