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WINDINGS OF BROWNIAN MOTION AND
RANDOM WALKS IN THE PLANE

BY ZHAN SHI

Universite Paris VI´
We are interested in the almost sure asymptotic behavior of the

windings of planar Brownian motion. Both the usual lim sup and Chung’s
lim inf versions of the law of the iterated logarithm are presented for the
so-called ‘‘big’’ and ‘‘small’’ winding angles. Our method is based on some
very accurate estimates of the winding clock. The corresponding problem
for a spherically symmetric random walk in �2 is also studied. A strong
approximation using the Brownian big winding process is established.
Similar results are obtained.

� Ž . Ž . Ž . 41. Introduction. Let Z t � X t � iY t ; t � 0 be a planar Brownian
Ž .motion two-dimensional Wiener process , starting at z � 0. Since it never0

Ž .hits any given point at positive time almost surely , there exists a continuous
Ž .determination of � t , the total angle wound by the Brownian motion around

� Ž . �the origin up to time t with, say, � 0 � 0 . To be precise, � records the angle
and keeps track of the number of times the Brownian path has wound around
the origin, counting clockwise loops �2� and counterclockwise loops 2� .

� �Spitzer 34 showed the weak convergence of � :

2 Ž .d
1.1 � t � CC as t � �,Ž . Ž .

log t

with CC denoting a symmetric Cauchy variable of parameter 1. Insightful
Ž .explanations of convergence 1.1 and deep results have been presented on

Žthe distributional asymptotics of winding numbers of Brownian motion or
. � � � � � � � � � � � �even stable processes . See, for example, 6 , 12, 13 , 22, 23 , 25 � 28 , 30

� � � �and 35 . We refer to 36 for a detailed survey. Apart from its own interest,
the winding problem also appears naturally in several branches of mathemat-

Ž . � �ical physics for example, in the study of polymer entanglements . See 8 for
references.

There have been several recent contributions on the almost sure asymp-
totic behavior of the planar Brownian windings. Let us mention the papers by

� � � � � � � �Bertoin and Werner 4, 5 and Shi 32 . See also 18 and 16 for Brownian
� �motion valued in a compact space. Recall the upper functions of � due to 4

� �and 5 .
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Ž � �.THEOREM 1.1 Bertoin and Werner 4, 5 . For any nondecreasing function
f � 0,

� tŽ .
lim sup � 0 or �, a.s.,

f t log tŽ .t��

accordingly as
� dtH tf t log tŽ .

converges or diverges.

In words, Bertoin and Werner’s Theorem 1.1 tells us that asymptoti-
Ž . Ž .cally for big t ’s, � t exceeds log t log log t infinitely often, but stays below

Ž .Ž .1��log t log log t for any � � 0.
The lower functions of � are also known.

� � Ž .THEOREM 1.2 32 . Let g � 0 be a nonincreasing function such that g t
log t is nondecreasing, then

� dt �0, � �,� sup � u � g t log t i .o. � � exp �Ž . Ž . H ½½ ž / � �,1 tg t log t 4 g tŽ . Ž .0�u�t

where ‘‘i.o.’’ stands for ‘‘infinitely often as t tends to �.’’ In particular,
log log log t �

lim inf sup � u � a.s.Ž .
log t 4t�� 0�u�t

In order to get some deeper understanding of the asymptotic behavior of � ,
� � Ž .Messulam and Yor 26 introduced the so-called ‘‘big windings’’ � t and�
Ž .‘‘small windings’’ � t :�

t t
1.2 � t � � d� u , � t � � d� u .Ž . Ž . Ž . Ž . Ž .H H� � � Z � �14 � � � Z � �14u u

0 0

Ž .Joint convergence in distribution for big and small windings was ob-
� �tained by Messulam and Yor 26 , and further exploited by Pitman and Yor

� � � �27, 28 . See also 8 . One of the reasons why � and � are interesting is� �
that the windings for a very large class of two-dimensional random walks
behave rather more like � than � . See the discussion in Section 5. Through-�
out the paper, we write

1.3 � t � a� t � b� t , a, b � �2 .Ž . Ž . Ž . Ž . Ž .� �

In Section 3, we give an integral test for �.

THEOREM 1.3. For any a � � and b � 0, Theorem 1.1 remains true with
Ž . Ž . Ž . Ž .� t replaced by either �� t , or sup � u , or sup � u �0 � u� t 0 � u� t

Ž .inf � u .0 � u� t

Taking a � b � 1 in Theorem 1.3, Bertoin and Werner’s Theorem 1.1 is
obtained as a special case. The situation is, however, considerably different
when b � 0.
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THEOREM 1.4. With probability 1,

� t sup � u 1Ž . Ž .� 0 � u� t �
1.4 lim sup � lim sup � .Ž .

log t log log log t log t log log log t �t�� t��

In Section 4, we are interested in the lim inf behavior of the big and small
windings. Our main result for � is the following Chung-type law of the

Ž .iterated logarithm LIL .

Ž . 2THEOREM 1.5. For any a, b � � ,

� �log log log t � a
1.5 lim inf sup � u � a.s.,Ž . Ž .

log t 4t�� 0�u�t

� �log log log t � a
1.6 lim inf sup � u � inf � u � a.s.Ž . Ž . Ž .

log t 2t�� 0�u�t0�u�t

Ž .It is immediately noticeable that when a � 0, the r.h.s. terms in 1.5 and
Ž .1.6 vanish. Indeed, this special case needs to be treated separately.

