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We present a general method to construct m-symmetric diffusion
Ž . Ž .processes X , P on any given locally compact metric space X, dt x

equipped with a Radon measure m. These processes are associated with
local regular Dirichlet forms which are obtained as �-limits of approxi-
mating nonlocal Dirichlet forms. This general method works without any

Ž .restrictions on X, d, m and yields processes which are well defined for
quasi every starting point.

The second main topic of this paper is to formulate and exploit the
so-called Measure Contraction Property. This is a condition on the original

Ž .data X, d, m which can be regarded as a generalization of curvature
Ž .bounds on the metric space X, d . It is a bound for distortions of the

measure m under contractions of the state space X along suitable
Ž .geodesics or quasi geodesics w.r.t. the metric d. In the case of Rieman-

nian manifolds, this condition is always satisfied. Several other examples
will be discussed, including uniformly elliptic operators, operators with
weights, certain subelliptic operators, manifolds with boundaries or cor-
ners and glueing together of manifolds.

Ž .The Measure Contraction Property implies upper and lower Gaussian
estimates for the heat kernel and a Harnack inequality for the associated
harmonic functions. Therefore, the above-mentioned diffusion processes
are strong Feller processes and are well defined for every starting point.

1. Introduction.

Ž1.A. The idea. How to construct a diffusion process e.g., some kind of
. Ž .Brownian motion on a metric space X, d ? It is well known that one can do

a lot of geometry on X just using the metric structure d. However, in order to
do stochastics or analysis on X, one additionally has to fix a speed or
reference measure m on X.

Then the idea is quite easy. Think of Brownian motion on � n or on an
Ž .n-dimensional Riemannian manifold X, g . It is the unique strong Feller

process which is associated to the Dirichlet form

1 2� �1.1 EE u , u � �u x m dxŽ . Ž . Ž . Ž .H2
X
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1Ž .with core CC X . Here the reference measure m is just the Riemannian0
volume measure.

In the general case, we will try to construct a Dirichlet form EE with core
LipŽ . Ž .CC X which is analogous to the form 1.1 . For this purpose, we have to0

1Ž .look for a replacement for the square of the gradient of a function u � CC X .0
Recall that on any Riemannian manifold,

21 u z � u xŽ . Ž .2� �1.2 �u x � n lim m dzŽ . Ž . Ž .H
�m B x d z , xr�0 Ž . Ž .Ž .Ž . B xr r

1Ž .for u � CC X . This leads to the following definition in the general case:0
21 u z � u xŽ . Ž .

rEE u , u � N xŽ . Ž .H H
�2 d z , xŽ .Ž .X B xr

m dz m dxŽ . Ž .
�

m B z m B x' 'Ž . Ž .Ž . Ž .r r

1.3Ž .

LipŽ .for u � CC X and0

1.4 EE � lim EE r .Ž .
r�0

The function N can be any normalization function. It plays the role of the
Ž .dimension, that is, N x is the local dimension at x � X.

1.B. The general approach. A crucial observation is that the pointwise
limit of these forms EE r for r � 0, in general, does not yield a reasonable
object. However, there is an appropriate notion of variational convergence,

Ž rn.called �-convergence. A sequence EE is called �-convergent ifn

lim lim inf inf EE rn v , v � lim lim sup inf EE rn v , vŽ . Ž .
2 2n����0 ��0v�L v�Ln��

� � � �u�v �� u�v ��

2Ž . Ž .for all u � L X, m . The point is, that without any assumption on X, d, m
Ž . Ž .there always exist sequences r with lim r � 0 such that the se-n n n�� n

Ž rn.quences EE are �-convergent. Each such �-limit EE defines a Dirichletn
2Ž .form on L X, m . Assuming that the state space X is locally compact, this

LipŽ .Dirichlet form is strongly local and regular with core CC X . Therefore, for0
each of these limit forms there exists an m-symmetric diffusion process on X.
This is a Hunt process with continuous paths. Its lifetime in X can be finite,
but there is no killing inside of X. This diffusion process is defined uniquely
for quasi every starting point x � X.

� r 4In general, the family EE , r � 0 may have several �-limits for r � 0.
Concerning the above constructions, there arise several important questions.

1. When is �-lim inf EE r � �-lim sup EE r, or in other words, when doesr � 0 r � 0
the �-limit EE 0 � �-lim EE r exist?r � 0

rŽ . �2. When does the pointwise limit lim EE u, u exist for sufficiently manyr � 0
2Ž .� 0Ž .u � L X, m and when does it coincide with EE u, u ?

3. When does EE 0 define a diffusion process uniquely for every starting point
x � X and when is this process a strong Feller process?
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1.C. The measure contraction property. An affirmative answer to the
Ž .above questions can be given if X, d, m satisfies the so called Measure

Ž .Contraction Property MCP . Let us describe this property in the easiest case.
Ž .Assume for simplicity that X, d is a geodesic space. This means that for

Ž . � � Ž .any two points x, y � X there exists an arc � x, y : 0, 1 � X, t �� x, yt
Ž . Ž . Ž .of length d x, y with � x, y � x and � x, y � y. Moreover, assume that0 1

2 �0, 1� � Ž .�: X � X is measurable i.e., geodesics � x, y joining x and y can be
�chosen in such a way that they depend in a measurable way on x and y . For

� � Ž . Ž .fixed x � X and t � 0, 1 , the map � x, � : X � X, y �� x, y is a con-t t
traction of the state space towards the center x in the sense that
Ž Ž .. Ž .d x,� x, y � td x, y for all y � X. In particular, for each r � 0, the ballt
Ž . Ž . Ž .B x will be mapped onto the ball B x . However, if a ball A � B y is notr t r r

Ž .centered at x, then its image � x, A is in general no longer a ball. It may bet
distorted drastically. In the extreme case, it could be an arc of length 2 tr. The
Measure Contraction Property is a very weak control for such distortions. It
states that on any compact set Y � X,

m A m � x , AŽ . Ž .Ž .t
1.5 � CŽ .

m B x m B xŽ . Ž .Ž . Ž .r t r

Ž . Ž .for all A � B x � Y. The LHS of 1.5 measures the proportion of A inr
Ž .B x , whereas the RHS measures the proportion of the image of A in ther

Ž .image of B x .r
Ž .Actually, we will consider two versions a weak and a strong one of this

MCP and often it is only required to hold locally on X � Z where Z is an
‘‘exceptional’’ set of measure 0.

Ž .1.D. The examples. If X, g is a smooth Riemannian manifold and if d
and m are the Riemannian distance and the Riemannian volume, respec-

Ž .tively, then X, d, m always satisfies the Measure Contraction Property.
This is a consequence of the Bishop volume comparison theorem which

Ž .implies that if the Ricci curvature on B x is bounded from below byr
Ž .� n � 1 � then

m A m � x , AŽ . Ž .Ž .t
1.6 �Ž .

rS r trS trŽ . Ž .� �

Ž . Ž .for all A � B x with S r being the area of the sphere of radius r in ther �

Žspace of constant sectional curvature �� and of the fact that by the Bishop
. Ž Ž .. Ž Ž ..and Bishop�Gunther volume comparison theorems m B x 	 rS r �¨ r �

Ž .1	n locally uniformly in x for r � 0.
Ž .Further examples for metric measured spaces X, d, m with the MCP are

given by manifolds with boundaries or corners and by glueing together of
Ž .manifolds where the components could have different dimensions . The MCP

also holds true if d is defined by an uniformly elliptic operator on X � � n

and even if d is derived from certain degenerate elliptic operators like the
Grushin operator.
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Ž1.E. The results. The Measure Contraction Property say, for simplicity,
. Ž .in its strong version for the metric measured space X, d, m entails several

important properties for the possible limits of the approximating Dirichlet
forms EE r.

LipŽ . 0Ž . rŽ .1. For each u � CC X the �-limit EE u, u � �-lim EE u, u as well as0 r � 0
rŽ .the pointwise limit lim EE u, u exist and coincide;r � 0

Ž . Ž 0 LipŽ ..2. The closure EE, FF of EE , CC X is a strongly local, regular Dirichlet0
form;

Ž . Ž3. The associated diffusion process X , P is a strong Feller process whicht x
.is defined uniquely for every starting point x � X ;

4. The corresponding heat kernel is Holder continuous and admits upper and¨
lower Gaussian estimates;

Ž .5. The intrinsic metric associated with EE, FF on X is locally equivalent to
the original metric d.

� Ž .All these results hold true with any normalization function N � L X, mloc
Ž .satisfying N 
 1. An additional condition on X, d, m provides a canonical

candidate for N. With this choice, the intrinsic metric really coincides with d.

1.F. The proceeding. In Section 2, we summarize some basic facts on
Ž .length spaces, Dirichlet forms including convergence questions and diffu-

sion processes.
The goal of Section 3 is to present a general recipe for constructing

Dirichlet forms, diffusion processes and heat kernels on metric spaces. Given
Ž . Žany metric measured space X, d, m with X being locally compact and m

.being a Radon measure with full support on X , we will define regular,
Ž . 2Ž . LipŽ .strongly local Dirichlet forms EE, FF on L X, m with core CC X . These0

local forms will be obtained as �-limits of the nonlocal forms EE r. The point
here is that no ‘‘quantitative’’ assumptions are imposed.

In Section 4, we formulate and discuss the MCP. Among other things, we
prove that it always implies the volume doubling property. Much space is

Žgiven to investigating in detail the main examples which we have already
.mentioned .

The strength of the MCP is demonstrated in Sections 5 and 6. In Section 5,
rŽ .we prove the existence and coincidence of the �-limit �-lim EE u, u andr � 0

rŽ .of the pointwise limit lim EE u, u . The approach has to take into accountr � 0
that we admit an exceptional set in the formulation of the MCP which brings
in its wake the need of subtle localization. But surprisingly enough, the

Žresulting form does not depend on the exhausting sequence used for the
.localization nor on the exceptional set.

Another crucial fact is that the MCP implies a Poincare inequality. More-´
over, it implies that the intrinsic metric is locally equivalent to the original
one. These facts are proved in Section 6. They are the ingredients which are
used in Section 7 to prove Harnack inequality, Holder continuity, Feller¨
property and Gaussian estimates.
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For simplicity, in Sections 5�7, we restrict ourselves to the case N � 1.
The general case is treated in Section 8. Moreover, here we introduce func-

Ž .tions N and N which play the role of lower and upper, respectively local
dimensions. If they coincide, then their common value is the ‘‘natural’’
candidate for the choice of the normalization function N.

2. Preliminaries.

2.A. The basic set-up. Throughout this paper we fix a metric measured
Ž .space X, d, m consisting of a state space X, a metric d on X and a reference

measure m on X. We always assume the following:

Ž .X, d is a locally compact separable metric space and m is
Ž .a Radon measure on X with m U � 0 for each nonempty

open set U � X.

Ž . Ž .In terms of X, d , we define for each r � 0 and y � X the balls B y �r
� Ž . 4 � Ž . Ž .x � X: d y, x � r of radius r and center y and the sets B y � B y �r r
� 4 Ž . �y . Similarly, we define for each r � 0 and Y � X the sets B Y � x �r

Ž . 4 � Ž . Ž .X: d x, Y � r and B Y � B Y � Y.r r
Ž . Ž .We do not require that X, d be complete. In particular, balls B x arer

not necessarily relatively compact. For each r � 0, we define a Radon mea-
sure m on X byr

1
m dx � m dx .Ž . Ž .r

m B x' Ž .Ž .r

Ž .The set of real-valued Lipschitz continuous functions on X with compact
LipŽ .supports will be denoted by CC X .0

2.B. Length spaces and geodesic spaces. An arc in X is a continuous map
� � � �	 : a, b � X where a, b denotes any compact interval in �. The length
Ž . � �L 	 of an arc 	 : a, b � X is defined asd

n

L 	 � sup d 	 t , 	 t :Ž . Ž . Ž .Ž .Ýd i i�1½
i�1

2.1Ž .
n � �, a � t � t � ��� � t � b .0 1 n 5

� �A unit speed geodesic arc is an arc 	 : a, b � X which is locally an iso-
� � Ž Ž . Ž ..metry, that is, for any c � a, b there exists 
� 0 such that d 	 s , 	 t �

� � � �s � t for all s, t � c � 
 , c � 
 . A geodesic arc is a constant speed
reparametrization of a unit speed geodesic arc. Replacing the parameter

� � � � Ž � � � �.interval a, b by a, b or a,� or � �,� one obtains the notion of
Ž .geodesic curve geodesic ray and geodesic line, resp. . We say that an arc

� � Ž . Ž .	 : a, b � X joins x and y if 	 a � x and 	 b � y. Obviously, the length of
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any arc joining x and y dominates the distance between x and y, that is,
Ž . Ž .L 	 
 d x, y with equality if and only if 	 is a minimal geodesic arc. Letd

us define

2.2 d x , y � inf L 	 : 	 is an arc in X joining x and y .� 4Ž . Ž . Ž .d

Then d is a pseudometric on X which dominates d, that is, d 
 d. It can
happen that d induces a topology on X which is strictly coarser than d; in

Ž .particular, it can happen that d x, y � � for all x � y.

Ž . ŽDEFINITION 2.1. The metric space X, d is called a length space or an
.inner metric space if d � d. That is, the distance between any two points

x, y � X is the infimum of the length of arcs joining them. It is called
geodesic space if any two points x, y � X are joined by an arc 	 of length
Ž . Ž . Žd x, y � L 	 . This arc is necessarily a reparametrization of a geodesic butd

.it is not necessarily unique.
Ž . ŽEvery length space X, d which is locally compact and complete as a

. � Ž . �metric space is a geodesic space Chavel 1993 , Exercise 1.10 .

Ž .EXAMPLES 2.2. i Every Riemannian manifold X equipped with the Rie-
mannian distance d is a length space. It is even a geodesic space if the
manifold is complete.

Ž . Ž .ii If X, d is a length space and Y an open subset of X, then there are
two canonical metrics on Y derived from the metric d on X. The first one is

� � Ž . Ž .just the restriction d of d onto Y defined by d x, y � d x, y for allY Y
Ž . � Ž .x, y � Y. The second one is the metric d defined by d x, y � inf L 	 : 	Y Y d

4is an arc in Y joining x and y for x, y � Y. Obviously, d is the lengthY
�metric derived from d . These metrics coincide if and only if Y is convex.Y

Ž . n � �iii Let X � � be the Euclidean space, let �� 0, 1 and let d be the
Ž . � � �metric d x, y � x � y which induces the Euclidean topology on X. Here

Ž .the pseudometric d is entirely degenerate; namely, d x, y � � for all x � y.
Ž .The space X, d is no length space.

Ž . n Ž . � � � 4iv Let X � � be the Euclidean space and put d x, y � inf x � y , 1 .
Ž . � � Ž .Then d x, y � x � y . Hence, X, d is no length space. Nevertheless, for all

� Ž . �x, y � X which are close together i.e., for which d x, y � 1 there exists a
geodesic connecting them. Indeed, there is exactly one such geodesic.

Ž . n Ž . � � �v Let X � � be the Euclidean space and put d x, y � sup x � y :i i
4 Ž .i � 1, . . . , n . Then X, d is a geodesic space. But for ‘‘most’’ points x, y � X,

the geodesic connecting them is not unique. Namely, let x, y � X with x � y
� � Ž .not lying on the diagonal of X in the sense that x � y � d x, y for somei i

� 4 � � Ž . Ž .i � 1, . . . , n . Then every Lipschitz function f : 0, 1 � � with f 0 � f 1 � 0
Ž . � �and Lipschitz constant dil f � d x, y � x � y defines a geodesic 	 :i i

� � n Ž . Ž .0, 1 � � , t � x � t y � x � f t e connecting x and y.i
For the theory of length spaces and for further examples we recommend

Ž . Ž . Ž .Rinow 1961 , Gromov 1981 and Ballmann 1995 .
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Ž .2.C. Preliminaries on Dirichlet forms. A Dirichlet form on the real
2Ž . Ž .Hilbert space L X, m is a pair EE, FF consisting of a dense linear subspace

2Ž . 2Ž .FF � L X, m and a closed symmetric form EE on L X, m , defined on
Ž .DD EE � FF, which has the Markovian property

EE u�, u� � EE u , u for all u � FF ,Ž .Ž .
� Ž .where u � u � 1 
 0. It is called regular if FF ‘‘contains sufficiently many

Ž . Žcontinuous functions’’ in the sense that FF � CC X is dense in FF with graph0
� Ž . 2 �1	2 . Ž . Ž � �.norm EE u, u � H u dm as well as in CC X with uniform norm sup u .0 X

For the highly developed theory of regular Dirichlet forms we refer to the
Ž .textbook by Fukushima, Oshima and Takeda 1994 . We point out that there

is an important generalization of that theory, namely, the so-called theory of
Ž .quasiregular Dirichlet forms; see Bouleau and Hirsch 1991 and Ma and

Ž .Rockner 1992 .¨
In the sequel, we freely use the fact that there is a canonical one-to-one

correspondence between symmetric forms, quadratic forms and extended
2Ž .quadratic forms on L X, m . We recall that evaluating a symmetric form

Ž Ž .. Ž . � �EE, DD EE on the diagonal yields a quadratic form q: DD EE � 0,� , u �
Ž . Ž . Ž .EE u, u with domain DD q 	 DD EE . Conversely, by polarization, any quadratic

Ž Ž .. Ž . Ž . � � Ž .form q, DD q defines a symmetric form EE : DD q � DD q � � �,� , u, v �
1 � Ž . Ž .� Ž . Ž .q u � v � q u � v with domain DD EE 	 DD q . Moreover, any quadratic4

Ž Ž ..form q, DD q can be extended to an extended quadratic form Q as follows:

q u , for u � DD q ,Ž . Ž .
2 � �Q : L X , m � 0,� , u �Ž . 2½ �, for u � L X , m � DD q .Ž . Ž .

� 2Ž . Ž . 4 Ž .Note that the set u � L X, m : Q u � � coincides with DD q . Finally, by
Ž .restricting an arbitrary extended quadratic form Q onto the set DD Q 	

� 2Ž . Ž . 4 Ž Ž ..u � L X, m : Q u � � one obtains a quadratic form Q, DD Q . Most of-
ten, we use the same notation for a symmetric form, its associated quadratic
form and extended quadratic form.

Ž Ž .. 2Ž .A crucial observation is that a symmetric form EE, DD EE on L X, m is
closed if and only if the associated extended quadratic form is lower semicon-

2Ž . Ž Ž ..tinuous on L X, m . Therefore, given any symmetric form EE, DD EE on
2Ž .L X, m , there is a canonical way to obtain a closed symmetric form from it.

