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We are interested in the rate of convergence of the Euler scheme ap-
proximation of the solution to a stochastic differential equation driven by
a general (possibly discontinuous) semimartingale, and by the asymptotic
behavior of the associated normalized error. It is well known that for 1t6’'s
equations the rate is 1/./n ; we provide a necessary and sufficient condition
for this rate to be 1/,/n when the driving semimartingale is a continuous
martingale, or a continuous semimartingale under a mild additional as-
sumption; we also prove that in these cases the normalized error processes
converge in law.

The rate can also differ from 1/./n: this is the case for instance if
the driving process is deterministic, or if it is a Lévy process without a
Brownian component. It is again 1/4/n when the driving process is Lévy
with a nonvanishing Brownian component, but then the normalized error
processes converge in law in the finite-dimensional sense only, while the
discretized normalized error processes converge in law in the Skorohod
sense, and the limit is given an explicit form.

1. Introduction. The classical Itd-type stochastic differential equation
(SDE) is of the form

(1.1) X, = xo+ /Ota(Xs)dWs + /Ot b(X,)ds

with a, b matrices of functions and W a multidimensional Brownian motion.
By replacing dW, and dt with a vector of semimartingales dY, we consider
the more general equation

12) X, =+ [ F(X,)dY,,

where f denotes a matrix f = (f¥) of functions. In applications one often
wants to solve (1.2) numerically, when possible. Because of simulation diffi-
culties, and because one often combines a numerical solution of (1.2) with a
(slow) Monte Carlo technique, it is usually advisable to solve (1.2) numerically
with an Euler scheme, rather than a more complicated, faster one. (See the
survey paper of Talay [16] for a discussion of this issue.)

Without loss we will take the time interval to be [0, 1] rather than [0, T']
for some (nonrandom) 7' > 0. We will assume [0, 1] is partitioned by 1" =
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0=ty <ty <--<t, =1} with ¢; = i/n, 0 < i < n. Rates of convergence
will thus be given relative to this partition scheme. For equation (1.1) if a = 0,
then the rate of convergence of the Euler scheme is classically 1/n; if a does
not vanish, then it is also classical that the rate is 1/./n. The distribution
of the (normalized) asymptotic error, however, is not at all classical and was
established only recently for (1.1) (see [8]).

In this paper we mainly aim to give a class of equations of type (1.2) that
converge at the rate 1//n and determine their asymptotic error, although we
also examine some equations providing the rate 1/n. To give a flavor of our
results in a very simple setting, consider the one-dimensional case (for Y and
X as well) when Y is continuous and is either (1) nondecreasing or (2) a local
martingale. Denote by X" the “continuous” Euler approximation for (1.2) and
by X" the “discretized” one (see Section 3 for the definitions), so the error
processes are, respectively, U" = X" - X and U =X — X.

The first situation corresponds to a purely deterministic problem:

THEOREM 1.1. If Y is a nondecreasing continuous function, there is equiv-
alence between the following:

(@) For xo =1and f(x) = x [i.e., X =eY in (1.2)], the sequence of numbers
nU? = nU, is bounded.
(b) For all starting points x, and all C* functions f with at most linear

growth, the functions nU" and nU" converge uniformly to a limit U.
(c) The function Y has the form

t 1
Yt=/oysds With/oyids<oo.

In this case, the limiting process U is the solution of the following linear equa-
tion:

t t
(1.3) Ui= [ F(X)U,y.ds =5 [ F(XOf (X,)5}ds.

This covers in particular the case of an ordinary differential equation of the
form

dX,=f(X,)y.dt,
where the coefficient f is C* and s — y, is a given nonnegative function. Then

the Euler approximation converges at the rate 1/n on the interval [0, 1] if and

only if we have fol ¥2ds < oo, which seems to be a new result.
In the second situation, we denote by C the quadratic variation process of
Y. We then have the following:

THEOREM 1.2. If Y is a continuous local martingale, there is equivalence
between the following:

(&) Forall x, =1 and f(x) = x [i.e.,, X = &£(Y), the Doléans exponential of
X1, the sequence of random variables sup, |/n U}| is tight.
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(b) For all starting points x, and all C*-functions f with at most linear
growth, the processes (Y, /nU") and (Y, ﬁﬁn) converge in law to a limit
(Y,U).

(c) The quadratic variation has the form

¢ 1
CtZ/oCst with /0 c2ds < .

In this case, the limiting process U is the solution of the following linear equa-
tion:

¢ 1 ot
1.4 U, = "(X)U,dY, — — XN (X,)e, dW
( ) t /Of( s)s s \/E/Of( s)f( s)cs B
where W is a standard Brownian motion, independent of Y.

Note that in (1.4) we have some “additional” randomness provided by the
extra Brownian motion W: this is a typical feature of the limiting error process,
when the driving term Y itself is random.

Surprisingly, the situation is very different when the driving term Y is
discontinuous. Consider, for example, the case where Y is a one-dimensional
discontinuous Lévy process. Then two situations occur. First, if there is no
Brownian part, then /n U™ and ﬁﬁn converge in law to 0, which means
that the rate is faster than 1/./n (but we do not know the correct rate, or
even if there is a rate at all). Second, if there is a Brownian part in Y, then
ﬁﬁn converges to a limit U, but \/n U™ does not converge in the usual
sense (i.e., for the Skorohod topology on the set of cadlag functions). It does
converge to U, however, for weaker topologies: the one induced by convergence
in (Lebesgue) measure, which is known as the Meyer—Zheng topology [11], and
also the new S-topology introduced by Jakubowski [5].

The paper is organized as follows: In Section 2 some preliminaries are given,
and this section may be skipped at first reading [except for the definitions of
the so-called stable convergence and of the property (x)]. Section 3 is devoted
to general results (extending [8]) on rates of convergence. We have given in
Section 4 some results in the case Y is of finite variation, because this is
simpler than the general case while it shows already all the pathologies of
this problem; this section may also be skipped, although it contains the proof
of Theorem 1.1. Section 5 is devoted to continuous semimartingales, and this
is the most useful part of this paper as far as applications are concerned, and
it contains the proof of Theorem 1.2. Finally, the case of Lévy processes is
considered in Section 6.

2. Preliminaries. In this paper we will mainly be dealing with weak
convergence in the Skorohod topology: weak convergence for this topology is
denoted by “=". We need to give a review of and some complements to weak
convergence.

First we recall some facts about stable convergence. Let X, be a sequence
of random variables with values in a Polish space E, all defined on the same
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probability space (Q, 7, P). We say that X, converges stably in law to X,
written “X, =52 X~ if X is an E-valued random variable defined on an
extension ({1, &, P) of the original space and if

(2.1) limE(Uf(X,)) = EUf(X))

for every bounded continuous f: E — R and all bounded measurable random
variables U. This convergence was introduced by Rényi [13] and studied by
Aldous and Eagleson [1]; see also [4]. It is obviously stronger than convergence
in law.

If Y is another variable with values in another Polish space F', we have the
following equivalence:

LEMMA 2.1. If X, =5® X then we have (Y, X,) =@ (Y, X) for the
product topology on E x F.

Conversely, if (Y, X,,) weakly converges to a limit, we can realize this limit
as (Y, X) with X defined on an extension of the space on which Y is defined,
and X, =@ X as soon as Y generates the o-field 7.

ProOOF. The first claim is trivial. Conversely, assume that (Y, X, ) weakly
converges to a limit (Y’, X’). Call Q(y, dx) a version of the regular conditional
distribution of X' given Y. Set 0 = QO x E, and ¥ = % ® &, where & is the
Borel o-field of E, and P(dw, dx) = P(dw)Q(Y (w), dx). We thus define an
extension of the original space, with the “canonical” variable X(w, x) = x, and
the pairs (Y, X) and (Y’, X’) clearly have the same law.

Observe that (2.1) holds for all U = g(Y), where g is continuous and
bounded on F, and what we need to prove is that it holds when g is mea-
surable and bounded. However, we then can find a sequence g, of bounded
continuous functions such that g,(Y) — g(Y) in LY(P), and the result readily
follows. O

Note that all this applies when X ,, X are R%-valued processes with cadlag
paths, as well as Y: we can then view them as random variables with values
in the Skorohod space D. However, in this situation we should be careful: the
stable convergence of X, implies the weak convergence of the pair (Y, X,,)
for the product topology on D(RY) x D(R?), which is not the Skorohod topology
on D(R4*?), and we do not have in general weak convergence of (Y, X,) in
the usual sense.

Next, we prove a result on weak convergence and discretization which might
be well known, but we could not find it in the literature. First, a standard
result asserts that if x is a function belonging to D and if n, is a sequence
of increasing piecewise constant and right-continuous functions from [0, 1]
into [0, 1] which converges to the identity, then the sequence of “discretized”
functions x o n,, converges to x. More generally, we have the following lemma.
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LEMMA 2.2. If a sequence X" of (possibly multidimensional) processes
weakly converges to X, then the processes X " weakly converge to the same
limit.

ProoOF. By the Skorohod representation theorem, we can replace weak
convergence by a.s. convergence, so that we only need to prove that if x,, - x
in D, then the sequence y, = x, o n, also converges to x. There are time-
changes A,, converging to the identity and such that x,, — x o A,, goes uniformly
to 0. Then y, — x o A}, also goes uniformly to 0, where A}, = A, o 1,,. Now we
have recalled before stating the lemma that x o A, — x in D; since for the
Skorohod topology we have z, + 2z, — z+ 2’ as soon as z, — z and z,, — 2’
and z is a continuous function, we are clearly finished. O

Next, we recall some facts about convergence of stochastic integrals, coming
from the work of [6] and [7]. See [9] for an expository account. First recall that,
for every 6 > 0, any semimartingale can be written as

(2.2) X, =Xo+ A8+ M(8), + > AX Lax, -6}
s<t

where A($) is a predictable process with finite variation, null at 0, M(9) is
a local martingale null at 0, and AX, denotes the jump size of X at time
s. As usual (M, M) denotes the predictable bracket of two local martingales
M and N, if it exists. All these notions are relative to some filtration (%)
on our probability space. We also write, for any (possibly multidimensional)
process V:

(2.3) V= sup [[V,].
tel0, 1]

DEFINITION. Let X" = (X”*f)liiid be a sequence of R%-valued semimartin-
gales, with A(8)™* and M(8)™* associated with X™* as in (2.2). We say that
the sequence (X") satisfies (x) if for some & > 0 and for each i the sequence

. . 1 . .
(M), M) ) + [ 1A |+ X IAXE sy

O<s<1

is tight. This notion does not depend on the particular choice of 6 > 0 [recall
that our time interval here is [0, 1]; it is important to emphazise that this
notion does depend on the underlying filtrations (%} )].

It turns out that this property is equivalent to the notion of uniform tight-
ness (UT) as introduced by Jakubowski, Mémin and Pagés [6] (see, e.g., [10]
for the equivalence). Since the time interval here is [0, 1], it is also equivalent
to the condition of uniformly controlled variation (UCV) in [9]. Its usefulness
derives from the following fundamental set of results (see, e.g., [9]). Below,
we denote by H - X the stochastic integral process of H w.rt. X, and it is
understood that these two processes have matching dimensions.
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THEOREM 2.3. Let X" and Y” be two sequences of R%-valued semimartin-
gales, relative to the filtrations (77}).

