The Annals of Probability
1999, Vol. 27, No. 3, 1208-1267

SELF-DIFFUSION FOR BROWNIAN MOTIONS
WITH LOCAL INTERACTION
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The Fields Institute and McMaster University

We derive explicitly the asymptotic law of the tagged particle process
in a system of interacting Brownian motions in the presence of a diffusive
scaling in nonequilibrium. The interaction is local and interpolates between
the totally independent case (noninteracting) and the totally reflecting case
and can be viewed as the limiting local version of an interaction through
a pair potential as its support shrinks to zero. We also prove the indepen-
dence of two tagged particles in the limit.
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1. Introduction and results. In his thesis [2] at New York University in
1984, Guo studied an infinite system of interacting Brownian motions on the
line in equilibrium. The interaction was governed by a pair potential V(x—y)
which is a smooth, positive, symmetric and compactly supported function. He
provided a variational formula for the self-diffusion coefficient (the diffusion
coefficient of the tagged particle process) in a diffusive scaling (x — Nx and
t — N?t for some large N). Of course one may recast the dynamics on the
unit circle; it turns out that an interesting problem is the study of the tagged
particle process in a limiting case of the interaction which will be described
below. This is the object of the present work. We shall be able to derive the
asymptotic law of the tagged particle process in nonequilibrium. The diffu-
sion coefficient as well as the drift term (present in nonequilibrium) will be
computed explicitly.

Throughout this paper we make the assumption that the initial profile has a
bounded density. However, this hypothesis can be eliminated and the existence
and uniqueness of the tagged particle can be proven for singular measures by
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making further assumptions on the mass distribution in the initial empirical
density, as it is shown in [1].

Let us give a general outline of the problems we are concerned with. In our
context, an interacting particle system is defined by a dynamics associated to
a given number n of particles evolving in some state space I', in this case the
circle. Once the dynamics has been established, one has to define a scaling of
the problem (e.g., the diffusive scaling in whichn = Np, x - Nx and t — N?¢
such that x2/¢ is preserved).

At this point one can research the limiting behavior of the system from
two points of view. One way is to look at the empirical distribution of the
particles (i.e., spatial averages) in order to derive the hydrodynamic limit. In
this approach particles are indistinguishable and various types of interaction
may lead to the same solution in the limit. The other approach is to single
out one particle (or a finite number of them), the so-called tagged particle, and
follow its evolution as the scaling parameter tends to infinity. In this approach
the underlying dynamics leaves its mark on the limiting behavior of the tagged
particle.

The results presented in this work regard exactly this type of analysis.
The dynamics of the system (described briefly below) is perhaps easier to
understand as the weak limit of n Brownian motions P™ ¢ interacting through
a pair potential V, with support in the interval [—e¢, ¢] taken as ¢ — oco. P™ ¢
is the law of the n-dimensional process

de; =dB;— ) Viy(x;,—x;)dt VYi=1,...,n
J#i
with B1(¢), ..., B,(¢) independent Wiener processes and V _(x) a smooth, even,
compactly supported potential. For a positive parameter A, the convergence
takes place under the condition ¢ (x) = exp(2V (x)) —1 — (1/A)6pas ¢ - 0
in the distributional sense. The resulting interaction will be described in the
following.

Since the interaction is local and only two particles can collide at one time,
the definition of the model can be presented by considering the case when
there are only two particles.

We have two particles that perform independent Brownian motions until
they collide. In the noninteracting case, the particles go through each other and
in the reflected case they bounce off each other. If we do not tag the particles
but consider them as a system of two indistinguishable particles, there is no
difference between the two. If we now try to tag them, there is no trouble
keeping track of the tags, that is, the relative labels of the two particles until
a collision. After the collision, in the noninteracting case, the probability is %
for each of the two possible ways of labeling them, and in the reflecting case the
labels are completely determined by the relative ordering of the particles prior
to the collision. In our model, that in some sense interpolates between the two,
we start with the reflected case. There is a canonical local time that measures
the “amount of collision” in a natural scale. The switching of labels takes place
as a Poisson event at a rate A in the time scale determined by this local time.
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Of course, the switching occurs only when the particles are colliding and does
not always happen. This can be made rigorous and these models interpolate
between the noninteracting case where A = co and the reflecting case where
A = 0. We can extend this model to the case of n particles on the circle. We
will do so now and give a formal description of the model.

1.1. The interaction model. Consider a positive integer n and A > 0. Let
'™ be the n-dimensional torus. We define F¥ = {¢ e [": & = &;} for any i, j
in {1,...,n} and F = U<, F;;. We shall denote by C(I'*, F) the set of
functions f that are piecewise smooth (up to the boundary F)on I, \ F.

DEFINITION 1. Let C(I', F) = {f: I — R: f € C?(I" \ F) with fU(¢&,)
and DV f (&) finite for any &, € F and any (i, j)}, the set of smooth functions
up to the boundary F, where f¥ and DY f are defined as

fij(fb §2a ey gifla 67 §i+1> LR é:j—la é‘:a §j+1a D) fn)’

(1.1)
=f(§17§2"--7§i—la§+07 §i+17~'-7§j—17§_07§j+17---7§n)’

Dijf(fl’ 52’ R gi—l’ §7 §i+1’ LR gj—la fa §j+17 L) fn)
(1.2) =(9; —9))f(é1, €25 ..., €121, €40,
Eivtror € E—0,E5urs s E).

We are now in a position to define the generator of the process

£ (t) = (£1(2), - .., £,(1))
on I'”, For a real A > 0 we define the boundary conditions
(1.3)  (BC) DYf(&)+AMf7(&) - Ff9(é))=0 Vi, je{l,...,n}.
The operator (£, 9(£)) with
(1.4) Lf = 3Af, 9(L) = {f € C(I'*, F): (BC) are satisfied}

is the infinitesimal generator of a process P} on I™.

1.2. The scaled model. The considerations made up to this point regard a
process P} for a given n. Let us consider a large positive N and let us blow
up the space scale by a factor of N, such that the particles evolve on a circle
of length N instead of 1; in the scaled version we shall look at &(¢)/N. The
time scale will also be amplified by N2 to produce a diffusive scaling (£2/t is
invariant; i.e., the Laplacian is preserved).

Let p > 0 and A > O be fixed constants. The number of particles will be
scaled to Np; physically this implies that the average density of the system
does not change.

The scaled process will be defined by (1.4) with n := Np and Ay := NA. It
will be denoted by

N Np
(1.5) P = P”.
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The new process evolves on the n = N p-dimensional torus I'". Each particle
&, for k= 1,..., n, performs a Brownian motion on the unit circle until it
collides with some other particle, where the given interaction governed by
Ay = NA takes place and then the reflected or switched pair proceeds by
performing independent Brownian motions until the next collision and so on.

1.3. The martingale form of the problem. It is known (see [4]) from the def-
inition of the process {¢V(¢)}, with the filtration {#},.o, 7 = o(£N(s): 0 <
s < t) that there exist n? — n local times {A¥(¢)},.o for i # j in the set
{1,2, ..., n} such that for any f € C(I'", F),

H(t) = FEN (@) — F(EN(0) — L [y AF(EN(s))ds
- Z /Ot(Dﬁf(fN(S)) +(AN)[FU(EN(s)) = FI(EN(s))]) dAT(s)

i#]

(1.6)

is a (P£", {;}+-0)-martingale. More precisely,

X [T ) — ()1 aMis)

4= 3 [ 06, 1 (9) dB(s) +
k=1 i#]j

where {B;(¢)} (k = 1,...,n) is a family of independent Brownian motions
and MY (¢), M(t) areAthe jump martingales corresponding to the interaction
along the boundary F% such that [M%,(¢)]* — (AN)AY(t) is also a martingale.

1.4. The lifted process.

DEFINITION 2. We shall denote by Q. the space of continuous paths from
[0, 00) on the n-dimensional torus I'* and by (. the space of continuous paths
from [0, c0) on R".

Each continuous path on the unit circle can be lifted in a canonical way to a
continuous path on the covering space R. The mapping A will be the Cartesian
product of the n canonical mappings for each component with the given initial
condition

£,(0)=¢,=x,€[0,1] withk=1,...n.
There is an important distinction to make between the process
£() =(&1(), .-, £,())
with state space the n-dimensional torus I'” and the lifted process
(1.7 x(-) = (x1(), -5 %,(+)

with state space R” given by x(-) = A(&(-)) constructed with the lift mapping
A: Q. — Qpg. by lifting each component &;(-), ..., &,(-).
We use the following notation.
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DEFINITION 3. Let A be the lift mapping for n = Nj. Then PV := P& oA~!
and PV is a measure on the path space C([0, c0), R™).

DEFINITION 4. The process {xV (-)}s=0 will be called the tagged particle
process.

REMARK. For any function ® € C(T", F), ®(x) = ®(x4, ..., x,) periodic
of period 1 in each variable, the mappings ¢ — ®(x™(¢)) can be identified
to t — ®(&N(t)) by taking the image of xf’(t) on I'". Consequently, we may
always substitute the original &(-) process with the lifted process x(-) as long
as the test functions are periodic.

DEFINITION 5. For any k=1, ..., n we shall write

(1.8) AN () = % Y An(b),

J#k

Ti 1 1

(1.9) A0 = 5 X AR,

Jj#k
(1.10) Aly(t) = AR + AT ()
and
(1.11) An(t) = N( > AN(t)>.

k=1

1.5. The initial profile. For a fixed N > 0, let P£" be the process defined
by the infinitesimal generator (.~, 2(~)) and let ¢V = (¢V,..., V) be an
n = Np-dimensional family of vectors such that

PE{(eN(0), ..., eN ) = (&), ..., e = 1.

DEFINITION 6. A macroscopic initial profile is a measure u(dé) € .Z(I)
such that the empirical densities at time ¢ = 0 converge weakly to wu(d¢),
that is,

1
(1.12) ey o+ Bey) = m(de)
as N — oo.

In the same spirit, u(d¢) has an initial density profile if there exists a
function py(¢) such that u(d¢) = po(€) d¢ with [; po(€)dé = p.

As far as the dynamics of the entire system of unlabeled particles is con-
cerned, the behavior of the particles is indistinguishable from the unlabeled
independent Brownian motions on the torus. As a consequence we shall show
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there exists a hydrodynamic limit of the empirical density

1

5 e -+ 0avey) = w4 dé)
as N — oo. The measures wu(t, d¢) are solutions to the heat equation
(1.13) me = spee, (0, dE) = w(dé)

in the sense of distributions. As a consequence wu(t, d¢) = p(t, £) d¢ for any
t > 0 and any initial profile u(d¢).

REMARK. In equilibrium the macroscopic density is constant = p. The lim-
iting behavior of the above process is not interesting in itself since it reduces
to the simple independent case; however, by studying the particular evolution
of the tagged particle we shall derive a nontrivial result.

1.6. The hydrodynamic limit. Let PN := PY = P& o A~! for n = pN be
the lifted process (Definition 3). We assume % = (xV, x2', ..., xY) is a family
of n = Np-dimensional vectors in R", the images of the initial configuration

(&N, €N, ..., €M) and x, = £, is a given point in [0, 1] such that
(1.14) PN{xN =x}) = 1.

For the initial configuration (f{v s ..., EN), the lifting mapping A is simply the
identity. Therefore we shall abuse the notation and write u(dx) on [0, 1] for
the lifted measure corresponding to u(d¢) on the unit circle.

We are ready to prove a preliminary result underlying all considerations re-
garding our problem. It is the derivation of the hydrodynamic limit of the den-
sity profile of the process, showing rigorously that the density profile w(z, dx)
at time ¢ satisfies the heat equation.

THEOREM 1. For any smooth periodic f: R — R of period 1 and any t > 0,
n=Np

(115)  lim BV sup| Z F(xN(s)) - / £(x)u(s, dx)

0<s<t

where p(s, dx) = p(s, x)dx for s > 0 is the solution to the heat equation as in
(1.13).

PROOF. The crucial remark is that because the function
1 n
o) = (X A0

is symmetric in all variables, the boundary conditions are identically zero so
the problem of the macroscopic profile of the scaled process is exactly the same
as in the case of noninteracting Brownian motions (independent).



1214 I. GRIGORESCU

It is easy to check (Doob’s inequality) that for any smooth function f on the
unit circle I', the family of processes

w(Lreto)],

is tight.
Let u(s, dx) be the marginal at time s of a particular limiting measure on
the path space. Then

aim 2 kzl FER D) - [ Fuls.dx) o

(i.e., the limit in the theorem only pointwise in s).

By It6’s formula, we see that u is a solution to the heat equation (1.13)
starting at w(dx) in the sense of distributions. The solution to the PDE is
unique. It is clear that for s > 0, u(s, dx) = p(s, x) dx and for s = 0 we have
(1.12). The pointwise statement of the theorem follows.