Ž .THEOREM 1.6. For any positive function f such that both f t and
Ž . Ž .log t 	f t are nondecreasing,

�f t dtŽ . 0, � �,lim inf sup � u � a.s. �Ž . H� ½ ½� � �.log t tf t log tt�� Ž .0�u�t

COROLLARY 1.7. We have, with probability 1,
�log log tŽ . 0, if � � 1,

lim inf sup � u �Ž .� ½ �, otherwise.log tt�� 0�u�t

In particular,
1	log log log t1 1

lim inf sup � u � a.s.Ž .�ž /log t et�� 0�u�t

REMARK. It is seen from the above theorems that, asymptotically, big
windings contribute nothing to the lim sup behavior of � , whereas in its
lim inf behavior, small windings have no effect at all. This somewhat surpris-
ing fact will be explained in Section 4 when the upper and lower tails of ��
and � are estimated.�

The rest of this paper is organized as follows. In Section 2, we present
some preliminaries on the skew-product representation of planar Brownian
motion, and, to illustrate our method which is based on some accurate
estimates of the Brownian winding clock, we provide a simple proof of Bertoin
and Werner’s Theorem 1.1. In Section 3, Theorems 1.3 and 1.4 are proved in
the same spirit. The lim inf behavior of the windings is studied in Section 4,
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Ž .where we establish Chung-type LIL’s Theorems 1.5 and 1.6 . In Section 5, we
are interested in the case of random walk and obtain a strong invariance

Ž .principle the forthcoming Theorem 5.1 for the winding angle of a spherically
symmetric random walk in �2. It will be shown that the latter behaves
asymptotically like a Brownian big winding process. Lim sup and lim inf

Ž .versions of the LIL Theorem 5.3 are obtained.
Ž .Throughout the paper we write indifferently � t or � for any stochastict
Ž .process � . The symbol N stands for a Gaussian NN 0, 1 random variable, and

� Ž . 4W t ; t � 0 for a standard linear Brownian motion, which are independent
of each other, and independent of all other variables and processes.

2. Preliminaries and a simple proof of Theorem 1.1. Our approach
is based on the well-known skew-product decomposition of planar Brownian
motion, together with some accurate estimates of the random winding clock.
To give an illustration, we provide a new simple proof of Theorem 1.1 due to
Bertoin and Werner. The elegant proofs of Theorem 1.1 presented in Bertoin

� �and Werner 4, 5 , relying either on the exact distribution of Brownian
windings or on the stationarity of Ornstein�Uhlenbeck processes, are unfor-
tunately limited to the winding angle � . On the other hand, ours can be easily
applied to � and � as shown in Sections 3 and 4.� �

A basic heuristic idea in the study of Brownian windings is that, asymptot-
ically, � behaves like a symmetric Cauchy process. This is remarked first in
� � � � � � � � � �35 and further exploited in 12 , 13 , 25 � 28 . Although there is no weak
convergence in the Skorohod topology of the Brownian winding to a symmet-

Ž .ric Cauchy process since the former is continuous in time , it will be seen
later on that one can somehow manage to ‘‘neglect’’ the difference between
these two processes.

Recall first of all the following well-known results on linear Brownian
motion W:

� sup W u � x , inf W u � �yŽ . Ž .
0�u�10�u�1

2 2�4 1 2k � 1 � 2k � 1 � xŽ . Ž .
� exp � sinÝ 2ž /� 2k � 1 x � y2 x � yŽ .k�0

2.1Ž .

	 x � 0, y � 0,
22 �

exp � � � sup W u � xŽ .2ž /� 8 x 0�u�1
2.2Ž .

4 � 2

� exp � 	 x � 0.2ž /� 8 x

Ž . � Ž . Ž .�The joint distribution 2.1 for sup W u , inf W u was com-0 � u�1 0 � u�1
� � Ž .puted in 15 , page 342. By taking y � x, it implies immediately 2.2 , which

� �was obtained previously by Chung 7 , page 206. Note that the lower bound
� � Ž . � �here for � sup W u � x is not optimal, but sufficient for our needs.0 � u�1
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Let us keep the notation previously introduced. Without loss of generality,
we assume z � 1. Let R be the radial part of the Brownian motion, that is,0
R2 � X 2 � Y 2. The well-known skew-product representation for a two-

� �dimensional Brownian motion goes back at least to Ito and McKean 20 ,ˆ
page 270:
2.3 log R t � 
 C , � t � � C ,Ž . Ž . Ž . Ž . Ž .t t

Ž .where 
, � is a planar Brownian motion starting from 0, and
udut 2 
 Žv .2.4 C � � inf u � 0: e dv � t .Ž . H Ht 2 ½ 5R0 0u

Ž .Recall that R � 1 according to our assumption . Note that the above0
representation actually confirms that the Brownian motion � and the log-clock

Ž .C are independent. Now the big and small windings introduced in 1.2 may
be written as stochastic integrals:

C Ct t2.5 � t � � d� u , � t � � d� u .Ž . Ž . Ž . Ž . Ž .H H� � 
 � 04 � � 
 � 04u u
0 0

Define the first hitting time processes of 
 and R respectively:
� 42.6 � � inf u � 0: 
 � t ,Ž . t u

� 42.7 T � inf u � 0: R � t .Ž . t u

The following estimates of the winding clock C play an important role in ourˆ
proof of the theorems.