(a) If both sequences X™ and Y" have (»), then so has the sequence X"+ Y™,

(b) If each X" is of finite variation and if the sequence fol |dX?| is tight, then
the sequence X" has (»).

(c) Let H™ be a sequence of (.7} )-predictable processes such that the sequence
H™ is tight. If the sequence X" has (x), so has the sequence H" - X".

(d) Let H™ and H'™ be two sequences of (7} )-predictable processes such that
the sequence H™ is tight and that (H" — H™)* —% 0. If the sequence X" has
(x), then (H" - X® — H™ . X")* =P 0.

(e) Suppose that X" weakly converges. Then (x) is necessary and sufficient
for the following property (called goodness):

For any sequence H" of (.7} )-adapted, right-continuous and
left-hand limited processes such that the sequence (H", X™)
weakly converges to a limit (H, X), then X is a semimartin-
gale w.r.t. the filtration generated by the process (H, X), and
we have (H", X", H" - X")=> (H, X, H_ - X).

We finally turn our attention to stochastic differential equations. General
results are available (see, e.g., [9], [14] and [15]), but we confine ourselves to
linear equations of the type

t
(2.4) X, =dJ, +/0 X, H,dY,,

where Y is a given semimartingale, / is an adapted cadlag process and H is a
predictable process. All these terms can be multidimensional, with matching
dimensions.

Let us begin with a comparison lemma, where X’ is the solution of another
equation (2.4) associated with J’ and H’, and with the same semimartingale Y.

LEMMA 2.4. For all ¢ > 0, A > 0, there is a constant K depending on ¢
and A and on the semimartingale Y such that for all n > 0, u > 0, v € (0, 4],
w € (0, u] we have

P(X-X')>mn)<e+P(H* > A)+ P(J* > u)
+P(H-H')Y >v)+P(J—-J) >w)
uv +w
Ui

(2.5)

K.

PrROOF. Let us first introduce notation: if Z is a cadlag process and T a
stopping time, we write Z7~ for the process ZI~ = Z Lo, 1y(8) + Zp_Lip 4)(2).
We will use the “slicing technique” of Doléans-Dade (see [12]), which says
three things. First, for any semimartingale Y and any « > 0, ¢ > 0, there is
a stopping time T such that the semimartingale Y~ is a-sliceable and that
P(T < 1) < e. Second, if Y is a-sliceable for some «, then E(sup;, | fot H dY, )<
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Ky E(H*), where Ky only depends on Y. Third, if Y is a-sliceable for some «
and if we consider (2.4) with |H| < A, then E(X*) < K 4 y E(J*) for a constant
K 4y depending on A, Y, provided a < C4 for some C, > 0 depending on A
only.

Now we fix A > 0 and ¢ > 0, and we take « = C4. Then we choose a
stopping time T such that P(T < 1) < ¢ and that Y = Y7~ is a-sliceable.
Then we set S = inf(¢: |H,| > Aor|J,| >uor |H,— H,| >vor|J,—J} >

4

w)AT and J = J5°, J = J'°, and we define the ith component of H
as H = H A Av —A, and similarly for H. These last two processes are

predictable, and we can consider the solutions X and X of (2.4), associated
with (7, H,Y) and (J, H,Y), respectively. Note that

(2.6) X=X, X =X ontheset{S>1}.

Note also that X = X — X is the solution of (2.4) associated with (J , H,Y),
where J; = J, — J, + [i(H, - H,)X, dY,. Using the properties of sliceable
semimartingales recalled above, we get the following if v < A and w < u:

EX")<KEWJ"), EWJ)<w+KvEX"),
EX")<(u+wK < (u+ A)K,

where K only depends on A and Y, so indeed on A and ¢ and Y. Relation
(2.5) readily follows from these estimates and from (2.6), once we observe that
P(S < 1) is smaller that the sum of the first four terms on the right side of
(2.5). O

Now we consider a sequence of SDE’s like (2.4):
t
2.7) Xp=Jp+ [ X1 HIAY,
0

all defined on the same filtered probability space and with the same dimen-
sions. Also let p, be an auxiliary sequence of random variables with values in
some Polish space E, all defined on the same space again.

THEOREM 2.5. (a) Tightness of both sequences J™* and H™* implies tight-
ness of the sequence X™*.

(b) Suppose that we have another equation (2.7) with solution X' and coeffi-
cients J'* and H™. If the sequences J™ and H™* are tight and if (J"—J")* —P
Oand (H" - H™)* -* 0, then (X® - X)) -t 0.

(c) Let V} = fot H?dY,. Suppose that the sequence H™ is tight and
that the sequence (J", V", p") stably converges to a limit (J,V,p) de-
fined on some extension of the space. Then V is a semimartingale on
the extension [w.r.t. the filtration generated by the pair (J, V)], and
(J7, Vr, X, pt) =88 (JV, X, p), where X is the unique solution of

t
(2.8) X, =J, +/0 X, dv..
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Statement (a) has been proved by Stominski [15], while (b) and (c) are vari-
ations on the so-called stability results for SDE’s [(c) is due again to Stominski
[14], while (b) has a slightly new formulation], and we give the proof for the
reader’s convenience. We have stated this theorem in a simple form, which
is enough for our purposes, but it still holds for nonlinear equations with
Lipschitz-continuous coefficients. Also Y might be replaced by a sequence Y":
in this case it is necessary to add the assumption that the sequence Y" has
(), which implies that in fact it is “uniformly” sliceable in some sense.

PROOF OF THEOREM 2.5. (a) Relation (2.5) applied with J’=0and H' =0
yields

29)  P(X™>n)<e+2P(H™ > A)+2P(J™ > u) + —K, 4,
n

where K, 4 is a constant depending on &, A and Y. If we choose first & arbi-
trarily, then A, u big, then 7 big, we obtain that the left side of (2.8) is smaller
than 2¢, hence (a) holds.
(b) Similarly,
P(X"—-X"Y>n)<e+ P(H" > A)+ P(J™ > u)
+ P((H"—H™)" > v)+ P(J" = J") > w)
uv +w
n

K, 4.

So we obtain the result by choosing first &, n arbitrarily, then A, u big, then
v, w small, then n big.

(c) The assumptions ensure that the sequence V" has (x). Thus if we do
not introduce the variables p™ and if we replace stable convergence by ordi-
nary (weak) convergence, this result is well known (see, e.g., [9]). Since sta-
ble convergence is just weak convergence of (U.J", V", p") to (J,V, p) for
any random variable U on the original probability space, our statement is
proved. O

3. The fundamental result on the error distribution. We let Y =
(Y');_,.4 be a semimartingale on a stochastic basis (Q, 7, (), P). We al-
ways assume that Y, = 0 (this is of course not a restriction here). The time
interval is [0, 1]. We consider the g-dimensional SDE:

(3.1) dX,=f(X,)dY,, Xo = xo.

Here x, € R? and f is a continuously differentiable function from R into
RY? ® R? with linear growth [i.e., |f(x)| < K(1+ |x||) for some constant K].

One knows that (3.1) has a unique (strong) solution. We consider the Euler
continuous approximation X" given by

(3.2) dX}=f(X" )dY,  Xi=x,
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where ¢,(t) = [nt]/n if nt ¢ N and ¢,(¢) = ¢t — 1/n if nt € N, and the Euler
discontinuous approximation x" given by

(3.3) X, = XPom-

The corresponding error processes are denoted by
(3.4) Ur=X7-X,, U =X, = Xpyn=Ulyn

THEOREM 3.1. If f is locally Lipschitz continuous and with linear growth,
then U™ and U tend to 0 in probability.

This result is known when £ is globally Lipschitz [14] or when f is bounded
[8], but we need this general form below.

PrROOF OoF THEOREM 3.1. The second statement follows clearly from the
first one. For the first claim, we consider functions 4,, € C3(R?) with Lajzmy <
(%) < 1{jzj<mr1y, @Nd set £, (x) = f(x)h,,(x). Let X (m) be the solution of
(3.1) with the coefficient f,, and X™(m) be the corresponding Euler approxi-
mations.

Observe that X = X(m) is X* < m and that X" = X*(m) if X"(m)* < m.
Hence U" = X"(m) — X(m) on the set {X* <m — 1, (X"(m) — X(m))* < 1},
and thus for ¢ € (0, 1] we get

P(U™ > &) < P(X* = m — 1) + P((X"(m) — X(m))* > ¢).

Since X"(m) — X(m) in probability uniformly on [0, 1] as n — oo for each
m > 1 (see, e.g., [8]) and since lim,, P(X* > m — 1) = 0, the result follows. O

Next, let us examine rates of convergence. By this, we mean a sequence «,,
of constants going to +oo, such that the processes «,U" or anﬁn are tight, with
nontrivial limiting processes. If this is the case, we also are interested in the
“error processes” which are the limits of either one of these two sequences.
Indeed, as far as applications are concerned, the usual Euler scheme gives
us X and thus we would prefer to have results on T", but mathematically
speaking the processes U" are easier to handle.

Here we give an improvement on a result by Kurtz and Protter [8], who
essentially proved the implication (a)=(b) below. For this, we need to introduce
some notation. For any process V we write

(3.5) APV =V, = Vi 1ym Vi =Vi=Viagn-

For any two semimartingales U, V, we write

e
(3.6) ZMU, V) =/0 UM av,.
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THEOREM 3.2. Let Z" = (Z™V := Z"(Y',Y/));-; ;q, and let (a,) be a
deterministic sequence of positive numbers. There is equivalence between the
following:

(a) The sequence a,Z" has (x) and (Y, e, Z") = (Y, Z).
(b) For any starting point x, and any C* function f with linear growth, the
sequence «,,U" has (x) and (Y, ¢, U") = (Y, U).
In this case, we can realize the limits Z and U above on the same extension of
the space on which Y is defined, and they are connected by
) da g . d . .
@7 aUi=Y ¥ fPxO|Ukdy! - ¥ e azi ] vp=o,
k=1 (=1

Jj=1

(£} is the kth partial derivative of f), and (Y, @, Z", a,U") = (Y, Z,U)
and also the sequence U" stably converges in law to U.

REMARK 3.1. Inview of Lemma 2.1, in (a) and (b) above we also have stable
convergence in law of @, Z™ and «,U", but these stable convergences are not
enough to imply the convergences in (a) and (b).

Note also that we do not have (Y, anﬁn) = (Y, U) (except when Y or Z is
continuous) in the last claim.

REMARK 3.2. We will see later that when Y is continuous, then assump-
tion (a) is satisfied under mild hypotheses on Y. It is also satisfied when Y
has jumps and each jump time is contained in an interval of constancy of
Y, provided the “continuous part” of Y satisfies again the mild assumptions
referred to above. In all other cases, we conjecture that indeed either the lim-
its in this theorem are all O (i.e., the rate «,, is not the correct rate) or the
sequence «, Z™" is not even tight for the Skorohod topology. This conjecture is
supported by the results of Sections 4.2 and 6.