The uniform convergence in t. Let £ > 0 be fixed. We divide the interval
[0, ¢] in an arbitrary number m € Z_ of equal intervals and we denote by S,,
the set of endpoints of these intervals.

The lim sup as N — oo of the quantity we look at is zero for any point in
S,,, and because this set is finite it is zero uniformly on S, ; hence it is enough
to show that the differences between the L? norms of

1 n 1
z. =+ ¥ (&) = [} Fen(s.x) dx
and
1 n 1
zo=5( ¥ (D) - [ (" ) dx

for |s' — s”| < ¢/m can be made less than ¢ as m — oo.

Then EN|Z, — Z, |? can be made arbitrarily small as |s'—s”| — 0 from Itd’s
formula and the boundedness of f,f’ and f”. Since ¢ is arbitrary the proof is
complete. O

COROLLARY 1. For any smooth ¢(t, x, y), the limit as N — oo of

| 1
EY sup IW Yo d(s, xp(s), x;(5))
0<s<t| 1<k, j<n
(1.16) 2

- /01 ‘/01 ¢(s, x, y)p(s, y)p(s, x) dy dx

is zero.
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PROOF. Any smooth @ is the uniform limit of functions Y ,c,¢L(¢, x)$%(¢, y)
where Y, |c,| is bounded by a constant depending only on ®. This translates
the problem in a consequence of Theorem 1. O

The next theorem establishes the asymptotic behavior of the average local
time per particle (1.10).

THEOREM 2. For any initial profile u(dx):
(i) The average interaction local time per particle { A% (-)}y is tight;

(ii) dA}V(t) is asymptotically equal to p(t, xiv(t)) dt, that is,V t > 0,

t
lim EN‘A}V(L‘)—/O p(s, xN(s))ds| = 0.

N—oo

In Section 2 we shall prove that Theorem 2 implies the following result.

]’{I‘HEOREM 3. For any initial profile the tagged particle family of processes
{x7' ()} 5 is tight, that is,

(1.17) lim lim sup PN({ sup |« (¢) — xV(s)| = e}) -0

-0 Noowo |t—s|<8

for any & > 0.
The next theorem is our main result.

THEOREM 4. If the initial density profile u(dx) has a bounded initial den-
sity po(x), that is, u(dx) = po(x)dx and (1.14) is satisfied, then the family

of measures PY o (x]lv()f1 has a weak limit @* as N — oo and Q* is the
unique solution to the martingale problem given by

1 A d? 1 2\ +p(t, x) \ d
118 4= §<—)\ vy x>)m - (5‘““ )T plt, )2 x))z>a

starting at (0, x1).

We shall prove Theorem 2 in Sections 4, 5 and 6 of the paper. Sections 2 and
3 will present the proof of Theorem 4 assuming that the results of Theorem 2
are true.

One can compute the diffusion coefficient in equilibrium o? = A/(A + p) (the
density is constant). It is also worth mentioning that for the nonscaled version
of the process the asymptotic of x,(¢)/v/ as t — oo is N(0, (A + 1)/(A + n)).

In nonequilibrium we notice the presence of a drift term, involving a gra-
dient factor —dp(t, x)/dx. This corresponds to the tendency of the individual
particle to avoid any region of high density and to seek relatively “rarefied”
environments, a consequence of the repulsive character of the interaction. The
drift term is zero in equilibrium (p = constant).
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The following theorem concerns the relative correlation of two tagged par-
ticle processes. Two particles with distinct labels become independent in the
limit. The definition of the interaction process being symmetric, we do not lose
any generality by picking two particular distinct labels, say #1 and #2. We shall
set the condition that the processes x'(-) and x2'(-) start almost surely from
two given values x; and x, on the unit circle, that is, PN ({xN(0) = x;}) = 1
fori=1,2.

THEOREM 5. For an initial profile u(dx) with bounded density py(x), let
x1(-) and x4(-) be the two processes such that x (-) = x,(-) and x5 (-) = x5(-),
that is, there exists a measure Q12 on Q, = C([0, 00), R?) such that

PYo (). 25 ()1 = QUr

Then x1(-) and x4(-) are independent with respect to Q*1>*2), or equivalently

Q(xlaxZ) — Qx1 ® sz_

The proof is the object of Section 7.

Similar results for other models have been obtained. Although in princi-
ple they derive the distribution of the tagged particle, in practice they in-
volve the distribution of the tagged particle averaged over the individual
particles. In other words, a law of large numbers for the empirical measure
(a) (1/n) 327 8,5, over the path space should identify its limit as @, the law
of the tagged particle process. See in this context [3] and [5]. However, we shall
be able to prove exactly that PN o xYY(-)"! = @ for any fixed k, determine @
explicitly in nonequilibrium and show that the particles become independent
in the limit.

2. The tightness of the tagged particle process. We shall define a few
test functions needed for the rest of the paper.

DEFINITION 7. We define v: R — R to be the periodic function of period 1
equal to v»(x) = x on [0, 1).

In the following the martingales we mention will be considered with respect
to the filtration of the process & (-), denoted by {Z},-o.

PROPOSITION 1. Let f(xq, %9, ..., %,) = x; and
fol(xy,%9,...,%,)= — v(x x1).

The associated martingales .#; (-) and #;,(-) from the differential formula
(1.6) are

(2.1) My (t) = x1(8) — x1(0) — 3" [AM*(2) — AF(2)] = B1(2)
k£1
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and

22 (0 = Falx(e) - FxO) + -+ AN LAY - AR 0))

k1
with the continuous martingale part equal to —(n — 1)B1(¢) + X 5.1 Br(t) and
the jump martingale part equal to — Y ., [M*(¢) — M*(t)].

A short verification of the coefficients given in the formula from above is
provided.

ProOF. If 1 ¢ {i, j} then the function f; is continuous along {x; = x;}
and there is no jump. The DY term is given by v/(x; —x;) —v/(x; — x;) exactly
where x; = x;, and hence the dA¥ term has no contribution.

We look at the dA term (the dA*! term is treated identically, except for
an opposite sign). There is one jump of size f 51 — 2 = —1 which naturally
provides a contribution of —AN. Then D'*f, has a contribution of —2 for the
v(x;, — x;) and of —1 for each of the n — 2 remaining terms. This adds up to a
total of —(pN + AN) = —N(A + p).

The advantage of these formulas is that we note the presence of the differ-
ence of Ay 5" (¢) = (1/N)(Tjy AN(2)) and AM() = (1/N)(Tpur ARN(2))
in both of them; by creating a linear combination of the two we get a martin-
gale free of the local times expressions, which will be computable.

DEFINITION 8. We denote the transformed process

LS @) - V).

(2.3) ()= 2N (t) + ——
! A+hN 2

PROPOSITION 2. Here 2z (t) — 2V (0) is a martingale with quadratic varia-
tion equal to

(2.4) (N, M)t + W ~ %:I[Alk(t) + ARY (1)),
where
) [, n-17 1 (n-1)
P =1yt | e

PROOF. It is enough to compute the sum involved in 22 (¢) — 2V (0). It is
equal to

n
- a0+ 1w A0+ oy S0 - MR
[ NA+p) ]t A+ Nglk )\+ N}§1

to make sure its quadratic variation is given by (2.4), we check that the mar-
tingales 8;, k=1,...,n and MY, MJ', j=1,..., n are mutually orthogonal
and [MU(¢)]" — ANA(¢) is a martingale, Vi, j=1,...,n. O
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PROPOSITION 3. The sequence {2 (t)}y is tight.

PROOF. Now 2z} (0) belongs to a bounded interval, hence at time ¢ = 0 the
conditions for tightness are met. Since z{v (¢) is a ;- ¢-martingale, by using
Doob’s inequality it is enough to check its quadratic variation. There is a
Brownian part, obviously tight; we need an estimate for the average local
time of collision corresponding to the tagged particle, that is, AL (#). But this
is a consequence of the limit

| t |
1\171_1)130 ENiA}V(t) —fo p(s, N (s)) dsi =0

stated in Theorem 2.

We introduce the notation Pllz = Pi\i (0)=x for the probability measure asso-
ciated with the condition x;(0) = x.

The theorem is equivalent to showing

. . N N . _
(2.5) }sli%h?fip P‘x([ossltl£5|x1 (t) — x| = s}) 0

for any & > 0. With this in mind we shall consider the stopping time
(2.6) = inf{t: |2 (t) — x| > e} Aty

and using this notation, we want to prove limg_ o lim supy_, o PIZX {r, < 8}) =
0. For 27'(¢) defined in (2.3), we define uy := 2 (t)—«7 (t) and x7 := 7' (7)—x,

Uy = upn(t) —uy(0) and 2V = 2V (7) — 2¥(0).
The set {7, < 6} can be written as

{Tx§8}=i'Tx§8and;i\v=8}U{7x§53nd;i\v=—g}

and we shall concentrate on the first set, the second one being treated identi-

cally. For the moment let us just pick an a € (0, 1). Then {r, < & and xY = ¢}
will be equal to

{7x56andxf7=sand |z{v|§ae}u{7x§6andxf7=sand |z{v|>as}.

Since z{v is tight, the sequence of limits applied to the probability of the last
set is zero. We have to work out the limits for the other set

{Tx§6and;i\vzsand |Z/{\V|§as},
included in
@.7) [~ gaandﬁzgandmg—a—a)g}.

To simplify the facts we also denote v, (x) := v(x — &).
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The function (A + p) - Uy is equal to

T T (n) — x1(7) — 5 X #(0) — 11(0))

kA1 k1
28) =y X)) = 5,0 = 5(0)
1
-~ ]§1 v(x(0) — x1(0)),
which in turn is equal to
1 1
(29) N }glvg(xk(T) — x) — N Iglv(xk(O) — x)

We shall prove at the end of this subsection the following proposition.

PROPOSITION 4. There is a smooth [at least of class C%(T")] function ¢ such
that v, (x) > ¢(x) — e and —v(x) > —¢(x) for any x on the unit circle.

Then

(A+p)ay = [% > b(ap(r) — x) — % > #(x(0) - x)} - 8(n1:rl)’

k#1 k1

implying that

_ s-1N 1 1 1
T2y T W N S A =9 E o -]

k#1 k#1

We remember the set
{r. <6 and N =ganduy < —(1- a)e}

from (2.7); the set we are interested in is included in

N 1
< N_ ¢
{Tx_éand x] and )
1 1
x |:N ,§1 b(ap(7) = %) = 5 ]gl d(2,(0) — x)]
v el(1—a _p—1/N
<o-o- 55 )

which is simply included in

1
Ty = & and |:N ]g:l ¢(xk(7) — .X')
_ % 3 (x,(0) — x)} < —sz}

k#1

(A+5)
(2.10)
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for some / > 0. This is obtained from the fact that « is arbitrary in (0, 1), that
is, we can take a < A/(A + p).

Chebyshev’s inequality implies that the limit (1.17) will be zero if we can
prove that for ¢ smooth,

1 1
2.11)  limlimsup E7% | = 3 (x(t) — x) — = 3 db(a,(0) — x)| = 0.
=0 N-oo Nz Nz
We shall prove a more general statement. The limit
1 1
(2.12) limlimsup EP" |:sup — Y d(x(t)—q)— = D d(x4(0)—q) ] =0.
t-0 N q N kAL N Rl

For each separate average (1/N) > ;.1 ¢(x,(¢) — q) and
(1/N) >_ $(x,(0) — q),

k£1

we can apply Theorem 1 and write

(2.13)  lim E®" sup

N—oo tel0, £]

|
& X 00~ a) - [ 6oty +a) as| =0,

k£l

The passage to the uniform statement in g is granted as an easy application
of Lemma 4 (6.3)—(6.5). The proof will be done if we show

. 1 1
@10 il [ 60— plt ) dy [ 65— u0.d)| =0
t— 0 0

We note that u(dx) is arbitrary but ¢ is smooth. It is clear that the solu-
tion to the heat equation starting at ¢(x) at time ¢ = 0 satisfies the limit.
We actually have the convolution of that solution (smooth) with the measure
n(dx) of finite total mass. This proves the limit.

To finish the proof of tightness we have to prove Proposition 4.

PROOF OF PROPOSITION 4.
v(x)=1+x, ifx € [-3,0) and »(x) = x if x € [0, 1]
and
ve(x)+e=1+x, ifxe[-3, ¢)and v (x) +e=xif x € [e, 1],
that is, one can take
v(x), x e[-3,0)Ue 3],
a smooth function 0(x), if x € [0, ¢).

2.15)  ¢(x) =

It is clear that 6(x) — x can be taken to be a convolution of 1|y ,)(x) with a
smooth positive approximation of the delta function at x = ¢/2. O
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3. The asymptotic tagged particle process.

3.1. An intermediate process. In this section we assume that the initial
profile has a bounded density py(x).

DEFINITION 9. Let F(¢,x) = x + 1/(A +p) [y v(y — x)p(¢, y)dy for t > 0
and F(0,x) = x + 1/(A+ p) [y v(y — x)po(y) dy if t = 0.