ŽNamely, let Q denote the extended quadratic form defined on the whole
2Ž . � �. Ž Ž ..L X, m with values in 0,� associated with EE, DD EE . Then

Q u � lim inf Q vŽ . Ž .
2v�L

v�u

2Ž .defines an extended quadratic form on L X, m . Obviously, this functional is
2Ž .lower semicontinuous on L X, m and is dominated by Q in the sense that

Ž . Ž . 2Ž .Q u � Q u for each u � L X, m . Actually, Q is the biggest lower semicon-
2Ž .tinuous functional on L X, m , which is dominated by Q. It is called the

Ž Ž ..relaxation of Q and the associated symmetric form EE, DD EE is called the
Ž Ž .. Ž Ž ..relaxation of EE, DD EE . Note that the symmetric form EE, DD EE is closed if
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and only if it coincides with its relaxation and that it is closable if and only if
Ž . Ž . Ž . Ž . Ž .EE � EE on DD EE . It always holds that DD EE � DD EE and that EE u, u 
 EE u, u

Ž . Ž .for u � DD EE . See also Mosco 1994 .

2.D. A brief introduction to �-convergence. Now we turn to convergence
questions for symmetric and	or quadratic forms. Here it is much more
convenient to formulate everything in terms of extended quadratic forms. We
will give a brief survey on �-convergence, which is a certain variational
convergence. It was introduced by De Giorgi. For more details we recommend

Ž .the monograph by Dal Maso 1993 . We assume that we are given a family
� r 4 2Ž .EE , r � 0 of extended quadratic functionals on L X, m .

Ž . � �DEFINITION 2.3. Let r be a sequence with values in 0,� . For anyn n
2Ž .u � L X, m , we define

�- lim sup EE rn u , u � lim lim sup inf EE rn v , vŽ . Ž .
2v�Ln�� n����0

� �u�v ��

and
�- lim inf EE rn u , u � lim lim inf inf EE rn v , v .Ž . Ž .

2n�� n����0 v�L
� �u�v ��

� � 2 2Ž .Here and in the sequel � denotes the norm in L � L X, m . Note that the
Ž rn.lim is actually a sup . We say that the sequence EE is �-convergent�� 0 �� 0 n

rnŽ . rnŽ . 2Ž .if �-lim sup EE u, u � �-lim inf EE u, u for each u � L X, m . Inn�� n��
rnŽ .this case, we write �-lim EE u, u for the common value of �-n��

rnŽ . rnŽ . rnlim sup EE u, u and �-lim inf EE u, u . The functional �-lim EEn�� n�� n��
2Ž . Ž . rnon L X, m is then called �-limit of the quadratic functionals EE , n � �.

Similarly, we define
0 r rEE u , u � �- lim sup EE u , u � lim lim sup inf EE v , vŽ . Ž . Ž .

2v�Lr�0 ��0 r�0
� �u�v ��

and
EE 0 u , u � �- lim inf EE r u , u � lim lim inf inf EE r v , vŽ . Ž . Ž .

2r�0 ��0 r�0 v�L
� �u�v ��

Ž r .and we say that the family EE is �-convergent for r � 0 if the function-r � 0
r r 2Ž .als �-lim sup EE and �-lim inf EE coincide on L X, m . If we chooser � 0 r � 0

rn 2Ž .EE � EE for all n � � and some fixed quadratic functional EE on L X, m ,
then obviously �-lim EE r exists and coincides with the relaxation EE of EEr � 0
Ž .which might be different from EE itself .

Ž . 0LEMMA 2.4. Let r be any sequence and let EE be any functional onn n
2Ž . Ž � �. 0 rnL X, m with values in 0,� . Then EE � �-lim EE if and only if then��

following two conditions are satisfied:

Ž . 2Ž . Ž . 2Ž . � �i � u � L X, m , � u � L X, m with u � u � 0:n n� N n

EE 0 u , u � lim inf EE rn u , u ;Ž . Ž .n n
n��
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Ž . 2Ž . Ž . 2Ž . � �ii � u � L X, m : � u � L X, m with u � u � 0 andn n� N n

EE 0 u , u � lim EE rn u , u .Ž . Ž .n n
n��

Ž .For the proof, see Dal Maso 1993 , Proposition 8.1.

Ž . Ž . Ž 
 .LEMMA 2.5. i For every sequence r there exists a subsequence rn n n n
Ž r


n.such that the �-limit of the sequence EE exists.n
Ž . Ž . Ž 
 . rii There exist sequences r and r such that �-lim sup EE �n n n n r � 0

�-lim sup EE rn and �-lim inf EE r � �-lim inf EE r

n.n�� r � 0 n��

Ž . 2Ž . Ž 
 . Ž � .iii For every u � L X, m there exist sequences r and r such thatn n n n
rŽ . r


nŽ . rŽ .�-lim sup EE u, u � �-lim EE u, u and �-lim inf EE u, u �r � 0 n�� r � 0
r�

nŽ .�-lim EE u, u .n��

Ž . Ž . Ž . Ž .For the proof of i , see Dal Maso 1993 , Theorem 8.5; for ii and iii , see
Ž .Sturm 1997 .

Ž . 0PROPOSITION 2.6. Let r be any sequence such that the �-limit EE 	n n
rn Ž 0. � 2Ž . 0Ž . 4�-lim EE exists and put DD EE � u � L X, m : EE u, u � � .n��

Ž . Ž 0 Ž 0.. Ž .i EE , DD EE is always a not necessarily densely defined closed sym-
2Ž .metric form on L X, m .

Ž . rn 0ii If the EE have the Markovian property then so has EE .
Ž .iii Assume that

2.3 lim inf EE rn u , u � �Ž . Ž .
n��

0 0 2Ž . Ž 0 0.for all u � FF where FF is some dense subset of L X, m . Then EE , FF is
Ž .closable and its closure EE, FF is a densely defined symmetric form on

2Ž . 0L X, m with core FF .
Ž . Ž . Ž . Ž .iv Under the assumptions of ii and iii , the symmetric form EE, FF is a

0 Ž . Ž .Dirichlet form. If in addition, the set FF from iii is dense in CC X then the0
Ž .Dirichlet form EE, FF is regular.

Ž .For the proof, see Mosco 1994 , Corollary 2.8.

Ž .2.E. The diffusion processes. Given any closed symmetric form EE, FF on
2Ž .the Hilbert space L X, m , there exists a unique positive self-adjoint opera-

Ž Ž .. 2Ž . Ž 1	2 .tor A, DD A on L X, m with the properties FF � DD A and

EE u , v � u , AvŽ . Ž .
Ž . Ž Ž ..for all u � FF and v � DD A . In terms of this operator A, DD A we can

Ž �A t . 2Ž .define a strongly continuous contraction semigroup e on L X, m .t � 0
This semigroup is positivity preserving and extends to a contraction semi-

pŽ . � � Ž .group on each L X, m , p � 1,� , provided EE, FF is a Dirichlet form. If
Ž .EE, FF is a regular Dirichlet form then there exists an m-symmetric Markov

Ž . �process X , P whose transition semigroup extended to the spacet x t 
 0, x � X
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2Ž .� Ž �A t .L X, m coincides with the semigroup e . Even more, such a Markovt � 0
Ž . Ž .process X , P can be chosen ‘‘properly associated to EE, FF ,’’ which meanst x

Ž . � Ž . �that for each u � FF � CC X the function x � E u X , t � 
 is a quasicon-0 x t
tinuous version of e�A tu. By this property, the process is determined uniquely
for quasi every starting point x � X.

Ž . ŽThis Markov process X , P is even a diffusion process i.e., its pathst x
� �t � X are continuous maps from 0,� to the one-point-compactificationt

� 4 .X � � of X if and only if the Dirichlet form is strongly local in the sense
Ž .that EE u, v � 0 whenever u � FF is constant on a neighborhood of the

Ž .support of v � FF. See Fukushima, Oshima and Takeda 1994 for further
details.

3. Local Dirichlet forms as �-limits of nonlocal approximations.
The goal of this chapter is to present a general recipe for constructing
Dirichlet forms, diffusion processes and heat kernels on metric spaces. Given

Ž .any metric measured space X, d, m which satisfies the general assumptions
Ž .from Section 2.A, we will define regular, strongly local Dirichlet forms EE, FF

2Ž . LipŽ .on L X, m with core CC X . These local Dirichlet forms are restrictions of0
Ž 0 0.Dirichlet forms EE , FF , which will be obtained as �-limits of nonlocal
Ž r r . 2Ž .Dirichlet forms EE , FF on L X, m .

3.A. The nonlocal approximations. From now on, fix a function N �
� Ž . 2Ž .L X, m with N 
 0 on X. For each r � 0 and u � L X, m , defineloc

2u x � u yŽ . Ž .
rQQ u , u � N xŽ . Ž .H H

� d x , yŽ .Ž .X B xr

1
� m dy m dxŽ . Ž .

m B x � m B yŽ . Ž .Ž . Ž .r r

and
21 u x � u yŽ . Ž .

r3.1 EE u , u � N x m dy m dx .Ž . Ž . Ž . Ž . Ž .H H r r
�2 d x , yŽ .Ž .X B xr

Ž . Ž .Recall that m dy � m dy 	 m B y .' Ž .Ž .r r

Ž . Ž r Ž r .. Ž r Ž r ..LEMMA 3.1. i EE , DD EE as well as QQ , DD QQ are Dirichlet forms on
2Ž .L X, m .
Ž . LipŽ . Žii For any u � CC X with compact support K and Lipschitz con-0

.stant L ,

L2
r r3.2 QQ u , u � EE u , u � m B K ess-sup N.Ž . Ž . Ž . Ž .Ž .r2 Ž .B Kr

Ž .PROOF. i Fix r � 0 and choose an exhaustion of X by relatively com-
Ž r Ž r ..pact sets Y � X, n � �. The form EE , DD EE is the increasing limit forn
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Ž r , n 2Ž ..n � � of the forms EE , L X, m where

1 2r , nEE u , u � u x � u yŽ . Ž . Ž .H H2 Ž .Y Y �B xn n r

N xŽ .
� � n m dy m dxŽ . Ž .

2m B y m B x d x , y' Ž . Ž . Ž .Ž . Ž .r r

2Ž .for u � L X, m and n � �. For each n � �, the quadratic form u �
r , nŽ . Ž . 2Ž .EE u, u is continuous ! on L X, m since

n
r , n 2 2EE u , u � 2u x � 2u y m dy m dxŽ . Ž . Ž . Ž . Ž .H H2 Ž .Y Y �B xn n r

� � 2� 2nm Y u .Ž . 2n

Ž r , n 2Ž .. 2Ž .Hence, EE , L X, m is a closed symmetric form on L X, m . For n � �,
� Ž .�this carries over to the increasing limit see Dal Maso 1993 . That is,

Ž r r . r � 2 Ž . r , nŽ . 4 �EE , FF with FF � u � L x, m : sup EE u, u � � � u �n � N
2Ž . rŽ . 4 Ž r . 2Ž .L X, m : EE u, u � � � DD EE is a closed symmetric form on L X, m .

Ž r Ž r ..One easily checks that EE , DD EE has the Markovian property. The same
Ž r Ž r ..arguments apply to QQ , DD QQ .

Ž . Ž .ii The first inequality in 3.2 is an immediate consequence of the in-
Ž Ž ..equality between the arithmetic and the geometric mean of m B x andr

Ž Ž ..m B y . Moreover, for any u as in the claimr

2u x � u yŽ . Ž .
r2 � EE u , u � ess-sup N m dy m dxŽ . Ž . Ž .H H r r

� d x , yŽ .Ž . Ž . Ž .B K B K �B xŽ . r r rB Kr

2u x � u yŽ . Ž .
� ess-sup NH H

� d x , yŽ .Ž . Ž . Ž .B K B K �B xŽ . r r rB Kr

1
� m dy m dxŽ . Ž .

m B xŽ .Ž .r

� ess-sup NL2 m B K . �Ž .Ž .r
Ž .B Kr

ˆr r̂ r LipŽ . Ž . Ž Ž ..REMARKS 3.2. i The closure EE , FF of EE , CC X is a regular Dirich-0
2Ž . LipŽ .let form on L X, m with core CC X . See Proposition 2.6.0

Ž . Žii If N � 0 m-a.e. and if there exist points z , z � X with 0 � d z ,1 2 1
ˆr r̂. Ž . Ž .z � r then the form EE , FF is nonlocal. See Sturm 1997 .2

Ž . Ž Ž .. Ž .iii Assume for simplicity that m B x and N x do not depend onr
x � X and put

N x m dyŽ . Ž .
�� .H 2�m B x d x , yŽ . Ž .Ž .Ž . B xr r
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� Ž . 2 Ž . Ž n � �.Note that �� n � 2 	r for X, d being the Euclidean space � , � ,
�n 
 3, and m being the Lebesgue measure on it. Then the Markov process

ˆr r̂Ž . Ž .X , P properly associated with EE , FF can be constructed as follows.t x

Ž . Ž . Ž � 4.a Let Z , Q with path space � e.g., �: � � X be an x n� N , x � X 1 00

Markov chain on X which Q -a.s. starts at x and then at the first step jumpsx
Ž .into the ball B x withr

m dy m dyŽ . Ž .
Q Z � A �Ž . H Hx 1 2 2� �d x , y d x , yŽ . Ž .Ž . Ž .A�B x B xr r

for all measurable A � X and all x � X.
Ž . Ž . Ž � 4.b Let n , P with path space � e.g., right cont. �: � � � be at t 
 0 2 0

Poisson process with parameter � . That is, an � -valued Markov process0
starting at 0 with independent increments n � n , which are Poisson dis-t s

Ž .tributed with parameter � t � s .
Ž . Ž .c Then Z , Q � P with path space ��� �� is a Markovn x t 
 0, x � X 1 2t ˆr r̂Ž .process properly associated to EE , FF ; see, for example, Ethier and Kurtz

Ž .1986 , page 163.

Ž r LipŽ ..Analogous results hold true for the closure of QQ , CC X .0

3.B. The limit forms. Now we come to the main result of this section.

n�� 0�Ž .THEOREM 3.3. Let r be any sequence with r 0 for which EE �n n n n��
 
r �

n Ž .�-lim EE exists and let r be any sequence with r 0 for whichn�� n n n
QQ0 � �-lim QQ r


n exists.n��

Ž . Ž 0 LipŽ . Ž 0 LipŽ ..i Then EE , CC X as well as QQ , CC X are closable symmetric0 0
2Ž .forms on L X, m .

Ž . Ž Ž .. Ž Ž ..ii Their closures EE, DD EE and QQ, DD QQ , respectively, are regular
2Ž . LipŽ .Dirichlet forms on L X, m with core CC X .0

Ž . Ž Ž .. Ž Ž ..iii The form QQ, DD QQ is always strongly local. The form EE, DD EE is
strongly local provided

m B xŽ .Ž .r
3.3 lim sup sup � �Ž .

m B yŽ .Ž .r�0 x , y�Y r
Ž .d x , y �r

for each compact set Y � X.

Ž . Ž 0. � 2Ž . 0Ž . 4PROOF. i Let DD EE � u � L X, m : EE u, u � � . Then by Dal Maso
Ž . Ž 0 Ž 0..1993 , Proposition 6.8, Theorem 11.10 and Proposition 12.16, EE , DD EE is

2Ž . LipŽ . Ž 0.a closed symmetric form on L X, m . Moreover, CC X � DD EE since for0
LipŽ . Ž .u � CC X with support K � X and Lipschitz constant L ,0

EE 0 u , u � �- lim EE rn u , u � lim inf EE rn u , uŽ . Ž . Ž .
n�� n��

L2

� m K ess-sup N � �.Ž .
2 Ž .B K�

Ž 0 LipŽ .. 2Ž .Hence, EE , CC X is a closable symmetric form on L X, m .0
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Ž . rnii By Lemma 3.1 each of the approximating forms EE has the Marko-
Ž .vian property. Hence, by Mosco 1994 , Corollary 2.8, also the �-limit has the

Ž 0 Ž 0..Markovian property. This property, of course, carries over from EE , DD EE

Ž 0 LipŽ .. Ž Ž .. Ž Ž ..to EE , CC X and EE, DD EE . Thus EE, DD EE is a Dirichlet form. The same0
Ž Ž ..arguments apply to QQ, DD QQ .
Ž Ž .. Ž Ž .. LipŽ .By construction, EE, DD EE and QQ, DD QQ are regular with core CC X .0

LipŽ .In order to see the strong locality, let u, v � CC X with u being constant0
� � Ž . � �on a neighborhood of A � supp v , say u � � on B A . Put A � supp u .1 3 R 1 0

Ž . Ž . Ž .Then there exist closed sets X � X � B A and X � B A � B A0 R 0 1 2 R 1 R 1
with u � 0 on a neighborhood of X and u � � as well as v � 0 on a0

Ž .neighborhood of X . Put Y � X � X � X . According to Lemma 3.4 there1 0 1
Ž . LipŽ . 2Ž .exists a sequence f � CC Y with f � 0 in L X, m and withn n 0 n

EE u � v , u � v � lim EE rn u � v � f , u � v � f .Ž . Ž .n n
n��

Ž . Ž . Ž .Now put Y � B A � B A and Y � B A , such that Y � Y � Y .0 R 0 2 R 1 1 R 1 0 1
LipŽ . LipŽ .Then, obviously, f � g � h with g � CC Y and h � CC Y and, forn n n n 0 0 n 0 1

fixed R � 0 and sufficiently small r � 0,

EE r u � v � g � h , u � v � g � hŽ .n n n n

� EE r u � v � g � h , u � v � g � h .Ž .n n n n

Hence,

EE u � v , u � v � lim EE rn u � v � g � h , u � v � g � hŽ . Ž .n n n n
n��

� lim EE rn u � v � g � h , u � v � g � hŽ .n n n n
n��


 EE u � v , u � v .Ž .
Ž . Ž .In the same way, we can prove EE u � v, u � v 
 EE u � v, u � v . That

1Ž . Ž . Ž . � Ž .is, EE u � v, u � v � EE u � v, u � v . Since EE u, v � EE u � v, u � v �4
Ž .� Ž .EE u � v, u � v , this implies EE u, v � 0. This proves the strong locality of

Ž Ž .. Ž Ž ..EE, DD EE . The same arguments apply to QQ, DD QQ . �

Ž Ž .. Ž Ž Ž ..LEMMA 3.4. Let QQ, DD QQ and EE DD EE be as in Theorem 3.3 and fix
closed sets X , X � X as well as real numbers � � 0, � � 0. Then for all0 1 0 1

LipŽ .u � CC X which are identical to � on a neighborhood of X and identical0 0 0
to � on a neighborhood of X ,1 1

QQ u , u � lim lim sup inf QQ r

n u � w , u � wŽ . Ž .

