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CROSSINGS AND OCCUPATION MEASURES
FOR A CLASS OF SEMIMARTINGALES1

By Gonzalo Perera and Mario Wschebor

Université de Paris-Sud and Universidad de la República

We show that

1√
ε

{∫ ∞
−∞

f�u�kεNXε
τ �u�du−

∫ τ
0
f�Xt�at dt

}

converges in law (as a continuous process) to cψ
∫ τ

0 f�Xt�at dBt� where
Xt =

∫ t
0 as dWs +

∫ t
0 bs ds� with W a standard Brownian motion, a and b

regular and adapted processes, Xε�t� =
∫∞
−∞�1/ε�ψ��t− u�/ε�Xu du, ψ a

smooth kernel, Ng
t �u� the number of roots of the equation g�s� = u� s ∈

�0� t	, kε =
√
πε/2/
ψ
2, f a smooth function, B a standard Brownian

motion independent of W and cψ a constant depending only on ψ.

1. Introduction. Let X = �Xt� t ≥ 0� be a real-valued continuous semi-
martingale of the form

�1� Xt =
∫ t

0
as dWs +

∫ t
0
bs ds�

whereW = �Wt� t ≥ 0� is a standard Brownian motion (BM for short) adapted
to a filtration F = �Ft� t ≥ 0�, where Ft⊥σ�Wr −Ws� t ≤ s ≤ r� ∀ t ≥ 0. Here
a = �at� t ≥ 0� and b = �bt� t ≥ 0� are F-adapted processes verifying a certain
number of regularity and boundedness conditions to be precised later on. We
shall also assume that at > 0�

The purpose of this paper is to compute the speed of convergence of the
normalized number of crossings of regularizations of X to the local time of X.

More precisely, let ψ be a C∞ kernel, ψ� R → R
+� with compact support

(say suppψ ⊂ �−1�1	�� and
∫ 1
−1ψ�u�du = 1�

Define

�2� Xε�t� =
∫ ∞
−∞

1
ε
ψ

(
t− u
ε

)
Xu du =

∫ 1

−1
ψ�−u�Xt+εu du�

where we have extended X by means of Xt = 0 if t < 0.
A comment on notation: the symbol “−→

ε→0+
” denotes convergence of real num-

bers in the ordinary sense, and “
w�⇒

ε→0+
” indicates weak convergence of processes

or measures.
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254 G. PERERA AND M. WSCHEBOR

In Azaı̈s and Wschebor (1995) it is proved that if M is a real-valued and
continuous local martingale with bracket A = �At� t ≥ 0� then, almost surely,
for any bounded interval I contained in �0�∞� and any continuous function
f� R → R� we have

�3� kε

∫ ∞
−∞
f�u�NMε

I �u�du −→
ε→0+

∫
I
f�Mt��Ȧt�1/2 dt�

N
g
I �u� is the number of roots of the equation g�t� = u� t ∈ I� Ȧ = �Ȧt� t ≥ 0�

is the (almost everywhere) derivative of A, and

k = 1

ψ
2

√
π

2
� kε = k

√
ε� 
ψ
2 =

(∫ 1

−1
ψ�u�2 du

)1/2

�

We will also denote Ng
t �u� =Ng

�0� t	�u�.
Theorem 1 gives a speed of convergence in (3) for semimartingales of the

form (1). Note that in the statement of Theorem 1 neither the centering nor
the limit distribution depend on the drift term in (1). The constant cψ depends
only on the regularizing kernel ψ and not on the process.

Theorem 1 can be used to make inference on the martingale part of X. It
also allows measuring the local time of X from the observation of the number
of crossings of Xε. In fact, introduce the modified local time:

L̂XI �u� =
∫
I

1
at
LXdt�u��

where LXJ �u� is the value at u ∈ R of the canonical bicontinuous local time
of the continuous martingale M on the interval J [see Revuz and Yor (1991),
page 209, (1.6)].