REMARK 3.3. As we shall see in the proof, (a) is in fact equivalent to the
property (b) stated for a single (judiciously chosen) equation; namely, let A €
R\ {0} be such that

(3.8) P(AY: = —) for some i <d and ¢ € (0,1]) = 0.

Then it is enough to have (b) for the d?-dimensional equation
. 4 t .
(3.9) XV =58, +(1—58,;)Y] + /\/ XV qyi,  1<i,j<d.
0

PROOF OoF THEOREM 3.2. (i) The implication (a)=(b), as well as (3.7), is
proved in [8] in the case when V£ is bounded. The fact that «, U™ satisfies (x)
immediately follows from (3.21) in [8] and from the fact that «, Z" satisfies (»).

When f is C! with linear growth, let f,, and X(m) be defined as in
Theorem 1.1, and let U"(m) be associated with X(m) by (3.4). Then
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Vf,. is bounded. We know that (Y, «,Z", a,U"(m)) weakly converges to
(Y, Z,U(m)) for all m, where U(m) is the solution of (3.7) written for f,,
and X(m).

Denote by U the solution of (3.7) for f and X. As in Theorem 3.1 we have
U =U(m)and U*(m) = U" on the set {X* < m — 1, U*(m)* < 1}, while
U*(m)* —% 0as n — oo; hence

limlimsup P(U #AU™or U" #2U"(m)) =0

Then (Y, @, Z", o«"U"(m)) = (Y, Z, U(m)) for all m implies (Y, a, Z", 2, U") =
(Y, Z,U), and we have (b) and (3.7). The last claim is obvious by Lemma 2.1,
since from what precedes we have stable convergence of U™ to U.

(ii) Suppose now that we have (b) for (3.9). We have U™ = (U™7),_; ;-4
and X" = (X™ "), ;-4 A simple calculation shows that

) /t[AUg;iidY;—Az X0 dzmi, if j=1,
@10 UrU={"

/o [AUZUAY: — N2X0 0 dzmi] - aZP T, it j#i.
Observe that, for each i, X" = £(AY") (the Doléans—Dade or stochastic expo-
nential). Thus (3.8) implies that a.s. X* does not vanish, and X™* does not
vanish either on [0, 1] for n large enough (because of Theorem 3.1). Hence
(3.10) can be “inverted” to yield

t Un i ) 1 .
/ dyi — (—— ) duri|, ifi=,
- /\X" zls) ’ /\ZX" zls) ’
311  zZp’ = )
n, l] i n,ij n, i U?’U i .
/ UnidYi - aXp dzit | - =t i .

@n(s)

One deduces from the hypothesis that (Y, ,,U", X[, ;) = (Y, U, X), and the
pair (Y, «,U") has (%), so (a) readily follows from Theorems 2.3 and 3.1. O

In view of Remark 3.2, the following result has some interest: although not
providing the limit of the error process, it actually gives the convergence rate
(recall that if a sequence V" has (x), then a fortiori the sequence V™ is tight).
Note that Stomifnski has proved the implication (a)=(b) when f is globally
Lipschitz (see [15]).

THEOREM 3.3. With the notation of Theorem 3.2, there is equivalence be-
tween the following:

(&) The sequence «,, Z™ has (x).
(b) For any starting point x, and any C*-function f with linear growth, the
sequence a,U" has (x).
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PrROOF. Assume first (b) and consider (3.9) for a A having (3.8), so (3.11)
holds. We have seen that 1/X’ ¢, goes to 1/ X uniformly in s, in probability,
while X# does not vanish, hence the sequence (1/XZ;2L:))* is tight. Then (»)
for (U") yields that (U™ i"/X’;;zl:))* also is tight, and Theorem 2.3(a) applied to
the first part of (3.11) yields that (Z™ %) has (x). Then apply the same result
to the second part of (3.11) to get that (Z™ %) has (x) for i # j, and (a) holds.

For the converse, we need to introduce the equation satisfied by U", which
is (with matrix notation)

AU} = (f(X}) — (X)) dY, - (F(X]) ~ (X% ) dY,.

Now, with any cadlag process V we set

1
(B12) k) = (Vo) [ VIV +u(Vie = Vi) du,

which is left-continuous. Apply Taylor's expansion and the fact that X —
Xo =X, )Y =Y, ) to get the following, where X7 is in between
X, and X} :

(3.13) d(a,U"), = (,U"),_V(X]_)dY, — k(X")} d(a, Z"),.
The sequence k(X")™ is tight by Theorem 3.1, so the sequence

) (X" d(et, 27,

has (x) as soon as (a) holds by Theorem 2.3. Since the sequence Vf(X”)* is also
tight, Theorem 2.5 gives the tightness of the sequence («,U™*), and another
application of Theorem 2.3 yields (b). O

4. Processes with finite variation. We treat here the case where the
driving process Y in (3.1) is of finite variation, with the rate 1/n in view. In
this case (3.1) is truly an “w-wise” (or deterministic) equation, and the reason
for looking at this case is not practical importance but rather methodological
implications. When Y is continuous, we find a necessary and sufficient condi-
tion for getting this rate 1/n, and this seems to be new even though it concerns
only “ordinary differential equations.”

However, when Y has jumps together with a nontrivial continuous part,
the picture changes radically: the rate is still 1/n, in the sense that nU™
and nU"" remain tight, but in the deterministic case these processes have no
limit. In the random case, rather mild conditions imply the convergence of
these processes to a limit involving “additional randomness.”

For simplicity we only consider the one-dimensional case. Extensions to
several dimensions are straightforward and left to the reader.

4.1. The continuous case. Here we assume that Y is of finite variation and
continuous. Remember that Y, = 0. We write Z" = Z"(Y, Y) [see (3.6)]. An
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integration by parts shows that
[nt]

(4.1) Zn = %( (ATY)? + (Y(n)t)2> > 0.
i=1

THEOREM 4.1. Assume that Y is continuous with finite variation. There is
equivalence between the following:

(&) We have
¢ 1
4.2) Y, =/ y.ds, / yﬁ ds < oo as.
0 0

(b) The sequence of random variables (2" Z2%"),., is tight.

(c) The sequence of random variables (nZ7),., is tight.

(d) sup,nZ? < oo as.

(e) The processes nZ" converge a.s. uniformly in time to a process Z.

Moreover in this case we have Z, = %fé y2ds and sup, fol |[dZ"| < 00 a.s.

Note that (e) and the last claim imply condition (a) of Theorem 3.2, with
a, = n, while the latter implies (c); hence the above result completely solves
the question of whether the rate for U, is 1/n or not, for processes Y as
above. Note also that all statements above are “w-wise” (a.s.), that is, this
result is deterministic in nature, and indeed we begin with two lemmas which
are concerned with the deterministic case.

LEMMA 4.2. Assume that Y is continuous with finite variation and deter-
ministic. Only two cases are possible:

(i) Equation (4.2) holds and sup, nZ7] < oco.
(ii) Equation (4.2) does not hold and 2"Z3" — oc.

Proor. Consider the following measures on (0, 1]: A(dt) = d¢, n(dt) =
dY,, w'(dt) = |dY,|; and set p = 1+ u/((0,1]). Then v = (1/p)(n' + A) is @
probability measure, and we introduce the Radon—Nikodym derivatives:

dA du

V= YTa
which satisfy {V = 0} c {|U| = p}. With the convention a/0 = +oco (resp.,

—o0) ifa > 0 (resp., a <0), we alsoset L=U/V.
Let &, be the o-field of (0, 1] generated by the intervals (j/n, (j+ 1)/n],

and set

_di _dp
Tl T a|, T,

\%

These are finite-valued functions, with V, = »(V|#,) and U,, = v(U|¥,,). A
simple computation yields L, (s) = nAlY for s € (( — 1)/n, i/n], so by (4.1):

(4.3) nZzn =/L§ dA:/Livn du'.
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The sequences U,. and V. are uniformly integrable »-martingales w.r.t. the
filtration (#,.), converging v-a.s. to U and V, hence L,. v-a.s. converges to L
(because {V = 0} c {|U| = p > 0}). On the set {V > 0} we have L3,V,. —
L?V v-a.s., while on the complement we have L3,V ,. = L, U, — 400 v-a.s.
Then (4.3) and Fatou’s lemma yield

(4.4) liminf 222" > /L2 dX + oo/ (V = 0).

If liminf, 2" Z2" < oo, we deduce u'(V = 0) = 0 from (4.4); hence the first
half of (4.2) holds true with y = L; another application of (4.4) yields the
second half of (4.2). Conversely, assume (4.2): we have L = y, which belongs
to L2(dA), and L, = A(L|#,); hence sup,nZ} = sup, [L2dX < co. This
completes the proof of the lemma. O

LEMMA 4.3. Assume that Y is deterministic and satlsfles (4 2) with y piece-
wise constant. Then nZ7 converges uniformly intto Z, = 5 fo y2ds.

PrROOF. We have y, = u; for ¢t,_; <s < ¢, where0=1¢, <--- <¢, =1
Let C = sup;|u;| and 7,(s) = s — [ns]/n. We have |Y?| < C/n, and also
Y!=u;7m,(s) if t;_; <[ns]/n <s <t;. Hence

I’LZ?—I’LZ / n(s)dS+Rn(t)’

where | R, (t)| <2knC?/n? — 0. A simple calculation shows that [ nr,(s)ds —
(v —u)/2; hence

k bt k

A =n2uf/ T(s)ds > 33 Uit At —ti g AE) = Z,

i=1 Tl i=1

Since Z'™ and Z are continuous nondecreasing, this convergence is uniform
in ¢ over [0,1]. O

PRrROOF OF THEOREM 4.1. That (e)=(d)=(c)=(b) is obvious. Let B be the
set of all w such that the function ¢ — Y ,() does not satisfy (4.2). By Lemma
4.2,2"Z% (w) — o if o € B, then (b) implies P(B) =0 and (a).

It remains to prove that (a) implies (e¢) and the last claim, so below we
assume (4.2). A density argument shows that there is a sequence y(p) of
bounded processes, piecewise constant in time, such that

! 2 ! 2 ! 2
@5 [ ypRds< [ s2ds.  m,=[ 1y, -y(p)fPds—0 as

Let Y(p), _fo y(p), ds, W|th the associated processes Z"(p)=Z"(Y(p),
Y(p)), and set Z, =1 [ y2ds and Z(p), = % [, y(p)?ds. By Lemma 4.3,
Z"(p) converges for all o and p to Z(p), uniformly in time, as n — oco. By
(4.5) itis obvious that Z(p) — Z uniformly in time as p — oo, a.s. So in order
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to prove (e) it is enough to show that u’, = sup,|nZi(p), —nZ}| satisfies
sup, u, > 0 a.s.as p - oc.
By the Cauchy-Schwarz inequality, and with n = fol y2ds, we get

1
wy < n [ 1Y (P)iy(p)s — ¥iylds
0

1 1
<n [ [Y(LNy(P) = yilds+n [ ¥ (p): = Y2yl ds
0 0

1/2

<y ([ onras) emom([ - vieas)

Now n|Y (p)}| < (1 fg, ¥(P); ds)*/?; hence

1 1.1 s 1 A n
n|2 et 2 2
1Y rrds <= [Fds [ v(pidus o [Cy(pdu sk

and similarly f01|Y(p)g - Y?|?°ds < n,/n? Therefore u? < 2 /mm, — 0 as
p — oo; hence we have (e) with Z as above.