Lip��0 Ž .w�CC Yn�� 0
� �w ��

Ž . Ž .where Y � X � X � X . If 3.3 is satisfied then also0 1

EE u , u � lim lim sup inf EE rn u � w , u � w .Ž . Ž .
Lip��0 Ž .w�CC Yn�� 0

� �w ��

LipŽ . �The emphasis here is on the fact that the inf is over w � CC Y and not0
LipŽ .� � � 2Ž .over all w � CC X . Recall that � denotes the norm in L X, m .0
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LipŽ .PROOF. Fix X , X � X as well as � , � and u � CC X as above.1 2 0 1 0
Ž .Assume without restriction that Y � X � X � X is relatively compact.0 1

Ž .Choose R � 0 such that u � � on B X for i � 0, 1 and choose a functioni 2 R i
LipŽ . Ž .�� CC X with �� 1 on X � B X � X , �� 0 on X � X and 0 � �� 10 R 0 1 0 1

rnŽ . � Ž .�on X. Note that C 	 lim sup EE u, u � � cf. 3.2 . Now obviously1 n��

EE u , u � lim lim sup inf EE rn u � �w , u � �wŽ . Ž .
Lip��0 Ž .w�CC Xn�� 0

� �w �1

� lim lim sup inf EE rn u � �w , u � �wŽ .
Lip��0 Ž .w�CC Yn�� 0

� �w �1

� lim lim sup inf EE rn u � �w , u � �wŽ .˜ ˜
Lip��0 Ž .w�CC Xn�� 0

� �w �1

LipŽ . � �where for each w � CC X with w � 1, we define w � w � � . Note that˜0
LipŽ . � �then w � CC Y with w � 1. Obviously,˜ ˜0

12� � �w x � w y � w x � w y � x � � yŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˜ ˜
4

� 2� w x � w y � x � � yŽ . Ž . Ž . Ž .Ž . Ž .
1 � � 2 2� � � �� w x � w y � x � � yŽ . Ž . Ž . Ž .

4�
1 � � 2 2� � � �� w x � w y � x � � yŽ . Ž . Ž . Ž .

4
1 � � 22 2 � �� w x � w y � x � � yŽ . Ž . Ž . Ž .Ž .

2�

� � 2� 1 � � w x � w yŽ . Ž . Ž .
1 � �

2 2 2 2� C w x � w y d x , yŽ . Ž . Ž .Ž .22�

� � 2� 1 � � w x � w yŽ . Ž . Ž .

� Ž . Ž . � Ž .for each �� 0 with C � dil �� sup � x � � y 	d x, y � �. Hence,2 x � y

1 � �
r 2 2 2EE w , w � C w x � w yŽ . Ž . Ž .˜ ˜ HH28� Ž .Y B xr

N x � N yŽ . Ž .
� m dy m dxŽ . Ž .

m B x �m B y' Ž . Ž .Ž . Ž .r r

21 � � w x � w yŽ . Ž .
� HH4 d x , yŽ .Ž .Y B xr
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N x � N yŽ . Ž .
� m dy m dxŽ . Ž .

m B x �m B y' Ž . Ž .Ž . Ž .r r

1 � �
r� C � 1 � � EE w , wŽ . Ž .3�

LipŽ . � � � �for each w � CC X with w � 1, each r � 0, R and each �� 0 with0

m B xŽ .Ž .r2C � C ess-sup N x sup sup � �.Ž .3 2 (m B yŽ .Ž .Ž . r�R Ž . rx�B Y x , y�B Yr R
Ž .d x , y �r

This implies

EE rn u � �w , u � �w � EE rn u , u � 2�EE rn u , w � � 2 EE rn w , wŽ . Ž . Ž . Ž .˜ ˜ ˜ ˜ ˜
� EE rn u , u � 2�EE rn u , wŽ . Ž .

� � 2 1 � � EE rn w , w � � 1 � � CŽ . Ž . Ž . 3

1
rn� EE u � � 1 � � w , u � � 1 � � wŽ . Ž .Ž .

1 � �
�

rn� EE u , u � � 1 � � CŽ . Ž . 31 � �Ž .
LipŽ . � �for all �� 0, w � CC X with w � 1 and n � � with r � R. Therefore,0 n

EE u , u � lim lim sup inf EE rn u � �w , u � �wŽ . Ž .
Lip��0 Ž .w�CC Yn�� 0

� �w �1

1
rn� lim lim sup inf EE u � � 1 � � w , u � � 1 � � wŽ . Ž .Ž .

Lip 1 � ���0 Ž .w�CC Xn�� 0
� �w �1

�
� C � � 1 � � CŽ .1 31 � �Ž .

� EE u , u .Ž .
Ž . Ž Ž .. �Similar actually easier arguments apply to QQ, DD QQ for details, see Sturm

Ž .�1997 . �

Ž . Ž . Ž 
 . Ž .REMARKS 3.5. i Assume that r � r . Then under 3.3 the limitn n n n
Ž Ž .. Ž Ž ..forms EE, DD EE and QQ, DD QQ are equivalent. They coincide provided

m B xŽ .Ž .r
3.4 lim sup sup � 1Ž .

m B yŽ .Ž .r�0 x , y�Y r
Ž .d x , y �r

for each compact set Y � X.
Ž . Ž .ii Condition 3.3 obviously follows from the doubling property

m B xŽ .Ž .2 r
lim sup sup � �

m B xŽ .Ž .r�0 x�Y r

� Ž .� Ž .for each compact set Y � X see also 4.8 . Actually, 3.3 is much weaker.
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Ž Ž ..In the sequel we restrict ourselves to the form EE, DD EE and we assume
Ž .for simplicity that 3.3 is satisfied.

Ž .COROLLARY 3.6. For each limit point EE in the sense of �-convergence of
Ž r . Ž .the family EE there exists an m-symmetric diffusion process X , Pr � 0, r � 0 t x

on X with the properties

�A t3.5 E u X � e u xŽ . Ž . Ž .x t

LipŽ .for m-a.e. x � X and all u � CC X, m and0

1 2
3.6 EE u , u � lim E u X � u x m dxŽ . Ž . Ž . Ž . Ž .Ž .H x t2 tt�0

LipŽ .for all u � CC X, m . By each of these properties, the process is determined0
uniquely for quasi every starting point.

For the proof, see Theorem 3.3 together with Fukushima, Oshima and
Ž .Takeda 1994 .

0 0Ž . ŽDEFINITION 3.7. If EE or EE is a limit point in the sense of �-conver-
. Ž r .gence of the family EE then the diffusion process associated withr � 0, r � 0

Ž . Žthe Dirichlet form EE or EE, resp. is called the relaxed diffusion or the
. Ž .excited diffusion, resp. on X, d, m with normalization function N. If EE and

EE coincide, then the associated diffusion process is called the canonical
Ž .diffusion on X, d, m with normalization function N.

EXAMPLE 3.8. Let X � � n be the Euclidean space equipped with the
Ž . � � � � �metric d x, y � x � y for some �� 0, 1 and let m be the Lebesgue

measure on � n. Then

EE u , u � EE u , u � 0Ž . Ž .

2Ž .for all u � FF � FF � L X, m . The properly associated diffusion process
Ž .X , P is just the process which always stays at the starting place. That is,t x

P X � x , � t 
 0 � 1.Ž .x t

Ž . nREMARKS 3.9. i Let X be an open subset of � and let m be the
Lebesgue measure on X. Then according to the second Beurling�Deny for-

� Ž .�mula cf. Fukushima, Oshima and Takeda 1994 each limit point EE of the
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Ž r . �Ž .family EE for r � 0 can be represented on CC X uniquely asr � 0 0

n1 �u x � v xŽ . Ž .
EE u , v � d�Ž . Ý H i j2 � x � xX i ji , j�1

with some uniquely determined Radon measures � , i, j � 1, . . . , n on X.i j
Ž . Ž .ii If in addition d is the Euclidean metric on X and N � CC X , then

these measures � are absolutely continuous with a densityi j

N xŽ .
a x � � .Ž .i j i jn

See Section 8.
Ž .iii We emphasize that the difference between two limit points EE � and EE �

Ž r .of the family EE for r � 0 never is caused by different ‘‘boundaryr � 0
conditions.’’ Actually, both correspond to the same ‘‘Dirichlet boundary condi-

LipŽ .tion’’ on X in the sense that both have the same form core CC X . If0
different limit points EE � and EE � exist, then they really have different

Ž .‘‘diffusion coefficients’’ � .i j i, j

4. The Measure Contraction Property.

4.A. The definition. Throughout the sequel, the basic assumptions on
Ž . Ž .X, d, m from Section 2.A are still in force. Recall that m dy �r

Ž .1	 m B y m dy .' Ž .Ž .ž /r

Ž .DEFINITION 4.1. We say that the metric measured space X, d, m satis-
Ž .fies the weak Measure Contraction Property MCP with exceptional set iff

Ž .there is a closed set Z � X with m Z � 0 such that for each compact set
Y � X � Z there exist numbers R � 0, �� � and �� � and m2-measurable

Ž � �.maps � : X � X � X for all t � 0, 1 with the following properties.t

Ž . Ž . � �i For m-a.e. x, y � Y with d x, y � R and all s, t � 0, 1 ,

� x , y � x , � x , y �� y , x ,Ž . Ž . Ž .0 t 1�t
4.1Ž .

� x ,� x , y �� x , y ,Ž . Ž .Ž .s t st

� �4.2 d � x , y ,� x , y � � s � t d x , y ;Ž . Ž . Ž . Ž .Ž .s t

Ž . Ž .ii For all r � R, m-a.e. x � Y, all m-measurable A � B x � Y and allr
� �t � 0, 1 ,

m A m � x , AŽ . Ž .Ž .r r t t
4.3 �� .Ž .

m B x m B x' 'Ž . Ž .Ž . Ž .r r t

Ž .Of course, the constants R, �, � are not unique. Let R Y be the supremum
of such R. Don’t worry about the � . In most cases, one can choose �� 1.

Ž .We say that X, d, m satisfies the strong Measure Contraction Property
with exceptional set Z iff for each compact Y � X � Z the constants � and �
can be chosen arbitrarily close to 1 and if for every ��� 1 there exists some
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Ž .� �� 1 such that for m-a.e. x � Y and all r � R with B x � Y,r

4.4 m B x ���m B x .Ž . Ž . Ž .Ž . Ž .r� � r

In this case, without restriction we will always assume that ���� and
�� � �.

Ž .If the above conditions are satisfied with Z � � then we say that X, d, m
Ž .satisfies the weak or strong, resp. Measure Contraction Property without

exceptional set.

� Ž . Ž .� Ž . Ž . Ž .REMARKS 4.2 Concerning 4.1 and 4.2 . i Assume that 4.1 and 4.2
Ž .hold true for all Y � X with R � � and �� 1. Then X, d is a length space.

2 Ž . 2 Ž . � � Ž .For m -a.e. x, y � X , the map � x, y : 0, 1 � X, t �� x, y is at
geodesic connecting x and y. In general, this map is a quasi geodesic.

Ž . Ž . Ž . 2ii If X, d is a geodesic space then for all x, y � X there exists a
Ž . � � Ž . Ž .geodesic 	� 	 x, y : 0, 1 � X joining x and y. Conditions 4.1 and 4.2

Ž . Ž .with �� 1 are obviously satisfied if this geodesic 	 x, y can be chosen as a
measurable function of x and y.

Ž . Ž . Ž . Ž . Ž .iii Assumption 4.1 and 4.2 with �� 1 are always satisfied if X, d is
a geodesic space with curvature in the sense of Alexandrov being locally
bounded from above. In this case, on each compact set Y � X there is

Ž . Ž .a strictly positive injectivity radius R Y in the sense that for each x, y �
Ž . Ž .Y � Y with d x, y � R Y there exists exactly one geodesic connecting x

�and y and this geodesic depends continuously on x and y Ghys and de la
Ž . �Harpe 1990 , Chapter 10 .

� Ž .� Ž .REMARKS 4.3 Concerning 4.3 . i Assume that for all r � R and for
Ž .m-a.e. x � Y and y � X with d x, y � � r,

1 m B yŽ .Ž .r
4.5 � � � .Ž .

� m B xŽ .Ž .r

Ž .Then 4.3 implies

m A m � x , AŽ . Ž .Ž .t
4.6 ��*Ž .

m B x m B xŽ . Ž .Ž . Ž .r r t

Ž . Ž .with �* � � � � and, conversely, 4.6 implies 4.3 with �� � � �*. In the
Ž .case �� 1, property 4.6 has an obvious geometric�measure theoretic mean-

ing: it is a control for distortions of the volume of sets under the ‘‘contraction’’
Ž . Ž .� x, � : X � X of the state space. The LHS of 4.6 measures the proportiont

Ž .of A in B x whereas the RHS measures the proportion of the image of A inr
Ž .the image of B x .r

Ž . � � 2 Ž .ii For t � 0, 1 let � : X � X be a map with the properties 4.1 andt
Ž . � �4.2 from Definition 4.1 and assume for simplicity that �� 1. For s, t � 0, 1
define

� : X 2 � X 2 , x , y � � x , y ,� x , y .Ž . Ž . Ž .Ž .s , t s t
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� Ž . � � �Ž .By the way, note that 4.2 states that d�� � � s � t d a.e. on x, y �s, t
2 Ž . 4 � 2Ž . Ž . Ž .X : d x, y � R . Consider the measure m dx dy � m dx � m dy onr r r
2 Ž .X . Then 4.3 implies

4.7 m2 A ��*m2 � AŽ . Ž . Ž .Ž .r � s�t � r s , t

2 �Ž . 2 Ž . 4for all m -measurable, symmetric A � x, y � Y : d x, y � r and all
� � 2 Žs, t � 0, 1 with �* �� . The proof of this fact is implicitly contained in the

. Ž .proof of Lemma 5.2 below. Conversely, if 4.7 holds true with s � 0 for all
2 �Ž . 2 Ž . 4 � �m -measurable A � x, y � Y : d x, y � r and t � 0, 1 , then it implies

Ž . Ž .4.3 with ���*. Property 4.7 is exactly that required in the sequel.

� Ž .� Ž . Ž .REMARK 4.4 Concerning 4.4 . Property 4.4 as well as 4.5 follow from
Ž . Ž .4.3 ; see Corollary 4.6 below. The point, however, is that �� 1 in 4.3 does

Ž . Ž .not imply ��� 1 in 4.4 nor �� 1 in 4.5 . On the other hand, if �� 1, then
Ž .we can modify our approach in order to dispense entirely with 4.4 .

Ž .PROPOSITION 4.5. The property 4.3 of the weak MCP with exceptional set
Z implies the volume doubling property on X � Z. That is, for each compact set
Y there exist constants M and R � 0 such that

4.8 m B x � Mm B xŽ . Ž . Ž .Ž . Ž .2 r r

� � Ž .for all r � 0, R and m-a.e. x � Y. The same holds true with 4.6 in the place
Ž .of 4.3 .

The number M is called doubling constant.

PROOF. Without restriction Y � �. Fix a compact set Y �� X � Z and
� Ž .� Ž .some R � 0, R Y � with B Y � Y �. Let R, � and � be the constants from2 R

Ž . Ž .the MCP for the compact set Y � and put R � R	 3� . Apply 4.3 with0
Ž . Ž .t � 3r	R to the sets A � B x and B x in order to obtainR R0

m B x1 1 1 m dyŽ . Ž .Ž .R 0 � H
� m Y � �Ž . Ž .B xm B x m B y' 'Ž . Ž .Ž . Ž .RR R0

m � x , B xm B x m B x1 Ž .Ž . Ž .Ž .Ž . Ž .žRt t RR R Rt R t�00 0� � �
� m B x m B x m B x' ' 'Ž . Ž . Ž .Ž . Ž . Ž .R R t R t

1 m dy m B xŽ . Ž .Ž .r� � .H m B xŽ .Ž . Ž .B xm B x m B y' 'Ž . Ž .Ž . Ž . 2 rr3r 3r

Finally, note that

inf m B x 
 inf m B x � 0Ž . Ž .Ž . Ž .R R 	2 j0 0x�Y j�1, . . . , k

� Ž . �since Y is covered by finitely many nonempty B x , j � 1, . . . , k . TheR 	2 j0
Ž . Ž .proof of 4.6 � 4.8 is essentially the same. �
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Ž . Ž .COROLLARY 4.6. Conditions 4.3 and 4.6 are equivalent. Each of them
Ž . � Ž .�implies 4.4 as well as 4.5 .

Ž .4.B. Example: Riemannian manifolds. Let X, g be an n-dimensional
Riemannian manifold. Let d be the Riemannian distance and m be the

Ž .Riemannian volume on X. Obviously, X, d, m satisfies the basic assump-
tions from Section 2.A.

Ž .PROPOSITION 4.7. X, d, m satisfies the strong MCP without exceptional
set.

PROOF. Fix a compact set Y � X, let R � 0 be a lower bound for the
Ž .injectivity radius on Y and choose �
 0 such that � n � 1 � is a lower

Ž .bound for the Ricci curvature on B Y .R
Ž . Ž . � �For x, y � Y with d x, y � R, let � x, y : 0, 1 � X be the unique

Ž Ž . Ž .minimal geodesic connecting x and y i.e., with � x, y � x and � x, y �0 1
. � � Ž .y . For all other x, y � X and all t � 0, 1 , put � x, y � z with some fixedt

z � X. This choice of geodesics depends in a measurable way on x and y and
Ž . Ž .obviously satisfies 4.1 and 4.2 .

n�1' 'Ž . � Ž . �If �� 0, let S r � c sinh r � 	 � be the area of the sphere of� n
radius r � 0 in the space of constant sectional curvature �� and put

Ž . n�1 nS r � c � r . Here c denotes the area of the unit sphere in � . The0 n n
Bishop volume comparison theorem implies that

R
m � x , A � t 1 exp �� det AA t� , � d� � d�Ž . Ž . Ž . Ž .Ž . H Ht A x

0

S t�Ž .R �
 t 1 exp �� det AA � , � d� � d�Ž . Ž . Ž .H H A xS �Ž .0 �

S trŽ .�
 t m AŽ .
S rŽ .�

Ž . � � � Ž .for all r � R, x � Y, A � B x and all t � 0, 1 Chavel 1993 ; Theoremr
�3.10 . That is,

m A m � x , AŽ . Ž .Ž .t
4.9 � .Ž .

rS r trS trŽ . Ž .� �

The Bishop and Bishop�Gunther volume comparison theorems imply that¨

rS r 	nŽ .� � 1 for r � 0
m B xŽ .Ž .r

Ž . Ž .uniformly in x � Y. This proves 4.3 and 4.4 . �

Ž Ž ..4.C. Example: uniformly elliptic matrices. Let a � a x be ai j i, j�1, . . . , n
uniformly elliptic, symmetric matrix on � n, n 
 1, with bounded measurable
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Ž . Ž .coefficients. That is, x � a x is a bounded, Lebesgue measurable functioni j
n � Ž . � 42 � Ž . Ž Ž ..on � for each i, j � 1, . . . , n and a x � a x is a symmet-i j i, j�1, . . . , n

Ž n.ric n � n-matrix for each x � � satisfying

�1 � � 2 � � 24.10 � � � � a x �� � �Ž . Ž .
for every x � � n and every �� � n with some constant �� 0. Moreover, let b

Ž . n �1 Ž .be a Lebesgue measurable function on � with � � b x �� for every
x � � n with some constant �� 0. The function b defines a measure m onb

n Ž . Ž . n� by m dx � b x dx and the matrix a defines a metric d on � byb a

1 � � n4.11 d x , y � inf L 	 : 	� CC 0, 1 � � , 	 0 � x , 	 1 � y ,Ž . Ž . Ž . Ž . Ž .� 4Ž .a a

where

1 �1'4.12 L 	 � 	 a 	 	 dt .Ž . Ž . Ž .˙ ˙Ha t t t
0

Ž Ž . Ž . . nHere 	 	 	 t and 	 	 d	dt 	 . Obviously, d is a length metric on �˙t t t a
comparable with the Euclidean metric according to

�1	2 � � 1	2 � �4.13 � x � y � d x , y � � x � yŽ . Ž .a

for all x, y � � n. Therefore, obviously, the basic assumptions from Section
Ž n .2.A are satisfied for the triplet � , d , m .a b

Ž n .PROPOSITION 4.8. The metric measured space � , d , m satisfies thea b
weak MCP without exceptional set.