Taking into account that in this case Ȧ1/2
t = at� we can rewrite the right-

hand term of (3) as ∫
I
f�Xt�at dt =

∫ ∞
−∞
f�u�L̂XJ �u�du�

To see this, argue as follows:
∫
I
f�Xt�at dt =

∫
I
f�Xt�a2

t

1
at
dt�

If f is nonnegative, consider the measure defined by

ν�J� =
∫ ∞
−∞
f�u�LXJ �u�du =

∫
J
f�Xt�a2

t dt�

then ∫
I
f�Xt�at dt =

∫
I

1
at
ν�dt� =

∫
I

1
at

∫ ∞
−∞
f�u�LXdt�u�du

=
∫ ∞
−∞
f�u�

(∫
I

1
at
LXdt�u�

)
du =

∫ ∞
−∞
f�u�L̂XJ �u�du�
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Then (3) means that, almost surely,

�4� kεN
Xε

I �u�du →ε→0+ L̂
X
I �u�du� where convergence takes

place as weak convergence of measures on R.

Theorem 1 refers to the speed of convergence in (4) enabling measuring the
discrepancy between the approximation and its limit.

Extensions of Theorem 1 to R
d-valued semimartingales will be considered

elsewhere. In fact, the general setting consists of the study of the asymptotic
behavior (as ε goes to zero) of functionals defined on the smoothed paths Xε�·�
having the form ∫

I
F�Xε�t��

√
εẊε�t��dt

for suitable choices of the function F. Theorem 1 corresponds to d = 1 and
F�x�y� = f�x��y��

In the case X is BM, a proof of Theorem 1, based on convergence of mo-
ments, has been given in Berzin and León (1994).

2. Main results and examples. In what follows, a and bwill be R-valued
adapted and continuous processes, with a > 0, and such that the following
hold:

(A) For every T�p > 0, supt∈�0�T	E��bt�p� <∞�
(B) ∀ ε > 0� �as+ε − as�/

√
ε = a∗s Zs� ε+ rs� ε, where we have the following:

(i) a∗ adapted, Z•�ε and r•�ε F•+ε-predictable, Zs�ε⊥Fs�
(ii) For almost every pair s� t ≥ 0� t �= s, we have the following weak

convergence (in R
2 × C ��0�∞��2):

�Zt�ε�Zs� ε�Wε� t
• �Wε� s

• � w�⇒
ε→0

�Zt�Zs�Wt
•�W

s
•��

where

Wε� t
γ = Wt+εγ −Wt√

ε
�

�Wt
•� t ≥ 0� is a collection of independent Brownian motions, V•�t� s� =

�Zt�Zs�Wt
•�W

s
•�⊥F∞; V•�t� s� has a symmetric distribution [i.e., V•�t� s� and

−V•�t� s� have the same distribution] and if �s� t� and �s′� t′� are disjoint,
V•�s� t�⊥V•�s′� t′��

(iii) For every p > 0, T > 0� and some δ > 0,

sup
s∈�0�T	� ε∈�0� δ	

E��Zs�ε�p� <∞�

sup
s∈�0�T	

E��rs� ε�p� −→
ε→0+

0�

sup
s∈�0�T	

E��a∗s�p� <∞�
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We will consider Brownian semimartingales defined by (1) with a and b as
before. In addition, we set

,ε�t� =Xε�t� −Xt�(5)

Xε� t
u = Xt+εu −Xt√

ε
�(6)

Observe that if suppψ ⊂ �−1�0	� Xε� t
u = ∫ u

0 at+εv dvW
ε� t
v + √ε ∫ u0 bt+εv dv�

Hence, Xε� t
• is the solution of the SDE:

�7� duX
ε� t
u = at+εuduWε� t

u +√εbt+εudu� u ≥ 0� Xε� t
0 = 0�

Let us denote by C2
b the set of real-valued functions with bounded continu-

ous second derivative and set

Eε�τ� �=
1√
ε

{∫ ∞
−∞
f�u�kεNXε

τ �u�du−
∫ τ
o
f�Xt�at dt

}

Our main result is the following theorem.