Finally, fol |dZ?| < Z™(Y',Y'),, where Y}, = [ |y,| ds. Since Y also satisfies
(4.2) we deduce the last claim. O

ProOOF OoF THEOREM 1.1. That (b)=(a) is obvious, and (c) implies (b) and
the last claim by Theorems 3.2 and 4.1.

Now suppose (a). A simple computation shows that X7 = X, [T,((1 +
A?Y)exp —A?Y). By hypothesis 0 < —nU7 < K for some constant K (remem-
ber that Y is increasing); then if A" =7 ,(A?Y —log(1+ A}Y)), it follows
that nA" < K’ for another constant K’; hence nZE';tll(A?Y)Z < K" for yet
another constant K”. So (4.1) and Lemma 4.2 give (c). O

4.2. The discontinuous case. In the remainder of this section, we study the
case where Y = A + B, with A a continuous process with finite variation, and
with B as follows:

(4.6) B, = Z bjl{Tjst},
Jj=1

where Ty = 0, T'; is [0, 1] U {oo}-valued, nondecreasing in j and with T'; <
T;,ifT; <1 and also K = inf(j: T;,; = oo) is a.s. finite and b; # 0 if
J=<K.

When A = 0, the situation is particularly simple:

THEOREM 4.4. If A =0, then Z"(w) = 0 for all n large enough (depending
on ).

PrROOF. Let w be fixed. For n large enough, each interval ((i —1)/n,i/n]
contains at most one jump time of B, in which case the property Z7(w) =0is
readily verified. O
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In the above situation, Theorem 3.2 readily applies, but we have even more,
namely, that U" = U" =0 as soon as n is large enough.

The situation when A # 0 is more surprising, and we will find out that
the sequences nZ" and nU” do not converge in law for the Skorohod topology,
unless the process A is constant on a neighborhood of each T';. However, under

mild assumptions the processes nU" and nZ" indeed converge, where
4.7) Z, =27

[nt]/n*

We need some additional notation below:

. . 1
2 T])’ T*(n@ .]) = T+(n7 .]) - ;a

S|~

4.8) T.(n,j)= inf(%: i>1,

(49) of=n(Ar,—Ar . j), Bi=n(Ar . j—Ar) Vi=aj+B%
T

(4.10) Bi=[ " ldAll

with o} = B = E';- = 0 if j > K. We are not especially interested in the
processes nZ", but they are simpler than nU" and so we start with them.

THEOREM 4.5. We have equivalence between the following:

(a) n?” :>stably 7.
(b) The process A has (4.2) (with a density a, say), and (y");.; =Y
(yj)jZl for the product topology on RY.

In this case, the limits in (a) and (b) above are connected by
1 ! 2
(411) Zt = 5_/(.) ag ds + Z bj’le{T_,'St}’
Jj=1

and furthermore the sequence nZ" converges stably in finite-dimensional laws
along the (dense) set J = {t: P(AY, # 0) = 0}.

PrOOF. Let us write C* =nZ"(A, A)and D" =nZ"(A, B)+nZ"(B, A),
and associate with these C' and D" as in (4.7). On the set Q, where each
interval ((i —1)/n,i/n] contains at most one T';, we have nZ" = C" + D".
Observe also that

—n
(4.12) D, =3 b;,¥iLir, (o, =ty ON .
Jj=1

On the other hand, (4.1) shows that ACy, (; ,, = (1/2n)(y%)? on {T; < 1}.
Hence
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(i) Assume (a). By (4.9) and the continuity of A, we have y;?/n — 0 for each
J. We also have O, — Q. Now, (a) implies tightness for each sequence (4.13)
(J fixed), and since b; # 0 we deduce that each sequence v’ is tight. Then
(4.12) yields that the sequence D" is tight, which in turn yields together with
(a) again that the sequence C1 = C7 is tight. At this point, Theorem 4.1 gives
that A satisfies (4.2) and that C" converges a.s. uniformly to C, = 35 fo a’ds.

By well-known properties of stable convergence, we deduce from this, from
the fact that Q,, — Q and from (a) that D" =S Z _ C. In view of (4.12),
this gives the second half of (b) and the relation (4.11).

(i) Assume (b). By Theorem 4.1, C" converges a.s. uniformly to C, as given
above, so it is enough (using 1, — () again) to prove that the right-hand side
of (4.12) stably converges: in view of (4.8) this readily follows from the second
part of (b).

(iii) It remains to prove the last claim. Exactly as before, it is enough to
prove that the processes D" stably converge in finite-dimensional laws to the
process defined by the last sum in (4.11). Since D" is constant over each
interval [T (n, j), T _(n, j + 1)) this is clearly equivalent to the stable con-
vergence of the sequence D" finite- -dimensionally in law along J, and this
property readily follows from the stable convergence (for Skorohod topology)
of D" to D, as seen before, because J is exactly the complements of the fixed
times of discontinuity of D. O

Now we turn to U and U, for which we give only a sufficient condition.

THEOREM 4.6. Assume that the process A has (4.2) with a density a and
that each sequence (B ),~1 IS tight. Then the sequences (nZ") and (rU™) have
(»). If further (o}, B" )J>1 =S8 (q;, B.) .4, then for any starting point x, and
any C*-function f Wlth linear growth we have the following:

(@) The sequence (nU") =Y U, where U is the unique solution of the
following linear SDE:

t t
U= [ F(X, U, d¥ =5 [ F(X)f(X,)alds
(4.14) L
Z bjf(XTj—)(ajf/(XTj—) + BJ/(; f/(XTj— + uAXTJ)du>

J: ijt

(b) The sequence (rU"™) converges stably in finite-dimensional laws along /
(see Theorem 4.5) to U.

Observe that another way of writing (4.14) is as follows:
t t
U= [ F(X, U, dY =3 [ F(X)f/(X,)alds
— Y (AXp f(Xp )+ (F(Xp,) — £(Xp,)B;).

J: ijt

(4.15)

Before giving the proof, let us provide some comments and examples.
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REMARK 4.1. Equations (3.7) and (4.14) are different, unless b, ; = 0 for
all j. This means in particular that the convergence of nU" described above
is not in the Skorohod sense, otherwise one could apply Theorem 3.2, and
similarly for nZ™ in Theorem 4.5. In fact, what prevents Skorohod convergence
is that in each interval [T ;, T (n, j)] we have for these processes a “big” jump
at T'; and also a continuous part with a nonvanishing increment.

In fact, the results obtained in (b) above show that the sequence nU™ con-
verges to U in the topology of convergence in measure for functions on [0, 1]
(also called Meyer—Zheng topology), and indeed this sequence also converges
in the S-topology introduced by Jakubowski [5]. The same holds for nZ". For
these topologies, a result like Theorem 2.3 does not hold, explaining why the
limit U satisfies another equation than (3.7).

REMARK 4.2. In asense, the most interesting aspect of this subsection con-
sists in “negative” results (no Skorohod convergence for nU", no convergence
at all if the conditions above are not met). However, if one is interested in
“positive” results, one can check as a by-product of the following proof that
the sequence nU" is (Skorohod)-tight and the sequence nU™ is tight as soon
as A satisfies (4.2) and all sequences «’; and B are tight, even if we do not
have convergence.

Observe that we may have (4.2) for A and yet the tightness above may fail:
take, for example, Ty = 3, T, = o0, b; = 1, and a, = |s — 3|72/3. In this case
nZ] — oo, and the rate of convergence (if it exists) is not 1/n.

REMARK 4.3. As said before, (3.1) is in principle not random. However, if
Y is really not random we have no chance of getting a limit in the previous
theorem.

Take, for example, A, = ¢ and B, = 1;p, for some T = p/q with p and q

relative primes. The conditions of Theorem 4.5 hold, and nZ" converges for
the Skorohod topology to Z = %A+B. However, the conditions of Theorem 4.6

do not hold because o7 takes successively all values 0,1/q,...,(q —1)/q as
n varies. In fact the functions nU" and nU " have g distinct limit functions,
solutions of the (nonrandom) differential equations fori =0,1,...,qg — 1.

U= [ FXOUG) ds 3 [ FX)f(X,)ds

(PO - 28Xy

f(XXT—))> 1{T§t}‘

REMARK 4.4. In fact the existence of a limit for the sequences o and 8" is
connected with the asymptotic behavior of the fractional part of the variables
nT ;. This fractional part is known to converge (even stably) if 7'; admits a
density regular enough (see, e.g., [2]), while of course it does not converge if
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T ; is deterministic. Another factor which might ensure convergence is enough
randomness in the density a,. In all these cases, the limit U features “more
randomness” than Y, as seen from the fact that U (or sometimes even Z) is
defined on genuine extensions of the original space.

Here is an example where convergence comes from the randomness of T ;:
suppose that Y is as in Remark 4.3, but 7' is uniform on (0, 1]. Then nZ" tends
w-wise to Z as above, while nU" stably converges to the solution of the follow-

ing equation, where « denotes a random variable, uniform and independent
of T

! / 1 ! /
Ui= [ F(X U ds =5 [ FX)F(X,)ds

+ (F(Xp U = af (X )AXp = (L= a)(F(X7) = F(X72))Lree.

Here is another example, where convergence comes from the randomness
of a,: let W be a standard Brownian motion and set

B, =1y and a;=(1—-9)"*Wi_dyw, |<vis-

Observe that |a,| < 1. It is easy, by a scaling argument, to check that here nZ"
converges stably to Z = %A + UB, where U is a standard normal variable,
independent of Y.

REMARK 4.5. We have left out the case when Y has infinitely many jumps
on (0, 1]: nothing is known in general for this case; see, however, Section 6
when Y has in addition independent increments.

PROOF OF THEOREM 4.6. (i) First we prove that the sequence nZ" is (x).
Since Z" is of finite variation, it suffices to show that n fol |dZ?%| forms a tight
sequence.

With the notation of the proof of Theorem 4.5, nZ"” = C" + D" on (},, SO a
simple computation shows that

1 1 K —n
(4.16) n/o |dz;}|52/0 |dcg|+zl|bj|(|a§|+ﬁj) on the set Q.

Now Q, — Q, while fol |dC?%| is tight by Theorem 4.1, so the result immediately
follows from the fact that K is a.s. finite and from the tightness of all sequences
(), and (E?)n [recall K is defined just after (4.6)]. In view of Theorem 3.3
it then follows that nU" is (x), and in particular the sequence nU"™ is tight.

(ii) Recall that nU" is the solution of (3.13), with «,, = n, and introduce the
solution V,, of the following linear equation:

(4.17) dVi =V f(X,.)dY,— k(X);d(nZ"),, Vi =0.