PROPOSITION 5. Suppose po(x) is bounded. Then the function F(t,x) is a
smooth function [of class C*((0, 00), R)] and for any fixed t > 0, x — F(¢, x)
is a strictly nondecreasing function with

A+ p(t, x)

- <(C < oo,
A+p

A
0< - <9, F(t,x) =
A+p

where C' = A+ |poll/(A + p) and ||pgll = sup, po(x). Moreover, for a given x,
lim, o F(t, x) = F(0, x) and x — F(0, x) is also strictly nondecreasing.

PROOF. It is clear that p(¢,x) = [, po(x — ¥)p(t, y)dy where p(t, x) is
the fundamental solution to the heat equation d,p = %z?xxp and as such the

smoothness is established. The contents of this proposition is the computation
of 9, F(¢, x),

0 () = 1 10, ( [ oy =0 y)dy).

We look at the derivative of the integral ¢, ( fol v(y — x)p(t, y)dy) equal to

1 1
2 [ vty +x)dy = [ w(9)dup(t, y+x)dy

0 0

(since the functions have period 1), further equal to
1
v)p(ty + 0l = [ p(ty+x)dy = p(t. 1+ %) = p= p(t. x) = p.
We want to prove lim,_,, F(¢, x) = F(0, x). For this we have to show that
1 1
[ vy = p(t.x)dy — [ vy — x)po(x) dy

ast — 0.

1 1 .1
| vy =t xydy = [ [ vy = x)p(t, 2)po(y — 2) dz dy,
0 0 J0

where p(t, z) is the heat kernel for the unit circle. We notice that

1
z— R(z,x) = /0 W(y — )po(y — 2) dy
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is a continuous function. This is because v(+) is continuous except at one point
and bounded while p, is also bounded, hence their convolution is continuous
by dominated convergence. For an arbitrary & > 0 we denote

D, = {# |RGz.x) - RO.9)| < 5
and so

1 1
| [ vy = 0p(t, yydy = [ vy - x)po(y)dy‘
0 0
< | p(t.2)|R(z. 2) - R(0. %)/ dz
+ [ p(t.2)|R(z, x) ~ R(0, %)| dz

&
<5+ 2ol [ pit2)dz
The lim sup as ¢t — 0 is less than ¢/2 for an arbitrary . O
DEFINITION 10. For any ¢ > 0 let G(¢, -) := (F(¢,-)) "

REMARK. F has an inverse when ¢ = 0 because we have shown in Propo-
sition 5 that F(0, -) is also strictly nondecreasing.

PROPOSITION 6. G(t, y) has the same properties as F(t, x), that is, there
are two constants ¢ and ¢’ such that 0 < ¢’ < &yG(t, y)<c' <ooforanyt=>0
and for a given y, lim,_ , G(¢, y) = G(0, y).

The proof is immediate from Proposition 5.
The next theorem relates the limits of the processes x'(-) and 2 (-).

THEOREM 6. For any limit process {x1(-)},.o of the family of processes
{xN ()} y-o there is a limit point {21(") }4=¢ of the family of processes {2V ()¥n-0
such that if @12V is the limit point of {PN o (2 (-), 2V (-)) "'} n corresponding
to their joint distribution, then:

() (z1(t) — 21(0), %) is a continuous martingale with respect to @*1-21);

.. 2 [PAMA+p(s, x1(5) , -
(i1) <[zl(t) — 2,(0)] - /0 oty ds, Jt>

is also a Q¥1-2)-martingale.

PROOF. We already know that x¥(-) and 2z)(-) are tight. We extract a
convergent subsequence for x(-) and from that subsequence another subse-
quence such that z}(-) also becomes convergent. The whole result follows from
Theorem 2 in addition to the next proposition.
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PROPOSITION 7. Let T > 0 be a positive number. The mappings U, and
Uy, U;: Qp — Qp with Qp := C([0,T], R) for i = 1,2 defined by U w(-) =
Jop(s, w(s))ds and Usn(-) = [;p(s, G(s, n(s)))ds are bounded continuous

functionals.

PRrOOF.

¢
sup U, w(t) < const sup sV2ds < constv'T
te[0, T te[0, T 70

shows U;(-) is bounded. For the continuity we want to prove that given a
sequence of paths w,, such that there is a path » with the property

lim sup |w,, () — w(t)| =0,

m—>00 4¢ [0,

we can conclude that

lim sup /t p(s, w,,(s))ds — /Ot p(s, w(s))ds| = 0.

m—=00¢e[0, T]170

This is bounded above by lim,,_, ., sup.o, fot lp(s, w,,(s)) — p(s, w(s))|ds,
which is less than

T
Jim [ o(s, 0,,(5)) = p(s. ()] ds.

This limit is zero by dominated convergence since for each s except s = 0 the
limit is zero (i.e., pointwise). Moreover, p(t, x) is of order of \/ 1/t uniformly in
x. The integrand is bounded by an integrable function.

The proof for U, is analogue since G(-, -) is smooth for ¢ > 0. O

3.2. The process yY(-).
DEFINITION 11. Let
0 = P s 0) = O + 1 [ = Ot 9 dy
for any ¢ > 0.

LEMMA 1. If the initial profile py(-) is bounded, then for any t > 0,

lim EY sup |yY(s) - 21 (s)| = 0.

0<s<t

PROOF. What really matters in the difference |y} (s) — 2V (s)| is the abso-
lute value of

B'(s) = 3y X v(wn() ~ ()~ [ vy~ ()pls. ).

k£l
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Let 6 > 0. We shall consider a smooth function g(x) approximating v(x) point-
wise; we mean that v = g everywhere except a neighborhood (—g, —i—g) of
the origin. Now let ¢s5(x) be a smooth function bounded by 1 with compact
support supp(¢) included in [—g, +g] approximating |¢ — g| in the L! norm
with respect to the Lebesgue measure as 6 — 0. This is the same type of
estimate we are going to use in Section 6 to show the validity of the hy-
drodynamic limits for a nonsmooth function with a jump at x = 0. Hence
|B¥(s)| < |B”(s)— B2(s)|+ |B#(s)| and we know that the expected value of the
second term tends to zero uniformly in s because g is smooth. We only have
to take care of the first term which is less than or equal to |B"~8(s)|, which in
turn is bounded above by

>0 - 2w = )| + | [0 00 = @l ) dy

k£l

< 1BY() +2 [ bo(y ~ =X (p(s. y)dy.

When we take the expected value EV[ ], the first term above tends to 0 uni-
formly in s as N — oo because ¢ is smooth (as in Lemma 5), while the second
needs a change of variable (we do not have to forget that p and » are periodic
of period 1) to bring down our proof to

lim EY sup [ [ 6ants, y+ 2t <s>>dy] — 0(5).

N—>oo 0<s<t
It is essential that p, be bounded. Let the bound be C. Then
1
fo bs(¥)p(s, y +xN(s)) < C 8. 0

COROLLARY 2. {y¥N()}y is tight.

REMARK. The proof of the tightness of xIV(-) as a direct consequence of the
tightness of zJ¥(-) (given in Section 2) is rather complicated compared to the
observation that if y2'(-) is tight and the relation between x,(-) and F(-, x1(-))
is differentiable with a bounded gradient (hence one-to-one), then x(-) is
also tight. The problem is that we cannot assume the one-to-one differential
correspondence if the initial profile is not bounded. We shall explain these
considerations in the following.

3.3. The asymptotic limit for yY (-).

THEOREM 7. The process y{v (+) converges weakly to the diffusion P, on ()
with generator

_ 1M +p(4, G2, 9)) d
2 +p? B

(3.1 L

starting at y, = F(0, x).
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PROOF. Suppose {y(-)} is a limit process for the tight sequence {yY(-)}. We
also know that {zV(-)} and {x ()} are tight. From the subsequence for which
yN(-) = y(-) we extract convergent subsequences of the other two families
{zN¥()}n and {xV(-)}y such that z20V(-) = 2(-) and x¥(-) = x;(-). Moreover,
Lemma 1 tells us that y2 and z have the same limit as N — oco. Of course,
YY) = F(t, x¥ (1)) and 2 (¢) = G(2, y) (2)).

By construction y(0) = F(0, xV)(0) = F(0, x;) = y; almost surely for all
N so P*({y(0) = y}) =1.

For any limit point x;(-) of the sequence {x;(-)}, one naturally expects
from Proposition 2 that z;(¢) — 2;(0) = y(¢) — y(0) be a continuous martingale
with quadratic variation

/"‘ AA A+ p(t, 21(5)))
o (A+p)

It is enough to substitute x;(s) by G(s, y(s)) to deduce that y(¢) — y(0) is a
continuous martingale with the above quadratic variation. The uniqueness is
established if we note the uniform ellipticity of the generator, that is,
_ M+ p(t, G, )

0<C < —
(A+p)

Roughly speaking, we have derived the asymptotic law y;(-) of the processes
{y¥(-)}n-0, obtained from the tagged particle process xV(-) through the map-
ping F(¢, x). We need a way to make sure that x;(-) (a limit point of the tight
family of the tagged particle processes) is unique and we can recuperate it as
soon as we know y;(-). For this purpose we need a few more results.

LEMMA 2. We assume that the martingale problem is well posed for the pair
(a(t, v), b(t, v)), that is, for any (¢, y) € [0, 00) x R there is a measure P(*¥)
on the path space ) = C([0, 00), R) such that if y(-) denotes an element of ()
and

1 d? d
B{; = Ea(ta y)W + b(t’ y)@,

then:
@) PEI({y(s) = y}) = 1;
(i) Y £(-, ) € CF([0, 00), R), the expression

Pl 90 = £, Y6) = [ 00+ ) (s y(w)) du

is a (P®Y), F)-martingale, where 7, = o(w(s): 0 < s < t).
Suppose ®: [0,00) x R — R is a C? mapping such that:

@) ©(¢, x) = y;
(i) 0 <¢g <9,P(¢, x) < ¢y < 0 for any (¢, x).
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Then x — ®(t, x) has an inverse y — V(¢, y) for any fixed t > 0 and if we
define a mapping on the path space E: Q — Q by [E(y)](¢) := V(¢, y(¢)) = x(¢),
then P2 .= P%sx) o 5-1 golves the martingale problem (4(t, x), b(¢, x))
with

(3.2) a(t, x) = [a(d,¥)*] o (¢, D(¢, x))
and
(3.3) b(t, x) := [(3,9) + La(d,,¥) + b(3, V)] o (¢, B(¢, x)).

In other words, if {y(-)},-¢ is a diffusion with coefficients (a, b), then x(¢) =
W(t, y(t)) is a diffusion with coefficients (d, b).

PROOF. As usual, 7" = #(U,-, y(¢)) and since ® is measurable, invert-
ible and (¢, x(t)) depends exclusively on (¢, y(¢)) for any ¢ > 0, the filtrations
;" and 7;* will be the same, equal to Z(U, -, x(#)). It will be enough to prove
that

gx(0) ~ 8(x()) — [ Lig(x(w) du

is a P(>%).martingale V (s, x) and all g € C¥(R).
Let s < ¢, < t. We want to show that

B[ a(x(0) - gtxtto) - [ Aot du

%]=o.

Of course we defined P(:® = P() for y = d(s, x) and so we rewrite the
expression from above as

EP(S’y) |:f(t, y(t)) - f(to’ y(tO)) - _/tt[(;u + %]f(u’ y(u)) du

7|
for the new function f(¢, y) = g o W(¢, y); we only have to make sure the
coefficients match with the ones prescribed by the lemma.

A little computation shows that

() + Gl () 58 W)+ bl y(w) (2 0 ¥) = 2 gla(w)
= Jalu, y(@)(g o V)7, V)
+(g'o W)[%a(u, y(w))(d,,¥)+(9,¥) + b(&y‘lf)j|. |

LEMMA 3. For T > 0 and as long as py(x) is integrable, the function
E: Qp — Qp defined by [E(y)](t) := V(¢t, y(t)) and its inverse E~1 are well
defined (map continuous paths into continuous paths) and continuous.

REMARK. The conclusion naturally holds for p, bounded.
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ProoF OF LEMMA 3. We want to show that if w € QO = C[0, T,

1 1
(3.4) L= o)+ || (e, () + y) dy

is a continuous path and that

1
35) o) = 00)+ 1= [ vt o) + ) dy
is a continuous functional.

To prove these statements we look at

1 1 1
| vt o)+ y)dy = [ v() [ poly = 2)p(t, w(t) + 2)dzdy
0 0 0

= /01 /01 v(y)po(y — 2)dy p(t, w(t) + 2)dz;

we denote R(z) := fol v(y)po(y — 2)dy and so our integral is

/01 R(2)p(t, o(t) + 2)dz = /01 R(z — o(t))p(t, 2) dz.

By a change of variable and writing down the solution to the heat equation
on the real line applied to the lifted function R(z)-periodic on R, we get

= /R R(Vtw — w(t))% exp(—%z) dw.