LEMMA 2.1. For all positive numbers s and t,
� �2.8 � C � � � 2 exp �t exp �2 s ,Ž . Ž .Ž .t s

� �2.9 � C � � � 4 exp �exp 2 s 	16t , s � 1.Ž . Ž .Ž .t s

Ž .PROOF. From 2.3 it is easily seen that
s� �2.10 � C � � � � sup R u � e .Ž . Ž .t s

0�u�t

ˆLet W be an independent copy of W. Since R has the same distribution as
ˆ 2 2 1	2ŽŽ . .1 � W � W , the above probability is less than or equal to

se
s� �� sup W � e � � sup W u � ,Ž .u 't0�u�t 0�u�1

Ž . Ž . 2which implies 2.8 , using 2.2 and the inequalities 4	� � 2 and � 	8 � 1.
Ž .Finally, by 2.10 ,

1	2s 2 2 sˆ� �� C � � � � sup R u � e � � sup W � W � e � 1 .Ž . Ž .t s u u
0�u�t 0�u�t

ˆSince W is a copy of W, this is less than or equal to
s se � 1 e � 1

2� sup W u � � 4� sup W u � ,Ž . Ž .' '2 t 2 t0�u�1 0�u�1
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Ž .d
s sŽ . � �by symmetry. Noting that sup W u � N , and that e � 1 � e 	2 for0 � u�1

Ž .any s � 1, 2.9 follows from the above inequality and from the well-known
� � � � Ž 2 .estimation of the Gaussian tail � N � x � exp �x 	2 . �

REMARK. Obviously, more precision could have been given on estimates
Ž . Ž .2.8 and 2.9 , but the present form of Lemma 2.1 is sufficient for our needs.
It is worth noting that from Lemma 2.1 one can easily deduce characteriza-
tions of the upper and lower functions of the winding clock C previously

� � � �obtained by Bertoin and Werner 4, 5 and Gruet and Shi 19 , respectively.

PROOF OF THEOREM 1.1. We begin with the convergent part. Suppose that
� Ž .the integral H dt	tf t log t is finite. From the skew-product representation

Ž .2.3 ,

� sup � � x � 2� � C � x � 2� C � 1 � x .Ž . Ž .'u t t
0�u�t

Ž .Using 2.9 , it is easily seen that this is less than or equal to

� �2� C � � � 2� � � 1 � xŽ .'t s s

2 se x
� �� 8 exp � � 2� CC � for any s � 1,ž /16t s

where CC stands for a symmetric Cauchy variable of parameter 1. By noting
1� � � � Ž . Ž .that � CC �  � 2	 	 � 0 , and taking s � log 16t log x , we get that,2

when t log x is large,

8 2 log 16t log xŽ .
� sup � � x � � .u x x0�u�t

Ž k . Ž .Let t � exp e and let x � f t log t . It follows that when k is sufficientlyk k k
large,

8 � 3 log t 4ek�1
� sup � � f t log t � � .Ž .u k k f t log t f tŽ . Ž .0�u�t k k kk�1

Since
�1 dt dt dtt tk k� � � � �,Ý Ý ÝH H Hf t tf t log t tf t log t tf t log tŽ . Ž . Ž . Ž .t tk kk�1 k�1k k k

it follows from the Borel�Cantelli lemma that

1
lim sup sup � � 1 a.s.uf t log tŽ .k�� 0�u�tk k k�1

� � Ž .For any t � t , t , we have sup � � sup � and f t log t �k k�1 0 � u� t u 0 � u� t uk� 1
Ž .f t log t . Thusk k

1
lim sup sup � � 1 a.s.uf t log tŽ .t�� 0�u�t
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Since f can be replaced by any multiple of f , the convergent part of Theorem
� Ž .1.1 is proved. Now suppose H dt	tf t log t � �. Let us recall the definitions

Ž . Ž . Ž . Ž .2.6 and 2.7 of � and T. It is easily seen from 2.3 that C T � � , thust log t
� Ž Ž t .. 4� T e ; t � 0 is a symmetric Cauchy process. From the general theory of

Ž � � .stable processes see, e.g., 17 , Theorem 11.2 we get that for any � � 0,

� T etŽ .Ž .
lim sup � � a.s.,Ž2�� .ttf eŽ .t��

that is,

� TŽ .t
lim sup � � a.s.2��f t log tŽ .t��

Ž � � .By the usual LIL see, e.g., 29 , page 53 , almost surely for all sufficiently
large t, T � t 2��. Thereforet

� TŽ .t
lim sup � � a.s.,

f T log TŽ .t�� t t

as desired. �

3. Upper limits. As in the last section, we focus on the lim sup behavior
of the windings. Define

t t
3.1 G t � � du, G t � � du,Ž . Ž . Ž .H H� � 
 � 04 � � 
 � 04u u

0 0

the total occupation times of 
 in, respectively, the positive and negative
parts of � before time t. The following is a collection of some identities and

Ž . Ž Ž . Ž .. �inequalities concerning the joint distribution of G � , G � � being� 1 � 1
Ž .�the first hitting time process of 
 as introduced in 2.6 .

LEMMA 3.1. For all positive numbers � and � ,

�1'�' '3.2 � exp ��G � � � G � � cosh 2� � sinh 2� ;Ž . Ž . Ž .� 1 � 1 ž /'�

'� exp ��G � � 1	cosh 2� ,Ž .� 1
3.3Ž . '� exp �� G � � 1	 1 � 2� ;Ž . Ž .� 1

�2

3.4 G � � sup W u .Ž . Ž . Ž .� 1 Žd . ž /
0�u�1

Ž . � �PROOF. The joint Laplace transform 3.2 can be found in 27 , page 744,
Ž . 'which yields trivially 3.3 , using analytic continuation. Since 1	cosh 2� is

� � Ž . � 4also the Laplace transform of H � inf u: W u � 1 , the first hitting time of1
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� �1 by W , we have, for any x � 0,

� �� G � � x � � H � x � � sup W u � 1Ž . Ž .� 1 1
0�u�x

1	2� � x sup W u � 1 ,Ž .
0�u�1

Ž .by the scaling property. The above identity readily yields 3.4 �

In order to prove Theorem 1.4, we need a preliminary result.