Theorems 2.2(d), 3.1 and 2.5(b) give that (nU" — V*)* —% 0, so in order
to prove (a) and (b) we can replace the processes nU™ and nU" by V" and

Vi = Vim respectively.
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Also let U be the solution of (4.14), on an extension of the original proba-
bility space which supports the limits («, 8;). Let us introduce the processes

(4.18) W(): = Viur, sy

W), ift <T,(n,J),
WDr,nt Ve —Vr,my W=t

U, ift < T,

(420) W(J)t = Ut/\Tj’ W(J)t = UTj+17, if t > TJ'+1.

Let us also write p'_‘ for the double sequence (a7}, B7) -1 and p = (aj, B;) j=1-
Consider the following property:

(H)) (", W) =Y (p, W())).

By hypothesis (Hy) holds. If (H;) holds for all j, then (a) follows, because
K < oo as.

(iii) Suppose that (H;) holds. First if H(n, j) is the interval (T, (n, j),
T ;1) we deduce from (4.17) that

W =W+ [ WO auf (X, )ag, j(s)ds
(4.21)

t
~ [ RO L, () dC.

Recall that C* = nZ™(A, A) converges a.s. uniformly to the process C, =

1 /s a?ds. Further, set

¢
T =W = [ R L, () dCE,
t
Jo =W~ [ FXI (X )r,1,.,(5)dC,,
t t
L} = [ af (X ) p(8)ds, L= [ af (XD, 1,.,(s)ds,
S0 (4.21) becomes
t
(4.22) W) = I + /O W(j)" dL".

Now, X is continuous on the interval (T;,T,,,), so (L" — L)* —* 0 and
the last term in (4.21) converges uniformly in probability to

[ AP (X1, 7, (5) C,
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and since this process is continuous, as well as L, it follows from (H ;) that
(J7, L7, p™) =5 (J, L, p). Hence Theorem 2.5(c) yields that

(W)™, p") =Y (W())', p).
Using Lemma 2.2 and the fact that W(j)" and W(j) are constanton [T';,4, 1],
we finally deduce that if W(j); = W(j),, then
423) (W) r P WE ) =Y (WY, 0, W(iNp,,, )

J+1

(iv) Now, set 6, := V’h(n’jﬂ) =V (n,j+1)- BY (3.13) we have 5, = u, + v,
on the set ), N{T;;; < 1}, where

T, (n, j+1) Ty (n, j+1)
u, = Vi (X ads— [ k(X )} dCY,
T_(n, j+1) T_(n, j+1)
n / n n Tolm. 1) n
U, = bj+l(VTj+1f (Xr,,-)— k(X)TMajH - /T k(X)iaq dS)'
j+1

First, the sequences V™ and k(X)™ are tight, so one deduces that u, — 0.
Next the sequences

(X7, — () Xr,,-)

and

T, (n, j+1) 1
/ R(X)la,ds = B} f(Xp, ) [ F(Xp,, - +udXg, )du

J+1

converge to O in probability. Furthermore, V;M_ = W(j)gi‘m_. Therefore if
5= le(W(j)’Tm_f'(XTm) —a;u(ff)( Xy, )

—Bin /O ' f(Xp, _+ uAXT_M)du),
one deduces from (4.23) that
(4.24) (W, jo1ys P™ 8a) =Y (W), p. 6).
However,
W(i+1)" = W(j)TZT,(n,j+1) + 817, (n, j41),1)5

while W(j+1) = W(j)fATjH, + 61z, 11- Thus (4.24) yields (H;,), and the
proof of (a) follows by induction on j.

(v) Finally, on the set {T' . (n, j) <t <T_(n, j+1)} we have Vi = W(j)/
and U, = W();. Since W(j)™ =5 W(j) and since U is continuous outside
all T;'s, the first claim of (b) is obvious, and we are finished. O
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5. Continuous semimartingales.

5.1. The martingale case. Here we consider the case where the driving
process Y = (Y");,.,4 in (3.1) is a continuous d-dimensional local martingale,
null at 0. We denote by C = (C¥),., ;-4 the quadratic variation process, that
is, CY¥ = (Y*,Y/), and we write Z" = (Z™"),; j<q, Where Z™V = Z"(Y', Y /).
We introduce the d*-dimensional processes D" whose components are

(51) D" ijkt _ n(zn,ik’ VAL j€>.

The main result is as follows:

THEOREM 5.1. Assume that Y is a continuous local martingale. There is
equivalence between the following:

(&) We have (with ¢ being a d x d symmetric nonnegative matrix-valued
predictable process)

t 1
(5.2) c, =/ e, ds, / leg|? ds < oco.
0 0

(b) For each i the sequence of random variables (\/n Z™ ), is tight.
(c) For each i the sequence of random variables (D™ "%) is tight.

In this case, and if ¢ is a d x ¢ matrix valued process such that ¢ = go' (o'
stands for the transpose; such processes always exist, for g > d at least), the
sequence /n Z™ stably converges in law to a process Z given by
. 1 ¢
(5.3) Zi=— % / okt AW,
\/E 1<k, t<q o °° ’

where (W"J‘)lii’ij is a standard g?-dimensional Brownian motion defined on
an extension of the space on which Y is defined and independent of Y. More-
over, we also have (Y, /n Z") = (Y, Z) and the sequence /n Z" has (), and
the following convergence holds a.s. uniformly in time:

n, ijke ikt _ 1 ikt
(5.4) D, - D/ =5 ) cieltds.

1<u,v=q

Note that (5.2) is the minimal condition under which the process Z of (5.3)
is well defined. We divide the proof into several steps.

LEMMA 5.2. Conditions (b) and (c) in Theorem 5.1 are equivalent, and they
imply (a).

ProoOF. Observe that dC, = ¢, dA, for some increasing continuous process
A and some d x d symmetric nonnegative matrix-valued process c. This last
property readily implies that (a) is equivalent to the fact that each C*” satisfies
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(4.2). So indeed to prove our lemma we can and will suppose that Y, hence
Z™ and D" as well, are one-dimensional.

(i) Set S(n, p) = inf(¢&: /n|Z}| = p) and T(n, p) = inf(¢: D, > p), and
also Z7 = \/n sup,., | 27].

First assume (b). Then sup, P(S(n, p) < 1) < sup, P(Z™ > p) — 0 as
p — oo, while E(Dg(n’p)) < p?; hence

2
P(D} > q) > % + P(S(n, p) <1)

goes to O uniformly in n as ¢ — oo, and (c) holds. Conversely (c) yields
that sup, P(T'(n, p) < 1) - 0 as p — oo, while Doob's inequality yields
E((Z’}(n,p))z) < 4p, so we deduce (b) exactly as above.

(i) From now on we assume (b) and (c). Note that T', = inf(¢: C;, > p)
has P(T, < 1) — 0 as p — oo. If we stop the process Y at time T, the
corresponding processes C, Z", D™ are also stopped at T',,. So clearly it suffices
to prove (a) for the stopped processes: in other words we can and will assume
that C, is bounded by a constant.

For every stopping time T set

Thi/n
. (n)\2
b b T = YS dCS
i Ty=nf 3
[recall notation (3.5)]. Observe that if N is a continuous martingale null at 0,
then
t t
N* =4/ NdeerB/ N2d(N, N),.
0 0

If furthermore the variable (N, N), is bounded, the process fot N2dN, is
a martingale; hence E(N%) = 6E(f01 N2d(N, N),). Apply this to N, =
Yiurnim — Yiarai-1m t0 get E(¢(n,i,T)) = (n/6)E(Y rrnim —
YtATA(i_l/n))“). On the other hand a Burkholder-Gundy inequality yields
a universal constant K such that

E((CtAT/\(i/n) - CtATA(i—l/n))Z) = KE((YtAT/\(i/n) - YtAT/\(i—l/n))4)'

Therefore
(5.5) E((Conraiim) — Contai-1yn))?) < 6KE(é(n, i, T)).

Observe that D} =n [3(Y{")2dC,; hence Y2, £(n, i, T(n, p)) =D}, . py =
p. Letting

[nt] n
= n( S(AZCY 1 <C§’”>2) = 1 Conimy — Coniam)-
i=1

=1

we deduce from (5.5) that E(F’}(n’ p)) <6Kp.
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Finally, let vy, = n Y1 (A7 C)?. Since vy, = I'}, ,, on the set {T'(n, p) > 1},
we have

P(y, > q) < P(T(n, p) < 1) + P(Ty,. ,) > 9)

5.6
56 <P(T(n,p)<1)+ GKTP

We have lim,sup, P(T(n, p) < 1) = 0 by (c); hence (3.6) yields that the
sequence v, is tight, and (a) follows from Theorem 4.1. O

Now we assume (5.2), and we let ¢ be a d x ¢ matrix-valued process such
that ¢ = oo, for some q. Up to enlarging the space, we can assume that there
is a Wiener process W' = (W"),_;, such that

t
(5.7) Y, = / o, dW.,.
0

By virtue of [3], if we prove that for all ¢ € (0,1] and all i, j < d and k < q
we have, with notation (5.1) and (5.4),

(5.8) D' »? D,, Jn(ZmU Wk, P o,

then the processes /n Z™ will converge stably in law to the process Z of (5.3):
we deduce that the pair (Y, «/n Z™) converges in law to (Y, Z) for the product
topology on D(R?) x D(R¥), and since all these processes are continuous we
also have convergence for the Skorohod topology on D(R“dz). Further, (5.4)
follows from (5.8), and it implies (x) for the sequence /n Z". In other words,
to prove Theorem 5.1 it remains only to show (5.8).

We begin with a lemma.

LEMMA 5.3. We have (5.8) as soon as the process o has the form

WE

(59) Js = Aifll(tiflvti,](s)’

=1

where 0 = ¢, < t; < --- < ¢, = 1 and where each A; is a bounded .7, -
measurable random variable with values in d x ¢ matrices.

Proor. (i) Set 7,(v) =u —[nu]/n. By a Burkholder—-Gundy inequality we
have, for some constant K,

(5.10) E((Y™)*) < K/n?.