Theorem 1. If X is as in (1), f ∈ C2
b then

�Wτ�Eε�τ��
w�⇒
ε→0

�Wτ� cψ

∫ τ
0
f�Xt�at dBt� in C ��0�∞��2�

where B is a BM�B⊥W� and cψ is the constant

c2
ψ =

∫ 1

−1

∫ 1

−1
E

{i=2∏
i=1

H�Rγi� β2�γi��ψ�−γi�
}
dγ2 dγ1�

where H�x� θ� �= k�24�x/θ�−1	, 4 is the standard normal distribution, Rγ �=∫ γ
0 ψ�−u�dWu and β2�γ� �= ∫ 1

γ ψ
2�−u�du�

Example 1 (Diffusions). Consider the diffusion process

�8� Xt =
∫ t

0
σ�Xs�dWs +

∫ t
0
b�Xs�ds�

where σ > 0 and assume

�9� σ�x�2 + b�x�2 ≤K�1+ x2� ∀ x ∈ R�

�10�
�b�x� − b�y�� + �σ�x� − σ�y�� ≤ LN�x− y�

∀ �x�� �y� ≤N� ∀ N ∈ N�

in which case existence and uniqueness of a strong solution of (8) are guar-
anteed, with all its moments uniformly bounded over compact intervals. Fur-
thermore, assume that σ belongs to C2

b�
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Denote as = σ�Xs�, bs = b�Xs�. We have �0 < θ < 1�

as+ε − as√
ε

= σ ′�Xs�
�Xs+ε −Xs�√

ε
+ σ ′′�Xs+θε�

�Xs+ε −Xs�2
2
√
ε

= σ ′�Xs�σ�Xs�Wε�s
1 + σ ′�Xs�

∫ 1

0

[
σ�Xs+εv� − σ�Xs�

]
dvW

ε� s
v

+ σ ′�Xs�
√
ε
∫ 1

0
b�Xs+εv�dvWε� s

v + σ ′′�Xs+θε�
�Xs+ε −Xs�2

2
√
ε

�

Thus, we have the representation (B) for a, with

a∗s = σ ′�Xs�σ�Xs��
Zs� ε =Wε�s

1 �

rs� ε = σ ′�Xs�
∫ 1

0

[
σ�Xs+εv� − σ�Xs�

]
dvW

ε� s
v

+ σ ′�Xs�
√
ε
∫ 1

0
b�Xs+εv�dvWε� s

v

+ σ ′′�Xs+θε�
�Xs+ε −Xs�2

2
√
ε

�

which clearly satisfy all the required conditions.
The statement of Theorem 1 can then be rewritten as

(
Wτ�

1√
ε

∫ ∞
−∞
f�u�

[
kεN

Xε
τ �u�−

LXτ �u�
σ�u�

]
du

)
w�⇒
ε→0

(
Wτ� cψ

∫ τ
0
f�Xt�σ�Xt�dBt

)

[in C ��0�∞�2�].

Example 2 (Non-Markovian martingales). Consider Xt =
∫ t

0 f�Ws�dWs�

where f� R → R is a C3 function such that f = inf�f�x�� x ∈ R� > 0, f′′ and
f�3� are bounded, f′′�0� �= 0 and 
f′′
∞ < 2f [e.g., f�x� = 1+C exp�−x2�, with
0 < C < 1].

Then X verifies the hypothesis of Theorem 1 with as = f�Ws�, bs ≡ 0,
a∗s = f′�Ws�, Zε� s = W

ε�s
1 � However, X is non-Markovian; hence it is not a

diffusion [cf. Nualart and Wschebor (1991), page 106].

Example 3 (Smoother integrands). Suppose a satisfies a Hölder condition
of the form

sup
0≤t≤T−ε

�at+ε�ω� − at�ω�� ≤ CT�ω�εα
(
α > 1

2

)

for each T > 0 and CT ∈ Lp for all p > 0� Then the process X is included in
our framework with a∗t = 0, Zs�ε = 0�
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3. Proof of the main result. With no loss of generality, we will restrict
the parameter to vary in �0�1	. We also may suppose suppψ ⊂ �−1�0	 (see
Proof of Step 1) and a localization argument implies that we can assume a
and b uniformly bounded by a (nonrandom) constant and a bounded away
from zero (see Lemma 1).