Ž .PROOF. In order to see this, choose � x, y to be the Euclidean geodesic
Ž . Ž . Ž .connecting x and y, that is, � x, y � x � t y � x . Then obviously 4.1 ,t

Ž . Ž 4. Ž . Ž 2 n.4.3 with any �
� and 4.4 with any ���� are satisfied. More-
Ž . Ž . Ž .over, 4.2 with �� � follows from 4.13 according to

d � x , y ,� x , y � d x � s y � x , x � t y � xŽ . Ž . Ž . Ž .Ž .Ž .a s t a

1	2 � � � � � �� � s � t y � x � � s � t d x , y . �Ž .a

Ž n .PROPOSITION 4.9. Let � , d , m as before and assume in addition nowa b
Ž . Ž . n Žthat x � b x as well as x � a x are continuous functions on � for eachi j

Ž . � 42 . Ž n .i, j � 1, . . . , n . Then � , d , m satisfies the strong MCP without excep-a b
tional set.

The proof will be decomposed into several steps.

LEMMA 4.10. For every compact set K � � n and every �� 1 there exists a
uniformly elliptic, symmetric matrix a on � n with CC�-coefficients such that˜

4.14 ��1	2d x , y � d x , y � � 1	2d x , yŽ . Ž . Ž . Ž .a a a˜ ˜

for all x, y � K.
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� � Ž n 2 .1	2 n � Ž . �PROOF. Let us write � � Ý � for a vector �� � and a x �i�1 i
Ž n Ž .2 .1	2 Ž . n�n �1 � Ž . �Ý a x for the matrix a x � � . Obviously, � � a x � n �i, j�1 i j

� Ž . � Ž .max a x � n � � according to 4.10 .i, j i j
�Ž n. � � Ž . Ž .Let �� CC � with �
 0, supp � � B 0 and H� x dx � 1 and define1

y
Žk .a x � a x � � y dy.Ž . Ž .Hi j i j ž /kŽ .B 01

Žk . Ž Žk ..Then one easily checks that a � a is a uniformly elliptici j i, j�1, . . . , n
matrix with

�1 � � 2 Žk . � � 24.15 � � � � a x �� � �Ž . Ž .
for each k � �. For all i, j � 1, . . . , n the functions aŽk . converge for k � �i j
locally uniformly to a . More precisely, on each compact set K �� � n,i j

1
Žk .� �a x � a x � fŽ . Ž .i j i j ž /k

Ž . � � Ž .for all x � K �, k � � and i, j � 1, . . . , n with f : r � f r � max a y �i j
Ž . � Ž Ž . � � 4a y� : y, y�� B K � , y � y� � r, i, j � 1, . . . , n being the modulus ofi j 1

Ž .continuity of a on B K � . Therefore,1

�1Žk . �1� a x �� � a x �Ž . Ž .
�1Žk . Žk . �1� � a x a x � a x a x �Ž . Ž . Ž . Ž .Ž .

�1 �12 Žk . Žk .� � a x a x � a x a xŽ . Ž . Ž . Ž .
2 2 3� � � n f 1	kŽ .

� Žk .�1
� 3 3� � a x � � n f 1	k .Ž . Ž .

Hence,
�1 �1�1 3 3 Žk . Žk .� � � � � �� a x � � 1 � � n f 1	k � a x � � � � a x �Ž . Ž . Ž . Ž .

if k is chosen sufficiently large. Similarly,

� Žk .�1
� � �1 �� a x � � � � a x � .Ž . Ž .

That is, with a � aŽk .,˜
�1 � �1 � � �1 � � �1 �4.16 � � � a x � � � a x � � � � a x �Ž . Ž . Ž . Ž .˜ ˜

n Ž .for all x � K � and �� � . Inequalities 4.16 immediately imply

4.17 ��1	2L 	 � L 	 � � 1	2L 	Ž . Ž . Ž . Ž .a a a˜ ˜
1Ž� � . Ž .for all arcs 	� CC 0, 1 � K � . Note that the arc may not leave K �.

n idŽ . �Now fix a compact set K � � , choose an Euclidean ball B z � x:r
id id� � 4 Ž . Ž .x � z � r with K � B z and put K �� B z . Then for an appro-r Ž1�2�.r

Ž .priate choice of a, 4.16 holds true. Let x, y � K and consider an arc 	�˜
31Ž� � . Ž . Ž .CC 0, 1 � X connecting x and y and having length L 	 � d x, y . Ifa a2

� �	 � K � for some t � 0, 1 then there would exist t � t with 	 , 	 � �K �t 1 2 t t1 2
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� � � �and 	 � K � for all t � 0, t � t , 1 . This would implyt 1 2

�1	2 � � � �L 	 
 d x , 	 � d 	 , y 
 � x � 	 � 	 � yŽ . Ž . Ž . Ž .a a t a t t t1 2 1 2

4�1	2
 � 4�r 
 2 d x , y 
 L 	 ,Ž . Ž .a a3

which is a contradiction. Therefore, all such arcs stay in K �. Hence, the
Ž .estimate 4.17 can be applied in order to estimate

1 � �d x , y � inf L 	 : 	� CC 0, 1 � XŽ . Ž .� 4Ž .a a

1 � �� inf L 	 : 	� CC 0, 1 � K �Ž .� 4Ž .a

�1	2 1 � �
 � inf L 	 : 	� CC 0, 1 � K �Ž .� 4Ž .ã

�1	2 1 � � �1	2
 � inf L 	 : 	� CC 0, 1 � X � � d x , y .Ž . Ž .� 4Ž .a a˜ ˜

Interchanging the roles of a and a yields˜
d x , y 
 ��1	2d x , y .Ž . Ž .a a˜

This proves the claim. �

˜ Ž .LEMMA 4.11. Let d � d with a from Lemma 4.10 and put m dx �˜ ˜ã
Ž Ž ..�1	2 Ž . Ž . Ž .det a x dx and m dx � m dx � b x dx with b from Proposition 4.9.˜ b

n ˜ n ˜Ž . Ž .Then � , d, m as well as � , d, m satisfies the strong MCP without˜
exceptional set.

Ž . �1Ž . Ž . Ž n .PROOF. Let g x � a x be the inverse of the matrix a x . Then � , g˜ ˜
˜is a smooth Riemannian manifold with Riemannian distance d � d andã

�1	2 n ˜Ž . Ž Ž .. Ž .Riemannian volume m dx � det a x dx. Hence, � , d, m satisfies˜ ˜ ˜
the strong MCP without exceptional set according to Proposition 4.7.

n ˜Ž .In order to prove the MCP for the triplet � , d, m , we choose t �� to bet
Ž . Ž .minimal geodesics w.r.t. the metric d. This proves 4.1 and 4.2 with �� 1.

1Ž . Ž . Ž . Ž . Ž .It remains to prove 4.3 and 4.4 . Let � x � log b x � log det a x . Note˜2
Ž . � Ž x . Ž .that m dx � e m dx . Moreover, note that � is continuous. In particular,˜

n � Ž .for any compact K � � and any 
� 0 there exists R � 0 such that � x �
˜Ž . � Ž .� y � 
 for all x, y � K with d x, y � R. Therefore, for all r � R, a.e.

n ˜ ˜Ž . � Ž . 4x � � and all A � B x � y: d x, y � r � K,r

m A m A m � x , AŽ . Ž . Ž .Ž .˜ ˜r r r t t2
 2
 ˜� e � e �
˜ ˜ ˜m B x m B x m B x' ' 'Ž . Ž . Ž .˜ ˜Ž . Ž . Ž .r r r t

m � x , A m � x , AŽ . Ž .Ž . Ž .r t t r t t4
 ˜� e � ��
˜ ˜m B x m B x' 'Ž . Ž .Ž . Ž .r t r t

4
 ˜ ˜ n ˜Ž .with �� e � and � being the constant from the MCP for � , d, m .˜
Similarly,

˜ ˜m B x m B xŽ . Ž .˜Ž . Ž .r� � r� �2
 2
 ˜� e � e ���.˜ ˜m B x m B xŽ . Ž .˜Ž . Ž .r r
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n ˜Ž .According to the first part of the proof, � , d, m satisfies the strong MCP.˜
˜ ŽHence, � and in turn also � can be chosen arbitrarily close to 1 if R is

.chosen sufficiently small . This proves the claim. �

PROOF OF PROPOSITION 4.9. Fix a compact set K � � n and numbers �� 1
id idŽ . Ž .and �� 1. Let K �� B z where B z is some Euclidean ball contain-Ž1�2�.r r

ing K. According to Lemma 4.10 there exists a smooth matrix a on � n with˜

��1	2d x , y � d x , y � � 1	2d x , yŽ . Ž . Ž .a a a˜ ˜

for all x, y � K �. Choosing t �� to be minimal geodesics w.r.t. the metrict
Ž . Ž . Ž .d immediately yields 4.1 . Moreover, 4.3 and 4.4 were proved inã

Ž .Lemma 4.11. Finally, note that x, y � K implies � x, y � K � for all t �t
� �0, 1 . Hence,

d � x , y ,� x , y � � 1	2d � x , y ,� x , yŽ . Ž . Ž . Ž .Ž . Ž .a s t a s t˜

1	2 � � � �� � s � t d x , y � � s � t d x , yŽ . Ž .a a˜

� � Ž .for all x, y � K and s, t � 0, 1 . That is, 4.2 holds true. �

4.D. Example: degenerate elliptic matrices. As in the previous section, let
n Ž Ž ..X � � and let d � d be given by a matrix a � a x accordinga i j i, j�1, . . . , n

Ž . Ž .to 4.11 and 4.12 . However, now we do not assume that this matrix is
Ž .uniformly or strictly elliptic. We are interested in degenerate elliptic matri-

ces. We do not treat the general case but treat some particular cases. We
restrict ourselves to n � 2 and matrices of the form

1 0
a x �Ž . 2ž /0 � xŽ .1

1 Ž .with some function � on � . We always choose m dx � dx.

Ž . � 4 1PROPOSITION 4.12. Let �� CC � with �� 0 discrete in � . Then the
Ž 2 .metric measured space � , d , m satisfies the strong MCP with exceptionala

set.

PROOF. Without restriction, � is bounded and nonnegative. Let Z �1
� Ž . 4 Žx � �: � x � 0 and Z � Z � �. Then Z is closed w.r.t. the Euclid-1 1 1

. Ž . 2ean topology and m Z � 0. Of course, on � � Z the matrix a is nondegen-
erate. Hence, on �2 � Z the topology induced by d � d coincides with thea
Euclidean topology. In particular, Z is closed w.r.t. the topology induced by d.

2 K � Ž . Ž . 4Fix a compact set K � � � Z and let � � inf � x : x � x , x � K .1 1 2
K K � Ž . K 4Put � � �
 � on � and K �� x : � x 
 � � � � K. Define a matrix1 1

K K Ž . K Ž . K Ž . K Ž . K Ž .2a by a x � 1, a x � a x � 0 and a x � � x . Obviously, this11 12 21 22 1
matrix is uniformly elliptic and has bounded continuous coefficients. It satis-

K Ž . Ž . 2fies a x 
 a x for all x � � with equality if x � K �. The associated
K K Ž . Ž . 2

Kmetric d � d satisfies d x, y � d x, y for all x, y � � with equalitya
if the d K-geodesic arc connecting x and y does not leave K �.
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K Ž .KChoose t �� to be geodesics in the metric d � d . Then obviously 4.1t a
is satisfied.


 
 � �Observe that each component K of K � is of the form K � s , t � �j j j j
which is a convex set in the metric d K. Therefore, if x, y � K lie in the same

K Ž .component of K � then the d -geodesic t �� x, y connecting them will stayt
� �in K � for all t � 0, 1 . Choose R � 0 sufficiently small such that all x, y � K

K Ž .with d x, y � R lie in the same component of K �. Then all x, y � K with
Ž .d x, y � R lie in the same component of K � and

d � x , y ,� x , y � d K � x , y ,� x , yŽ . Ž . Ž . Ž .Ž . Ž .s t s t

� � K � �� s � t d x , y � s � t d x , y .Ž . Ž .

Ž . Ž .This is 4.2 with �� 1. Moreover, it follows that the ball B x in the metricr
K Ž . Kd and the ball B x in the metric d coincide for each x � K and eachr

Ž . Ž . Ž .r � R with B x � K. Therefore, it suffices to verify 4.3 and 4.4 with dr
K Ž . Ž . Žreplaced by d . But in this case, 4.3 and 4.4 hold true with � arbitrarily

.close to 1 according to Proposition 4.9. �

Ž . Ž . kREMARKS 4.13. i If � x � x for some k � � then the degenerate1 1
elliptic operator A associated with the diffusion matrix a is called Grushin
operator. It is a Hormander type operator, that is, it is the sum of squares of¨

Ž Ž . kŽ ..vector fields namely, of X � �	� x and X � x �	� x .1 1 2 1 2
Ž . Ž . Ž 2 .ii If � x � exp �1	x then the associated operator is highly degener-1 1

ate; it is not subelliptic.

4.E. Example: manifolds with corners.

A POSITIVELY CURVED CORNER. Let the two-dimensional set X be given by

X � � � � � � � � �3Ž .� � �

Ž 2 .i.e., X can be obtained by glueing together three copies of � and let d be�
the length metric on X derived from the Euclidean metric on � n; that is,

� �4.18 d x , y � inf L 	 : 	� CC 0, 1 � X , 	 0 � x , 	 1 � y� 4Ž . Ž . Ž . Ž . Ž .Ž .

Ž . 3 � Ž .�with L 	 being the Euclidean length of an arc 	 in � see 2.1 . Then
Ž . Žobviously X, d is a geodesic space with curvature in the sense of Alexan-

. Ž .drov being �� at the origin 0, 0, 0 and curvature being 0 elsewhere. Choose
m to be the two-dimensional Lebesgue measure on X.

Ž .PROPOSITION 4.14. X, d, m satisfies the strong MCP with exceptional set
and the weak MCP without exceptional set.

Ž .PROOF. Obviously, X, d, m satisfies the strong MCP with exceptional set
�Ž .4 ŽZ � 0, 0, 0 and ���� 1 since outside of the origin everything is locally
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Ž 2 � � ..the same as for the Euclidean triplet � , � , dx . In order to prove the weak
ŽMCP without exceptional set, let t �� be geodesics w.r.t. d. Then at

.straightforward generalization of the Bishop�Gromov comparison theorem
implies

m A m � x , AŽ . Ž .Ž .t�2 2r  rt  Ž .
Ž .for all x � X, r � 0 and A � B x . Moreover, obviouslyr

3 m B xŽ .Ž .r� � 124 r  

for all x � X and r � 0. This yields the claim with �� 4	3. �

� �This example can be generalized in a straightforward way. For �� 0, 2 ,
let the two-dimensional set X � X be obtained by glueing together two�

copies of the sector

X 0 � x � r � cos � , r � sin � � �2 : 0 � �� �� 4Ž .�

along their boundaries. For instance, X can be identified with the set X 	2
from above, X can be identified with �2 and X can be identified with 3 	2

X � � �2 � � � �2 � � � �3Ž .� �

Ž 2 .which is obtained by glueing together five copies of � . On each of these�
sets X there exists a ‘‘natural’’ distance d and a ‘‘natural’’ volume measure�

� �m. Then for any �� 0, , the assertions of Proposition 4.14 also hold true
Ž .for the triplets X , d, m .�

Ž .A NEGATIVELY CURVED CORNER. The strong MCP with exceptional set
Ž .actually is also true for the metric measured spaces X , d, m with ���

� � Ž . , 2 in which case the geodesic spaces X , d have curvature �� at the�

origin. However, the MCP without exceptional set no longer holds true. Let us
explain this effect in a more simple example.

Let X be obtained by glueing two copies of �2 at the origin and let the
metric d and the measure m on X be derived from the corresponding

2 � 4Euclidean quantities on � . More explicitly, let X � o � X � X with� �
Ž 2 �Ž .4 � 4 Ž . Ž . 2X � � � 0, 0 � �1 and o � 0, 0, �1 � 0, 0, �1 . Then for � , !� ��

� 4and " , #� �1 ,

� ��� ! , "#� �1,
d � , " , ! , # �Ž . Ž .Ž . ½ � � � �� � ! , "#� �1.

Ž . Ž .Of course, again X, d, m satisfies the strong MCP with exceptional set.