Recall that Y™ is defined in (3.5). Since Y{” = A, W\ for ¢, < [nu]/n < u <
t,.1, simple computations show that, for ¢, < [nu]/n <u <v <¢,,,, and with
B, =A,Al,

(5.11) EY; MY ™7, ) = B, ()L nugeinog
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= Tn(u)Tn(U)(By)z + Tn(u)z((B;])z + B;lBij)l{[nu]z[nv]}

(if) Let us fix r and ¢ such that 0 < ¢ <¢,,; —¢,. We have

(5.12)

Dy D <l [ OVEY
t
D, — DI — 1BJ B,
ﬁ(zn, ij} WIk)t,th _ ﬁ(zn, ij’ Wlk)t, _ ﬁB{k /tt,+t Yfi (n)du_
So it is enough to prove that
n Ty Oyt gy 12 %Bi’*, vu [ Tyl gy 517,

(iif) Setting s(n) = ([nt,] + 1)/n, we have s(n) — ¢, and

¢+t

t+t ; .
n / YiWyE®™ay, 120 and m Yi®Wdu -0
t

LVs(n) t,vs(n)
by (5.10). So it remains to prove that

Lt .
o, =n Y;’(H)Yﬁ’(n)du—zB‘rk N 0,

. s(n)
Lt )
B, :=+vn YEMay S 0.
s(n)
Using (5.10) and 0 < 7,(u¢) < 1/n and the boundedness of B,, we get

K

2tK
E(B?) < —Ainuleinop du dv < —— 0
(By) = n/ L=l AU AV = —— =

[s(n), t,+¢]?
for some constant K. Similarly,

E(a?) =n? /[ e E(YEMykMyLmyrkMmy gy gy
s(n), t,.+

2 . t+t o
s(n)

On the one hand, we have, by (5.11),
brtt i i,(n n 2 i
ne [ EBPYLOYE™)du %E((B;k)z).
s(n)
On the other hand, (5.12) yields

i,(n ,(n i,(n ,(n i K
\E(Yu( yy Wy Wy )) — 1,(w)7,(V)E((B¥)?)] < ﬁl{[nu]=[nv]}a

201
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and thus
i,(n n i,(n n t2 3
n2/ EQYL;MytMyi Wyt My qudv — ZE(BM?).
[s(n), t,+t]2 4
Putting these results together gives E(a2) — 0, and we are finished. O

ProOF OF THEOREM 5.1. It remains to prove that (a) implies (5.8) in the
general case. Let T', = inf(¢: f(f lesl?ds > p). Since (a) yields P(T, < 1) —
0, by localization it is clearly enough to prove the result for the processes
stopped at time T',,, which amounts to assuming that fol llesll? ds is bounded
by a constant p.

The rest of the argument parallels Theorem 3.1. By a density result, and if
c is such that ¢ = oo, there exists a sequence o(q) of processes of the form
(5.9), such that

! 4
ngi= [ llog—o(a)]*ds — o,
(5.13)

! 4 ! 4
[ lo(@litds < [ lloul*ds < p.
0 0
Let Y(q), = f(f o(q),dW/, with the associated processes Z(q)" and D(q)" [see

(5.1)] and D(q) [see (5.4)]. By Lemma 5.3, for each q we have that the following
converge for all ¢:

(5.14) D(q)} - D(q),,  Vn{Z(g)"V,W*), =" 0.
We have, with ¢(q) = o(q)a(q)",

k,(n)

n, ijk n, ijk t i, (n k, (n : i) (n ;
|D(q);" "™ — D} | =n /O(Y(Q)s( 'Y(q)s Me(g) it - Yy EMei) ds

t
<n [ 1Y@ Plo)s = a,ll(lo(@)yl + o)) ds
t
+ [ 1Y@ = YUY @+ 1Y Do) ds.

By combining the Burkholder-Gundy and Cauchy-Schwarz inequalities, we
get that

n K s
EQYO) < B[ ol de).
thus [ E(|YY"|*)ds < K/n? by (5.13) for some constant K changing from

line to line, and also fé E(||Y(q)§”)||4)ds < K/n?. The same argument shows
that

t n n Kn
[ EUY (@ - ¥y ds < 2.
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Thus (5.13) and a repeated use of the Cauchy-Schwarz inequality gives
E(ID}7* — D)y < Kqt/*, so by (5.14) we get the first part of (5.8). The
second part of (5.8) is proved similarly (it is in fact a bit simpler). O

Let us now state a corollary of the previous result, which contains Theorem
1.2 as a particular case.

COROLLARY 5.4. Assume that Y is a local martingale. There is equivalence
between the following:

(&) We have (5.2).

(b) For ¢ =1 and x, = 1 and f(x) = x§;; [i.e., X = &(Y/)] the sequence
J/nU™ is tight, foreach j=1,2,...,d.

(c) For all starting points x, and all C* functions f with linear growth, the
sequences (Y, vrU") and (Y, vaU ") weakly converge to a limit (Y, U).

In this case U is the solution of the linear equation (3.2), with Z given in (5.3).

Proor. That (c)=(b) is obvious, and (a) implies (c) and the last claim, due
to Theorems 3.2 and 5.1 [the (x) property for /n Z" follows from (5.4)].

Now assume (b), and fix j. Then with f, x, corresponding to X = &(Y /),
we have [as in (3.11)]

.. t .
Vnzp P = [[(VnUL/ Xy ) dY] = (1/X] ) d(/nU")).

A sequence of continuous local martingales has (x) as soon as the sequence
of their suprema is tight, so here the sequence \/n U" has (x). By Theorem
3.1, the fact that X does not vanish and Theorem 2.3(c), we deduce that the
sequence /n Z™# has (x), and (a) follows from Theorem 5.1. O

5.2. The semimartingale case. Now we suppose that Y = M + A, where A
is a continuous adapted process of finite variation and M is a continuous local
martingale, both being d-dimensional and null at 0. Again C = (Cif)lﬁi,jﬁd is
the quadratic variation process, that is, C¥ = (Y, Y/) = (M, M/), and we
write Z" = (Z™ ), ;-q, Where Z™%Y = Z"(Y', Y /).

We do not know what happens in the general case, and only partial results
are available, when A has the form

. t 1
(5.15) Al = / alds with [ (al)ds < oo as.
0 0

THEOREM 5.5. Assume that Y is a continuous semimartingale and that
(5.15) holds. Then there is equivalence between the following:

(a) We have (5.2).
(b) The sequence of processes (/n Z™) has (x) and is tight.
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In this case, the sequence (4/n Z™) stably converges in law to a process Z of the
form (5.3) (where ¢ = oo') and has (x) and we also have (Y, /n Z") = (Y, Z).

PrROOF. (i) We set F*V = /n Z" (M, M7), G+Y = /n Z"(M, A/), and
H™ = /nZ"(AY, M7) and K™V = \/n Z"(A}, AY), so ynZ" = F" + G" +
H" + K™,

By Theorem 4.1 the sequence K™ tends in variation to 0, a.s., and a fortiori
has (x) (more precisely, the variations of the processes /n K™ are bounded
a.s. uniformly in n, for each i, and a simple extension of Theorem 4.1 shows
that this is also true for /n K™ %),

(ii) Suppose that (b) holds. Each H™¥ is a continuous local martingale, and

(5.16) (H™ U, q™ Y, = n/ (AL"2qc.
0

By (5.15) and the Cauchy-Schwarz inequality, we obtain n(AY™)? <
[3(al)?du for all n, s. Thus the sequence of processes ((H™¥, H™%)) is
tight, and it follows (see, e.g., [4]) that the sequence (H™ %) is tight and has
(), and of course all its limiting processes are continuous.

Then, using part (i) above and Theorem 2.3(a), we see by difference that
the sequence F" + G™ is also tight and has (x). Then the quadratic variation
processes, which are the same as the quadratic variations of the processes F”,
are also tight; in other words, the local martingale M satisfies condition (c) of
Theorem 5.1, and (a) follows.

(iii) Now we assume that (5.2), as well as (5.15), holds. In view of part (i)
and of Theorem 5.1, it remains to prove that both sequences (G") and (H")
have (x) and weakly converge to 0. Since this is a componentwise property, we
can and will assume that d = 1, and exactly as in Theorem 5.1 we also can
and will assume that both random variables [} a?ds and [; ¢2 ds are bounded
by a constant «.

Let us first consider H". This is a continuous local martingale satisfying,
by (5.16),

(H", H") Z/l 1)/nasd$/(L 1)/nc sds < ay,,

where vy, = sup;.;, f(‘i/j‘l)/n c,ds. We have |y,| < /a and y,(w) — 0 for all
w. Thus E((H", H");) — 0, and thus the sequence (H") has (x) and weakly
converges to 0.

Next consider G™. Let £ > 0 and let S and T be two stopping times such
that 7 < S < T+ ¢ and S < 1. We have by the Cauchy—Schwarz inequality

(/ |dG”>— (/ v la M )|ds)
< (m([ atas) B(n [ as))
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We also have
1 1 s
(n),2
E M;’|°ds) =E d e
(nfy iR as) =B (n [[as [ cudu)
1
:E(/ cu([nu]+1—nu)du>
0
< E(Cy) < V.

Therefore E(fﬁ |dG?|) < a¥*\/E(w(e)), where w(e) = sup, [ ** a?ds. Since
we have lim,_,w(¢) = 0 and w(e) < a, then E(w(e)) — 0 and we can apply
Aldous’s criterion (see, e.g., [4]) and deduce that the sequence of variation
processes of the processes G" is tight, which implies in particular that the
sequence (G™) has (x).

It remains to prove that G* = 0. In a first step we set 5? = fé ﬁMﬁ")ds,

which is the process G™ above when a, = 1 (i.e., A, = t). So the sequence (5”)
is tight, and we also have

(5.17)

=N ¢ u n n
E((Gt)2)=2n/0 du/o EMP MDY dv.

Since M is a martingale, E(M\"M'") equals 0 if [nv] # [nu] and
E(f[mu ¢, ds) if [nv] = [nu]. Hence

nvl/n

v

—n £ 2
E((G))?) = 2E</0 du /[W]/n dv /[W]/n ce ds) = ZE(Cy) 0.

It follows from all these that G = 0.
In a second step, we assume that a is of the form (5.9). Then
G? = Z Ak—l(@tm&k - Et/\tk,l)a

k=1

so G™® = 0 by the first step. Finally, in the general case there is a sequence
a(p) of processes of the form (5.9) such that

. 2
5, ::E([O la(p), — a| ds) 0.

Setting A(p); = fot a(p);ds and G(p)" = /n Z"(M, A(p)), we have G(p)" =
0 for every p. On the other hand,

E(sup |62~ 6(p11) = B( [} W M, ~ a(p).jds)

1 12 _
< E(/o n(MY? ds) Jo, <\ Jed,

by (5.17). Thus G™ = 0, and we are finished. O
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REMARK. Theorem 5.5 puts us in the situation where Theorem 3.2 applies:
if Y is a continuous semimartingale with (5.15) and (5.2), for any starting point
xo and any C*-function f with linear growth the processes ./n U" and ﬁU"
weakly converge to the solution of (3.7), with Z given by (5.3). O

6. Lévy processes. In this last section we suppose that the driving pro-
cess Y is a Lévy process, and to simplify we assume that it is one-dimensional
(an extension to the multidimensional situation is rather straightforward).
The characteristics of Y are (b, ¢, F'), where b ¢ R, ¢ > 0 and F is a positive
measure on R with F({0}) = 0 and [ x? A 1 F(dx) < co. We denote by p the
jump random measure of Y, and we set v(d¢, dx) = dt ® F(dx), so Y has the
form (see [4])

(6.1) Y, =bt+ Y]+ xljy ey * (0 —v) + xlgpy * 1,

where Y¢ is the continuous martingale part of Y: itis O if c = 0 and Y /./c
is a standard Brownian motion otherwise, and its quadratic variation process
is ct. Further, the “x” in (6.1) indicates the stochastic integral of a predictable
function w.r.t. a random measure (see [4]). Set
(6.2) Z"=2Z"Y.Y),  Z,=Z}

Here, if F = 0 the process Y is a continuous semimartingale, to which the
results of the previous section readily apply. On the contrary, when F # 0
the situation resembles that of Section 4 for discontinuous processes: we do
not have convergence of (\/n Z") and (y/rn U") in the Skorohod sense (unless
Y = 0), but only finite-dimensional convergence in law, while the sequences
(Y Z") and (nU") weakly converge.