Throughout the proof, C will denote a generic positive constant that may
change from line to line. We divide the proof into several steps, and include
further a series of auxiliary lemmas.

Step 1. Denote Zε�τ� = �1/√ε� ∫ τ0 f�Xt�gt�
√
εẊε�t��dt� where gt�x� �=

k�x� − at� then we have the following:

(i) Eε�τ� −Zε�τ� −→ε→0+ 0 (in L2);
(ii) �Eε −Zε� ε > 0� is C ��0�1	�-tight.

Hence, Eε has the same asymptotic distribution as Zε�

Remark 1. It follows from the proof that

E
[

sup
0≤τ≤1

�Eε�τ� −Zε�τ��
]
→ε→0+ 0�

Step 2. We can decompose

gt�√εẊε�t�� = at
∫ 1

0
4ε� t�v�dvWε� t

v +Rε�t��
where

Rε�τ� �=
1√
ε

∫ τ
0
f�Xt�Rε�t�dt

w�⇒
ε→0

0 in C ��0�1	��

4ε� t�v� �= k
[
24

(
Yε� tv
β�v�at

)
− 1

]
�

Yε� tv �=
∫ v

0
ψ�−u�duXε� t

u �

Remark 2. As in Step 1, we obtain E�sup0≤τ≤1 �Rε�τ��	 →ε→0+ 0�

Step 3. We can decompose: Zε�τ� =
∫ τ

0 f�Xt�Kε�t�at dWt + αε�τ�� where

Kε�t� �=
∫ t

max�0� t−ε�

4ε�v��t− v�/ε�
ε

dv� αε
w�⇒
ε→0

0 in C ��0�1	��

Step 4. Let V = �Vt� t ≥ 0� be an adapted process such that

sup
s∈�0�1	

E��Vs�p� <∞ ∀ p > 0�

Then if V∗
ε�τ� �=

∫ τ
0 VtK

2
ε�t�dt, V̂ε�τ� �=

∫ τ
0 VtKε�t�dt� we have

V∗
ε

w�⇒
ε→0

cψ

∫ τ
0
Vt dt in C ��0�1	�� V̂ε

w�⇒
ε→0

0 in C ��0�1	��
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Step 5. If Sε�τ� �=
∫ τ

0 Kε�t�dWt� then �W�Sε�
w�⇒
ε→0

�W�cψB� [in C ��0�1	�2],
where B is a BM, B⊥W�

Step 6. If Ẑε�τ� �=
∫ τ

0 f�Xt�at dSε�t�� then �W•� Ẑε�·��
w�⇒
ε→0

�W•� cψBθ�•��
[in C ��0�1	�2], with θ�τ� �= ∫ τ

0 f�Xt�2a2
t dt�

Hence, from Step 3, �W•�Zε�•��
w�⇒
ε→0

�W•� cψBθ�•�� [in C ��0�1	�2], with
θ�τ� = ∫ τ

0 f�Xt�2a2
t dt�

The theorem follows from Steps 1 and 6, which we will prove, with the help
of some auxiliary lemmas presented in Section 4.

Proof of Step 1. The formula
∫∞
−∞ u�x�Nv

I�x�dx =
∫
I u�v�t���v̇�t��dt can

be easily checked for u� R → R continuous and v� I→ R of class C1, and I a
bounded interval in the line [see, e.g., Nualart and Wschebor (1991), page 88,
(2.4)].

Hence,

Eε�τ� =
1√
ε

[∫ τ
0
f�Xε�t��

√
π

2
�√εẊε�t��

ψ
2

dt−
∫ τ

0
f�Xt�at dt

]

= Zε�τ� + k
∫ τ

0

[
f�Xε�t�� − f�Xt�

]�Ẋε�t��dt�

Applying Lemma 3c, we deduce that (i) and (ii) hold, which concludes the
proof of this step.