Ž . Ž .PROPOSITION 4.15. X, d, m does not satisfy the weak MCP without
exceptional set.
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Ž .PROOF. Assume that the weak MCP holds true without exceptional set.
Ž .Let B x be a ball in X which contains the origin o � X but which is notr

Ž .centered at the origin, that is, 0 � d x, o � r. Without restriction, x � X ,�
Ž . � Ž . � �4say x � � , �1 . Let W � � x, o : t � 0, 1 be the graph of the quasit
Ž . Ž .geodesic � x, o connecting x with the origin o and let A � B x � X �r �

�Ž . 2 � � � �4 Ž . � �!, �1 : !� � , ! � r � � . We claim that � x, A � W for all t � � 	� r.t
Ž .Namely, for each y � A, the map t �� x, y is a continuous arc connectingt

� � Ž .x � X and y � X . Hence, for some t � 0, 1 we must have � x, y � o.� � y t y
Ž . � � Ž .From 4.2 it follows that t 
 � 	� r. But according to 4.1 , the graph ofy

Ž . � Ž Ž .. � Ž . �� x, y coincides with the graph of � x,� x, y �� x, o ��0, t � �0, 1� �0, 1�ty y
Ž Ž .. Ž .W. This proves the above claim. Therefore, m � x, A � m W � 0 for allt

� � Ž . Ž . Ž � �.2t � � 	 � r whereas of course m A � r � �  � 0. This yields a contra-
Ž . � Ž Ž .. Ž 2 . �diction to 4.3 since 1 � m B y 	 s  � 2 for all s � 0 and all y � X . �s

4.F. Example: manifolds with boundaries.

˜Ž .DIRICHLET OR ABSORBING BOUNDARY. Let X, g be a Riemannian manifold˜
˜with Riemannian metric d and Riemannian volume m and let X be an open˜

˜ �subset of X. Choose m � m . There are two ‘‘natural’’ ways to define a˜ X
˜ ˜ �̃metric d on X derived from the metric d on X, namely, either d � d orX

˜ ˜Ž .d � d ; see Example 2.2 ii . Recall that d is the length metric derived fromX X
˜ ˜� Ž .d and that both coincide if and only if X is a convex subset of X . With dX

Ž .being either of these two metrics we always obtain that X, d, m satisfies the
strong MCP without exceptional set.

˜ ˜Ž .NEUMANN OR REFLECTING BOUNDARY. Let X, g , d and m as before and˜ ˜
˜ ˜ ˜� �now let X be a closed, convex subset of X. Choose m � m and d � d � d .˜ X X X

Ž .Then X, d, m satisfies the weak MCP without exceptional set and the strong
MCP with exceptional set �X. Here the convexity is crucial.

4.G. Example: glueing together of manifolds.

Ž .THE GENERAL PRINCIPLE. Let X, d be a locally compact length space and
let m be a Radon measure on X. Assume that there exist Riemannian

Ž . Ž . �manifolds Y , g , i � I without boundary with the properties that d isYi i i

�the Riemannian distance on Y and m is the Riemannian volume measureYi i

Ž . Ž . Ž .on Y for each i � I and that m X � � Y � 0. Then X, d, m satisfiesi i� I i
the strong MCP with exceptional set. Note that the Y may have differenti
dimensions.

�Ž . 2 4A LINE AND A WEDGE. Let Y � x , x � � : x � 0, x � 0 , Y �1 1 2 1 2 2
�Ž . 2 � � 4 �Ž .4x , x � � : x � x , Z � 0, 0 and X � Y � Y � Z. Furthermore, let1 2 2 1 1 2
d be the length metric on X obtained from the Euclidean metric on �2 and
let m be the sum of the one-dimensional Lebesgue measure on Y and of the1

Ž .two-dimensional Lebesgue measure on Y . Then X, d, m satisfies the strong2
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MCP with exceptional set Z. From the probabilistic point of view, however,
this example is of minor interest, since the associated diffusion process will

Ž .never reach Z and thus Y if it starts in Y .1 2
Alternative constructions. In order to replace the Dirichlet boundary condi-

tion on �Y � Z by a Neumann boundary condition, let us choose X �� X �2
Ž . Ž .Y � Y and extend d and m as before on X �. Then X �, d, m satisfies the1 2

weak MCP with exceptional set Z and the strong MCP with exceptional set
�Y . Instead of being killed at the boundary �Y � Z, the process will be2 2
reflected there. But still it will never reach Z if it starts in Y .2

Another construction. If we want to ensure that the diffusion process will
reach the origin if it starts inside of the wedge, we have to produce a drift
inside of the wedge towards the origin. This can be done by modifying the
reference measure m. Let us now choose

� 1� dx , x � 0,Ž .1 1� 1m� dx �Ž . 2� dx , x � 0.Ž .� 1� �x

Ž .Then as before X �, d, m� satisfies the weak MCP with exceptional set Z and
the strong MCP with exceptional set �Y .2

THREE HALF PLANES. Let X be the union of three half planes Y , Y , Y1 2 3
� 4 Žbeing copies of � � � glued together at the ‘‘y-axis’’ 0 � �. More con-�

Ž � 4. Ž� 4 . 3 .cretely, let X � � � � � 0 � 0 � � � � � � . Then as before the�
Ž .strong MCP holds with exceptional set but obviously also the weak MCP
holds without exceptional set, namely, with �� 1 and �� 3	2. Note that
Ž . ŽX,d is a geodesic space with curvature �� on the singular line and

.curvature 0 elsewhere .

5. The Measure Contraction Property and pointwise convergence
of the approximating forms. Throughout this section, we require that
Ž .X, d, m satisfies the weak MCP with an exceptional set which will be fixed
and denoted by Z.

5.A. Convergence of the approximating forms on compact sets. We fix a
relatively compact set Y with Y � X � Z, numbers R, �, � and a map �
satisfying the conditions from Definition 4.1. We put

Q Y � x , y � X � X : d � x , y ,� x , y � d � x , y , X � Y�Ž . Ž . Ž . Ž . Ž .Ž . Ž .s t u

� �for all s, t , u � 0, 1 .4
Ž . Ž . Ž . Ž Ž ..Note that x, y � Q Y together with d x, y � R implies x,� x, y �t

Ž . � � �Q Y for all t � 0, 1 . If Y is convex and �� 1, then the latter property also
Ž . Ž .holds for Y � Y in the place of Q Y . The reason for using Q Y is to avoid

�convexity assumptions on Y which might be very restrictive. Moreover, note
Ž . Ž . Ž .that for x, y � X � X with d x, y � R, the map t �� x, y is continu-t

�Ž . Ž . Ž . 4ous. Hence, the set x, y � Q Y : d x, y � R is measurable.
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2Ž .For u � L X, m define
21 u x � u yŽ . Ž .

rEE u , u � m dy m dxŽ . Ž . Ž .H HY r r
�2 d x , yŽ .Ž .	 Y�B xr

and
21 u x � u yŽ . Ž .

rEE u , u � 1 x , y m dy m dx .Ž . Ž . Ž . Ž .HHY , � QŽY . r r
�2 d x , yŽ .Ž .B xr

Ž r Ž r ..LEMMA 5.1. For each r � 0 and Y as above, EE , DD EE andY Y
Ž r Ž r .. 2Ž . LipŽ . ŽEE , DD EE are Dirichlet forms on L X, m . For each u � CC X withY , � Y , � 0

.compact support K and Lipschitz constant L ,

L2
r5.1 EE u , u � m B K .Ž . Ž . Ž .Ž .Y r2

The proof is trivial. See also the proof of Lemma 3.1.

Ž . 2Ž .LEMMA 5.2 Subpartitioning lemma . Let u � L X, m and r � R. For
any n � � and any partition 0 � t � t � ��� � t � 1,0 1 n

n
2r	� r Ž t �t .k k�15.2 EE u , u � C t � t EE u , uŽ . Ž . Ž . Ž .ÝY , � k k�1 Y , �

k�1

with C ��4� 2. In particular, for any n � �,

5.3 EE r	� 2
u , u � CEE r	 n u , uŽ . Ž . Ž .Y , � Y , �

� �and for any t � 0, 1 ,

5.4 EE r	� 2
u , u � Ct EE t r u , u � C 1 � t EE Ž1�t .r u , u .Ž . Ž . Ž . Ž . Ž .Y , � Y , � Y , �

Ž .PROOF. It obviously suffices to prove 5.2 . Let us fix u, r and the par-
� 4 Ž . Ž . Ž .�tition t , k � 0, . . . , n . Put w x, y � 1 x, y 1 y and note thatk r QŽY . B Ž x .r

Ž . Ž .w x, y � w y, x as well asr r

5.5 w x , y � w x ,� x , yŽ . Ž . Ž .Ž .r � t r t

� �for all t � 0, 1 . Therefore,
21 u x � u yŽ . Ž .

rEE u , u � w x , y m dy m dxŽ . Ž . Ž . Ž .HHY , � r r r2 d x , yŽ .
2n u � x , y � u � x , y1 Ž . Ž .Ž . Ž .t tk� 1 k� ÝHH2 d x , yŽ .k�1

�w x , y m dy m dxŽ . Ž . Ž .r r r

2n u � x , y � u � x , y1 1 Ž . Ž .Ž . Ž .t tk� 1 k� ÝHH2 t � t d x , yŽ .k k�1k�1

�w x , y m dy m dxŽ . Ž . Ž .r r r

� n �2 n 2 Žaccording to the elementary algebraic inequality Ý a � Ý a 	 t �k�1 k k�1 k k
.t .k�1
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Ž . Ž . Ž .Using 4.2 , then 4.1 and finally 5.5 we get
22 n u � x , y � u � x , y� Ž . Ž .Ž . Ž .t tk� 1 k��� � t � tŽ .ÝHH k k�12 d � x , y ,� x , yŽ . Ž .Ž .t tk�1 k� 1 k

�w x , y m dy m dxŽ . Ž . Ž .r r r

2
2 n u � x ,� x , y � u � x , y� Ž . Ž .Ž . Ž .ž /t 	 t t tk� 1 k k k� t � tŽ .Ý HHk k�12 d � x ,� x , y ,� x , yŽ . Ž .Ž .k�1 ž /t 	 t t tk� 1 k k k

�w x , y m dy m dxŽ . Ž . Ž .r r r

2
2 n u � x ,� x , y � u � x , y� Ž . Ž .Ž . Ž .ž /t 	 t t tk� 1 k k k� t � tŽ .Ý HHk k�12 d � x ,� x , y ,� x , yŽ . Ž .Ž .k�1 ž /t 	 t t tk� 1 k k k

�w x ,� x , y m dy m dx .Ž . Ž . Ž .Ž .� t r t r rk k

Ž .Now we are in position to apply 4.3 which yields
22 n u � x , y� � u y��� Ž . Ž .Ž .t 	 tk� 1 k��� � t � tŽ .Ý HHk k�12 d � x , y� , y�Ž .Ž .t 	 tk�1 k� 1 k

�w x , y� m dy� m dxŽ . Ž . Ž .� t r t r t rk k k

22 2 n u � x , y� � u y�� � Ž . Ž .Ž .t 	 tk� 1 k� t � tŽ .Ý HHk k�12 d � x , y� , y�Ž .Ž .t 	 tk�1 k� 1 k

�w y�, x m dx m dy� ,Ž . Ž . Ž .� t r � t r � t rk k k

Ž . Ž . Ž .the last inequality being a consequence of 4.4 . By 4.1 and 5.5 it follows
22 2 n u � y�, x � u y�� � Ž . Ž .Ž .1� t 	 tk� 1 k��� � t � tŽ .Ý HHk k�12 d � y�, x , y�Ž .Ž .1� t 	 tk�1 k� 1 k

�w 2 y�,� y�, xŽ .Ž .� Ž t �t .r 1�t 	 tk k�1 k�1 k

�m dx m dy�Ž . Ž .� t r � t rk k

Ž . Ž .which again allows applying 4.3 . Hence, together with 4.4
24 2 n� � u x� � u y�Ž . Ž .

��� � t � tŽ .Ý HHk k�12 d x�, y�Ž .k�1

�w 2 y�, x� m 2 dx�Ž . Ž .� Ž t �t .r � Ž t �t .rk k�1 k k�1

�m 2 dy�Ž .� Ž t �t .rk k�1

n
24 2 � Ž t �t .rk k�1�� � t � t EE u , u . �Ž . Ž .Ý k k�1 Y , �

k�1
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The basic idea for this subpartitioning lemma is well known. It is essen-
tially the same argument which implies that the ‘‘approximate length’’

n Ž Ž . Ž .. � �Ý d 	 t , 	 t of an arc 	 : 0, 1 � X increases if the partitioni�1 i�1 i
� 4 Ž .t , . . . , t is replaced by any subpartition. This leads to the definition 2.10 n

Ž .for the length L 	 of 	 . The same idea was used by Korevaar and Schoend
Ž . Ž .1993 and Jost 1994 to treat energy integrals for maps f : M � N where M

n Žis either the � or an n-dimensional Riemannian manifold with bounded
. ŽRicci curvature and N some ‘‘singular space’’ i.e., geodesic space with

.nonpositive curvature . In the present paper, however, the difficulties are not
Ž .caused by singular target spaces N which in our case is just � but by

Ž .singular domains M which in our case is the metric space X .

ŽLEMMA 5.3. There exist constants C � � with C arbitrarily close to 1
. 2Ž .under the strong MCP , R � 0 and �� 0 such that for all u � L X, m and0

all R � R and r � �R,0

5.6 EE R u , u � CEE r u , u .Ž . Ž . Ž .Y , � Y

PROOF. Fix R � 0, put R�� � 2R and observe that for any r � 0 there
Ž .exists k � � with R�	k � r � R�	 k � 1 . With this k one obtains

21 u x � u yŽ . Ž .
rEE u , u 
 1 x , y m dy m dxŽ . Ž . Ž . Ž .HHY QŽY . r r

�2 d x , yŽ .Ž .B xr

21 u x � u yŽ . Ž .

 HH

�2 d x , yŽ .Ž .B xR�	 k

�1 x , y m dy m dx .Ž . Ž . Ž .QŽY . R �	 k�1 R �	 k�1

Ž . 2 Ž .Now assume that r � 1 � 1	� � � R. Then 1	k � 1 � 1	� � and thus k	
Ž . Ž .k � 1 � � �. Hence, we may apply 4.4 to deduce

21 u x � u yŽ . Ž .
��� 
 1 x , y m dy m dxŽ . Ž . Ž .HH QŽY . R �	 k R �	 k

�2� d x , yŽ .BR�	 k Ž x .

1 1
R �	 k R� EE u , u 
 EE u , uŽ . Ž .Y , � Y , �� C

Ž .according to 5.3 .
Let us turn to the crucial question of �-convergence of EE r for r � 0.Y

Note that always �-lim inf ��� � lim inf ��� as well as �-lim sup ��� �
lim sup ��� and of course �-lim inf ��� � �-lim sup ��� .

ŽLEMMA 5.4. There exist constants C � � and R � 0 with C arbitrarily0
. 2Ž .close to 1 under the strong MCP such that for all u � L X, m and all

R � R ,0

5.7 EE R u , u � C � �- lim inf EE r u , u .Ž . Ž . Ž .Y , � Y
r�0
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Moreover,
5.8 lim sup EE r u , u � C � �- lim inf EE r u , u .Ž . Ž . Ž .Y Y

r�0r�0

Ž .PROOF. In order to see 5.7 , write
�- lim inf EE r u , u � lim lim inf inf EE r v , vŽ . Ž .Y Y

r�0 ��0 r�0 � �v�u ��


 C�1 lim inf EE R v , v � C�1 EE R v , vŽ . Ž .Y Y
v�u

R 2Ž . Ž .since EE is lower semicontinuous on L X, m . This proves 5.7 .Y
Ž . LipŽ . Ž .In order to see 5.8 , fix u � CC X with Lipschitz constant L . Let0

r � Ž 4 Ž . Ž .r rY � x � X : d x, X � Y � 2� r � Y and note that 1 x 1 y �Y Y
Ž . Ž . �1 x, y for x, y with d x, y � r. Then a straightforward calculation cf.QŽY .

Ž .�proof of Theorem 5.6 ii shows
0 � EE r u , u � EE r u , uŽ . Ž .Y Y , �

21 u x � u yŽ . Ž .
� m dy m dxŽ . Ž .H H r r

�2 d x , yŽ .Ž .Y Y�B xr

21 u x � u yŽ . Ž .
� m dy m dxŽ . Ž .H H r r

�r r2 d x , yŽ .Ž .Y Y �B xr

2L
� m dy m dxŽ . Ž .H H r r

�2 Ž .Y Y�B xr

� m dy m dxŽ . Ž .H H r r
�r r Ž .Y Y �B xr

� L2 m Y � Y 2 r � 0Ž .
r Ž . r Ž .for r � 0. That is, lim sup EE u, u � lim sup EE u, u which to-r � 0 Y r � 0 Y , �

Ž .gether with 5.7 yields the claim. �

Ž . Ž .COROLLARY 5.5. i Assume that the strong MCP with exceptional set
Ž . 0 rnholds. Fix any sequence r with lim r � 0 for which EE 	 �-lim EEn n n Y n�� Y

LipŽ .exists. Then for each u � CC X , the limit0

5.9 lim EE r u , uŽ . Ž .Y
r�0

0 Ž .exists, is finite and coincides with EE u, u .Y
Ž . Ž 0 LipŽ .. Ž .ii EE , CC X is closable and its closure EE , FF is a regular, stronglyY 0 Y Y

2Ž . LipŽ .local Dirichlet form on L X, m with core CC X . It is independent of the0
Ž .choice of r .n n

Ž . Ž . �Ž . �PROOF. i is obvious from Lemma 5.4. ii By Mosco 1994 , Theorem 2.8 ,
Ž 0 Ž 0 .. Ž . Ž .the �-limit EE , DD EE from i is a not necessarily densely defined closedY Y

LipŽ . Ž 0 .Markovian symmetric form. Moreover, CC X � DD EE . Hence, this form is0 Y
Ž 0 LipŽ ..densely defined. Its restriction EE , CC X is of course closable with closureY 0

Ž .EE , FF being again a Dirichlet form. Obviously, the latter is regular withY Y
LipŽ .core CC X and it is easily seen that it is strongly local. �0
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Ž .5.B. Convergence on the whole space. Let us assume that X, d, m satis-
fies the strong MCP with exceptional set, say Z � X, and fix an exhaustion
Ž .Y of X � Z, that is, an increasing sequence of relatively compact openi i� N
sets Y with Y � X � Z and � Y � X � Z.i i i� N i

Ž . 2Ž .THEOREM 5.6. i On L X, m , the limits

5.10 �- lim EE and lim EEŽ . Y Yi ii�� i��

exist and coincide.
Ž . LipŽ .ii For any u � CC X ,0

21 u x � u yŽ . Ž .
05.11 EE u , u � lim m dy m dx � �.Ž . Ž . Ž . Ž .H H r r

�2 d x , yr�0 Ž .Ž .X B xr

Ž 0 LipŽ ..In particular, EE , CC X is independent of the exceptional set Z and of the0
Ž .exhaustion Y of X � Z.i i

Ž . Ž 0 LipŽ .. Ž .iii EE , CC X is closable and its closure EE, FF is a regular, strongly0
LipŽ .local Dirichlet form with core CC X .0

Ž .PROOF. i The convergence assertions are obvious since the sequence
Ž .EE is increasing, which in turn follows from the fact that, for each r � 0,Y ii

Ž r .the sequence EE is increasing.Y ii
Ž . Ž .ii The finiteness assertion follows from the estimate 5.1 which holds

LipŽ . LipŽ . Žtrue for all u � CC X , uniformly in r and i. Fix u � CC X with0 0
.Lipschitz constant L and compact support K and i � �. Denote the lim r � 0

˜Ž . Ž . Ž . Ž Ž ..��� in 5.11 by EE u, u . Then with v x � 1	m B x ,r r

˜ 00 � EE u , u � EE u , uŽ . Ž .Yi

21 u x � u yŽ . Ž .
� lim m dy m dxŽ . Ž .H H r r

�2 d x , yr�0 Ž .Ž .X B xr

2u x � u yŽ . Ž .
� m dy m dxŽ . Ž .H H r r

� d x , yŽ .Ž .Y Y �B xi i r

2L
� lim m dy m dxŽ . Ž .H H r r

�2 r�0 Ž . Ž . Ž .B K B K �B xr r r

� m dy m dxŽ . Ž .H H r r
�Ž . Ž . Ž .B K �Y B K �Y �B xr i r i r

2L
� lim v x m dy m dxŽ . Ž . Ž .H H r

�2 r�0 Ž . Ž . Ž .B K B K �B xr r r

� v x m dy m dxŽ . Ž . Ž .H H r
�Ž . Ž . Ž .B K �Y B K �Y �B xr i r i r
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2L
� lim v x m dy m dxŽ . Ž . Ž .H H r

�2 r�0 Ž . Ž . Ž .B K �Y B K �B xr i r r

� v x m dy m dxŽ . Ž . Ž .H H r
�Ž . Ž . Ž .B K �Y B K �Y �B xr i r i r

L2 L2

� lim m B K � Y � m K � Y .Ž . Ž .Ž .r i i2 2r�0

Ž .In the limit i � �, the latter goes to 0 since Y is an exhaustion of X � Zi i
Ž .and m Z � 0.