Let us first describe the limiting processes Z and U. We take (possibly on
an extension of the space on which Y is defined) the following:

1. a standard Brownian motion W;
2. two sequences (V},),-; and (V7),., of standard normal variables;
3. a sequence (x,),-1 of uniform variables on (0, 1);

in such a way that all these terms are mutually independent, and are inde-
pendent of Y as well. We also set

(63) Vn:VXnV;z—i_\/l_XnV/r;’

which gives another sequence of independent standard normal variables.

Let us also denote by (S,),.. an arbitrary ordering of all jump times
of Y, consisting of stopping times taking values in (0,1] U {o0}: if F(R) <
oo, we may choose the sequence S, to be increasing and the variable K =
inf(n: S, > 1) is a.s. finite; otherwise the S,’s cannot be ordered as an in-
creasing sequence.
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Now we are ready to describe the limiting processes for \/n Z" and /n U™.
First, the limit of \/n Z™ will be

c
—W,++c) V,AYg 1 t).
NG ¢ \/_rgl S, [Sn,l]()

Note that Z = 0 if ¢ = 0. Since anl(Ast)2 < o0 a.s., itis not difficult to check
that the last sum in (6.4) converges in L?, conditionally on the o-field %, and
S0 converges in probability. There is another (more abstract) way of describing
Z': it is, conditionally on .7, a Gaussian martingale null at 0 and with angle
bracket [this bracket is not an (7 ,)-predictable process, but conditionally on
Z it becomes deterministic]

(6.4) Z, =

c?t )
(6.5) (2, 2) = 5+ e X AY)

s<t

or, equivalently, it is a Gaussian centered process with covariance function
(s,t)~(Z,Z),,, as given in (6.5). That these two descriptions characterize
the same process (conditionally on &) is easy, and it shows in particular that
(6.4) does not depend on the particular choice of the sequence (S,).

Next the limit of \/n U™ will be the unique solution of the following linear
equation:

69 U= [ f(X U, dY, - Z(P),
where
2= 55 [ U)X, Haw,
6.7) > [«/X_nV;(ff/)(Xsn_) VT VIF(Xs, )
n:S,<t

1
x/o fi(Xs +uAXSn)du] AY .

Exactly as in (4.14), we may also write 7(/‘) as

2= 25 [ (X, )W,
(6.8) +ve ¥ [VaVif(Xs, ) AXs,

n:S, <t
+VI= X VilF(Xs,) — F(Xs, ).

As in (6.4), the series on the right side of (6.7) and (6.8) are converging in
measure. As for Z, another more abstract way of describing Z(f) is that,
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conditionally on .7, it is a Gaussian martingale null at 0 and with bracket
Z(H. 2 =5 / (FF)(X,)dW,
+5 Z(f(X DAX )P+ (F(X) — (X))

s<t

(6.9)

Here is the main result of this section. We exclude the following two simple
cases:

1. F=0and c =0 (i.e., Y, = bt); then, by Theorem 4.1, the sequence (nZ")
has (x) and converges unlformly to Z, = b%t/2, and both sequences nU"
and nU" converge uniformly to the unique solution of dU, = (U,f'(X,)b —
f(X)f(X,)b?/2)dt starting at O (here we are in the case of an ordinary,
nonrandom, differential equation);

2. F =0 and ¢ > 0; then, by Theorem 5.5, the sequence (/n Z") has (x) and
converges stably in law to Z = ¢W/+/2 [as in (6.4) with S, = oo for all n,
i.e., the last sum in (6.4) disappears], and the sequences ./n U" and ﬁU"
converge stably in law to the unique solution of dU, = U,f'(X,)dY, —
f(X)f'(X,)dZ, starting at 0, by Theorem 3.2.

THEOREM 6.1. Assume that Y is a Lévy process such that F # 0. Let x, be
any starting point, let f be any C*-function with linear growth, and consider
(3.1). The sequences (4/n Z™) and (./n U™) have (x), and we have the following:

(a) If ¢ =0, the sequences (7 Z"), (vaU™) and (n U ) weakly converge
to 0.

(b) If ¢ > 0, the sequence (v Z , vn U ) stably converges in law to (Z, U),
as given by (6.4) and (6.6)-(6.7), and the sequence (/n Z", \/n U") stably con-
verges in finite-dimensional laws to the same limit.

In case (b) above, the sequence /n Z" is not tight: if it were, by taking a
convergent subsequence we could apply Theorem 3.2, but then the limit of
(¥/nU™) would be given by (3.7), which is not the same equation as (6.6).

ProOOF. The proof of Theorem 6.1 will go through several steps.

STEP 1 (Suppressing big jumps). Here we assume that Theorem 6.1 holds
for Lévy processes having bounded jumps. Let Y be an arbitrary Lévy process,
and set, for any p > 1,

Y(p)y =0t + Y+ xlyyay x (1 —v) + 2L jy<p) * K

Let X(p) be the solution of (3.1) relative to Y(p), and let Z(p)*, U(p)", Z(p)
and U(p) be the processes associated with Y (p) and X(p). Observe that in
the definition of Z(p) and U(p) we can use the same sequence of stopping
times (S,,) and the same terms (W, V', V" x,) as for Z and U.

Also let ), = {w: |[AY | < p ¥V s € (0, 1]}. Then (), increases to (), while on
Q, we have the following equalities between processes: X(p) = X, Z(p)" =
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Z", U(p)y* = U", Z(p) = Z, U(p) = U. Since our theorem holds for each
Y (p), it follows that it also holds for Y.
Therefore, from now on we assume that the jumps of Y are bounded by a
constant, that is, the measure F' has compact support.
STEP 2 [The (x) property]. For a moment, let M and N be two martingales
with angle brackets (M, M), = at and (N, N), = Bt, and set A, = at. Then

E((Z"(M, N), (M, N))y) = 8 [ B((MY)ds
(6.10)

2
(6.11) E((Z"(A, N), Z"(A, N)),) = Ba? fol (s - ?) ds = B—Zz

1
B( 3 14270, A1) = ol [} B ds

(oo )

(6.13) E</01|dZ”(A, A)S|> = a? /01<s—[’;—8]) ds = g

Let us come back to Y. Since F has compact support, we can set

(6.12)

V=b+[ xF(dx), a=c+ /xZF(dx),

Jx|>1
B, =b't, M=Y4+xx(pn—v),

sothat Y = B+ M, while (M, M), = at. Then Z" = Z*(M, M)+ Z"(M, B) +
Z"(B, M)+ Z"(B, B). The two sequences of local martingales (/n Z"(M, M))
and (/n Z™(B, M)) have (x) by (6.10) and (6.11), and the two sequences of
processes with finite variation (\/n Z"(M, B)) and (/n Z"(B, B)) have (x) by
(6.12) and (6.13). Hence the sequence (,/n Z™) has (x), as well as (v/n U™) by
Theorem 3.3.

STEP 3 (Suppressing small jumps). (i) For £ > 0 we set

M?¢ = x1{|x|§8}*(,u,—v), N°¢ = x1{|x|>8}*([.L—V), Af = xl{mn}*p,,

&

b =b/—/|x|>£xF(dx), p8=/‘x|>8x2F(dx), B? = b,t.
Then (6.1) readily yields
Y=B+Y‘+M°+N°=B°+Y°+ M°+ A°.
A simple computation, using the bilinearity of (U, V)~ Z™"(U, V), gives
(6.14) VnZ"=F"°+G"*,
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where
Fn,a‘:Hn,s_l_In,s, Gn,ean,e+Kn,s+Ln,a
and

H"® = nZ"(B°+ Y, B +Y°),
I'* = Jn(Z"(A°, YO) + Z"(Y*, A%)),
I = /n(Z"(M?, M® + N° + Y°) + Z"(N° + Y° + B, M*)),

K"*=JnZ"(N°+B,N°+B), L"*=n(Z"(M*, B) — Z"(B’, B%)).

(ii) Observe that (N°, N¢), = p.tand (Y¢,Y¢), = ct and (M?, M?), = (pg—
p.)t. We deduce from (6.12) and (6.13) that E( [, |[dL™*|) < 2|¥'|/po = ps/3 +
b%/yn, so

1
(6.15) lim lim sup E(f |dL;W|> —0.
&—0 n 0

Next, use (6.10) and (6.11) to obtain that the local martingale J™¢ has
(J™2, I %), < 6(py — p.)(po + ¢ + b?)t. Therefore, using Doob’s inequality,

(6.16) limsup B((J", J"%)3) = 0.

Next, the process B+ N? is the sum of a continuous process with finite varia-
tion having (4.2) and a process of the form (4.6), and the associated variables
o} and E? [see (4.9) and (4.10)] are bounded by a constant independent of n,
and the number of jumps of this process is a Poisson random variable. Then
sup, E(vn [; |dK}°|) < o0, and

1
(6.17) IimE(/ |ng»8|>=o Veso0.
n 0

Putting together (6.15), (6.16) and (6.17), we readily deduce that if 6" is a
sequence of predictable processes such that §** is tight, then

(6.18) Iinglim sup P((8"-G™*)*>n)=0 vV 7n>0.

(iii) We can now prove (a). Suppose that ¢ = 0. Then Y¢* =0, s0 I"»* =0
and H™¢ = /n Z"(B?, B®) converges weakly to 0 by Theorem 4.1 for each
& > 0. Then F™¢ = 0 as n — oo, and combining this with (6.14) and (6.18)
with 8" = 1 yields that \/n Z" = 0. Then we can apply Theorem 3.2 to obtain
/nU" = 0, and thus (a) holds.

(iv) From now on we suppose that ¢ > 0. Recall that /n U" is the solution
of (3.13), with «,, = «/n, and introduce the solution V,, of the following linear
equation:

6.19)  dV"=V" (X, )dY,— k(X)'d(vnZ"),  Vi=0.
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As in the proof of Theorem 4.6, Theorems 2.2(d), 3.1 and 2.5(b) and the ()
property of /n Z" give that (/nU" — V") - 0,
Next, we introduce the solution V" ¢ of the following linear equation:

(6.20) dVvy =V f(X,)dY,— k(X)}dF}°, Vg ©=0.

Also set R} = [fk(X)}d(v/nZ"), and R}® = [J k(X)} dF}°. Lemma 2.4
yields

P((V" = V™) >n) <& + P(f(X) > A)
+ P(R™ > u) + P((R" — R™*)* > w) + ~K 4 ,,
n

for a constant K 4 . depending on A, &. Since \/n Z" has (x), and k(X")* is
tight, Theorem 2.2(c) shows that R™ is tight. On the other hand, R} — R}"* =
fot k(X)}dGy *, so (6.18) implies that lim,_, o limsup, P((R"— R™®)* > w) =0

for all w > 0. Thus one readily deduces, by taking & arbitrary, then A and u
big, then w small, that

Iirr(1)|im sup P((V" = V™) >n)=0

for all > 0. In view of what precedes, we thus obtain

(6.21) Iing)lim sup P((vV/nU" = V™) > n)=0 V0.