At this point we notice that R(z) is continuous since it is the convolution
of v, a bounded function, with only one discontinuity and p,, an integrable
function (this is also implied by dominated convergence). Clearly R is periodic,
so by looking at it as a continuous function on [0, 1], we see it is uniformly
continuous. Finally, if w,,(f) - w(¢) in the supremum norm as m — oo, then
the arguments ||[vtw — w,,(t)] — [v/tw — o(¢)]|| also tend to zero; once again
we take advantage of dominated convergence theorem and conclude that = is
well defined and continuous.

The inverse is continuous because ()7 is a compact set in the uniform con-
vergence topology. O

PROOF OF THEOREM 4. We assume that Theorem 2 is true. Its proof is
given in Sections 4, 5 and 6. We have seen in Section 2 that Theorem 3 is
a consequence of Theorem 2.

Hence {xV (-)}s=0 is tight. The one-to-one correspondence between x =
W(¢t, y) and y = ®(¢, x) guarantees that we can safely define a measure P %
for any measure P(>?) on the path space Q = C([0, o), R) by inversion,

(3.6) PO . pO.®Gs.x) (-1
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where Z: O — Q is defined as above, [E(y)] = WY(¢, y(¢)). Naturally, the
mapping E is continuous and one-to-one.

This shows the process x,(-) is well defined as a measure on () as soon
as y(-) is well defined. As it was proved, y(-) is a diffusion with bounded
coefficients and a(¢, y) > ¢ > 0. What is not clear is the explicit form of the
limiting process x;(-); if the coefficients were smooth, the problems would
vanish. However, even when p,(x) is bounded, one can show that x;(-) solves
the martingale problem for /. We already know by construction that P, =

P, o Z-1, when viewed as measures on (). The plan is to show that (i), P,
solves the martingale problem for (4, b) (3.2), (3.3) and (ii), P, is the unique

solution.

(i) The existence. For f € Cy°(R) we have the expression (yet to be proved
to be a martingale)

A7) = F(0) = FO) ~ [ Lif (x(u)) du

and for s > 0 we know (Lemma 2) that .#/(t) — .#;(s) is a martingale with
respect to P, and {%},.,. We only want to check that for any ¢ > 0,
EPx [-#(t)] = 0. Let us pick a 6 < ¢ and naturally the problem is reduced
to proving the limit lim; o E"=[.#/(8)] = 0. Now lim, o EP1|f(x(8)) —
f(x(0))| = 0 since P, is concentrated on the set of continuous paths (from
tightness), f € C3°(R) and Chebyshev’s inequality.

The actual form of the generator 7, is

2
j;:l< A >d——<1&xp(t,x) 22X+ p(t, x) )i
2\ A+ p(t,x)) dx? 2 (A + p(2, x))? ) dx
and so the only part causing some trouble as § — 0 is J,p(¢, x); all the others
are bounded.

We remember that p(t, x) is the heat kernel on the unit circle p = p; * p.
Let us write down the solution to the heat equation on the line, assuming p,
is the periodic extension on the line of the function on the circle (we keep the
same notation for simplicity). Then

) ) 1
[ lowp(u, x@)ldu < [ [ po(2)|d.p(u, x(w) - 2)| dz du
0 0 J0
2

=/08/Rp0(z—x(u))|\/% exp(—zz—u)ldzdu

S 00
< 2|y /0 /0 3, p(u, z)dz du

1
V2mu

This proves that E “1[.#;(8)] goes to zero as § — 0; since 5 was arbitrary we
conclude that prl[%f(t)] =0.

du < const/8.

S
< 2||po||f0
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(i) The uniqueness. As soon as P is the solution to the martingale problem
starting at (0, x;), the uniqueness of the solution for any (s, x) with s > 0 (a
consequence of the smoothness of the coefficients for s > 0) implies that for
any bounded continuous f,

3.7 B [f(x(t)[35,] = BP0 [f (x(t))]
where 2} = 0(Up<y<s{@(®): ©(0) = x}).

Let us suppose that @ is another solution to the martingale problem. Let
0<s<tand

EQ[f(x(t))] = ER[EQ[f(x(1)[35,]] = EQ[EPe[f(2(2))]]

and this is true for an arbitrary s < ¢. We plan to apply the dominated con-

vergence theorem to this last expression. From the one-to-one correspondence

between the measures P, ) and P, , through =, one can see that since

lim, o P, ,,) = P,, (the tight sequence P, , ) has only one limit point) the

same has to be true for 13(3, x) thatis, limg_ P, )= P, for y; = (0, xy).
This implies that for any bounded continuous f,

lim E"e0[£(2(6))] = B [£(x(£));

the expected values in this limit are bounded because f is bounded and the
limit itself is nonrandom, implying by the dominated convergence theorem (as
announced) that both @ and P, are solutions to the martingale problem and
EPa[f(x(t))] = EQ[f(x(¢))] for all f and ¢ > 0. We only have to notice that
by definition P, ({x(0) = x;}) = 1 and similarly Q({x(0) = x;}) = 1. This
concludes the proof of the theorem. O

4. The preliminary estimates.

4.1. A general test function. A general test function is needed in several
proofs in this work. For any / > 1 there exists a smooth positive function
¢(x) = ¢;(x) with compact support in the interval [0, 1], with integral norm-
laized to one and such t3hat sup, ¢(x) = L.

We now choose [ = 5 and denote ¢, := ¢. For a given 1 > & > 0 and a

given ¢ > 1, we define ¢, (x) = %qﬁ(f - %) and (y9)"(x) == —¢(x) — p.(c — x).
Defined this way, the function

c & & 3 3 3
(4.1) vi(x)=xon |:O, §:|, c—x on [c—é,c] and §8 on [ia,c—gs}
will be smooth and concave.

REMARK. sup, ¢.(x) = 3/2¢ and supp(¢.) C [0,3e/2]U [c — 3e/2, c].

For simplification we shall give the following notations.
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DEFINITION 12.

a,(-) :=yX(-) for the case c =1 and
(4.2) s
Y.(+) := y2*?(-) for the case ¢ = A + p.

4.2. The four estimates. For any £ = 1,...,n, we shall recall the defi-
nitions of the average local times of interaction from Definition 5 and (1.8)
through (1.11).

We can state the following proposition.

PROPOSITION 8. There exist constants cy, ..., ¢ depending only on the end-
point T > 0 of the time interval [0, T'| such that for any k =1,...,n and any
t € [0, T], we have:

(4.3) Estimate 1. EN[A% (1)) < ¢q + cot,
(4.4) Estimate 2. EN[A% ()] < ey,
(4.5) Estimate 3. EN[AN(D)] < cqgt??,
(4.6) Estimate 4. EN[AN(D]? < cs.

We shall need the test function defined in (4.2), a, (= « for simplicity) and
we take

. 1
4.7) Gy *(1) = G(t) = 1 2 el (1) — x4(1)).
J#k
We start writing the differential formulas,
1 7
dG(t) = N Y@ (x(t) — x,(2)) dt
J#k
1 4 ’ ’
+ N > dALk(t)[Zka (xj(2) = x4(2)) + 2 (0—1—)]
i J#
1 A ’ /
gy DAY - X aey(0) - (0) - 2000
i J#
+dAg, ().
One can isolate the total local time for the particle “%”,
2. A% () = (1) + (ID) + (III) + (IV),
where

(D) = dG(?),

(I = 5 3 & (x,(0) ~ w0 dt
J#k
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(II) = Y (dA™(2) — dAM (1)) 30 o (x;(2) — 24(2)),
i J#k
(IV) = d.4,(£)

with i, j, k distinct.
We first prove Estimate 3 and Estimate 4.

PROOF OF ESTIMATE 3. To prove Estimate 3, that is, EN[Ay(¢)] < c,tY/?,
we shall take the expected value of the four expressions listed above as (I) to
(IV) and show that each satisfies the bound in the estimate.

Clearly the martingale disappears; (I) is bounded by a constant ce inde-
pendent of ¢ and N, for arbitrary ¢. In the same way (II) < ¢’t and the only
remarkable fact is that

¢
4.8) (1) = /0 d[Z[dAik(s) - dAki(s)]} [Z o (x(s) — xk(s))] =0.

i J#k
It is significant to note that we deal with an identity; it is evidently zero by
taking the expected value, hence it will be omitted from future calculations.
This fact will be shown in the following.

Let us suppress the “t” temporarily; it doesn’t matter in the algebra
below. We denote by o, the expression a(x;(¢) — x;(¢)). It is clear that
Y gy dAR =%, 4l dA™ by changing the order of summation (this
computation is valid for a fixed j) and ¥, ; pa/; dA* = ¥, ;o' dA™ be-
cause we integrate against dA™, which is nonzero only where x,(s) = x;(s),
hence (III) is identically 0. The only thing we still have to prove is that ce+c't
can be made of order ¢!/2; since ¢ is arbitrary, we pick ¢ = ¢'/? and we notice
that ¢, in the estimate is independent of N. O

We need to prove Estimate 4, that is, that EN[Ay(#)]? < c5.

PROOF OF ESTIMATE 4. From the identity given above we will be done as
soon as the expected values of the squares of (I), (II) and (IV) are bounded
uniformly in N. (I) is a bounded function, hence the bound is valid uniformly
in £. (II) is bounded by p||” ||t independently of N. The martingale term needs
more attention.

The martingale term is

1
d-dg,(s) = > [ (xj(s) — x4(5)) dBj(s)]
J, J#k
1
SRR CICERACHENEN
J, J#k
and the coefficients of 8;, [ =1,...,n are

B9 = o D)~ 09) ~ 3 Ll a(s) ~ 1 (5).
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Then a(x) = a(1 — x) by construction, and since it is also periodic of period 1,
a(x) = a(—x), implying that o’ is odd. We rewrite the martingale as

BY(9) = 23 X (x(6) — 54(5)

Here B; are mutually orthogonal, hence the the expected value of the square
is less than Y, | sup B (s)|? dt which is clearly O(1/N)dt. O

We want to prove Estimate 1 and 2 for an arbitrary 1 < I < n. For Esti-
mate 1,

(4.9) EN[AL ()] < cq + cot.
For Estimate 2,
(4.10) EN[AL ()] < cs.

The proof is identical for all /, hence we concentrate on the case [ = 1. A
construction is needed.

DEFINITION 13. We define o(k) as the rank of the particle £ counted in
positive trigonometric sense from x; or

(411) O'(k) = Z 1[0’ xk_xl](xj — xl).
j=1
Let us define the test functions
(4.12) Ti(x)= ) cp(xp —x;) with ¢, := (n 2 cr(k)>
k£l 2
and
(4.13) T (x)=7) g(x;, —x;) where g(x):=x(1—x).
k£l
(4.14) dT (t) =Y g"(x,(t) — x4(2)) dt
P
LR AAMO)2- T g0 - m)
kA1 JHL R}
(4.15) LR A2+ X 20 - xa(0)| +dtyio
kA1 JHL R}

The martingale .Z,(¢) is
dty(t) = Y [8' (x4 (t) — x1(2)) dBr(2)]

k1

- [Z g (xp(t) - m(t))} dBy(1).

k#1

(4.16)
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At the same time,

@I AT = ¥ dAY0)| - T e e |+ T A0+ T e+ a

k£l j#l kA1 J#l
AN Y dA1k<t)[ 3 ¢ (0) — x4(8))
k£l j#l
(4.18)
Y e () x1<t>)]
J#1
LN Y dA“(t)[ Y i (1) — x1(0))
k£l j#1
(4.19)
S e, - m(t))]
J#1
(4.20) + Y dAY(t)(c; — c;) + dAy(2),
i, j#1
given that
M p(t) = ML) + A ();
(4.21) 45740 = ¥ ey dpu)— (T er) dButo)
) kAL
and
(4.22)  AP(t) = Z[ > (x () — () + %Tn}[Mlk(t) — MM (1)].
kAL (T, ky

One can see that ¢/, — c;,; if j # k and c,, is exactly the #n particle before the
jump and exactly the #2 particle after the jump. This makes the coefficient of
(AN)A™(t) equal to

(4.23) - |: Yo (x(t) — x1(2) + 2 ; n:|
J#{1, k}

and similarly the coefficient of (AN)A*!(¢) equal to the opposite.

The c¢; — ¢; factor is equal to —1 because integrated against AY we have
o(i) = o(j)+1, simply because when the particle #i collides with the particle
# j the trigonometric order of the two is naturally such that #i is exactly ahead
of #;j and since they collide they are consecutive to each other.

As for the martingales, one can note that the coefficient present in the jump
martingale is the one computed for (AN)A*(¢) and (AN)A*'(¢) (4.23); finally,
one can see that 3., ¢;, = 0.