Ž . Ž .iii Same argument as in the proof of Corollary 5.5 ii . �

Ž . LipŽ .COROLLARY 5.7. i For any u, v � CC X ,0

1 u x � u y v x � v yŽ . Ž . Ž . Ž .
0EE u , v � limŽ . H H 2�2 d x , yr�0 Ž .Ž .X B x5.12Ž . r

�m dy m dx ��.Ž . Ž .r r

Ž . LipŽ .ii For any u � CC X0

5.13 EE 0 u , u � �- lim sup EE r u , u � �- lim inf EE r u , u .Ž . Ž . Ž . Ž .
r�0r�0

0 0 0 LipŽ .That is, EE � EE � EE on CC X and thus0

25.14 EE � EE � EE on L X , m .Ž . Ž .

Ž . Ž .PROOF. i follows from 5.11 by polarization.
Ž . LipŽ . Ž .ii For any u � CC X and any exhaustion Y of X � Z,0 i i

0 r 0 0EE u , u � lim sup EE u , u � EE u , u � sup EE u , uŽ . Ž . Ž . Ž .Yi
r�0 i�N

Ž . Ž . Ž .according to 5.11 and 5.10 . Moreover, for any i � � by 5.8 ,

EE 0 u , u � �- lim inf EE r u , u � �- lim inf EE r u , uŽ . Ž . Ž .Y Yi ir�0 r�0

and thus

sup EE 0 u , u � �- lim inf EE r u , u .Ž . Ž .Yi r�0i�N

Ž . Ž .This proves 5.13 . Then 5.14 is an obvious consequence. �

6. Energy measure, Poincare inequality and intrinsic metric.´
Ž .Throughout this section, we assume that X, d, m satisfies the strong MCP

Žwith exceptional set. The exceptional set for the weak MCP which might be
.much smaller than that for the strong MCP will be denoted by Z.
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6.A. The energy measure of the limit form. We recall that for every
Ž . 2Ž .regular Dirichlet form EE, FF on L X, m and every u � FF there exists a

uniquely determined Radon measure � on X which satisfies²u:

� x � dx � 2 EE u , �u � EE u2 , � ��� CC X .Ž . Ž . Ž . Ž .Ž .H ²u: 0
X

Ž .From now on, let EE, FF be the regular, strongly local Dirichlet form defined
in Theorem 5.6.

LipŽ .THEOREM 6.1. For any u � CC X , the energy measure � w.r.t. the0 ²u:
Ž .Dirichlet form EE, FF is given by the formula

2u x � u yŽ . Ž .
6.1 � x � dx � lim � x m dy m dxŽ . Ž . Ž . Ž . Ž . Ž .H H H²u: r r

� d x , yr�0 Ž .Ž .X X B xr

Ž . Ž . Ž .for �� CC X . Actually, formula 6.1 holds true whenever �� CC Y for0 b
Ž .some open Y � X with m X � Y � 0.

Ž . Ž .PROOF. Assume that �� CC Y for some open Y � X with m X � Y � 0.b
Without restriction, we may assume that X � Y is the exceptional set for the

Ž . Ž .MCP. Otherwise replace Y by Y � Z. Let Y be an exhaustion of Y. Theni i
for each i � �, the function � can be uniformly approximated on Y byi

LipŽ .functions � � CC X , k � �. Note that for any i, k � � the function �ik 0 ik
lies in the domain FF of the Dirichlet form EE . Therefore, by the definitionY Yi iŽ i. Ž . Ž .of the energy measure � w.r.t. the Dirichlet form EE , FF from 5.5 ,²u: Y Yi i

� x �Ž i. dx � 2 EE u , � u � EE u2 , �Ž . Ž . Ž . Ž .H ik ²u: Y ik Y iki i
X

2
� x � � y u x � u yŽ . Ž . Ž . Ž .ik ik� limH H

� 2 d x , yr�0 Ž .Ž .Y Y �B xi i r

�m dy m dxŽ . Ž .r r

2u x � u yŽ . Ž .
� lim � xŽ .H Hik

� d x , yr�0 Ž .Ž .Y Y �B xi i r

�m dy m dx .Ž . Ž .r r

Ž .These equalities remain valid in the limit k � � with � in the place of �ik
since � converges uniformly on Y to �. That is,ik i

2u x � u yŽ . Ž .
Ž i.� x � dx � lim � xŽ . Ž . Ž .H H H²u:

�6.2 d x , yr�0Ž . Ž .Ž .X Y Y �B xi i r

�m dy m dxŽ . Ž .r r
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Ž .for all i � �. We claim that for i � � the RHS of 6.2 converges monotoni-
cally to

2u x � u yŽ . Ž .
lim � x m dy m dx .Ž . Ž . Ž .H H r r

� d x , yr�0 Ž .Ž .X B xr

Ž .The proof of this claim is the same as that of Theorem 5.6 ii . Moreover,
Ž . Ž .according to 5.10 in the limit i � �, the LHS of 6.2 converges monotoni-

cally to

� x � dx .Ž . Ž .H ²u:
X

This proves the assertion of the theorem. �

For the following result, we recall our assumptions which are quite sophis-
ticated: we require the strong MCP with some exceptional set and the weak
MCP with the exceptional set Z.

COROLLARY 6.2. For any compact set Y � X � Z, there exist constants C
Ž . Ž .and R and a map � satisfying 4.1 and 4.2 such that, for all r � R and all

u � FF,
21 u x � u yŽ . Ž .

6.3 d� 
 1 x , y m dy m dx ,Ž . Ž . Ž . Ž .H HH²u: QŽY . r r
�C d x , yŽ .Ž .Y B xr

where as usual

Q Y � x , y � X � X : sup d � x , y ,� x , yŽ . Ž . Ž . Ž .Ž .½ s t
s, t

� inf d � x , y , X � Y .Ž .Ž . 5u
u

PROOF. By density arguments it suffices to prove the assertion for u �
LipŽ . 
 � Ž . 4CC X . For 
� 0 let Y � x � X: d x, X � Y � 
 and choose � �0 

LipŽ . 
 Ž . ŽCC X with � � 1 on Y and � � 0 on X � Y. Then 6.1 which is a0 
 


.consequence of the strong MCP with some exceptional set implies
2u x � u yŽ . Ž .

d� 
 lim sup m dy m dxŽ . Ž .H H H²u: r r
�
 d x , yŽ .Ž .Y Y B xr�0 r

2u x � u yŽ . Ž .


 lim sup 1 x , y m dy m dx .Ž . Ž . Ž .HH QŽY . r r

� d x , yŽ .Ž .B xr�0 r

Ž .Now for any R � R Y the weak MCP with the exceptional set Z � X � Y
implies

2u x � u yŽ . Ž .

lim inf 1 x , y m dy m dxŽ . Ž . Ž .HH QŽY . r r

� d x , yr�0 Ž .Ž .B xr

21 u x � u yŽ . Ž .


 1 x , y m dy m dx .Ž . Ž . Ž .HH QŽY . R R

�C d x , yŽ .Ž .B xR
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That is,
21 u x � u yŽ . Ž .


d� 
 1 x , y m dy m dxŽ . Ž . Ž .H HH²u: QŽY . R R
�C d x , yŽ .Ž .Y B xR

Ž . Ž .independently of u and 
 . Hence, by monotone convergence in 

21 u x � u yŽ . Ž .

d� 
 1 x , y m dy m dxŽ . Ž . Ž .H HH²u: QŽY . R R
�C d x , yŽ .Ž .Y B xR

LipŽ .for all u � CC X . �0

6.B. The Poincare inequality. It is a surprising fact that the MCP not´
only implies the doubling property but automatically also implies a Poincaré

Ž .inequality. This is more or less a consequence of the lower estimate 5.7
which allows estimating the limit form EE 0 � �-lim EE r � lim EE r from belowY r Y r Y
by one fixed approximating form EE r . This lower estimate is rewritten in aY , �
more appropriate way in Corollary 6.2 which is already something like a
Poincare inequality.´

Ž .THEOREM 6.3 Weak Poincare inequality . For any compact set Y � X � Z,´
there exist constants C, k and R � 0 such that for all u � FF, all z � Y and all
r � R,

1 26.4 d� 
 u x � u x m dxŽ . Ž . Ž . Ž .H H²u: 2CrŽ . Ž .B z B zkr r

Ž . Ž Ž Ž ... Ž . Ž .where u x � 1	m B z H u y m dy .r B Ž z .r

Ž .PROOF. Choose k � 4� and R � 0 such that Y 	 B Y is a compact0 k R
Ž . Ž .subset of X � Z with R Y � 2 R. We apply Corollary 6.2 with B z in the0 k r

place of Y and 2r in the place of r in order to obtain
21 u x � u yŽ . Ž .

d� 
 1 x , y m dy m dxŽ . Ž . Ž .H HH²u: QŽB Ž z .. 2 r 2 rk r�C d x , yŽ .Ž . Ž .B z B xkr 2 r

21 u x � u yŽ . Ž .

 m dy m dxŽ . Ž .H H 2 r 2 r

�C d x , yŽ .Ž . Ž .B z B zr r

1 1 2
 u x � u y m dy m dxŽ . Ž . Ž . Ž .H H2 2 m B zM Cr Ž .Ž . Ž .Ž .B z B zrr r

21 1

 u x � u y m dy m dx ,Ž . Ž . Ž . Ž .H H2 2 2 m B zM C r Ž .Ž . Ž .Ž .B z B zrr r

where M denotes the doubling constant on Y. �

Ž .For subelliptic operators, Jerison 1986 has proven that a weak Poincaré
Ž .inequality as above always implies the corresponding strong Poincaré

inequality where the integration on the left- and right-hand sides is over
Ž .the same regions. This result was generalized in Sturm 1996 to general

Dirichlet operators.
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Ž .THEOREM 6.4 Strong Poincare inequality . For any compact set Y � X � Z,´
there exists a constant C such that for all u � FF, all z � X and all r � 0 with

Ž .B z � Y,r

1 26.5 d� 
 � u x � u x m dxŽ . Ž . Ž . Ž .H H²u: 2CrŽ . Ž .B z B zr r

Ž . Ž Ž .. Ž . Ž .where u x � 1	m B z H u y m dy .r B Ž z .r

Ž .PROOF. The result would follow immediately from Sturm 1996 , Theorem
Ž . Ž2.4, if d would be the intrinsic metric for the Dirichlet form EE, FF which, in

.general, will not be true . However, one easily checks that for the arguments
in that paper it suffices that d is a length metric on X with the property that

� Ž .�� � m for all z � X with d : x � d z, x which will be proved as²d : zz
Ž .inequality 6.8 in the course of the proof of the following Proposition 6.6. �

6.C. The intrinsic metric. The notion of intrinsic metric was introduced
Ž . Ž .and investigated in Sturm 1994 and 1995b . Here we use a slightly differ-

ent definition.

Ž .DEFINITION 6.5. The intrinsic metric � on X associated with EE, FF is
defined by

6.6 � x , y � sup u x � u y : u � CC Lip X , � � m .Ž . Ž . Ž . Ž . Ž .� 40 ²u:

A priori, we only know that � is a pseudometric on X. It might be
degenerate.

PROPOSITION 6.6. The intrinsic metric � associated with the Dirichlet form
Ž .EE, FF satisfies

6.7 �
 d on X � X .Ž .

PROOF. For any x, y, z � X the triangle inequality yields

d x , z � d y , zŽ . Ž .
� 1.

d x , yŽ .
Ž .Hence, for each z � X, the energy measure of the function d : x � d x, zz

satisfies
2d x , z � d y , zŽ . Ž .

� x � dx � lim � x m dy m dxŽ . Ž . Ž . Ž . Ž .H H H²d : r rz � d x , yr�0 Ž .Ž .X X B xr

� lim � x m dy m dxŽ . Ž . Ž .H H r r
�r�0 Ž .X B xr

' '� lim � x � y m dy m dxŽ . Ž . Ž . Ž .H H r r
�r�0 Ž .X B xr
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Ž .for all nonnegative �� CC X . The last inequality follows from0

'� x � � x � y m dy m dxŽ . Ž . Ž . Ž . Ž .HH ž / r r
�Ž .B xr

� �� � x � � y m dy m dxŽ . Ž . Ž . Ž .HH r r
�Ž .B xr

� � d x , y m dy m dxŽ . Ž . Ž .Ž .H H r r
�Ž . Ž .B K B xr r

� � r m dy m dx � 0Ž . Ž . Ž .H H r r
�Ž . Ž .B K B xr r

Ž . Ž .for r � 0. Here r � � r denotes the modulus of continuity of �� CC X and0
K � supp �. That is,

� x � yŽ . Ž .
� x � dx � lim m dy m dxŽ . Ž . Ž . Ž .H HH²u: ( (� m B x m B yr�0 Ž . Ž .Ž . Ž . Ž .B x r rr

which by the Cauchy�Schwarz inequality is less than or equal to

lim � x m dx � � x m dxŽ . Ž . Ž . Ž .H H
r�0

Ž .for all nonnegative �� CC X . Hence,0

6.8 � � mŽ . ²d :z

and thus
� x , y 
 d x � d yŽ . Ž . Ž .z z

for all x, y, z � X. Choosing z � y, this proves the claim. �

PROPOSITION 6.7. For each compact set Y � X � Z there exists a constant L
Ž . Ž .and a map � satisfying 4.1 and 4.2 such that the intrinsic metric �

Ž .associated with the Dirichlet form EE, FF satisfies

6.9 �� Ld on Q Y ,Ž . Ž .
where as usual

Q Y � x , y � X � X : sup d � x , y ,� x , yŽ . Ž . Ž . Ž .Ž .½ s t
s, t

� inf d � x , y , X � Y .Ž .Ž . 5u
u

LipŽ .PROOF. We have to consider such u � CC X for which � � m.0 ²u:
Ž .According to 6.3 , this implies

2u x � u yŽ . Ž .
6.10 1 x , y m dy m dx � Cm YŽ . Ž . Ž . Ž . Ž .HH QŽY . r r 00� d x , yŽ .Ž .B xr

for any open set Y � Y and all r � 0 where C is a constant determined by0
the MCP.
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� � Ž . Ž . � Ž . Ž . Ž . 4Let L � sup u x � u y 	d x, y : x, y � Q Y , x � y be the ‘‘Lipschitz
Ž . Ž . Ž .constant of u on Q Y ’’ and fix z , z � Q Y with1 2

L
� �u z � u z 
 d z , z � 0.Ž . Ž . Ž .1 2 1 22

Ž . Ž . Ž . ŽSuch z , z � Q Y can be chosen with arbitrarily small d z , z just1 2 1 2
Ž ..replacing successively either z or z by their midpoint � z , z . Let1 2 1	2 1 2

4 Ž . Ž . Ž .r � d z , z . For x � B z and y � B z ,1 2 r	8 1 r	8 23

� � � � � � � �u x � u y 
 u z � u z � u z � u x � u y � u zŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 2

L 3 r L L

 r � 2 L 
 r 
 d x , y .Ž .

2 4 8 8 16
Ž .Therefore, for x � B zr	8 1

21 u x � u yŽ . Ž .
m dyŽ .H r� � d x , yŽ .Ž .B xm B x' Ž .Ž . rr

21 u x � u yŽ . Ž .

 m dyŽ .H� �m B z d x , yŽ . Ž .Ž .Ž . B z2 r 2 r	8 2

L2 m B z L2Ž .Ž .r	8 2 �4
 
 M8 8m B z2 2Ž .Ž .2 r 2

Ž . �with M being the doubling constant. Together with 6.10 applied to Y �0
Ž .�B z this yields2 r 1

2u x � u yŽ . Ž .
Cm B z 
 m dy m dxŽ . Ž . Ž .Ž . H H2 r 1 r r

� d x , yŽ .Ž . Ž .B z B xr 1 r

L2
�4
 M m B zŽ .Ž .r	8 182

L2
�8
 M m B z .Ž .Ž .2 r 182

Hence, we finally obtain
L2 � 28CM 8 .

In other words,
� �u x � u y � Ld x , yŽ . Ž . Ž .

4'Ž . Ž . Ž .for all x, y � Q Y with L � 16 C M . Since this holds for all u � CC X �0
FF we get

� x , y � Ld x , yŽ . Ž .
Ž . Ž .for all x, y � Q Y with L as above. �

THEOREM 6.8. Assume that the weak MCP holds without exceptional set.
Then the intrinsic metric � is locally equivalent to the original metric d. In
particular, it is nondegenerate and induces on X the same topology as d.

Ž .Moreover, X, � is a length space.
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We recall once more that for each result in this section, in particular for
Ž .Theorem 6.8, we require that X, d, m satisfies the strong MCP with some

exceptional set.