LEMMA 3.2. Let Y and W be two independent linear Brownian motions
� � Ž . � 4starting from 0, and let H � inf u � 0: W u � t be the first hitting timet

� �process of W , then
Y H 2Ž .t

lim sup � a.s.
t log log t �t��

REMARK. Actually an equality holds in the above relation, but the in-
equality will be sufficient for our needs.

PROOF OF LEMMA 3.2. For any x � 0 and s � t,

� Y H � Y H � xŽ . Ž .t s

1	2� � Y 1 H � H � xŽ . Ž .t s

1 x
� � H � H �t s 22 N

1
� � sup W � t � s, inf W � � t � s ,Ž .u u

2 22 2 2 0�u�x 	N0�u�x 	N

Ž .using the Markov property. By 2.1 , the above expression is
2 2 2�2 1 2k � 1 � x 2k � 1 � t � sŽ . Ž . Ž .

� � exp � sinÝ 2 2� 2k � 1 2 t8t Nk�0

�2 1 2k � 1 � x 2k � 1 � t � sŽ . Ž . Ž .
� exp � sin ,Ý

� 2k � 1 2 t 2 tk�0

'�2 � 2 Ž . � � � �as � exp �N � e for  � 0. Using the trivial relation sin u � u , we
get that

� Y H � Y H � xŽ . Ž .t s

�2 � x t � s � t � s 2k � 1 � xŽ . Ž .
� exp � sin � exp �Ýž /� 2 t 2 t t 2 tk�1

2 � x t � s � exp �3� x	2 tŽ . Ž .
� exp � sin � .ž /� 2 t 2 t 1 � exp �� x	2 tŽ .
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n Ž .Let t � n and x � x � 2	� t log log t , and we obtainn n n n

�32 � t log tŽ .n�1 n
� Y H � Y H � x � sin 1 � �Ž . Ž .t t n �2n n�1 ž /� log t 2 t 1 � log tŽ .n n n

1 1
� � ,22� n log n n log n n log n � 1Ž .

� Ž .4which is the general term of a divergent series. Since the process Y Ht t � 0
has independent increments, an application of the Borel�Cantelli lemma
yields

Y H � Y H 2Ž . Ž .t tn n�13.5 lim sup � a.s.Ž .
t log log t �n�� n n

Ž � � .On the other hand, it follows from Chung’s LIL see, e.g., 29 , page 53 that
lim sup H 	t2 log log t � 8	� 2, almost surely. Thus, by the usual LILt �� t
Ž� � .29 , page 53 , we have

Y H 4 t log log tŽ .t n�1 n�1n� 1lim sup � lim sup � 0,
t log log t � t log log tn�� n��n n n n

Ž .which, by means of 3.5 , completes the proof of Lemma 3.2. �

Ž .PROOF OF THEOREM 1.4. Recall the definition 2.5 of the big winding
Ž � �angle � . It follows from Knight’s theorem see for example 31 , Theorem�

.IV.34.16 that there exists a real Brownian motion � independent of 
, such
that

3.6 � t � � G C .Ž . Ž . Ž .Ž .� � t

� Ž . 4 � Ž . 4Let � � inf s � 0: G s � t . Then it is well-known that 
 � ; t � 0 is at � t
Ž � �reflecting Brownian motion see 27 , page 746 for an insightful explanation

.in terms of Brownian excursions . Therefore

� T � � G C T � � G � � � inf u � 0: 
 � � log t .� 4Ž . Ž . Ž . Ž .Ž .Ž . Ž .Ž .� t � t � log t u

By Lemma 3.2, we have

� T 2Ž .� t
lim sup � a.s.

log t log log log t �t��

On the other hand, the usual and Chung’s LIL’s confirm that
lim log T 	2 log t � 1 almost surely. Thus,t �� t

� t 1Ž .�
lim sup � a.s.

log t log log log t �t��
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Ž .It remains to prove the upper bound in Theorem 1.4. Let us note by 3.6 that
for any x � 0 and s � 1,

2� sup � u � x � 2� N G C � xŽ . Ž .� � t
0�u�t

2� �� 2� C � � � 2� N G � � xŽ .t s � s

e2 s 8 � 2 x 2

� 8 exp � � � exp � ,2 2ž / ž /16t � 8s N
'�2 � 2 Ž . Ž . Ž . Ž .using 2.9 , 3.4 and 2.2 . Recalling that � exp �N � e for any

1 1 1Ž . Ž . Ž . � 0, and taking s � log xt � log log xt � log 16� , we obtain that,2 2 2
Ž .for xt � exp 16� ,

� x 8 � x
� sup � u � x � 8 exp � � exp �Ž .� ž /ž /log xt � 2 sŽ .0�u�t

� x
� 11 exp � ,ž /log xtŽ .

Ž n.since 8 � 8	� � 11. Now choose a rational number p � 1. Let t � exp pn
ŽŽ . .and x � x � 1 � � 	� log t log log log t . When n is sufficiently large, wen n n

Ž . Ž . Ž .have 1 � � 	log xt � 1 � �	2 	log t , which yieldsn n

� 11
� sup � u � x � 11 exp � 1 � log log log t � .Ž .� n n 1��	2ž /2 n log pŽ .0�u�tn

An application of the Borel�Cantelli lemma then gives

sup � u 1Ž .0 � u� t �nlim sup � a.s.
log t log log log t �n�� n n

The upper bound in Theorem 1.4 is readily obtained using a monotonicity
argument. �

PROOF OF THEOREM 1.3. Assume that
1	23.7 f t � log log t .Ž . Ž . Ž .