The two test functions presented will be combined into a new test function
T and the integral form of the differential formula of T" provides a clear-cut

bound of both EN[AL ] and EN[AL ",
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Let T'(t) :== (AN /2)T 4(t) + T ¢(¢). Just for the calculations below, we denote
a = (AN/2). It is now clear that
'

[ aano]fante,+ 25" $ A0+ dutrioy

k#1 i, j#1

dT(t) = —2a(n — 1)dt + [ 3 dAlk(t)} [a(4 —n)—c, —

k#1

we divide everything by N2 and a few calculations lead to

(4.24) %dT(t) + (/\ 5 )dt+ Nz[ 3 A”(t)} - —d,/T(t)

i, j#1
-(x )5+
(4.25) ( gldAkl(t)H _%%ﬁ}

A simpler writing of this relation (in integral form) is
1 n—1 total
(4.26) m[T(t) -TWO)]+ )\Tt + ANH(t) — Ap(2),
equal to [A — N + 2p]A ().

PROOF OF ESTIMATE 1. We only have to note that (1/N?)T(s) < 3p(A +
p) =: ¢ uniformly in N, that s € [0, T'] and A((n — 1)/N) < Ap and take the
expected value of the expression (4.26) to obtain

1
(4.27) |:)\ — N + = 2 1|EN[A1 (t)] < 2CT + Apt + EN[Atotal(t)]
proving Estimate 1. O

PROOF OF ESTIMATE 2. We can bound below the coefficient [A — % + %ﬁ] by
[A+ i p] since we don’t need an optimal inequality. The problem boils down to
proving EN(1/N?)[.#7(t)]? < const with a const independent of N.

To do this we have to calculate explicitly the martingale term. Again, we
shall break down the martingale into (A/2N).#,(t) and (1/N?).#,(t).

Let us consider .#,(t) first: .#,(t) = ,/%]‘i"nt(t) + /}ump(t) and the two mar-
tingales are mutually orthogonal. The square of the continuous martingale is
bounded by (1/N*)[> ;. c?]t (the Brownian martingales 8 j(2) are also mutu-
ally orthogonal); the coefficients |c,| are bounded by n and so a bound for the
summation given above is O(1/N).
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We now have to take care of the jump martingale. We recall that the coef-
ficients of the martingales M'*(¢) and M*'(¢) were equal to (4.22),

2—n

)= ¥ (0 - xae)+ 25"
J#{1, k}

Since |m,(¢)| < 2n and given that M'(t) and M*'(t) are mutually orthogonal,

the square of the jump martingale for f is

T SmAOAN A + A (D)
o

bounded by (2/\)2,5A§{’,tal(t), a quantity proved to be bounded when we take
the expected value.

The last step of the proof is to show that the quadratic variation of .Z,(¢)
is bounded uniformly in N,

40 = [ (80 - 11(6) dBi(5)
(4.28) F

- (zkﬂ & (0p(s) - xl(s») dpi(s)

[we recall (4.16)] and since || g'|| < 3 and we actually need to get a bound
for the quadratic variation of A(1/2N).#,(t), we basically look at terms as

const(1/N?)[9(n — 1)t + [3(n — 1)]?¢], evidently of order O(1). O
5. The collision time for the tagged particle.
5.1. A differential formula. Some further notation is given.

DEFINITION 14. For any g: I' x I' > R we shall write

(5.1) ri(t) = % Y 8(xy(8) — x1(t), x;(t) — x1(2)).
j=1

DEFINITION 15. For o (k) defined in (4.11),

2 gj(5) = T 4 aw(0) 210,

We can write r}(t) = g (¢) + 1/N for the function
A
(5.3) v(x,y) = Ex + 10, 41(»)

with intervals taken in trigonometric sense.

We are now in a position to define the test function used to isolate the
average local time of collision per particle AL (¢).
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DEFINITION 16.
N ( ) N
(5.4) Fo) == X v + &) —x:1(2)) ),
N 2<k=<n
briefly denoted by F(¢). The subscript ¢ will be dropped in the following cal-
culation.
We want to write the differential formula for F(¢), that is,

7
(5.5) dF(t) = Y (D()) + d.# (t) ~ (D).
=1

It is helpful to mention the following.

REMARK. The jump v; , 1 = (y(1/N)—y((n —1)/N + A - 1)) = 0 because
v is symmetric.

We shall proceed by describing the seven terms in (D):

A? (U(k)

56 on=[5xy(% A0~ (6 ) de.

5.7) (D2) = ¥ Xk:{dAlk(t)[— Jgk Y (q;(t)) — 2«/(”7_1 +A- 1)]}

(58  (D3)=+ Z{dA“(t>[+ 2. Y(a;() +27 (zb)]}

J#k

(59 (D)= “N)Z{dAlk<t>[zv<q (1)~ y<q1<t>>+y1n1“

J#k
()‘]') k1 7
. D5) = —~= dA 4 — . _
(5.10)  (D5) N k{ (t)[gékﬁv(qj(t)) ¥(q;(¢)) 71,n—1:|}

and the last term will be broken down in two naturally equal parts, only to
simplify a future calculation (see Section 6, proof of Proposition 22),

(5.11) (D6) = 2N > dAY[Y (qi(t) — ¥'(g,;(1)],
i, j#1

(5.12) (D7) = 5 ¥ dAﬂ[y (q,(t))—v(qxt»}
i, j#1

AP (1) is

(513 A (O) = ) + D)
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with
de//év’w“t(t):—"%[ 2 78<UJ(V)+(xk(t) xl(t)))}dﬁl(t)
2<k<n
(5.14) o
L - sen )
and

jum 1 12
a0 = [ 5 0@ 0) = 0,00 + v | ad o)

k £k
(5.15) ”

+ 2l T v = 2(g,0) - ms | a0,

k J#k
where v ,_1 = (y(1/N) = ¥((n —1)/N + 1)) =0
Here {M ;(((t)} are the jump martingales of the collision (i, j) when i > j,

that is, if N¥(¢) is the number of change of labels between i and j when i > j
up to time ¢, NV(t) — (AN)A (t) = M%(t) and [M%(8)]? — (AN)A%(¢) are
martingales, V i, j € {1, 2, .

5.2. The tightness of A} ~(?). The description of the terms given before will
be used to derive two types of results: one is an estimate of the growth of
AL (®) (the following proposition) which also implies the tightness of the pro-
cess {AN()} y and the other is the fundamental Theorem 2 giving the asymp-
totic law of AL (#)

t |
i [ A0~ [ p(s.xa(s)ds| =0

PROPOSITION 9. For any a € (0, %) and for any s,t with 0 < s <t < T

there is a constant Cp > 0 independent of N such that EN[AL(¢) — AL (s)] <
Cr(t—s)".

For the first result we only need the expected value of the terms in (D),
hence the martingale term is not actively used in the proof. However, in the
second we need the absolute value estimate and we shall rely on the fact that
the quadratic variations of the martingales are negligible as N — oc.

Notation. For j # k,

o(j)+1

(516 ¢y = DL ) - =)
and
517 ¢ = TR0 2 (0 - 1)

In the formulas (D6) and (D7), o(i) = o(j) + 1 whenever we integrate
against dA”', and o(i) = o(j) — 1 whenever we integrate against dA"Y.



1238 I. GRIGORESCU

We look at the differential formula (D) in integral form. It is clear that
the left-hand side terms are bounded by gﬁs. We shall consider a term as
“negligible” if lim supy_ o, --- = 0.

The first step is to show that in (D3) we can replace y'(1/N) by y'(0) =1
and in (D4) we can replace y'((n —1)/N + A) by ¥'(p + A) = —1. They work
out in the same fashion; we do the first one.

The term y(1/N) — y/(0) is of order 1/N and the local time Y, A*(¢)
already comes with a coefficient of 1/N, such that

((2) 7))

is of order 1/N [Estimate (4.3)].
The second step is to notice the simple fact that

(3) (5t on ) (o -soao)

is identically 0 as well because (y(1/N) — y((n — 1)/N + A - 1)) = 0 from the
symmetry of y.

The third step is to look at the pairs of terms (D2), (D4) and (D3), (D5)
and show that we can approximate (D2) + (D4) by

519 (FTaato)(2+ gy o)
and (D3) + (D5) by
519 (F T o) (24 gy Z @)

These approximations are consequences of the Taylor expansions

—y(q;)+ (y(qj + %) - v(qj)> 1 sy (@) + 0<N2>

v(g;)+ (v(qj - %) - v(qj)) = %v”(qj) + 0(%)

The expected value of the whole formula (D) in integral form shows that
the term

and

(5.20) Alim sup EN/ <2 i — Z y”(qj(s))> dA%(s)

N—o0
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is less than

3 N1 "
2— pa—i—)\ limsup E [NZV (q;(s))ds

N—oo

(5.21)
+ Alim sup EN / Z'y”(qj(s))dA (s)

N—oo

and since y' < 3/2¢ and EN(1/N)Y; Ay(t) < ct'/? less than 3pe +
A2p(1/)t + Ape t/2.

Because ¢ is arbitrary and A, ¢; and p are independent of N, we deduce
that all the expression above is bounded above by const - t* where a € (0, %)
(We plug in ¢ = t* and note that 1 — a > a.) A lower bound for (5.20) is
M2 —1)EN Al(t) with I = the maximum value of ¢, from definition (4.2) = 3
Consequently the tightness of A} (¢) is proved. O

6. The asymptotic behavior of A}V(t). The goal of this section is to
prove Theorem 2.

6.1. A brief outlook of our plan. The differential formula dFY(¢) ~ (D)
from Section 5 depends on both N and e. Our goal is to find its asymptotic
value as lim,_, ,limsupy_, .. Propositions 12 through 14 (stated in the next
subsection) and their pairs for smooth functions (Propositions 18, 19 and 20)
are intermediary steps for establishing the limits

hm lim sup(D(1))

N—o0

foralll=1,...,7. (5.6)~(5.12). After this we shall be able to write down for
p=p(s,xV(s)) and A' = AL (s) the asymptotic identity

AZ(— 2)< + )d + ( 2)( ’fA)ds+A[2+%(—2)<p%>}dAl=0.

After some algebra, this implies that
Ap|:p+2A] ds = A[” +2)‘} dA'(s),
p+A p+A

providing the formal identity Al(t) = fot p(s, x1(s))ds, which is exactly the
result we need.

In the following we shall exploit the integral formula (D) (5.5) to derive
rigorously the identities from above.

DEFINITION 17. We regard as negligible an expression H% (¢, w) if

lim lim EV|H (¢, w)| = 0.
>0 N—>oo
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PROPOSITION 10. The integral of the sum of the differential terms (D1), ...,
(D7) (5.6) through (5.12) is negligible, that is,

lim lim sup EN'/Ot d[(D1)+---+(DT7)](s)| = 0.

e>0 Nooo

PROOF. It is enough to show that lim,_ ,limsupy_, . EY fOt di(D1)+---+
(D7)|? = 0 and, since sup, |FY(u)| < 3pe (5.4), it is enough to show that
|.#¥ ()% (5.13) is negligible.

We have to review the expressions of (5.14) and (5.15), the continu-
ous and the jump martingales. Again, it is sufficient to prove that both
.Y " (£)|2 and |.#5 "™ (t)[? are negligible. The Brownian motions {B;(®)}
for j = 1,...,n are independent; the quadratic variation of .Zp “™(¢) is
equal to

60 [y Svie] as+ (i) [[ 0]

The support of ' is equal to the support of (4.2), that is, it is at most 2¢ in
length. This implies by a crude approximation that there can be only n, = 2e N
particles which fall in the support of v/, |y'| < 1. Finally, the first integrand
above is less than A2(2¢)?, an obviously negligible quantity as & — 0.

The other integrands in the summation are less than A\2N - N2, clearly
negligible. -

As for the jump martingale, we note that M 2(8) given for all pairs such
that i # j are mutually orthogonal and [M¥,(¢)]2—(AN)A¥%(¢) is a martingale.
Consequently the quadratic variation of .5 1"™(¢) is

62 (N [ CSIVIER ()2 dAY(s) + (AN) | SV ()P dA (s)
Ok 0k
with
left R l /. _ . |
v = |y (260 a0 )|

and

right 1 " 1

Vi) = | (@i w0 )|

We recall that (y(1/N) — y((n —1)/N + A - 1)) =0, implying that
@ (0) = Aa 0] = ¥ @500 + 0 5)

and

[v(@5(8)) = v(g; ()] = |v/(a;()] + O(%)'
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We are primarily interested in [NV%(s)]? and [NV}®"(s)]?; they are
bounded by 2(2¢)? + (O(1/N))? and this implies

N um;
EN[ay ™ 1)) < 2EN [(28)2 + O<N2>}[A}v(t)],
a negligible quantity as N — co and ¢ — 0. O

6.2. Three estimates in the case of smooth functions. In the following propo-
sitions we obtain the hydrodynamic limit of three expressions containing the
tagged particle x{v (t) and we show that the limit is not affected by its pres-
ence, as if the limits would take place uniformly in x;. We shall need the next
results, with proofs in the Appendix.