Proof of Step 2. First we will prove tightness. Set

Gt�x� θ� = E�gt(x+√θatN)
/Ft� = k

∫ ∞
−∞

∣∣x+√θats∣∣φ�s�ds− at�
where N is a standard normal random variable, N⊥F∞, x ∈ R, θ > 0 and φ
stands for the standard normal density.
Gt is the C

∞ �R× �0�∞�� solution of

�11� DθG
t = a

2
t

2
D2
xxG

t� Gt�x�0+� = gt�x��

Denoting by 4� the standard normal distribution, we have

DxG
t�x� θ� = k

[
24

(
x√
θat

)
− 1

]
�(12)

D2
xxG

t�x� θ� = 2k√
θ
φ

(
x√
θat

)
�(13)

Note that DxG
t�x� θ� and

√
θD2

xxG
t�x� θ� are continuous and bounded. In ad-

dition, H�x� θ� �= Dt
x�atx� θ� and J�x� θ� �= atD2

xxG
t�atx� θ� do not depend on

t, H�·� θ� is odd and J�·� θ� is even.
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Define Yε� tγ = ∫ γ
0 ψ�−u�duXε� t

u � Applying Itô’s formula to

ηγ
ε� t = Gt�Yε� tγ � β2�γ���

and noting that
√
εẊε�t� = Yε� t1 � we get

�14�

gt
(√
εẊε�t�

) = η1
ε� t − η0

ε� t

=
∫ 1

0
DxG

t�Yε� tγ � β2�γ��dγYε� tγ

+
∫ 1

0
DθG

t�Yε� tγ � β2�γ��
(
dβ2�γ�
dγ

)
dγ

+ 1
2

∫ 1

0
D2
xxG

t�Yε� tγ � β2�γ��dγ!Yε� t�Yε� t"γ�

Using (7), (11) and (14) we obtain

gt
(√
εẊε�t�

) = ∫ 1

0
DxG

t�Yε� tγ � β2�γ��ψ�−γ�at dγWε� t
γ

+
∫ 1

0
DxG

t�Yε� tγ � β2�γ��ψ�−γ�[at+εγ − at]dγWε� t
γ

+ 1
2

∫ 1

0
D2
xxG

t�Yε� tγ � β2�γ��ψ2�−γ�[at+εγ − at][at+εγ + at]dγ
+√ε

∫ 1

0
DxG

t�Yε� tγ � β2�γ��ψ�−γ�bt+εγ dγ

= at
∫ 1

0
4ε� t�γ�dγWε� t

γ +Rε�t��

with

�15� 4ε� t�γ� = DxG
t�Yε� tγ � β2�γ��ψ�−γ��

�16�

Rε�t� =
∫ 1

0
DxG

t�Yε� tγ � β2�γ��ψ�−γ�[at+εγ − at]dγWε� t
γ

+ 1
2

∫ 1

0
D2
xxG

t�Yε� tγ � β2�γ��ψ2�−γ�[at+εγ − at][at+εγ + at]dγ
+√ε

∫ 1

0
DxG

t�Yε� tγ � β2�γ��ψ�−γ�bt+εγ dγ�

We have

Rε�τ� = A1
ε�τ� +A2

ε�τ� +A3
ε�τ�(17)

where

A1
ε�τ� =

∫ τ
0

∫ 1

0
f�Xt�DxG

t�Yε� tγ � β2�γ��ψ�−γ� �at+εγ − at	√
ε

dγW
ε� t
γ dt�(18)
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A2
ε�τ� =

1
2

∫ τ
0

∫ 1

0
f�Xt�D2

xxG
t�Yε� tγ � β2�γ��ψ2�−γ�

(19)

× �at+εγ − at	√
ε

[
at+εγ + at

]
dγ dt�

A3
ε�τ� =

∫ τ
0

∫ 1

0
f�Xt�DxG

t�Yε� tγ � β2�γ��ψ�−γ�bt+εγ dγ dt�(20)

We will prove in what follows that �Aiε� ε > 0� is C ��0�1	�-tight for i = 1�2�3.
Using Hölder’s inequality and Lemma 2, we see that the integrand in (18)

is bounded in Lp for each p > 0; applying Jensen and the Burkholder–Davis–
Gundy inequality [cf. Revuz and Yor (1991), page 152] we obtain