Ž . Ž .In this case, Theorem 1.4 tells us that lim sup � t 	f t log t � 0 almostt �� �
surely, and Theorem 1.3 immediately follows from Theorem 1.1 using the

Ž . Ž . Ž . Ž . Ž . Ž .trivial identity � t � b� t � a � b � t . Let � t be either �� t , or�
Ž . Ž . Ž .sup � u , or sup � u � inf � u . Let f � 0 be an arbitrary0 � u� t 0 � u� t 0 � u� t

� Ž .nondecreasing function. If H dt	tf t log t converges, then by a monotonicity
Ž � � . Ž .argument it is easily seen see, e.g., 33 , page 865 that 3.7 holds for

sufficiently large t, which, by what we have just shown, implies that
Ž . Ž .lim sup � t 	tf t log t � 0 almost surely. It remains to treat the caset ��

� Ž Ž . .when H dt	 tf t log t � �. We have to prove that

� tŽ .
3.8 lim sup � �.Ž .

tf t log tŽ .t��
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˜ 1	2Ž . Ž Ž . Ž . .Let f t � max f t , log log t , which is nondecreasing. We distinguish
Ž .two possible cases. First, if there is a sequence t increasing to infinity suchk

1	2 ˜ 1	2Ž . Ž . Ž . Ž .that f t � log log t , then f t � log log t for any k � 1. Thusk k k k

dt log log tt kk 1	2� � log log t 	k � 1,Ž .H k˜ ˜tf t log t f tŽ . Ž .k

� ˜ ˜Ž Ž . . Ž .which in turn yields H dt	 tf t log t � �. Since f satisfies 3.7 in the place
˜Ž . Ž Ž . .of f , by what we have shown, we obtain that lim sup � t 	 tf t log t � �,t ��

Ž .which trivially implies 3.8 . The other possible case is that there is no such
Ž . Ž .t . In this situation, 3.7 holds for sufficiently large t, which implies againk

Ž .the desired conclusion 3.8 . The proof of Theorem 1.3 is therefore complete.
�

4. Chung-type LIL’s. Let us inherit the notation introduced previously.

Ž . t 2Ž .LEMMA 4.1. Let f be a square-integrable function with F t � H f u du,0
t Ž .and let M � H f u d� , where � is a linear Brownian motion. Then for anyt 0 u

0 � s � t, 0 � x � y and � � 0,

2 22 � F t 4 � F tŽ . Ž .
� �4.1 exp � � � sup M � x � exp � ;Ž . u2 2� �8 x 8 x0�u�t

� � � �� sup M � x , sup M � yu u
0�u�s 0�u�t

2 216 � F s � F t � F sŽ . Ž . Ž .Ž .
� exp � � ;2 2 2� 8 x 8 y

4.2Ž .

2F t � F tŽ . Ž .
4.3 � sup M � inf M � x � K exp � ,Ž . u u 2 2x 2 x0�u�t0�u�t

where K � 0 is a universal constant.

PROOF. Since M is a continuous martingale, by the Dubins�Schwarz
Ž � � . Ž Ž ..theorem see, e.g., 31 , Theorem IV.34.1 , we can write M � W F t for allt

Ž .t � 0, with W a linear Brownian motion. Therefore 4.1 immediately follows
Ž . Ž .from 2.2 using the Brownian scaling property. A proof of inequality 4.2 can

� � Ž .be found in 32 , based on 2.2 and a general property of Gaussian measures
Ž Ž .. Ž .for shifted balls. By writing M � W F t again, 4.3 is reduced to thet

following estimate:

2K �
� sup W u � inf W u � x � exp � .Ž . Ž . 2 2ž /x 2 x0�u�10�u�1

� �This was implicitly shown by Csaki 10 , replying on the exact density´
� �function of the Brownian range previously evaluated by Feller 14 . �
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PROOF OF THEOREM 1.5. The case a � 0 being treated in Theorem 1.6, we
Ž . Ž .suppose a � 0. Using the trivial relation sup � u � inf � u �0 � u� t 0 � u� t

� Ž . � Ž .2 sup � u , it is easily seen that only the upper bound in 1.5 and the0 � u� t
Ž .lower bound in 1.6 need proving. We begin with the latter. Let � � 0. Fix a
Ž .sufficiently small rational number � � 0 such that

�1	24.4 1 � � 1 � � � 1 � .Ž . Ž . Ž .
2

Ž .It follows from 4.3 that
21 � � � F tŽ . Ž .

� sup M � inf M � x � K exp � ,u u � 2ž /2 x0�u�t0�u�t

where K � 0 denotes a finite constant depending only on � . Let us estimate�

� Ž . Ž . �the lower tail q � � sup � u � inf � u � x . By the above in-0 � u� t 0 � u� t
� Ž . 2 2 Ž . 2 �equality, we have q � K � exp � 1 � � � a G C 	2 x , dropping the neg-� � t

Ž . Ž . Ž .ative part �G C in the exponential. Now using 2.8 and 3.3 , we have� t

2 2 2� �q � K � C � � � K � exp � 1 � � � a G � 	2 xŽ . Ž .� t s � � s

1	2�2 s � �� 2 K exp �te � 2 K exp � 1 � � � a s	x ,Ž . Ž .� �

1for any s � 0. Taking s � log t � log log t, and we obtain2

2q � 2 K exp � log tŽ .Ž .�

1	2 � � � �1 � � � a � aŽ . 2� 2 K exp � log t � log log t .Ž .� 2 x x

Ž n. � � Ž .Let t � exp r with r � 1, and let x � � a log t 	2 1 � � log log log t .n n n
Ž .Then for any sufficiently large n, by 4.4 ,

� �� a log tn
� sup � u � inf � u �Ž . Ž .