PROOF OF THEOREM 6.8. Let us prove the first assertion. For z � X, choose
Ž .R � 0 such that B z is relatively compact. Then Propositions 6.6 and 6.72 R

� Ž .�with Y � B z imply that there is a constant L such that2 R

d x , y � � x , y � Ld x , yŽ . Ž . Ž .
Ž . Ž .for all x, y � B z with d x, y � R. This proves the first claim. Next weR

turn to the last assertion. It follows by a slight modification of the proof of
Ž .Lemma 3 in Sturm 1995b . Let � be the function from that paper. In the0

LipŽ . � Ž . �present case, we have to check that � � CC X and not only in CC X � FF .0 0 0
Ž . LipŽ .But according to Proposition 6.7, the function y � � x, y lies in CC X ,0

LipŽ .hence, also � � CC X . �0 0

ŽCOROLLARY 6.9. The volume doubling property and the weak and strong,
. Žresp. Poincare inequality as stated in Proposition 4.5 and Theorem 6.3 and´

.Corollary 6.4, resp. remain valid if all balls w.r.t. the metric d are replaced
by balls w.r.t. the metric �. The constants, however, will change.

7. Heat kernel estimates and strong Feller property. Again, we
Ž .assume that X, d, m satisfies the strong MCP with exceptional set and we

denote the exceptional set for the weak MCP by Z.

7.A. The parabolic Harnack inequality. The Harnack inequality is a
uniform estimate for the growth of local solutions of certain operator equa-

Ž .tions usually, partial differential equations . The elliptic Harnack inequality
Ž .deals with local solutions u: x � u x of the equation Au � 0 on X; the

Ž . Ž .parabolic Harnack inequality with local solutions u: t, x � u t, x of the
Ž .equation A � �	� t u � 0 on � � X. For the precise notion of ‘‘local solution’’

Ž .which actually means local weak solution of these equations, we refer to
Ž .Sturm 1995a .

Ž .THEOREM 7.1 Parabolic Harnack inequality . For each compact Y � X � Z,
Ž . Ž .there exists a constant C � C Y such that for all balls B x � Y and allH H 2 r

t � �,
7.1 sup u s, y � C inf u s, yŽ . Ž . Ž .H �� Ž .s , y �QŽ .s , y �Q

Žwhenever u is a nonnegative local solution of the parabolic equation A �
. � 2 � Ž . � � 2 2� Ž .�	� t u � 0 on Q � t � 4r , t �B x . Here Q � t � 3r , t � 2r �B x2 r r

� � 2 � Ž .and Q � t � r , t �B x .r

Ž .PROOF. The result would follow immediately from Sturm 1996 if d
Ž .would be the intrinsic metric for the Dirichlet form EE, FF . Namely, Theorem

Ž .3.5 in that paper states that the parabolic Harnack inequality 7.1 follows
� Ž .� � Ž .�from a doubling property like 4.8 and a Poincare inequality like 6.4 ,´

provided the balls under consideration are balls w.r.t. the intrinsic metric.
ŽHowever, here we have balls w.r.t. the metric d and as pointed out in the
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.proof of Corollary 6.4 , in general, the intrinsic metric does not coincide with
Ž .d. But actually for the validity of Theorem 3.5 in Sturm 1996 it suffices that

d is a length metric with � � m for all z � Y. Fortunately, this is the case²d :z
Ž .due to 6.8 . �

Ž .In order to be precise, one should replace the ‘‘inf’’ and ‘‘sup’’ in 7.1 by
‘‘ess inf’’ and ‘‘ess sup’’. The following Proposition 7.3, however, states that all

Žfunctions u under consideration can be chosen to be continuous more
.precisely: admit a continuous version . Hence, there is no reason to use this

cumbersome notation.

REMARK 7.2. The parabolic Harnack inequality obviously implies the
Ž .elliptic Harnack inequality. That is, there exists a constant C � C Y such

Ž .that for all balls B x � X,2 r

7.2 sup u y � C inf u yŽ . Ž . Ž .
Ž .y�B xŽ . ry�B xr

whenever u is a nonnegative local solution of the elliptic equation Au � 0 on
Ž .B x . Note that the elliptic Harnack inequality does not imply the parabolic2 r

one.
It is a well-known fact that the parabolic Harnack inequality is quite a

powerful property which has many important consequences. We will state
only one of them.

Ž .COROLLARY 7.3 Holder continuity . Fro each compact Y � X � Z there¨
� � Ž .exist constants �� 0, 1 and C such that for all balls B x � Y and all2 r

T � �,

�1	2� � � �s � t � y � z
� � � �7.3 u s, y � u t , z � C sup uŽ . Ž . Ž . ž /rQ2

Ž .whenever u is a local solution of the parabolic equation A � �	� t u � 0
� 2 � Ž . Ž . Ž .on Q � T � 4r , T �B x and s, y and t, z are points in Q �2 2 r 1

� 2 � Ž .T � r , T �B x .r

Ž .The proof of Moser 1964 carries over without any essential change.
Ž .Of course, the precise assertion of 7.3 is that any local solution of the

Ž . Ž .equation A � �	� t u � 0 admits a version which satisfies 7.3 . This contin-
uous version is uniquely determined and without restriction in the sequel we
always assume that all local solutions of that equation are chosen to be
continuous on X � Z.

Instead of considering ‘‘harmonic functions’’ u: X � �, one also could
consider ‘‘harmonic maps’’ f : X � X �, defined on the metric measured space
Ž . Ž .X, d, m with values in some metric space X �, d� . More precisely, one looks
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Ž .for minimizers f of the energy form or generalized Dirichlet form
21 d� f x , f yŽ . Ž .Ž .

EE f � lim m dy m dx .Ž . Ž . Ž .H H r r2�2r�0 Ž .X B x d x , yŽ .r

Ž . Ž .For details, we refer to Korevaar and Schoen 1993 and Jost 1994 . The aim
is to prove existence and regularity of such minimizers. If one is interested in

Ž .minimal assumptions on the original data, one typically requires that X �, d�
Žis a complete geodesic space with nonpositive curvature in the sense of

. Ž . Ž .Alexandrov and that X, d, m is derived from a smooth Riemannian
manifold. However, the previous results together with recent results of Jost
Ž .1997 indicate that in order to prove Holder continuity for such minimizers it¨

Ž .suffices that X, d, m is a metric measured space satisfying the MCP. This
problem will be addressed in detail in a subsequent paper.

� �THEOREM 7.4. There exists a measurable function p: 0,� �X � X �
� � Ž . Ž .0,� , t, x, y � p x, y with the following properties.t

Ž . 2Ž .i For every t � 0, every u � L X, m and m-a.e. x � X,

7.4 e�A tu x � p x , y u y m dy ;Ž . Ž . Ž . Ž . Ž .H t
X

Ž . Ž . Ž .ii The function t, x, y � p x, y is locally Holder continuous on¨t
� � Ž . Ž .0,� � X � Z � X � Z and identically 0 on the complement of that set in
� �0,� �X � X;

Ž .iii For all s, t � 0 and all x, y � X,

7.4a p x , y � p y , xŽ . Ž . Ž .t t

and

7.4b p x , y � p s, z p z , y m dz .Ž . Ž . Ž . Ž . Ž .Hs�t s t
X

By these properties, the function p is determined pointwise uniquely. It is
called heat kernel for A.

PROOF. The proof follows the lines of the proof of Proposition 2.3 in Sturm
Ž . Ž . 2 Ž .1995a . Fix t � 0 and let B x be any ball with 4r � t and B x beingr 0 2 r 0

Ž . � 2 2� Ž .a relatively compact subset of X � Z. Put Q t, x � t � r , t � r �B x .r 0 r 0
1Ž . 2Ž . Ž . �A s Ž .For f � L X, m � L X, m the function u: s, x � e f x is a local

Ž . � �solution of the parabolic equation A � �	� t u � 0 on 0,� �X. Hence, the
Ž .subsolution estimate, Theorem 2.1 in Sturm 1995a , together with the

�A t �Ž . 1Ž .contraction properties of e on L X, m and L X, m imply

ess-sup u t , � � ess-sup u � C u s, x m dx dsŽ . Ž . Ž .H
Ž .Q t , xŽ . Ž . 2r 0B x Q t , xr 0 r 0

t�r 2
�A s 2� C e f x m dx ds � C8r f x m dxŽ . Ž . Ž . Ž .H H H

2t�4 r X X
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1Ž . 2Ž . �A tfor all f � L X, m � L X, m . By monotonicity and continuity of e on
1Ž . 1Ž . Ž .L X, m , this extends to all f � L X, m . That is, for any such B � B x ,r 0

B Ž �A t . �the map T : f � e f defines a positivity preserving, bounded linearBt
operator

T B : L1 X , m � L� B , mŽ . Ž .t

with norm � C8r 2. From the theorem of Dunford�Pettis it now follows
B BŽ .that T is an integral operator with a density p �, � satisfyingt t

BŽ . 2sup sup p x, y � C8r andx � B y � X t

e�A t f x � p B x , y f y m dyŽ . Ž . Ž . Ž .H t
X

1Ž .for all f � L X, m and m-a.e. x � B. Covering the space X � Z by countably
0Ž .many such balls B, we obtain a function p �, � which satisfiest

e�A t f x � p0 x , y f y m dyŽ . Ž . Ž . Ž .H t
X

1Ž .for all f � L X, m and m-a.e. x � X.
The operator identity e�A Ž s�t . � e�A s� e�A t implies

7.4c p0 x , y � p0 x , z p0 z , y m dzŽ . Ž . Ž . Ž . Ž .Hs�t s t

� � �A t �for all s, t � 0,� and m-a.e. x, y � X. The symmetry of e which is a
Ž .�consequence of the symmetry of the Dirichlet form EE, FF implies that

7.4d p0 x , y � p0 y , xŽ . Ž . Ž .t t

for m-a.e. x, y � X. From these two properties it follows that

20 0 0 0p y , z m dy � p z , y p y , z m dy � p z , z � �,Ž . Ž . Ž . Ž . Ž . Ž .H Ht t t 2 t

0Ž . 2Ž . Ž .that is, that p z, � � L X, m , for all t � 0 and m-a.e. z � X. Put f y �t
0Ž .p y, z and consider


u t , x � e�A Ž t�
 . f y .Ž . Ž .
Ž . � �This is a solution of the equation A � �	� t u � 0 on 
 ,� �X. On the other

Ž .hand, having in mind the choice of f and using 7.4c we get

u t , x � p0 x , y p0 y , z m dy � p0 x , z .Ž . Ž . Ž . Ž . Ž .H t�
 
 t

That is, for m-a.e. z � X the function

t , x � p0 x , zŽ . Ž .t

Ž . � �is a solution of the equation A � �	� t u � 0 on 0,� �X. By Corollary 7.3,
� � Ž .it admits a version which is Holder continuous on 0,� � X � Z . But accord-¨

Ž . Ž . 0Ž .ing to 7.4d , for m-a.e. x � X also the function t, y � p x, y admits at
� � Ž .version which is Holder continuous on 0,� � X � Z . This finally implies,¨

Ž . 0Ž . Ž .that the function t, x, y � p x, y admits a version p x, y which ist t
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� � Ž . Ž .Holder continuous on 0,� � X � Z � X � Z . By continuity, properties¨
Ž . Ž .7.4c and 7.4d carry over from m-a.e. x, y � X to every x, y � X � Z.

Ž . �Without restriction, one can put p x, y � 0 if either x � Z or y � Z sincet
Ž . �m Z � 0 . With this convention, the function p is determined uniquely andt

Ž . Ž .obviously satisfies 7.4c as well as 7.4d for all x, y � X. �

PROPOSITION 7.5. Assume that the weak MCP holds without exceptional
Ž . Ž .set. Then the diffusion process X , P properly associated with EE, FF can bet x

chosen to be a strong Feller process. By this property, it is uniquely deter-
mined for every starting point x � X.

PROOF. It suffices to prove the strong Feller property of the semigroup
Ž �A t . 2Ž .e . For each u � L X, m the functiont

t , x � e�A tu x � p x , y u y m dyŽ . Ž . Ž . Ž . Ž .H t
X

Ž . � � �is a local solution of the equation A � �	� t u � 0 on 0,� �X Sturm
Ž . � Ž1995a , Section 1.4C . Therefore, by Corollary 7.3 this function admits a

. � � �Ž .version which is Holder continuous on 0,� �X. Approximating u � L X, m¨
2Ž . Ž . �A t Ž .by u � L X, m , n � �, yields the Holder continuity of t, x � e u x¨n

�Ž .for all u � L X, m . In particular, for any t � 0 the function

x � e�A tu xŽ .
Ž .is Holder continuous on X. This proves the strong Feller property for the¨

Ž �A t .semigroup e . �t

Ž .COROLLARY 7.6. The diffusion process X , P properly associated witht x
Ž .EE, FF can be uniquely determined for every starting point x � X � Z by the
property that

x � E u XŽ .x t

Ž .is continuous in x � X � Z for every u � CC X .0

7.B. Gaussian estimates for the heat kernel. In the sequel we derive
Ž .pointwise estimates on X � Z for the heat kernel p x, y of the operator At

Ž .on X. We emphasize that p x, y is the heat kernel on the whole space Xt
Ž .whereas the weak MCP is only required on the subset X � Z. Using the

parabolic Harnack inequality, one easily derives pointwise estimates for
Ž .p x, y with t � 0 and x, y � X � Z.t

THEOREM 7.7. For every compact set Y � X � Z and every 
� 0 there
exists a constant C such that for all points x, y � Y and all t � 0,

C
p x , y �Ž .t

m B x �m B yŽ . Ž .' ž / ž /t t' '0 0

d2 x , yŽ .
� exp � exp � 1 � 
 �t .Ž .Ž .ž /2 � 
 tŽ .

7.5Ž .
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� 2Ž . 2Ž .4 � Ž .Here t � inf t, d x, X � Y , d y, X � Y . Furthermore, �� inf EE u, u 	0
� � 2 4u : u � FF, u � 0 
 0 denotes the bottom of the spectrum of the selfadjoint

2Ž .operator A on L X, m .

Ž .For the proof, see Sturm 1995a , Theorem 2.4. �

Ž . Ž .REMARKS 7.8. i The number � in the estimate 7.5 can always be
Ž .replaced by 0. That is, the last term on the RHS of 7.5 can always

be dropped.
Let us mention that the bottom of the spectrum of A is zero if X is

� Ž .complete and if the volume of balls grows subexponentially Sturm 1994 ,
�Theorem 5 . For instance, the latter is satisfied if the doubling property holds

Žtrue uniformly on X which even implies that the volume grows at most
.polynomially .

Ž .ii In addition to the assumptions of Theorem 7.7, assume that there
Ž . Ž .exists an arc 	 of length L 	 � C d x, y joining x and y and that thed 1

Ž . � Ž .doubling property holds true on the neighborhood B 	 � x � X: d x, 	 �R
4R of 	 . Then the usual chaining argument yields

d x , yŽ .
7.6 m B x � C m B y exp C .Ž . Ž . Ž .Ž . Ž .' 't 2 t 2ž /'t

Hence, for every 
� 0 there exists a constant C� such that

C� d2 x , yŽ .
7.7 p x , y � exp � exp � 1 � 
 �tŽ . Ž . Ž .Ž .t ž /2 � 
 tŽ .m B xŽ .ž /t' 0

for all x, y � Y and t � 0 with t as above.0
Ž . Ž .k Ž .Estimate similar to 7.5 also hold for the time derivatives �	� t p x, yt

Ž .of the heat kernel. See Sturm 1995a for details.

THEOREM 7.9. For each compact set Y � X � Z there exists a constant C
such that

1 d2 x , y CtŽ .
7.8 p x , y 
 exp �C exp �Ž . Ž .t 2ž /ž /2 t RCm B xŽ .Ž .'t �R

for all t � 0 and all x, y � X which are joined in Y by an arc 	 of length
Ž . Ž . Ž .d x, y . Here R � d 	 , X � Y � inf d 	 , X � Y .0 � s�1 s

Ž . Ž .REMARKS 7.10. i Theorem 7.9 together with the symmetry of p ���t
Ž .immediately implies the following symmetrized version of 7.8 :

1
p x , y 
Ž .t

C m B x m B yŽ . Ž .' Ž . Ž' 't �R t �R

�
d2 x , y CtŽ .

exp �C exp � 2ž /ž /2 t R

7.9Ž .

for t, x, y and R as above.
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Ž . Ž .ii If x and y are not joined by a geodesic in Y of length d x, y but only
� � Ž . Ž .by some arc 	 : 0, 1 � Y of length L 	 then the estimate 7.8 remainsd

Ž . Ž .true with L 	 in the place of d x, y .d

7.C. Estimates for Green functions and first exit times. Integrating the
Ž .heat kernel p x, y against t we obtain the fundamental solution or Greent

function
�

G x , y � p x , y dtŽ . Ž .H t
0

Ž .for the operator A on X. Theorem 7.4 immediately implies that G x, y �
Ž .G y, x for all x, y � X and that

�

G x , y f y m dy � E f X dtŽ . Ž . Ž . Ž .H Hx t
X 0

2Ž .for all f � L X, m and m-a.e. x � X. Even more interesting is the Green
function

YG x , y � G x , y � E G X , y ; # Y � �Ž . Ž . Ž .Ž .x # ŽY .

Ž . � 4for A on a given open set Y � X. Here # Y � inf t � 0: X � X � Y . Thet
strong Markov property implies that

Ž .# YY7.10 G x , y f y m dy � E f X dtŽ . Ž . Ž . Ž . Ž .H Hx t
Y 0

2Ž .for all f � L X, m and m-a.e. x � Y.

COROLLARY 7.11. For every compact set Y � X � Z there exists a constant C
Ž . Ž .such that for all balls B � B x � Y and all y � B x ,r r	2

r rs ds s ds
�1 B7.11 C � G x , y � C .Ž . Ž .H Hm B x m B xŽ . Ž .Ž . Ž .Ž . Ž .d x , y d x , ys s

Ž .Biroli-Mosco 1995 , Theorem 1.3, together with some simple covering
arguments gives the proof.

THEOREM 7.12. For every compact set Y � X � Z there exists a constant C
Ž .such that for all balls B x � Y,r

7.12 C�1 r 2 � E # � Cr 2 .Ž . Ž .x r

� Ž . 4Here # � inf t � 0: d X , X � r .r t 0

Ž .PROOF. According to 7.10 ,

� � BrŽ x .E # � G x , y m dy .Ž . Ž .Hx r
Ž .B xr
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Ž .By 7.11 , the RHS is comparable with

r rs ds s ds
m dy � m dyŽ . Ž .H H H Hž /ž /m B x m B xŽ . Ž .Ž . Ž . Ž .Ž . Ž .B x d x , y 0 B ys sr s

r 1
2� s ds � r . �H 20

8. The local dimension and Dirichlet forms with general normal-
ization function. Throughout this section, we assume that the weak MCP
holds without exceptional set and that the strong MCP holds with some
exceptional set.