�21� E
{[
A1
ε�τ′� −A1

ε�τ�
]4} ≤ C �τ′ − τ�3�

which proves tightness for i = 1. The case i = 3 is even easier. For the
case i = 2, it suffices to remark that D2

xx�x�β2�γ��ψ2�−γ� is bounded by
C �ψ2�−γ�/β�γ�� and that

∫ 1

0

ψ2�−γ�
β�γ� dγ =

∫ 
ψ
2
2

0

1√
u
du <∞

and tightness follows.
For the convergence to zero in L2, note that

A1
ε�τ� =

∫ τ
0

∫ t+ε
t

f�Xt�DxG
t

(
Y
ε� t
��v−t�/ε�� β

2
((
v− t
ε

)))

× ψ
(
−
(
v− t
ε

)) �av − at	
ε

dWv dt

=
∫ τ

0
I1
ε�t�dt�

Because of the martingale property of the stochastic integral it is clear that
I1
ε�t�� I1

ε�s� are uncorrelated for �t− s� > ε and it follows that E��A1
ε�τ�	2� =

O�ε��
Now

�22� Yε� tγ = atRε� tγ +√εOLp�1� ∀ p > 0�

where T�ε� t� = OLp means supt∈�0�1	� ε>0E��T�ε� t��p� < ∞� and Rε� tγ =∫ γ
0 ψ�−u�duWε� t

u �

�23�

For almost every pair s� t>0, s �= t, �Rε� sγ �Zs� ε�R
ε� t
γ �Zt� ε�

w�⇒
ε→0

�Rsγ�Zs�Rtγ�Zs�, where �Rs•� s∈ �0�1	� are independent copies
of R• (defined in the statement of Theorem 1), �Rs•�Zs�Rt•�
Zt�⊥W� �Rs•�Zs�⊥�Rt•�Zt�, �Rs•�Zs�⊥Fs, �Rt•�Zt� have sym-
metric distributions.
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Equation (22) follows from (8), the definition of Yε� tγ , Rε� tγ � and condition
(B)(iii), (23) follows from condition (B)(ii).

Set ct = ata∗t � Since the integrands in (19), (20) areOLp�1� ∀ p > 0� applying
dominated convergence and (22), our problem reduces to show that, for all
γ� γ′ > 0� and almost every pair s� t > 0� s �= t,

lim
ε→0

E�f�Xt�f�Xs�J�Rε� tγ � β2�γ��J�Rε� sγ′ � β2�γ′��ctcsZt� εZs� ε� = 0�(24)

lim
ε→0

E�f�Xt�f�Xs�H�Rε� tγ � β2�γ��H�Rε� sγ′ � β2�γ′��btbs� = 0�(25)

Assume that s > t are such that (23) holds and take ε so that 0 < ε < s − t.
Conditioning on Fs and using that �Rε� sγ′ �Zs� ε��⊥Fs, we reduce the problem
to show that

lim
ε→0

E�J�Rε� sγ′ � β2�γ′��Zs�ε� = 0 = lim
ε→0

E�H�Rε� sγ′ � β2�γ′����

From (23) and uniform integrability it suffices to prove that

E�J�Rtγ�β2�γ��Zt� = E�H�Rtγ�β2�γ��� = 0�

which is obvious by the symmetry of the distribution of �Rtγ�Zt� and the fact
that J�·� θ� �resp. H�·� θ�� is even (resp. odd).

Proof of Step 3. Replacing gt�√εẊε�t�� by the formula in Step 2 we ob-
tain

Zτε =
∫ τ

0

∫ 1

0
f�Xt�at

4ε� t�v�√
ε

dvW
ε� t
v dt+ 1√

ε

∫ τ
0
f�Xt�Rε�t�dt�

For ε > 0 fixed and every p > 0, it is obvious that the integrand in the first
term of the right-hand member is OLp�1�; hence the Fubini-type Lemma 4
shows that