On the other hand, define Z(¢) and 7(8, f) by (6.4) and (6.7) [or (6.8)],
except that in the sum of the right side we add the indicator function of the
set {|AY g | > e}. It is easy to check that

(6.22) lim P((Z - Z(&))* +(Z(f) - Z(e, f))*> 1) =0 V7 >0.

Then if U(¢) is the solution of (6.6) with Z(s, f) instead of Z(f), we also have,
by (6.22) and Theorem 2.5,

(6.23) lim P(U - U(e))' >m) =0 ¥n>0.

Putting together (6.18), (6.21), (6.22) and (6.23), we see that in order to

obtain (a), it is enough to prove that for each ¢ > 0 and if 7?’6 = FE‘,;f]/n and
—n,e

V" =V then

(6.24) (F"°, V") =258 (Z(¢), U(e)),

(F™#, V™e) stably converges in finite-dimensional

(6.25) law to (Z(g), U(¢)).

STEP 4. From now on we fix ¢ > 0. We denote by 0 < Ty < --- < T, < ---
the successive jump times of Y with size bigger than . The number of T,
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with T, < oo (or, equivalently, T', < 1) is a Poisson random variable K, with
parameter F(R\ [—e&, €]). The processes Z(¢) and Z(e, ) are given by

c
—W,+ Ve Y LAY 7 L 4y(t)

(6.26) Z(e), = 7
n>1

and

Z(e. £y = 5 [ (X, )W,

627) 4V ¥ [J?nz:l(ff/xxm_)

n:T,<t

- 1
VI=E (X, ) [ F(Xy, + uAXTn)du} AY ;.

where the family (W, &,, {,, () has the same properties as (W, x,,, V), V")
and

(6.28) Lo =V el +V1= &0

(this comes from relabelling the x,, V', V7's).
Now, we associate with each T'; the times T' (n, j) and T_(n, j) by (4.8),
and replace (4.9) by

of = VnAYp (YG Y5 ) B =vrAY (Y5 5~ 7)),
vj = o+ B,

these quantities being 0 if T'; = co. We also write p, = (a7, B}) ;1. Finally,
set

(6.29)

aj= ek, 0AYn,  By=\Je(1-E)IAY
vi=a;+B; :\/EngYTj

and p = (a;, B;) j>1-

(6.30)

LEMMA 6.2. We have (H™¢, p,) =Y ((¢/v/2)W, p).

PROOF. For simplicity we write H = (¢/v/2)W.Let Y =Y —Y° — A¢, and
R/ =Y, - Z(YgAT_,_(n,j) - Y?/\T+(n,j))’

Jj=<1
St =Hp* — Z(H?/’\’;Jr(n,j) - H?A’;;(n, i)
Jj=<1

In order to prove the result, we need to show that

E(MY)g(H™®, p,)) — E(MY)g(H, p))

for all bounded functions 2 and uniformly continuous bounded functions g.
By the same density argument as in Lemma 2.1, it is enough to prove this
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when A(Y) = u(Y")v(Y¢)w(A?), where u, v, w are bounded functions, with in
addition v continuous. Now, clearly (R" — Y¢)* — 0, and Theorem 5.5 yields
H™e =s@bly [ 5o (S — H™#)* —P 0. Hence it suffices to prove that

(631)  E(u(Y)u(R"w(A")g(S", p,)) — E(u(Y)u(Y*)w(A*)g(H, p)).

In fact it is even enough to prove (6.31) when w depends only on the %
first jump times and sizes of A¢, and g depends only on S” and on the % first
variables «" and B". Further, the set Q, (depending also on %) on which each
interval ((i — 1)/n, i/n] contains at most one T'; tends to (); hence we can put
the indicator function in the left expectation of (6.31). So it remains to prove
that

E[u(Y)o(Rw(T j, AY 1 )1=1)8(S", (&}, B})1<j<r)10, ]
- E[U(Y/)U(Yc)w((Tp AYTj)lsjgk)g(Hs (aj’ Bj)lfjgk)]-

Now, (6.29) and the independence of the increments of Y over all the intervals
(T_(n, j), T (n, j)] from all the other random terms appearing in the left side

of (6.32) yield that in this left side we can replace «’; and g’ by «/cf?g’; AYTJ_
and ve(1 - &7){% AYTj, where & = n(T; — T_(n, j)) is the fractional part of

nT ;. Using once more (R" — Y¢)* — 0 and (8" — H™*®)* —P 0, we then see
that this left-hand side has the same limit as

E[u(Y)o(Y (T} AY 7 )1ji)
x g(H”’*’”, (\/E}g;AYTJ,, \/c(l _ f'})g’]fAYTj)lstk)lQn].

Now if F,, and G, denote the laws of the k-tuplets (AYTj)lijk and (T j)1<j<
(which are independent), the previous expression becomes (with {«} denoting
the fractional part of u)

(6.32)

/Fk(dxl, e dx)Gi(dty, o AL, (int<intial
x E[u(Y)o(Y)w((tjs )iz jz)
X g(Hn’ ‘, (\/C{tj/n}g/jxja \/C(l - {tj/n})f/;x»lgjsk)]-

Now we can use the property H™ ¢ =@ I and the uniform continuity of
g to get that the above has the same limit as

/Fk(dxl, ey dxk)Gk(dtl, ey dtk)1ml<i<k{[nti]<[nti+1]}
x B[u(Y )o(Y)w((t, %12 1)

X g(H, <\/c{tj/n}§;xj, \/c(l — {tj/n})gyxj)lfjikﬂ



304 J. JACOD AND P. PROTTER

= E[u(Y)o(Y)w(T}, A 7 )121)

< g(H. (Jeti ey o= D), )]
At this point, we need to prove that the above converges to the right-hand
side of (6.31). Because T,,..., T} is independent of Y°, Y’ H, {’j, g;f,AYTj,

this amounts to proving that (¢%),_;., =Y (¢;);- ;.. However, since G,
has a regular density on its support, a trivial extension of one-dimensional
results of Tukey [17] (see also [2]) gives this property. O

STEP 5. Now we turn to the proof of (6.24) and (6.25), which will reproduce
the proof of Theorem 5.1 in a more complicated situation.

(i) The sets Q,, on which each interval ((i — 1)/n, i/n] contains at most one
T ; tend to (). Then similarly to (4.18)—(4.20) we set

. —n,e
W) = VtAT+(n,j)’
W(i, ift <T.(n,J),
W0 = WU)ITIH(MJ’) + Vit V;"’f(n, 7’ ifT,(n,j)<t<Tj,
WD, (n, jy T Vit - V;L"’f(n, gy T, <t

J+H1T

U(e),, ift <Tjyq,

Ue)r,,, 1fe=T;,.

We also denote by F(j)*, F(j)", F(j) and F(j) the processes obtained by

replacing above (V"°°, V2 U(e)) by (F~°, F™¢, Z(&)). We consider the prop-
erty (recall that H = (¢/~/2)W)

(H)) (p", H™*, (F(j)", W(j)") =Y (p, H, (F(j), W(,)))-

Observe that (Hy) holds by Lemma 6.2. If we have (H ;) for all j, then (6.24)
holds, because K < oo a.s.

(i) Suppose that (H;) holds. Let H(n, j) be the interval (T (n, j), T j;1)-
Then [see (6.21)]

t
(6.33) PO = F)+ [ Ao, j(s)

and

W) =U@)iar,, W)= {

t
WY = WY+ [ WO F (X)L, () Y
(6.34)

t
= [ RO} aa, () .

Then (4.22) holds with

t
Tp = WO = [ X)) (5) A,
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T =W~ [ A X er, 7, (5) A,

t t
L} =/0 (X5 )lpm, j(s)dYs, L, =/O (X )r,r,H(s)dYs.

Clearly (L"—L)* —* 0, while the sequence k(X)” is bounded (in » and ¢) by
a finite random variable and converges to (ff')(X,_) at each continuity point
of Y, while the sequence H™ ¢ has (x) ?nd these processes are continuous. So
(J" = Iy =P 0t I = WO — Jo(FF WX )Lae, j(s)dH . Then (H ;)
yields (J", L, p*, H™#) =% (J L, p, H); hence Theorem 2.5(c) and (6.33)
give that ((F ()", W(Jj)"), p", H" ) =s@Y ((F(jY, W(j)), p, H). Therefore
if F(J)i = F()ineyym @nd W()E = W(J)e/n» We get

((F(j)An/\Ti(n, J+1)° W(j)fiTi(n,jJrl))’ F(j)/qr}j“—’ W(j)/fr}ju—’ pn’ H™ 8)
=¥ ((F(), W) (D, W(r,, = oy H)-

(iii) Set w, = F'}f(n,ﬁl) - F’}f’(n j+1y @nd 8, = V’}’f(n’jﬂ) - V’}’jn’ j+1)- ON
the set O, N{T; < 1} we have u, = a, + v}, and 8, = u, +v,, where (with
Y=Y - A?)

(6.35)

41—

a, = H;‘j(n j+1) Hr%,a(n j+1)?
T, (n, j+1) e o — Ty (n, j+1) n n. s
Uy, = . Vs; f (Xsf)dYs _/ . k(X)S dHS’ >
T _(n, j+1) T _(n, j+1)

/T+(n, j+1)

0y =AY, (V5! (X, ) = HF = [ k(X)! dY?).

Jj+1

First, the sequences V"* and k(X)"* are tight, Y is continuous at time T,
and H™* = H with H continuous, so one deduces thata, —? 0and u,, —F 0.
Next the sequences

KXY~ (X7, )
and
T, (n, j+1) 1
[ Ry By f(Xp, ) [ f(Xg,, - +ubXy)du
converge to O in probability. Further, Fr:;’,il— = F(j)p,,. and V’:;’j‘jr =
W(j) . Thus if
5=AY; <W( Dy

J+H1T

F(Xp, )= aju(FXr, )

1
By [ F(Xp, _+udXy) du),
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one deduces from (6.35) that
((F(-j)-,ZT_(n, j+1) W(-j)f;l\T_(n,j-kl))’ Hons 8y p"s H™ )

(6.36)
=% (F(j), W())s ¥js1 85 ps H).

However,
F(j+1)"= F(j)f;l\T,(n, T 'U‘”]'[T+(”’ J+D. 1P
W0+ 1" =Wl n, j1) T 0nirn, 42,105
F(j+1)=F()ar, -+ Vil 1
Wi +1)=W()ar,,,- + 84,11

Thus (6.36) yields (H ), and the proof of (6.24) follows by induction on j.
(iv) Finally, ontheset{T,(n, j) <t < T_(n, j+1)} we have F;"° = F(j)}",
Z(s), = F(j), Vi'* = W(j)!" and U(s), = W(,j);. Since

(F()™, W(i)") =" (F(j), W(j))

and since Z(¢) and U (&) have no fixed times of discontinuity, we deduce (6.25),
and the proof of Theorem 6.1 is complete. O
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