LEMMA 4 (Uniform convergence). Suppose {uy(z, w)}y is a sequence of
positive random variables which satisfy

(6.3)(3) Jim E¥uy(z, 0)] =0
(ii) There exists a positive random Lipschitz constant Ly(w) such that
(6.4) lun(2, ) —uy(2', w)| < Ly(w)|z — 2|
with supy EN(Ly(w)) <1 < 0o and
(6.5)(iii) z e K with K a compact space.
Then lim EN[sup, uy(z, )] = 0.

The proof is given in the Appendix.

LEMMA 5. For any smooth function f on the unit circle

BY sup| = 3 £l (5) — ) (5)) - / F(y = < ($)p(s, y)dy

O<s<t k;él

converges to zero as N — oo.

For the proof, we apply the preceding lemma and Theorem 1 from the In-
troduction.

LEMMA 6.

Sup
0<s<t

1
N (3 D e 5)
(6.6) )

-0

1

- f( [ &tz )0, 9) dy)p(s, x)dx

as N — oo.
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The proof is given in the Appendix.
The following proposition gives an LY estimate for the heat kernel.

PROPOSITION 11. If p(s, x) is the heat kernel for the unit circle, that is, for
any f e LY(T"),

1
pls, x) = f % p(s,2) = [ F(3)p(s, 2~ y)dy
is the solution to the Cauchy problem for the heat equation

(6.7) 0p = 3Pxxs  P(0,%) = f(x),

then for any q € [1, 00] limsup,_, o stY20-YD| p(s, )|z, < oo. For ¢ = oo the
statement is

(6.8) lim sup s™V/2 sup | p(s, -)| < oo.

s—0 xeT?

The proof is given in the Appendix.
Let v be the function v(x, y) = (A/p)x + 1o »(¥) (6.3). Then we may state
the following proposition.

PROPOSITION 12. For f € Cy(R) (smooth and with compact support) we
have

| ot
ENi/o % 3 f<% >u(ag () — a7 (s), £ (s) — x{V(s))> ds
k

(6.9) ) /
f( [ vt =2,y - = et ) dy)p(s, x)dx ds

-0

PrOPOSITION 13. For f € Cy(R) (smooth and with compact support) we
have

ENi [ % > f(% 2ot () = (). (5) = 51 (s))) dAN(s)
(6.10) _ /Ot /01 f(fol v(x — 2V (s), y — £V (s)p(s, y)dy)
x p(s, x)dx dA}V(s)i -0
|

as N — oo.
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PROPOSITION 14. For f € Cy(R) (smooth and with compact support) we
have

ENI/(: v %[f <% vl (8) =1 (). () — <s>>) dA%(sﬂ
6.11) B /Ot fol f< /01 o(x — 2V (s), y — 2V (s))p(s, ¥) dy)

x p*(s, x)dxds| — 0

as N — oo.

6.3. The estimates as € — 0. Our actual computation involves f = vy from
the test function FY(¢) (5.4). The next propositions give us the limits as & — 0.
The proof is in Section 6.6.

PROPOSITION 15. The lim,_ o limsupy_, ., of

t 01 1
e[ Vfé(/o o(x = x1'(s), 3 = 2} (9))n(s, y)dy>p(s, x)dx ds
(6.12) t o)
PLS, X1
2 ey ]
is zero.

PROPOSITION 16. The lim,_,,limsupy_, o, of

t p1 1
| B\, 7 (/0 o(x — a7 (s), ¥ = 27 (s)p(s, y)dy)p<s, x) dx A} (s)
(6.13
‘ M 1
2}y 5% ot e P4V
is zero.

PROPOSITION 17. The lim,_,,limsupy_, o, of

EN

/ot /01 Ve </01 v(x — %7 (s), y — 27 (5))p(s, ¥) dy>p2(s, x)dxds

‘%5, %7 (5))
0 A + P(Sa x{\’(s))

(6.14) |
dsl
|

is zero.
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6.4. Three intermediary lemmas. To prove the three propositions for v =
1y<y(x, ¥) + (A/p)x we shall first prove three easier results which are re-
statements of the above for v — g with g smooth. It is worth mentioning that
we only need a g with compact support, since we need it to approximate a
function periodic in both variables x and y.

PROPOSITION 18. We make the same statement as Proposition 12 with g €
CY(R?) (smooth and with compact support) replacing v.

PROPOSITION 19. We make the same statement as Proposition 13 with g €
Cy(R?) (smooth and with compact support) replacing v.

PROPOSITION 20. We make the same statement as Proposition 14 with g €
C(R?) (smooth and with compact support) replacing v.

PROOF OF PROPOSITION 18 AND 19. We first reduce the proposition to the
uniform statement in x,, that is, with the help of Lemma 4 we only have to
prove that u y(z, w), equal to

‘/Ot % Xk: f(% Zg(xk(s) —z,x,(s) - 2)) ds
(6.15) J
_ /Ot /01 f(/ol gx—2z,y—2)p(s,y) dy>p(s, x)dx ds

is Lipschitz in z and Lemma 6 takes care of the rest. One may easily see that
here the constant Ly (w) is nonrandom and independent from N, namely is
equal to 2||f'[| - [ V] - [lpo|*-

For the case of Proposition 19: again we first reduce the proof to its uniform
version in x;. We denote by u x(z, w) the quantity

[ g so-o)asic

(6.16) 4 L
[ f< [ g2y - 2ot y)dy)p<s, x)dx dAL(s)

and we need to show that |u (2, w)—upn(2’, )| < Ly(w)|2'—2"|, with L y(w)
satisfying (iii) in Lemma 4. We take the z derivatives of the smooth functions
f and g and see that we are done if EVY A}V(t) is finite for ¢ finite, which is
one of the preliminary estimates.

We shall proceed to the proofs of Proposition 18 and Proposition 19.

Let us use the notation

|
Cxts.2) = | Ty Tt 22,60 - 2)
(6.17) . ) |
- [ 1([) a2y = ot )y Jots w)
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The next step is to look at the two integrals
Uy (2, w) = /Ot Cn(s, 2)ds
and
Uy (z, w) == /Ot C (s, 2) dAL(s).

The first is bounded by EVsup,.,|Cy(s)|t and the second by
EVN supy_,_, |Cn(s)|A} (). The Schwarz inequality shows that Lemma 6
and the estimate EV [A}\,(t)]2 uniformly bounded in N conclude the proof. O

PrOOF OF PROPOSITION 20. The uniform estimate in
1
N of EN[(—> ZA?’V(t):|
NJ%
and the smoothness of f and g provide the Lipschitz condition needed to

reduce the limit in Proposition 20 to an expression independent from x;. Hence
we have to show that

2 [ 5 2[5 stsa(o), ) aabo)
J

B /Ot /01 f(/ol g(x, y)p(s, y) dy)pz(s, x)dxds

tends to 0 as N — oo for any smooth and compactly supported functions f
and g.
The expression in the limit will be split in two,

i/ot % %:[f(% XJ: g(xp(s), xJ(S))) dA];v(S)]

(6.18)
t 1 |
- fo % % f(/o g(x4(s), ¥)p(s, y) dy) dA’;v(s)i
and
6.19 /Ot % Xk: f(fol 8(xx(s), ¥)p(s, ¥) dy) dAk(s)

- /Ot /01 f(/ol g(x, y)p(s, y) dy) p?(s, x)dx ds

PROOF OF (6.18). Let us define the quantity

D)= suplF(y Yo ) ([ st 9ot )
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and then we can have a bound
t 1
(6.18) < EVN /O D(N, s)d<§ NA?\,(S))

By Schwarz’s inequality we deduce that it is enough to show that
EN[sup,., D(N, s)]* tends to co as N — 0 and

EN<Z — A% (s))

is uniformly bounded in N.
The second bound is provided by the basic estimates established before.
The first limit can be proved by using Lemma 4 once again. One has to
denote
2

uy(x, w) :=sup
s<t

1 1
(St won) = ([ 6 90t 0)
where x stands for the z in the lemma. This expression is less than
i|2
and for each fixed x we see that this expression tends to 0 as NV tends to co

(Lemma 6). To check the Lipschitz condition in Lemma 4 we note that f and
g are smooth and as such they have bounded derivatives, implying that

(1716 g g X 2,9~ [ s ot 90

un(x', 0) —un (", o) < 2]l - [Vgl(sup po)lx’ — x

PROOF OF (6.19). (6.19) is the content of Lemma 10, which will be proven
in the Appendix. This concludes the proof of Proposition 20. O

6.5. Proof of Propositions 12, 13 and 14. We have shown that the three
limits prescribed by Propositions 12, 13 and 14 are zero if we replace the
function v which has jumps along the diagonal x = y and along the line x = 0
(mod 1) with a smooth g (at least of class C1).

The next step is to prove that the passage from g to v = 1}, (x, y) is
possible with no further restrictions on the initial profile: u(dx) := w(0, dx).
Then u may be any finite measure on the unit circle with total mass p.

We shall treat Propositions 12 and 13 together and Proposition 14 sepa-
rately.

Our point is to compare

Cito) = 37 2 Zoeats) 21601 2, - (o))

J

= [ ([] o = 5100 = 553 dy Yoo, )



SELF-DIFFUSION FOR INTERACTING BM 1247

and the analogue for g,

Ch(0) = Ty Tt~ 190 2,60~ 5,90

B /01 f(/ol 8(x = x1(s), y — 21(5))p(s, y)dy>p(s, x)dx.

[Ch(s) — CX(s)|

< IIf/IIH% Yo = gl(s) = 1(0): %) = 11(9)

1 .1
+|[ [ o= glx = x1(5), ¥ = 21(9))p(s, ¥) dyp(s, x) dx
0 J0

]

Suppose there is a ¢(x, y) smooth with compact support such that ¢ >
lv—al.
We can find a bound for the difference from above by | f’| times

|
[l% D b(xp(s) — x1(5), () — x1(s))
i~ E |

1,1
+ '/o /0 d(x — x1(8), y — x1(s))p(s, ¥)dyp(s, x)dx

]

which is less than or equal to

['% T d(xa(s) — 21(5). x(8) — x1(5)
N i

_ /01 /01 d(x — x1(s), ¥ — 21(5))p(s, ¥) dyp(s, x) dx

1 .1
+ ZI/O /0 d(x — x1(s), ¥ — x1(5))p(s, ¥) dyp(s, x) dx

]

(6.20) sup |:

0<s<t

1
N2 ]; d(xp(s) — x1(s), xj(s) —x1(8))
s J
1 .1 | 2
(6.21) — [ | ¢(x = x1(9), y = 21())p(s, y) dyp(s, x) dx&
0 Jo |
is such that its expected value with respect to PN goes to zero as N goes to 0.

The only conditions which have to be met are

(6.22) lim limsup EN(E1)=0
[supp{d}—0 N
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with
t| o1 o1
ED = [|[ [ ¢ = x1(5). ¥ = x1(s)p(s. y) dyp(s, x) x| ds
for Proposition 12 and
(6.23) lim limsup EN(E2)=0
[supp{¢}—0 N
with

i o1 1 I 1
(B2) = [\ [ $x=x1(5), ¥ = 21(5))p(s: ) dyp(s, x) dx) dAY(s)

for Proposition 13.

We shall leave these limits at the end of the proof. Assuming (6.22), (6.23)
and (6.24) are true, the rest of the argument flows along the same type of
estimates as before. We get the uniform version of the expression (6.21) that
is, without x;(s) using the boundedness of v¢ and we prove the limit as
N — oo (Theorem 1).

We want to bring down Proposition 14 to some estimate of the type (6.22)
and (6.23). To do that we need to write

[=5> X u(u(s) = 21(6). 2(5) = £1(6)) ) dAL()
vl aslr(ee )asco]

B /0 /0 f</0 v(x — x1(8), y — 21(5))p(s, ¥) dy>p2(s, x)dxds

and the analogue for g, D%, and consider their difference bounded by |//’||
times,

> k[ 10— glne) = (5 5,(9) —xi () 44|

[ o = 1,(5), ¥ — x2(5))p(s, ) dyp*(s, x) d ds

and again bounded by the same expressions with |v — g| — ¢.
We are mostly interested in the first expression. From Proposition 14 we
already know that for ¢ smooth,

hm ENI/ Z[ Z d(xr(s) — x1(5), x;(s) — x1(8)) dA*® (S)]

- /0 /0 /0 b (x — x1(s), ¥ — x1(5))p(s, ¥)p*(s, x) dy dx ds| = 0.

(This is exactly Proposition 20 with f — identity and g — ¢.)
Given this fact we only have to prove the remainder of this approximation,

(6.24) lim limsup EN(E3)=0
[supp{d}—0 N
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with

i ,

(B3)= [ |[ [ é(x = x1(s), y = 21(s))p(s, y) dyp*(s, x) dix| ds = 0.