∫ τ
0

∫ 1

0
f�Xt�at

4ε� t�v�√
ε

dvW
ε� t
v dt

=
∫ τ

0

∫ t+εu
t

f�Xt�at
4ε� t��u− t�/ε�

ε
dWu dt

=
∫ τ+ε

0

∫ min�u� τ�

max�0� u−ε�
f�Xt�at

4ε� t��u− t�/ε�
ε

dtdWu�

Define

Qε�u� τ� =
∫ min�u� τ�

max�0� u−ε�
f�Xt�at

4ε� t��u− t�/ε�
ε

dt�(26)

Kε�u� =
∫ u

max�0� u−ε�

4ε� t��u− t�/ε�
ε

dt�(27)
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By (15) and Lemma 2, it follows that

�28� sup
u∈�0�1	� τ∈�0�1	

E��Qε�u� τ��p� <∞� sup
u∈�0�1	

E��Kε�u��p� <∞�

From this, the continuity ofX, a, the Burkholder–Davies–Gundy inequality
and Lemma 2, we obtain

�29�
∫ min�u� τ�

max�0� u−ε�

[
f�Xu�auKε�u� −Qε�u� τ�

]
dWu = oLp�1�

[indeed, it is an OLp�
√
ε�� ∀ p > 0];

�30�
∫ τ+ε
τ

Qε�u� τ�dWu = OLp�ε� ∀ p > 0�

After Step 2, (29) and (30), Step 3 is proved.

Proof of Step 4. As a consequence of (28) and Jensen’s inequality, both
V∗ and V̂ are tight. Equations (22),(23) also imply

�31� E�V̂ε�τ�� −→
ε→0+

c2
ψ

∫ τ
0
E�Vt�dt�

�32� E�V̂2
ε�τ�� −→

ε→0+
c4
ψE

{[∫ τ
0
Vt dt

]2}
�

�33� E

{
V̂ε�τ�

∫ τ
0
Vt dt

}
−→
ε→0+

c2
ψE

{[∫ τ
0
Vt dt

]2}
�

�34� E�V∗
ε�τ�2� −→

ε→0+
0�

and Step 4 follows.

Proof of Step 5. Apply Step 4 with V = 1 and Rebolledo’s theorem for
convergence of martingales [cf. Revuz and Yor (1991), page 478].

Proof of Step 6. Consider Pt �= f�Xt�at and

PNt �=
i=N−1∑
i=0

f�Xiτ/N�aiτ/N��iτ/N� �i+1�τ/N��t��

It follows from Step 5 that

�35�
∫ τ

0
PNt dSε�t�

w�⇒
ε→0

cψ

∫ τ
0
PNt dBt in C ��0�1	��

Step 4 applied to �Pt −PNt �2 shows that

�36� lim
N→∞

lim
ε→0

∫ τ
0
�P−PN�dSε�t� = 0 in C ��0�1	��
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Since ∫ τ
0
PNt dBt

w�⇒
N→∞

∫ τ
0
Pt dBt

and by (35), (36), Step 6 follows and the theorem is proved. ✷

4. Auxiliary lemmas.

Lemma 1. If a satisfies (A), (B) and ϕ� R → R is a bounded C∞ function,
then ϕ ◦a satisfies (A), (B).

For the proof, use Taylor’s expansion.

Lemma 2. Let X be as in (1), with a and b uniformly bounded by a (non-
random) constant. Then, ∀ p ≥ 2 we have the following:

(a) E�supt∈�0�1	 �Xt�p� <∞�
(b) E�supt∈�0�1	 �Xε�t��p� <∞�
(c) E�supt∈�0�1	 �Ẋε�t��p� = O�ε−p/2��
(d) E�supt∈�0�1	 �,ε�t��p� = O�εp/2��

For the proof, use the Burkholder–Davis–Gundy inequality.