8.A. Dirichlet forms with general normalization function. Denote the pre-
Ž . Ž 1 1.viously defined Dirichlet form EE, FF from now on by EE , FF . For u �

LipŽ . 1CC X , let � denote the energy measure of u w.r.t. the Dirichlet form0 ²u:
Ž 1 1.EE , FF .

LipŽ .For any Borel function N 
 0 on X and u � CC X define0

1N 18.1 EE u , u � N x � dx .Ž . Ž . Ž . Ž .H0 ²u:2
X

Ž .THEOREM 8.1. i Let N 
 1 be any locally bounded Borel function on X.
Ž N LipŽ .. 2Ž .Then EE , CC X defines a closable symmetric form on L X, m . Its closure0 0

Ž N N .EE , FF is a regular, strongly local Dirichlet form with energy measure
given by

�N dx � N x �1 dxŽ . Ž . Ž .²u: ²u:

LipŽ .for each u � CC X .0
Ž . Ž . Ž .ii Assume in addition that N � CC Y for some open set Y with m X � Y

� 0. Then

21 u x � u yŽ . Ž .
N8.2 EE u , u � lim N x m dy m dxŽ . Ž . Ž . Ž . Ž .H H r r

�2 d x , yr�0 Ž .Ž .X B xr

LipŽ . LipŽ .for all u � CC X . In this case, the energy measure of u � CC X w.r.t.0 0
Ž N N .EE , FF is given by the formula

2u x � u yŽ . Ž .
N� x � dx � lim � x N xŽ . Ž . Ž . Ž .H H H²u:

�8.3 d x , yr�0Ž . Ž .Ž .X X B xr

�m dy m dxŽ . Ž .r r

Ž .for all �� CC X .0
Ž . � Ž .iii Assume that N � L X, m and N 
 1. Then the intrinsic metricloc

� N x , y � sup u x � u y : u � CC Lip X � FF , �N � mŽ . Ž . Ž . Ž .� 40 ²u:



DIFFUSIONS ON METRIC SPACES 49

Ž N N .associated with the Dirichlet form EE , FF is locally equivalent to the
original metric d.

Ž . N N � k N � kPROOF. i EE is the increasing limit of the EE , k � �. Each EE is
comparable with EE1, hence, closable with closure being a strongly locally

LipŽ .regular Dirichlet form with core CC X . For k � � these properties carry0
N Ž .over to the increasing limit EE ; ii is an immediate consequence of Theorem

Ž .6.1; iii follows from Theorem 6.8. �

� Ž .COROLLARY 8.2. Assume that N � L X, m with N 
 1. Then all theloc
Žregularity assertions stated in Chapter 7 for local solutions, heat kernels,

. Ž .Green functions, diffusion processes associated with the Dirichlet form EE, FF

Ž .remain valid for the respective quantities associated with the Dirichlet form
Ž N N .EE , FF .

8.B. The local dimension. In the sequel we will introduce functions N
Ž .and N on X, which play the role of the upper and lower, resp. local

dimension of the space X. For this purpose, let us fix throughout this chapter
LipŽ . Ž . Ža core CC* � CC X which is dense in CC X as well as in FF w.r.t. the0 0
.respective norms and which defines the intrinsic metric in the sense that

� x , y � sup u x � u y : u � CC*, � � mŽ . Ž . Ž .� 4²u:

for all x, y � X. Note that the results below may depend on the choice of CC*.
LipŽ .Of course, one can always choose CC* � CC X .0

We define the dilation of a function u: X � � at the point x � X by

� �u z � u yŽ . Ž .
0 0dil u � lim sup dil u where dil u � lim sup .x z z

� d z , yr�0 Ž .z�x Ž .y�B zr

We will compare it with the following L2-versions:

0 0D u � ess-lim sup D u and D � ess-lim sup D u ,x z x z
z�x z�x

where

1	221 u z � u yŽ . Ž .
0D u � lim sup m dyŽ .Hz r

� d z , yŽ .Ž .ž /B zm B z' Ž .Ž .r�0 rr

and

1	221 u z � u yŽ . Ž .
0D u � lim inf m dy .Ž .Hz r

� d z , yr�0 Ž .Ž .ž /B zm B z' Ž .Ž . rr



K. T. STURM50

DEFINITION 8.3. The upper local dimension at x � X is

�2� �8.4 N x � sup D uŽ . Ž . x
u�CC*

dil u�1x

and the lower local dimension at x � X is

�2
8.5 N x � D d .Ž . Ž . Ž .x x

� Ž . � Ž . Ž .Here d denotes the function y � d x, y . If N x and N x coincide, thenx
Ž .the common value is called the local dimension of the space X at x � X.

Ž .REMARKS 8.4. i Fix z � X. If

m B xŽ .Ž .r
8.6 sup � 1Ž . �m B yŽ .Ž .Ž . rx , y�B zr

for r � 0 then

1	221 u z � u yŽ . Ž .
0D u � lim sup m dyŽ .Hz

�ž /m B z d z , yŽ . Ž .Ž .Ž . B zr�0 r r

for all u and therefore the triangle inequality obviously implies

0D d � 1Ž .z x

Ž . Ž .for all x � X. Hence, if 8.6 holds for all z � X then N x 
 1 for all x � X.
Ž . LipŽ . Ž .ii If CC* � CC X or, more generally, if d � CC* for all z � X then0 z

N x � N xŽ . Ž .
�2 �2Ž Ž . � Ž .� � Ž .� Ž ..for all x � X since N x 
 D d 
 D d � N x .x x x x

Ž .LEMMA 8.5. i Assume that the doubling property holds on some open
�1 � Ž . Ž .subset X � X. Then N , N � L X , m . In particular, the weak MCP0 loc 0

implies
�1 �8.7 N , N � L X � Z, m .Ž . Ž .loc

Ž .ii If some open subset X � X is an n-dimensional Riemannian manifold,0
then for all x � X0

8.8 N x � N x � n.Ž . Ž . Ž .

Ž .PROOF. i The triangle inequality implies

2d z , x � d x , yŽ . Ž .
� 1

d z , yŽ .
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for all x, y, z � X. Hence, for any compact Y � X ,0

1	2
1 m dyŽ .

0D dx � lim supŽ . Hz ž /Ž .B zm B z m B y' 'Ž . Ž .Ž . Ž .r�0 rr r

1	2
1	2M m dyŽ .

1	4� lim sup � MHž /Ž .B zm B z m B y' 'Ž . Ž .Ž . Ž .r�0 rr r

for all z � Y with M being the doubling constant. That is,

N z 
 M�1	2 .Ž .
� Ž .This proves that 1	N � L X , m .loc 0

� Ž .The proof of the assertion N � L X , m is essentially the same as thatloc 0
of Proposition 6.7. Fix a compact set Y � X . Given x � Y and u � CC*, let0

u y � u zŽ . Ž .
L � L u , x � sup : y , z � Q B x , y � z .Ž . Ž . Ž .Ž .
 
 
½ 5d y , zŽ .

Then dil u � sup L . As in the proof of Proposition 6.7, for each 
� 0 onex 
� 0 


Ž . Ž Ž .. � Ž .�finds z , z � Q B x with arbitrarily small d z , z such that1 2 
 1 2

3� �u z � u z 
 L d z , z � 0.Ž . Ž . Ž .1 2 
 1 24

Ž .Hence, for some �� 0 and all z � B z ,� 2

1� �u z � u z 
 L d z , z � 0.Ž . Ž . Ž .2 
 22

Following the argumentation from the proof of Proposition 6.7, this implies

21 u z � u y LŽ . Ž . 

m dy 
Ž .H r 8 4� d z , y 2 MŽ .Ž .B zm B z' Ž .Ž . rr

4 Ž .for all r � d z, z . Therefore,23

L
0D u 
z 216M

Ž . Ž .for all z � B z � B x and thus� 2 


L dil u
 x
D u 
 �x 2 216M 16M

2 2Ž . Ž .for 
� 0. That is, N x � 16M .
Ž . �ii Fix x � X . By local regularity, we may choose CC* such that u �X0 0
�Ž .CC X for all u � CC*. That is,0

�2� �N x � sup D u .Ž . x
�Ž .u�CC X0

dil u�1x
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n �Ž .Moreover, without restriction we may assume X � � . For u � CC X and0 0
all y near x,

� � 2u y � u x � �u x y � x � o y � x .Ž . Ž . Ž . Ž . Ž .
� Ž . �Now dil u � 1 implies �u x � 1 and without restriction we may assumex

Ž . Ž .that, for example, �u x � 1, 0, . . . , 0 . Then

� � 2u y � u x � y � x � o y � x .Ž . Ž . Ž . Ž .1 1

Hence,
1	22� �1 z � y1 10D u � lim inf dy .Hz 2�ž /m B z � �r�0 Ž . Ž .Ž . z � yB zr r

But for each r � 0 and z � � n,

� � 21 z � y 11 1
dy � .H 2 2�m B z n� � � �Ž . Ž .Ž . z � y � ���� z � yB zr r 1 1 n n

' Ž .Therefore, D u � 1	 n and N x � n for all x � X .x 0
0 �'Similarly, one obtains D u � 1	 n for all u which are CC in a neighbor-z

0 ' 'Ž . Ž .hood of z. In particular, D d � 1	 n for all z � x. Hence, D d � 1	 nz x x x
Ž .and thus N x � n. �

Ž .PROPOSITION 8.6. Let N be a bounded Borel function on X with N � CC Y
Ž .for some open set Y with m X � Y � 0.

Ž . Ž . Ž .i If ess-lim inf N z 
 N x for all x � X thenz � x

8.9 � N � d on X � X .Ž .

In particular, the topology induced by � N is coarser than the original topology
Ž .on X induced by d .

Ž . Ž . Ž .ii If ess-lim sup N z � N x for all x � X then the topology inducedz � x
N Ž .by � is finer than the original topology on X induced by d and the length

N Nmetric � derived from � satisfies

N8.10 � 
 d on X � X .Ž .

Ž .PROOF. i Assume ess-lim inf N 
 N on X. That is, for all x � X and for
all u � CC*,

1
ess-lim inf N z ess-lim sup lim-infŽ .

z�x r�0 m B z' Ž .z�x Ž .r

2u z � u yŽ . Ž . 2� �� m dy 
 dil u .Ž .H r xd z , yŽ .Ž .B zr

8.11Ž .
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Now consider such u � CC* for which �N � m. That is, for which²u:

2u z � u yŽ . Ž .
lim � z N z m dy m z � � z m dzŽ . Ž . Ž . Ž . Ž . Ž .H H Hr rd z , yr�0 Ž .Ž .X B z Xr

Ž .for all nonnegative �� CC X . By Fatou’s lemma, the latter implies0

2N z u x � u yŽ . Ž . Ž .
lim inf m dy � 1Ž .H rd x , yr�0 Ž .Ž .B xm B z' Ž .Ž . rr

for m-a.e. z � X and thus

1
ess-lim inf N z ess-lim sup lim infŽ .

z�x r�0 m B z' Ž .z�x Ž .r

2u x � u yŽ . Ž .
� m dy � 1Ž .H rd x , yŽ .Ž .B xr

Ž .for all x � X. Together with 8.11 this yields

8.12 dil u � 1Ž . x

for all x � X. This, however, easily implies

� �u y � u z � d y , zŽ . Ž . Ž .
for all y, z � X and thus

8.13 � N y , z � d y , zŽ . Ž . Ž .
for all y, z � X.

Ž . Ž . Ž .ii Assume N z 
 ess-lim inf N x for all z � X. Fix z � X and ax � z
number �� 1. Choose R � 0 such that

�121 d x , z � d y , z 1Ž . Ž .
lim inf m dy 
 N xŽ . Ž .H rd x , y �r�0 Ž .Ž .ž /B xm B x' Ž .Ž . rr

Ž .for m-a.e. x � B z . That is,R

2N x d x , z � d y , zŽ . Ž . Ž .
8.14 lim sup m dy � �Ž . Ž .H rd x , yŽ .Ž .B xm B x' Ž .Ž .r�0 rr

Ž . Ž .for m-a.e. x � B z . Therefore by Fatou’s lemma ,r

� x �N dxŽ . Ž .H ²dŽ z , �.:
X

2d x , z � d y , zŽ . Ž .
� lim � x N x m dy m dxŽ . Ž . Ž . Ž .H H r rd x , yr�0 Ž .Ž .X B xr

� � � x m dxŽ . Ž .H
X
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Ž Ž ..for all nonnegative �� CC B z . That is,0 R

8.15 �N � �m on B x .Ž . Ž .²dŽ z , �.: R

N'Ž .Ž Ž ..Now consider the function u: x � 1	 � R � d z, x . Then � � m� ²u:
on X. That is,

8.16 �N � m on X .Ž . ²u:

Ž .Therefore, for all x, y � B z ,R

1
N8.17 � x , y 
 d x , y .Ž . Ž . Ž .

�

Ž . Ž .Since the whole space is covered by such balls B z we get 8.17 for allR
Ž .x, y � X with d x, y sufficiently small. In particular, the topology induced

N Ž .by � on X is finer than the original one induced by d .
� � Ž . Ž .NNow let 	 : 0, 1 � X be any arc in X and let L 	 and L 	 be its� d

N Ž .lengths w.r.t. the metrics � and d, resp. Then 8.17 implies

1 1
N8.18 L 	 
 L 	 
 d 	 , 	Ž . Ž . Ž . Ž .� d 0 1' '� �

uniformly for all �� 1. That is,

1
N8.19 � x , y 
 d x , y � d x , yŽ . Ž . Ž . Ž .'�

for all x, y � X.

REMARK 8.7. Let again N be a bounded Borel function on X with
Ž . Ž .N � CC Y for some open set Y with m X � Y � 0.

Ž . Ž .i In order to deduce 8.9 it suffices that

0'8.20 ess-lim sup N x D u 
 dil uŽ . Ž .ž /x z
x�z

for all z � X and all u � CC*.
Ž . Ž .ii In order to deduce 8.10 it suffices that

0'8.21 ess-lim sup N x D d � 1Ž . Ž . Ž .ž /x z
x�z

for all z � X.

Ž .THEOREM 8.8. Assume that N � N � CC X and choose N � N. Then the
intrinsic metric � N coincides with the original metric d.

N NPROOF. Proposition 8.6 implies that � 
 d on X � X and � � d on
X � X. Moreover, � N and d induce the same topology on X. The latter

N N NŽ . � Ž .�implies that X, � is a length space Sturm 1995a , that is, � � � on
X � X. This proves the claim. �



DIFFUSIONS ON METRIC SPACES 55

Acknowledgment. I thank Professor Jurgen Jost for stimulating discus-¨
sions and for sending his recent preprints. I am grateful to Professor Kuwae
for careful reading of the manuscript and for many valuable comments.

REFERENCES
Ž .BALLMANN, W. 1995 . Lectures on Spaces of Nonpositive Curvature. DMV Seminar 25.

Birkhauser, Boston.¨
Ž .BIROLI, M. and MOSCO, U. 1995 . A Saint-Vernant principle for Dirichlet forms on discontinuous

media. Ann. Mat. Pura Appl. 169 125�181.
Ž .BOULEAU, N. and HIRSCH, F. 1991 . Dirichlet Forms and Analysis on Wiener Space. de Gruyter,

Berlin.
Ž .CHAVEL, I. 1993 . Riemannian Geometry: A Modern Introduction. Cambridge Univ. Press.

Ž .DAL MASO, G. 1993 . An Introduction to �-Convergence. Birkhauser, Boston.¨
Ž .ETHIER, S. N. and KURTZ, T. G. 1986 . Markov Processes. Wiley, New York.

Ž .FUKUSHIMA, M., OSHIMA, Y. and TAKEDA, M. 1994 . Dirichlet Forms and Symmetric Markov
Processes. de Gruyter, Berlin.

Ž .GHYS, E. and DE LA HARPE, P. 1990 . Sur les Groupes Hyperboliques d’apres Mikhael Gromov.
Birkhauser, Boston.¨

Ž . ŽGROMOV, M. 1981 . Structures Metriques pour les Varietes Riemanniennes J. Lafontaine and´ ´ ´ ´
.P. Pansu, eds. . Cedic	F. Nathan.

Ž .JERISON, D. 1986 . The Poincare inequality for vector fields satisfying an Hormander’s condition.´ ¨
Duke J. Math. 53 503�523.

Ž .JOST, J. 1994 . Equilibrium maps between metric spaces. Calc. Var. 2 173�204.
Ž .JOST, J. 1996 . Generalized harmonic maps between metric spaces. In Geometric Analysis and

Ž .the Calculus of Variations for Stefan Hildebrandt J. Jost, ed. . International Press,
Boston.

Ž .JOST, J. 1997 . Generalized Dirichlet forms and harmonic maps. Calc. Var. 5 1�19.
Ž .KOREVAAR, N. J. and SCHOEN, R. M. 1993 . Sobolev spaces and harmonic maps for metric space

targets. Comm. Anal. Geom. 1 561�659.
Ž . ( )MA, Z. and ROCKNER, M. 1992 . Introduction to the Theory of Non-Symmetric Dirichlet Forms.¨

Universitext. Springer, Berlin.
Ž .MOSCO, U. 1994 . Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123

368�421.
Ž .MOSER, J. 1964 . A Harnack inequality for parabolic differential equations. Comm. Pure Appl.
Math. 17 101�134.
Ž .RINOW, M. 1961 . Die innere Geometrie der metrischen Raume. Grundlehren 105. Springer,¨

Berlin.
Ž .STURM, K. T. 1994 . Analysis on local Dirichlet spaces I. Recurrence, conservativeness and

L p-Liouville properties. J. Reine Angew. Math. 456 173�196.
Ž .STURM, K. T. 1995a . Analysis on local Dirichlet spaces II. Upper Gaussian estimates for the

fundamental solution of parabolic equations. Osaka J. Math. 32 275�312.
Ž .STURM, K. T. 1995b . On the geometry defined by Dirichlet forms. In Seminar on Stochastic

Ž .Analysis, Random Fields and Applications E. Bolthausen et al., eds. 231�242. Birk-
hauser, Boston.¨

Ž .STURM, K. T. 1996 . Analysis on local Dirichlet spaces III. The parabolic Harnack inequality.
J. Math. Pures Appl. 75 273�297.

Ž .STURM, K. T. 1997 . How to construct diffusion processes on metric spaces. Potential Analysis.
To appear.

INSTITUT FUR ANGEWANDTE MATHEMATIK¨
UNIVERSITAT BONN¨
WEGELERSTRASSE 6
53115 BONN

GERMANY

E-MAIL: sturm@wiener.iam.uni-bonn.de