0 |/0 Jo
Before integrating with respect to the time-variable in any of the three limits
(6.22), (6.23) and (6.24), we concentrate on the xy-integral and choose a p > 1
yet to be determined and a corresponding ¢ = 1/(1 —1/p) and then write

down the Holder inequality for each integral.
We obtain

1 .1
(6.25) /0 /0 b(x — x1(5), ¥ — x1(5))p(s, ¥) dyp(s, x) dx < [supp{d} V| p|%,
for (6.22), while
1 .1 9
(6.26) | [ (= x1(5), y = 21(9))p(s, ¥) dyp™(s, ) dx
0 J0

is bounded above by less than or equal to |supp{d>}|1/q||p||Lp||p||%2p for (6.24)
and

£l Al ) )
©27) [ [ [ $(x—x1(s), ¥ — x2(s)p(s, ¥) dyp(s, x) dx dAY (s)

0 Jo Jo
by less than or equal to |supp{¢}|*/4 fot lpl|%, dA%(s) for (6.23), as long as

1,1
[ [ ¢ = x1(5). y ~ 21(s)) dy dx < [supp|
does not depend on N.
It is clear that if for p > 1 we denote {(s, p) := ||p(s,)|z» the proof is
concluded by the following estimates on the L? norm of p(s, x).
PROPOSITION 21.
Lo
(6.28)(1) || &G, pyds < ex(t)
corresponding to (6.22),
t
(6.29)(ID) EN [ (s, p)dA}(s) < ex(?)
0
corresponding to (6.23) and

(6.30)(III) /0 t (s, p){*(s.2p)ds < cy(t)

for (6.24), with all constants c(t), co(t) and c5(t) independent of N.
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PROOF. For any fixed § > 0, g(s, x) is in C*®([8, o0), T*), hence Proposi-
tion 21 can be restated as saying that for ¢ fixed, on any interval s € [0, ¢],
dc¢>0s.t.
(6.31) sHIAAD (s, )| < c.

Now (I) and (IIT) are bounded by
t t
/ {2(3, p)ds < 02/ s (=YP) dg < const - /P < 0o
0 0
and, respectively,

t t
(s, p)2(s, 2p)ds < csf s~ [1/2)(1-1/p)+(1-1/2p)] 4
(6.32) /0 (s, PYEX ) 0
< const - /P12 < o0
if p < 2. We shall see that 1 < p < 2 is the only condition needed to ensure

all limits.
As for (IT), we have

t t
EVN / %(s, p) dAL(s) < const - EN / s~(1=1/P) gAL (s).
0 0
We have to show that EV [j s~(1-1/») dAL(s) is finite and independent of N,

t
IEN | s 0P day(s)
0

_ ‘t—(l—l/mEN[A}v(t)] ~1im 5~ VP EN[ A (8)]

1 ¢ I

+|l1-— EN[AL(s)]s~(-VP"1 g5
(1 2) s
< Kl [ta+1/p—1 + lim 6a+1/p—1:| + Kzta+1/p_1
- 5—0 ’

which is finite iff a + 1/p — 1 > 0, that is, p < 1/(1 — a) where a € (0, 1). We
have the freedom to pick a = 71 and hence we get p < % which is comfortable
enough. This shows that p € (1, 4/3).

Since we always can find a sequence of positive smooth functions ¢, bounded
by 1, with compact support shrinking to 0 and approximating |g — v|, Propo-
sitions 12, 13 and 14 are proved. O

The goal of proving Propositions 12, 13 and 14 was to establish the corre-
sponding limits for / = 7. Even though v, is not smooth, its second derivative
may be assumed to be zero on a neighborhood of the origin, hence smooth ev-
erywhere. The terms corresponding to the values k2 = 1 either as 0+ or 0—
appear distinctly written in the formulas (D2) (5.7) and (D3) (5.8).
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6.6. Proof of Propositions 15, 16 and 17. The limits we are interested in

are clarified by the remark that lim, ,, 7y, = —25, (in the sense of distribu-
tions) and the change of variable u = u(x), with « defined as follows.

DEFINITION 18. For each s > 0, let

(6.33) u(x) = Ax +/ p(s, v+ x(s)) dy.

The function v(x, y) = 1,-,)(x, ¥) + (A/p)x appears in the argument of y
and the integration

[ o= x5y = e (Dps, v)dy = [ (s, v+ = (5)) dy

makes it clear that one can perform the change of variable u, = u (x) since
Wy(x) = A+ p(s, 2+ x (s)) > 0.
In the following proofs we shall omit the superscript N on top of x;.

DEFINITION 19. Let 7, := u} !, that is, 7w (u,) = .

It is clear that u, € [0, A + p] and 7,(0) = 0. We shall omit the subscript
“s” from u and 7 whlle we carry out the integration with respect to y. By
changlng the variable u = u(x) we shall write Propositions 15, 16, 17 as

(6.34) hmhm sup ENI/ / Yo(w)lae;(x +x21(s)) —a;(x1(s))]duds

N—o0

(for i =1,2) and

imtimsup 5[ [ (0

(6.35)
x [ay(x +x,(s)) — ay(x1(s))]| du dA'(s)| =

where a;(s, x) = p(s, x)/(A + p(s, x)) and ay(s, x) = p2(s, x)/(A + p(s, x)).
We shall state (6.34) and (6.35) with the help of the functions

bi(s,u,x1):=a;(s, m(u)+ x1)

for i =1, 2, just to emphasize the presence of the argument u. They become

hmhm sup EN'/ / va(u)

=0 Noco

(6.36) |
x [b;(s, u, x1(s)) — b;(s, 0, x1(s))]duds| = 0
|
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and
t Ap
lim lim sup EN’/ / ’ v (u)
e=>0 N oo 00
(6.37)
x [b1(s, u, 21(s)) — b1(s, 0, x1(s))] du dA'(s)| = 0,
fori =1, 2.

The idea of the proof is to pick an arbitrary é € (0, ¢t) and separate the
integrals [I H (s)dr(s) = [¢ H;(s)dr(s)+ [i H;(s)dr(s) for i = 1,2 with any
one of the choices for r(¢) as either identical to ¢ or equal to A%/(¢) and

Hi(o) = | [ 00532060 — b5, 0, 5105

A change of variable w := u/e, remembering that y,(x) = (1/¢)y(u/e) and
sup, |v"(¢)| < 3/2 makes us able to rely on the fact that as long as the inte-
grand b, is of class C! in u the difference

/OAJrﬁ Yg(u)|b1(s, u, x1(8)) — b1(s, 0, xl(S))i du

= /0 " Y (w)|bi(s, ew, 21(s)) = by(s, 0, x1(s))| dw

is uniformly bounded in N by a constant C(8) depending on 6 times e. It is
known that E¥[r(¢)] is uniformly bounded in N; these facts take care of the
the limit as s > 4.

We only have to prove the uniform boundedness of

<(;—Zi)(s, U, x1)

sup
S, U, X1

2

this is implied by

b, b, au -
E(sa u, xl) - %(Sa u, xl)[%(sa X, x1)1|
since |(db;/dx)(s, u, x1)| < Co(8) and |(du/dx)(s, x, x1)| = A.

The other term (when s < 8) can be bounded in a more crude way by
taking advantage of the fact that (1) |b;| < 1 and (2) sup, , ,, [ba(s, u, x1)| <
const - /2 as a consequence of Proposition 11 for p = co. It will be less than
2 - constEYN [? ds for (6.22), than 2 - constEYN [ dA}(s) for (6.23), and than
2 - constEN [ 5712 ds for (6.24), all bounded by constant - 5%, a € (0, ). As
limg_, o lim,_ o lim supy._, ., constant- 6% = 0 the proof of (6.22), (6.23) and (6.24)
is complete. O

Before proving Theorem 2 we need to prove an intermediary result.
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DEFINITION 20. Let

2 + p(s, xf’(S)))

By(s, w):= By(s) = A( A+ p(s, x{V(S))

PROPOSITION 22. The limit of

(6.38) EN‘ [1BxNdAN )~ [ pls, ¥ (N[Byls)]ds

is zero as N — oo.

PROOF. The proof is a consequence of all the estimates shown in the pre-
ceding section. We shall rewrite the differential formulas from Section 5 for
the slightly modified test function F¥(¢) = (1/N) Y94 ys(rf(t)), where

ri(t) = Z g(xr(t) = x1(0), x j(8) = x1(8)) = g (1) +

J 1

for some function g(x). This will provide a symmetrized version of the calcu-
lations obtained in Section 5. The modification will not change our estimates
because for g smooth one has

-1
2(%}@ 8@ —§ 2§<n g(ry)| < Sup ) — e
clearly O(1/N).

Proposition 22 is a consequence of several estimates based mainly on Propo-
sitions 12, 13 and 14.

Let us recall the expressions (D1), (D2), ..., (D7) from the differential for-
mula calculated in (5.5) through (5.12) as well as the notations (5.16) and
(5.17). In the formulas (D1) to (D7), whenever we integrate against dA7,
o(i) = o(j) + 1 and whenever we integrate against dA¥, (i) = o(j) — 1 as
long as i and j are different from 1.

We also recall the four estimates from Section 4, namely, Estimates 1-4
[(4.3) through (4.6)]. In this proof we shall say that a quantity Z}\,(t, w) is
asymptotically equal to Z3(¢, w) if limy_, . EN|Z (¢, 0) — Z%(¢, ®)| = 0.

STEP 1. Proposition 10 shows that fé [(D1) +(D2) + --- + (DT7)](s) is neg-
ligible.

STEP 2. We shall separate the expression (D1) + (D2) + --- 4+ (D7) into
three parts,

AZ
(6.39) (Part 1) := [N > y”(qk(t)):| dt
k

(6.40) (Part 2) = (Part 2) + (Part 2)”
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with the notation

(Part 2) =

Zk:{dAlk(t)[—%’(nT_l + A)
+ T(=v(a,(00)+ Nna) - (D |}

J#h

ZI

and
"o i k1 ’ l
(Part 2)' = £ %{dA (t)|:+2y (N)
+Zuvmﬂm+thp—w%mH.
J#k

The last part is

Ghrt3)::§%i.22 dAY[Y(a:(6) = ¥ (a;(0)]

oN o dA7 [y (q;(t)) — ¥ (q;(t)].

i, j#1

STEP 3. We can substitute the integral form of (Part 1) with
LA "
[, | S i )as
because their difference is clearly O(1/N).

STEP 4. At this point we shall write down the Taylor expansion of the
function y about the point g ;(¢#). We mention that at any such point in the
summation y is smooth. The critical point 0 = A + p (on the circle of radius
A+p) is avoided, since exactly the terms achieving the endpoints of the interval
are computed separately,

(@) + N 7)) = 5557 (a)+ 53z (@)
and
/" 1 1 "y =
+v'(a)) = N(v(@) = v(9)) = 537"(a)) = g327"(@));

where g; and q ; are points in [0, A + p]. The errors are clearly negligible as
N — o0; here we recall the estimates (4.3) to (4.6).
This implies that (Part 2) (in integral form) can be replaced by the sum of

[ 5sd mamo][z+ 5 = v@w])

J#k
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and
[5zlamar]2e 5 gﬂqxs))“

since their difference is also O(1/N). Once again we can substitute all this by

[ 3{aaso[z+ 5 v

J#k
Finally, this last term is asymptotically equal to

[ 3{aar@lz+ 5 = v y]
0

J#k
because y” is smooth and y”(q;) —y’(r;) is O(1/N) by Taylor’s formula. This
makes the error of the same order as (1/N)EY [A}v(t)], a negligible quantity
(as well as its square) in agreement with the estimates obtained in Section 4.

STEP 5. Here we check that
[ 2 =, 44701 (06D ¥ (0,60
may be substituted with
av X | Ao @)
also asymptotically equal to
) o Y @) dad o,
In the same way,

> dAY ()Y (g,(s)) — V(qi(s))]

ZNl];él

may be substituted with

[ o = 5 a%e | @,

i, j#1

once again asymptotically equal to
LA p i, right
| 53 TV (@()dAT ™ (s).
14

Clearly, the indices i and j are dummy variables implying that the integral
of (D6) + (D7) is asymptotically equal to

/2N Z')’//(ql(s))dA (s).
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To conclude the proof we only need to remember that the three expressions
we have reduced the time integral of (D1) + --- + (D7) to are the object of
Propositions 15, 16 and 17. O

6.7. Proof of Theorem 2. It has been shown that {P" o A}V(t)fl} n is tight.
Moreover, this implies that { PV o x,(#)~!} v is also tight. Let’s suppose x,(-) is
a limit point of {x¥(-)}y.o and Al(-) is a limit point of {A},(-)}y-o such that
they are limit points of the two tight sequences over the same subsequence
(still denoted by N for simplicity); that is, there is a measure Q14" over Q
such that

(6.41) PN o (xp(t), AR (t)) T = QU1 4D,

Our strategy is to prove that any limit point @*:4") has some properties
which will determine it uniquely.