Lemma 3. Let V = �Vt� t ≥ 0� be a real-valued adapted process such that
supt∈�0�1	E��Vt�p� <∞ ∀ p > 0�

IfX is as in (1), with a and b uniformly bounded by a (nonrandom) constant,
we have, for 0 < ε < 1, 0 < h < 1,

�a� sup
0≤t≤1−h

E

[{∫ t+h
t

,2
ε�s��Ẋε�s��Vs ds

]2}
≤ Ch2ε�

�b� sup
0≤t≤1−h

E

[{∫ t+h
t

,ε�s��Ẋε�s��Vs ds
]2}

≤ C
√
εh3/2�

(c) if f ∈ C2
b�R�, then

sup
0≤t≤1−h

E

{[∫ t+h
t

f�Xε�s�� − f�Xs���Ẋε�s��ds
]2}

≤ C
√
εh3/2�

Proof. (a) Apply Lemma 2.
(b) Observe that

�37�
√
εẊε�s� =

∫ 1

0
ψ�−u�as+εu duWε� s

u +√ε
∫
ψ�−u�bs+εu du

= as
∫ 1

0
ψ�−u�duWε� s

u +OLp�ε� ∀ p > 0�
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�38�
,ε�s�√
ε
=

∫ 1

0
ψ�−u�

∫ u
0
as+εv dvW

ε� s
v du+√ε

∫ 1

0
ψ�−u�

∫ u
0
bs+εv dv du

= as
∫ 1

0
ψ�−u�Wε�s

u du+OLp�ε� ∀ p > 0�

Set Hε�s� r� = E�,ε�s��Ẋε�s��Vs,ε�r��Ẋε�r��Vr��
Compute the second moment as follows:

E

{[∫ t+h
t

,ε�s��Ẋε�s��Vs ds
]2}

=
∫ t+h
t

∫ t+h
t

E�,ε�s��Ẋε�s��Vs,ε�r��Ẋε�r��Vr
}
drds

=
∫
�t≤r� s≤t+h� �s−r�<ε�

Hε�s� r�drds+ 2
∫ t+h
t

∫ t+h
s+ε

Hε�s� r�drds

= �I� + 2�II��
Taking into account that the integrand Hε is bounded, it is trivial to observe
that

�39� �I� ≤ Chmin�ε� h� ≤ C
√
εh3/2�

For the second term, As�r = a2
sVsa

2
rVr� and using (37), we deduce

�40�
Hε�s� r� = E

{
As�r

∣∣∣∣
∫ 1

0
ψ�−u�duWε� s

u

∣∣∣∣
∫ 1

0
ψ�−u�Wε�s

u du

×
∣∣∣∣
∫ 1

0
ψ�−u�duWε�r

u

∣∣∣∣
∫ 1

0
ψ�−u�Wε�r

u du

}
+O(√

ε
)
�

Since s+ε ≤ r, conditioning toFr and using the independence of the Brownian
increments, we get

Hε�s� r� = P�s� r� +O�
√
ε�

with

P�s� r� = E
{
As�r

∣∣∣∣
∫ 1

0
ψ�−u�duWε� s

u

∣∣∣∣
∫ 1

0
ψ�−u�Wε�s

u du

}
(41)

×E
{∣∣∣∣
∫ 1

0
ψ�−u�duWε�r

u

∣∣∣∣
∫ 1

0
ψ�−u�Wε�r

u du

}
�

Since �∫ 1
0 ψ�−u�duWε�r

u �
∫ 1

0 ψ�−u�Wε�r
u du� is a centered Gaussian vector, it

follows by symmetry that

�42� E

{∣∣∣∣
∫ 1

0
ψ�−u�duWε�r

u

∣∣∣∣
∫ 1

0
ψ�−u�Wε�r

u du

}
= 0�

By (41) and (42) we deduce

�43� �II� ≤ C
√
εh2 ≤ C

√
εh3/2�

This concludes the proof of part (b).
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(c) Use Taylor’s formula, apply (b) to the linear term and (a) to the quadratic
one. ✷

Lemma 4. Let �K�t� s�� t� s ∈ �0�1	� be a real-valued random process such
that

�a� sup
t� s∈�0�1	

E��K�t� s��p� <∞ ∀ p > 0�

�b�
∫ 1

0
K�t� s�ds is predictable,

�c�
∫ 1

0
K�t� s�dWt is measurable.

Then ∫ τ
0

∫ 1

0
K�t� s�dsdWt =

∫ 1

0

∫ τ
0
K�t� s�dWt ds�

The proof is an analogue to Lemma 1.4.1 of Ikeda and Watanabe (1981).
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