2 log log log t0�u�tn0�u�t nn

� 2 K exp �r 2 nŽ .�

1	2 �1	2� 2 K exp � 1 � � 1 � � log n log r � 3 log tŽ . Ž . Ž . Ž .� n

3K�2 n� 2 K exp �r � ,Ž .� 1��	2n log rŽ .
which is summable for n. Using the Borel�Cantelli lemma gives

� �log log log t � an
lim inf sup � u � inf � u � a.s,Ž . Ž .

log t 2n�� 0�u�tn0�u�tn n

Ž .which readily yields the lower bound in 1.6 using a monotonicity argument.
Ž . Ž .It remains to verify the upper bound in 1.5 . By 4.1 , we have

2 2 2 22 � a G C � b G CŽ . Ž .� t � t
� sup � u � x � � exp � � .Ž . 2 2� 8 x 8 x0�u�t
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Ž . Ž .Using 3.2 and 2.9 , this is greater than or equal to
2 2 2 22 � a G � � b G � 2Ž . Ž .� s � s � �� exp � � � � C � �t s2 2� �8 x 8 x

� � � � 2 s2 a � a s 8 e
� exp � � exp � .ž / ž /� � � �� a � b 2 x � 16tŽ .

1� �Now, choosing x � � a log t	4 log log log t and s � log t � log log t, we2

obtain for all large t that

� sup � u � xŽ .
0�u�t

2� �2 a 2 8 log tŽ .
� exp �log log log t � � exp �1	2 ž /� � � �� a � b � 16Ž . log tŽ .

� �a
� .

� � � �� a � b log log tŽ .
Ž n. � � Ž . � 4 � �Let t � exp e and A � sup � u � x with x � � a log t 	n n 0 � u� t n n nn

4 log log log t , then for large n,n

� �a
4.5 � A � .Ž . Ž .n � � � �� a � b nŽ .

Ž .On the other hand, it follows from 4.2 that for i � j,

2 22 2 � a G C � G CŽ .� a G C Ž .16 Ž . ž /� t � t� t j ii
� A A � � exp � � ,Ž .i j 2 2 2� 8 x 8 xi j

�2 Ž .which, as x � x , is smaller than 16� I � II , withi j

I � � C � � or C � � ;t s t si i j j

2 22 2 � a G � � G �Ž .Ž .� a G �Ž . Ž .� s � s� s j iiII � � exp � � .2 28 x 8 xi j

Ž . Ž �2 si.By 2.8 , the first term ‘‘I’’ is bounded above by 2 exp �t e �i
Ž �2 sj. � � � �Ž .2 exp �t e . Write r � � a s 	2 x and r � � a s � s 	2 x . By condi-j 1 i i 2 j i j

� 4tioning on 
 ; u � � and using the strong Markov property of Brownianu si

motion,
2 2 2 2 2

�� s a G � � aŽ . s �si � 1 j iII � � exp � � exp � � duH � 
 ��s 42 2 u i8 x 8 x 0i j

r 2 r 2
1 2� � exp � G � � exp � G �Ž . Ž .� 1 � 1ž / ž /2 2

� 4 exp �r � r ,Ž .1 2
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1Ž . Ž .using 3.3 . Pick s � log t � log log t k � i, j and we obtain that, fork k k2
Ž .large i and j say, for j � i � n ,0

32 22
� A A � exp � log t � exp � log tŽ .Ž . Ž .Ž . ž /i j i j2�

64 2
� exp �log log log t �i2 1	2� log tŽ .i

log t 	t 2Ž .j i� log log log t �j 1	2log t log tj Ž .j
65

� exp �i � exp �j � exp exp i � j log j .Ž . Ž . Ž .Ž .2� ij

� 4 �Let E � n � i � j � n: j � i � 2 log log n and E � n � i � j � n: j �1 0 2 0
4 Ž . n Ž . Ž .i � 2 log log n . Then Ý � A A � 2 log log nÝ � A . If i, j � E ,Ž i, j.� E i j i�1 i 21

we have

65 66
� A A � 2 exp �i � exp 1	log n � 2 exp �i � ,Ž . Ž . Ž .Ž .i j 2 2� ij � ij

which implies

2� n33 1
�i� A A � 2 ie � .Ž .Ý Ý Ýi j 2 ž /i�Ž . i�1 i�1i , j �E2

Ž .By 4.5 , we have

22n � � � �66 a � bŽ .
lim inf � A A � A � .Ž .Ž .Ý Ý Ýi j i 2ž / an�� 1�i , j�n i�1

� �According to Kochen and Stone’s version 21 of the Borel�Cantelli lemma,
Ž .this inequality together with the divergence of Ý� A impliesi

2� �log log log t � a a
� lim inf sup � u � � ,Ž . 2log t 4t�� � � � �66 a � bŽ .0�u�t

Ž .which yields the upper bound in 1.5 using an argument of the zero�one law.
�

Ž k .PROOF OF THEOREM 1.6. Let t � exp e . First of all, notice that thek
� Ž . Ž .series H dt	tf t log t and Ý 1	f t converge or diverge simultaneously. Byk k

1Ž . Ž . Ž .using 2.8 with s � log t and 3.3 , it is immediately seen that4

log t 8 32'� sup � u � � exp � t � .Ž . Ž .� 2f t � � f tŽ . Ž .0�u�t
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This implies the second part of Theorem 1.6 by an application of the
� � Ž . � 4Borel�Cantelli lemma. Now, let B � sup � u � x and x �n 0 � u� t � n nn

Ž .log t 	f t . By making use of an argument similar to that adopted to proven n
Ž . Ž . 2 Ž . �1 Ž Ž . .4.5 , we get that � B � 2	� f t � 8� exp �exp 2n 	16 , whereas byn n
Ž . Ž .2.8 and 3.3 we obtain that for any s and s ,i j

32
� B B � exp �t exp �2 s � exp �t exp �2 sŽ .Ž .Ž . Ž .Ž .i j i i j j2�

16 s 1i� � ,2 ž /s r� r j 43

1with r � � s 	2 x and r � � s 	2 x . By choosing s � log t � log log t3 i i 4 j j k k k2
Ž .k � i or j , we can manage to arrive at the estimate

2n
257lim inf � B , B � B � ,Ž .Ž .Ý Ý Ýi j i 4ž /n�� 1�i , j�n i�1

which yields the first part of Theorem 1.6 by means of Kochen and Stone’s
� �Borel�Cantelli lemma 21 . The details are omitted as they are quite similar

to that in the proof of Theorem 1.5. �

5. Random walks. Let X , X , . . . be a sequence of independent and1 2
2 � 4identically distributed � -valued random variables, and let S � S , n � 1n

n Ž .be the random walk defined by S � Ý X . We consider � n the winding ofn 1 k
S at time n, that is, the total angle would by S around the origin up to time

Ž . n Ž . Ž . Ž .n. To be precise, � n � Ý � k , where � k � �� , � is the uniquek�1
i� Žk . � � � �solution to S e 	 S � S 	 S if S , S and the origin are notk�1 k�1 k k k�1 k

Ž . � � � �colinear, and � k � 0 otherwise. We refer to 1 � 3 for references on the
� � Žweak convergence of �. In particular, 1 shows under suitable assumptions

.of regularity that

2 Ž .d
� n � WW as n � �,Ž . �log n

Žwhere WW is a standard hyperbolic secant variable i.e., with density function�
1 1Ž . . � � � �sech � x for x � � . Note that it was proved in 26 and 27 that2 2

Ž . Žd .2� t 	log t � WW , with � standing for the Brownian big winding pro-� � �
Ž .cess defined in 2.5 . So, the above results suggest that � might behave

� �somewhat like � . This is confirmed by 2 who obtained a weak invariance�
Ž .principle using a Brownian embedding stated below .

Our main result in this section is a strong approximation theorem. As
Ž Ž ..usual, we write log x for log max 1, x .

THEOREM 5.1. Assume that the distribution of X is spherically symmetric1
such that

22� � � �� X log X � �,Ž .1 1
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Ž .then after a possible redefinition on a larger space there exists a planar
Brownian motion Z starting from 0 such that for all � � 0,

3	4 1��5.1 max � k � � k � o log n log log n a.s.Ž . Ž . Ž . Ž . Ž .Ž .�
1�k�n

Here, � is the big winding angle of Z.�

REMARK. The technical assumption of the spherical symmetry, which
� �considerably simplifies the calculation, is borrowed from 2 . Without this

condition, the Brownian embedding described in the proof can still be con-
structed, but the computation for the windings becomes simply horrible, and,
as far as I can see, does not provide any useful information.

Let us recall a classical result concerning the Csorgo�Revesz large incre-¨ ˝ ´ ´
ments of Brownian motion.

Ž � �. � Ž . 4THEOREM 5.2 Csorgo and Revesz 11 . Let W t : t � 0 be a linear¨ ˝ ´ ´
Ž .Brownian motion, and let a t � 0 be a nondecreasing function of t such thatt

0 � a � t and that t	a is nondecreasing. Thent t

sup sup W s � u � W sŽ . Ž .0 � u� a 0 � s� t�at tlim sup � 1 a.s.1	2
t�� 2 a log t	a � log log tŽ .Ž .Ž .t t

PROOF OF THEOREM 5.1. Let � be the probability measure on � defined�
ŽŽ �. � � � � � Ž . 4by � a, b � � a � X � b , for any 0 � a � b � �. Let Z t ; t � 0 be a1

planar Brownian motion starting from the origin, and let U , U , . . . be a1 2
sequence of independent nonnegative random variables, having the common

�distribution �, that are independent of Z. We define � � 0 and � � inf t �0 k
� Ž . Ž .� 4 Ž . Ž .� ; Z t � Z � � U , for k � 1, and Y � Z � � Z � . Obviouslyk�1 k�1 k n n n�1

� 4 � 4 n Ž .Y is a copy of X such that Ý Y � Z � . The Brownian embed-n n�1 n n�1 1 k n
� � Ž Ž . Ž .. P �ding was used by Belisle 2 to show that � n � � n 	log n � 0 as´ �

n � �. We will exploit the same construction to prove the stronger result
Ž . � � 2stated in 5.1 . Since � Y � � according to our assumption, we can assume1

� � 2 Ž .� Y � 2 without loss of generality. In this case �� � 1. The proof of 5.11 1
is then formulated in two steps, which together will imply the statement.

Step 1. For any � � 0,

1	2 1	2��5.2 max � k � � � � o log n log log n a.s.Ž . Ž . Ž . Ž . Ž .Ž .� k
1�k�n

Ž . Ž .PROOF. Write M � � n � � � for notational simplification. It wasn � n
� � 2shown in 2 that M is a martingale with � M � K log n for some finiten

constant K � 0. Thus by Doob’s inequality,

1 K log n
2� �� max M �  � max � M � ,k k2 2 1�k�n 1�k�n
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� Ž m.� � Ž m.�for any  � 0 and n � 1. Taking n � exp e the integer part of exp em
Ž .1	2Ž .1	2��and  � log n log log n , we getm m

K1	2 1	2��� �� max M � log n log log n � ,Ž . Ž .k m m 1�2 �m1�k�nm

which implies that

� �max M1� k � n kmlim sup � 0 a.s.,1	2 1	2��log n log log nŽ . Ž .m�� m m

since � can be arbitrarily small. A monotonicity argument then completes the
Ž .proof of 5.2 .

Step 2. For any � � 0,
3	4 1��max � � � � k � o log n log log n a.s.Ž . Ž . Ž . Ž .Ž .� k �

1�k�n

�PROOF. By Kolmogorov’s law of large numbers, � n	2 � � � 2n eventu-n
�ally � 1. Consequently, it suffices to prove that

3	4 1��5.3 max sup � s � � k � o log n log log n a.s.Ž . Ž . Ž . Ž . Ž .Ž .� �
1�k�n k	2�s�2 k

Assume that the Brownian motion Z starts from 1 since it contributes
nothing to the big windings before reaching the unit sphere. Recall from the

Ž . Ž . Ct Ž .skew-product representation 2.5 that � t � H � d� u , with � in-� 0 � 
 � 04u
Ž .dependent of 
 thus of C as well . Again by Knight’s theorem, we can write

Ž . Ž Ž ..� t � W G C , where W is a linear Brownian motion, starting from 0,� � t
Ž . t Ž .independent of 
 and C, and G t � H � du as in 3.1 . Let� 0 � 
 � 04u

1� � C 2n � � log n � log log n , eventually ,Ž .� 4Ž .1 2

1� � C n	2 � � log n � log log n , eventually ,Ž .� 4Ž .2 2

2 2��1� � G � log n � log log n � log n log log n , eventually .Ž . Ž .Ž .Ž .½ 53 � 2

Ž . � Ž . 4 Ž . Ž . Ž .Here, � t � inf u; 
 u � t as in 2.6 . We have � � � 1 since by 2.9 ,1

21 log nŽ .
� C 2n � � log n � log log n � 4 exp � ,Ž . ž / ž /2 32

Ž .which is summable for n � 1. Similarly, the identity � � � 1 follows from2
Ž . Ž � �.2.9 and the Borel�Cantelli lemma. By Hirsch’s theorem see, e.g., 9 , for

�1	2Ž .1��any � � 0, we have lim inf T log T sup 
 � � almostT �� 0 � t � T t
Ž . Ž Ž ..surely, which readily implies � � � 1 using the trivial relation G � x3 �

Ž . Ž 3 . Ž .� � x . Thus, � � � � 1. By means of Theorem 5.2, the proof of 5.3 isi�1 i
reduced to showing the following:

1 1max G � log k � log log k � G � log k � log log kŽ . Ž .Ž . Ž .� �2 2
1�k�n5.4Ž .

3	2 1�2 �� o log n log log n a.s.Ž . Ž .Ž .
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Ž . n Ž . Ž . �kLet V � G S � Ý  , with  � G � � G � � H � du.n � n 1 k k � k � k�1 � � 
 � 04k� 1 u
Ž . Ž .The  ’s are obviously independent but not identically distributed . By 2.9n
2 2'Ž .we have � exp �aV � 1	cosh 2 an for any a � 0, which implies �V � nn n

and �V 2 � 10n4	3. By analytic continuation, the generating functionn
Ž . 2 2 � � �� exp aV is finite for a � � 	8n . By 24 , Theorem 2.2.2 taking � �n n

Ž .1�� � Ž .log n , one can find � with � � � 1 such that for any � � � , there4 4 4
Ž .exists a finite number N � with

1��3	2 � �  � Kn log n ,Ž . Ž .Ý k k
1��Ž .n� log n �k�n

Ž .for any n � N � , where K � 0 is a finite constant. Since �  � �V �k k
�V � 2k � 1, we havek�1

1�� 1��3	2G � n � G � n � log n � Kn log n ,Ž . Ž . Ž .Ž . Ž .ž /� �

which yields
1��3	2G � n � G � n � 2 log log n � Kn log n .Ž . Ž . Ž .Ž . Ž .� �

Ž Ž ..Accordingly, for any n � exp 2 N � ,
1 1G � log n � log log n � G � log n � log log nŽ . Ž .Ž . Ž .� �2 2

3	2 1��� K log n log log n ,Ž . Ž .
Ž .which implies 5.4 .

Theorem 5.1 is therefore proved. �

Now we investigate the upper and lower limits of �.

THEOREM 5.3. Under the assumptions of Theorem 5.1, we have

� n max � k 1Ž . Ž .1� k � n
lim sup � lim sup � a.s.,

log n log log log n log n log log log n �n�� n��

log log log n �
lim inf max � k � a.s.,Ž .

log n 4n�� 1�k�n

log log log n �
lim inf max � k � min � k � a.s.Ž . Ž .

log n 2n�� 1�k�n 1�k�n

Ž .PROOF. In view of the strong approximation 5.1 , it is sufficient to verify

log log log n
lim max sup � k � s � � k � 0 a.s.Ž . Ž .� �log nn�� 0�k�n�1 0�s�1

Ž .This, however, immediately follows from 5.3 . �
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