We want to prove that if Q14" is a limit distribution of (x2'(.), AL ("))
then A%(¢) = [, p(s, 21(s)) ds Q1 4)-almost surely, or equivalently,

| t |
(6.42) dim EY|A() - [ ps. +1'())ds| = 0.
First we define the measure space we are concerned with, denoted by X =

Qp x Vo, where we set Qp = C([0, T], R) and the V; space defined by

{L: [0, T] — R: nondecreasing, continuous at 0
with L(0) =0 and L(T') < oo}

with the product norm of the uniform norm on Q7 and the total variation for
V r. The object we study is a real functional U on X,

T T
U(w,L):= [ B(s,0(s))dL(s) = [ p(s, o(s))B(s, w(s)) ds.
0 0
We want to show that
(6.43) lim EN|U(x{'(-), AY()| = E ).

The measures 'V := PN o (x2'(-), A%(-))~! are concentrated on X from Propo-
sition 9. The proof consists in showing that U is continuous and that uniform
integrability holds for U and the measures I'"V in the sense that

lim lim sup Udry =o.
M—00 N_oo JL(T)>M
This property is needed because the functional U is not bounded. It is war-
ranted by the uniform bound on the L? norm of A}\,( T) given in the estimate
(4.4).
The only fact to prove is the continuity of U. Let us set an arbitrary division
of the interval [0, T'] in two parts [0, 8] and [, T']. On the second interval, the
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functions p(s, x) and B(s, x) are smooth and bounded, so we are done. On the
interval [0, §],

p(s, w(s))B(s, w(s)) < 2Ap(s, w(s)) < consti,
Js
which yields a term O(+/8) by integration. In the same time B(s, w(s)) < 24,
so the whole variation of the first integral in U is bounded by const - L($),
once again negligible as 6§ — 0.
Then B(s) is bounded above and below, that is, 0 < A < B(s) < 2; because
of the presence of the absolute value in (6.43) it is clear that

[ B(s)dAX(s) = [ p(s. x1()B(s)ds
0 0

Q1AM _almost surely. Hence for almost all w in the probability space the
positive and finite measures B(s)dA'(s) = p(s, x,(s)B(s)ds. Since B(s) > 0,
this implies that the positive and finite measures dA(s) and p(s, x;)(s)ds
are equivalent @1 4")-almost everywhere. O

7. The asymptotic independence. This section is dedicated to the proof
of Theorem 5. We shall assume that the initial profile has bounded density
po(x).

The proof requires a few results. We have to recall the two pairs of processes
2N (-) and yN () for i = 1,2 defined in the Definitions 8 and 11 in Section 3.1.
So

1 1
Ne)y=x2Nt)+ —— v £ — N (¢
(1) =x; (¢) P N};(xk() x; (1))

and
_ N 1 1 N d
WO =50+ 5 [y = @Ot ) dy,
that is, yN(¢) = F(¢, xN(t)) with

1 1
(7.1) F(t,x)=x+ F/ v(y — x)p(t, v)dy,
fori=1,2.
Proposition 2 tells us that 2z (¢) — 2V (0) is a martingale w.r.t. the filtration
{F;}+=0 of the interaction process {x"V(-)},.o and the probability measure PV.
We actually know that

(Mart) ~ 2V(8) = 25 (0) = | 1— —" =L | g.()
12 l N
(7.2) [ - )]

ki ik
e Nkzﬁﬁk(HH N};{M ()= M (o)

[see (2.4)].
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We now plan to check the cross-variation process [6] of z)V(-) and 25 (-). Let
us finally recall that these two martingales are tight and Theorem 6 implies
the existence of two martingales z,(-) and z,(-), such that zV¥(-) = z;(-) and

23'()) = 25().

LEMMA 7. The two martingales {z¥ (t) — 2 (0)}t>0 and {2 (t) — 2} (0)}t>0
are orthogonal, or equivalently,

Jim EV[(21(0) - 2 (0)(28(8) - 28/ (0))] =

ProOOF. All martingales in formula (Mart) (7.2) are mutually orthogonal,
hence
EV[(21(t) — 21 (0))(23 () — 23 (0))] = Cpgt + Ca[AF(2) + AR (D)],

where

n—1 1 1
Cs=|1- —
A [ N(A+ﬁ)L+,3N
and
1 \*1
Ca= (m) )
The proof reduces to the lemma.
LEMMA 8.

) 1
(7.3) Jim B (AR + A% 0)) =0,

PrOOF. We shall use once again the test function vy,(-) (4.1) from Section
4, simply denoted by vy(-). The differential formula for

1
(.4 Fa(® = 57( S22+ 2wl0) - (1)
will be split into nine parts described below. To simplify things we are going
to denote (0(2)/N + A(x9(f) — x1(¢))) by g and use the old notation vy, ,_; for
(y(1/N) = y((n — 1)/N)). It is true that y; , ; = 0 but I will write it down in
the formulas temporarily for clarity purposes:

1
(d1) = %7 (q)ds,
1 [ n—1 12

(@) = 5 (+207 () + OW=0 ) A0
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@= 3 d pato]|-v@ramfy(or g ) -nl)
@)= 3 a| gato]{ i@ om|r(a- 5) -l)
@)= 3 d| gato]| o s om|r(a+ ) -]}
@n= 3 d pato]{pr@ramfy(o- g ) -nol)

(d8) = % > dAé{,(t)[identically equal to 0]
i, j#1,2
(d9) = {Martingale term}.

It is noticeable that since y is a smooth function all over the place except
the endpoints, which are treated separately in (d2) and (d3), we can assume
that y», I =0, 1, 2 are bounded by a constant M.

Another remark is that our estimates are given for a fixed T, t < T and we
actually operate in integral form. The left-hand side term F 5 (q(t))—F 5 (q(0))
is O(1/N), hence negligible as N — oco. The same is true about (d1).

The pairs (d4), (d5) and (d6), (d7) can be treated in perfect analogy. We
shall only estimate one of them: (d8) is identically zero and the martingale
term is irrelevant since we consider the expected value.

The Taylor formula for y about g shows that

@+ N(v(a+ 5 ) = 1@) = g 1@,

where ¢ belongs to (0, A+ p), hence is less than or equal to M. This proves that
EN(d4) is O(1/N) in accordance with (4.5). Similarly EY(d5) is O(1/N).

(d2) is in fact equal to A[(1/N)AX(¢)] + Error - [(1/N)A%(¢)] while the
Error is essentially obtained by the difference y'(A+p—1/N)—(—1), naturally,
O(1/N). [Again (4.5)] This proves that EN[(1/N)AX(¢)] - 0 as N — oo and
almost identically EN[(1/N)A%}(t)] - 0 as N — oo. O

At this point we see it is sufficient to show the following.
LEMMA 9. {z;()} and {z4(-)} are independent.

PrOOF. Theorem 6 and Theorem 7 from Section 3.1 show that for i =1, 2
the process zV(-) converges weakly to a diffusion z,(-) with generator

_1MA+p(t, G(t, 2))) d*

(7.5) SR e
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We can restate this by saying that there exist two Brownian motions W,(-)
and Wy(-), adapted to {.7;},- such that if we denote by

(M +p(t, G(t, 2)))\
o(s,z):= ( Ot ;3)2 ) )
then
(7.6) 2:(t) — 2,(0) = /Ot o(s, 2,(s)dW,(s), i=1,2.

Since the diffusion coefficient is bounded below, that is, o(s, z) > (A/(A + p)) >
0, we may express the two Brownian motions W;(:) in terms of z;(-) and
(s, 2):=[o(s,2)] ! as

Wi(0) = Wi(0) = [ 55, 2(5)) dz(s),

which implies that W;(-) and W,(-) are orthogonal. Two orthogonal Brownian
motions are independent. It is easy to see that, applying (7.6), we may conclude
that z;(-) and z,(-) are independent. O

PrOOF OF THEOREM 5. There is a natural relation between the measures
P% and the measures @* where z; = F(0, x;), i = 1, 2.
We have proved that z;(-) and z,(-) are independent. On the pairs of sets
0% = {n € C([0, T, R) with 1(0) = 2;}
and
0% ={w € C([0, T], R) with «(0) = x,},
the mapping 0: Q% — Q% defined by (Qw)(¢) = F(t, w(t)) is one-to-one and
onto. Lemmas 2 and 3 from Section 3 imply that if @* is the tagged particle

process starting at x;, then @* = P% 00, i = 1, 2. It is easy to see from here
that x;(-) and x4(-) are also independent. O

APPENDIX

A.1. Proof of Lemma 10.

LEMMA 10. For f(t,x) smooth and A?v(t) defined in (1.10) we have the
limit

(A1) lim ENIftlZf(sx(s))dAk(s)—ft/If(s )o%(s, y)d ds|=0
’ N—oo IONk » Tk N 070 > VP V)Y I_.
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PrROOF. We recall the test function (4.2) @, = « for simplicity and we take
. 1
(A.2) Gy (1) = Gy(t) = 35 2 (1) — x4(1)).
J#k
We start writing the differential formulas,
1 1"
dGy(t) = Do (xj(2) — x,(2)) dt
J#k
1 4 ’ ’
+ N > dA’k(t)[ X;ea (xj(t) — x(2)) + 2 (0+)i|
i J#
1 4 / ’
b Z dAk‘(t)[— %a (x;(t) — x(t)) — 2a (1—)] +d.4g, (1)
i J

We can isolate the total local time for the particle #Z,

2%01 YIAR (@) + A™(1)] = 2- Af(t) = () + (1) + (IID) + (IV),

where
(I) = dG(2),
1
(D) =~ 2 (x,(0) ~ xu() .
(III) = Y (dA™*(t) — dAF (1)) 3" o (x;(t) — x,(2)),
i £k

(IV) =d.#g,(2)

with i, j, k distinct.
To write down the summation in Lemma 10, we multiply each

1 . .
2d Z[Ak’(t) + At = 2. dA%(t)
by f(t, x,(¢t)), we sum over all 2 and divide by N.

The result is the sum of four terms corresponding to the formulas given
above written now in integral form,

A3 @ = [ 3 T x() dGy(o)
k
(A4) (b) = /Ot % 3 F (s, 24(8))e (2 (5) — x4(s)) ds,
k. J
A8 (©=[ 35 X FlomN(x,(5) - wu() d(AH(s) - A%(s))

ik, Jj

e @=[ 1 3 F(5, xi(5)) o (5).
k
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In order to show that

N—oo

lim EletiZf(s x (s))dAk(s)—/tflf(s )o%(s, y)d ds| =0
IO N - s Mk 0 Jo > Y)P ,y)ay ‘— 5

we shall prove the two limits

t
(A.7) lim lim sup ENI/ 1 > (s, x5(5)) dA*(s) + l(b)‘ =0
&> N—oo 0 N X 2
and
(A.8) lim lim sup EN|(a) + (¢) +(d)| = 0.
&2V N-ooo

We can do a little bit more: the iterated limits for EV|(a)|, EV|(c)| and EV|(d)|
are zero. The proof will be complete by showing that

1 t o1
(A.9) lim lim sup EN'E(b) —1—/0 fo f(s, y)p2(s, y)dyds| = 0.

e=0 Nooo

PROOF OF THE LIMIT (c). We shall suppress the “s” temporarily; it does not
matter in the algebra below. We denote /), = f(s, x4(s)) and o/, = a(x;(s) —

x(8)),
> frelpdAM = % fio dA™

i, j, k i,Jj, k

by changing the order of summation (this computation is valid for a fixed j)
and

Y fidydA* =Y fra, dA™
i j,k ik
because we integrate against dA% which is nonzero only where x,(s) = x;(s),

hence (c¢) is identically 0.

PRrROOF OF THE LIMIT (d). The martingale term is
t1
[, 3 21 0(5)) ot (5)

and

Al (5) = 5 3 [0(x,(5) — () dB,(9)]
z

J, J#
_ [% Z o/(xj(s) — xk(s)):| dpB(s);

J» J#k
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the coefficients of B;, I =1,...,n are
BY(3) = 3z 3 £(5, %) (x,(5) — 4(s))
k
7 X s, el (24(s) — x(5)).
k

Here B,(-) are mutually orthogonal hence the expected value of the square is
less than }; | sup va(s)|2 dt which is clearly O(1/N).

PROOF OF THE LIMIT (a).
[, Ko mus) d0us) = 5 5 w6t
(A10 2 270, % (0)G4(0)
k
R PXICELOENE)

by integration by parts. The first two terms vanish as ¢ — 0 uniformly in N.
The other term can be computed by writing

df (t, x4(0)) = (2,1 (1 x,(0)) + A (E x,(2)) dt
 F/(t 24(8) (AR (E) — dAR () + F'(5, 4(5)) B ()

The summation over all 2 produces a dt term, a martingale term,
1 !
sz (s, 2 (8))Gr(s)Br(5)
k
and the term

D F (8 2 ()G (1) dAT () = 3 (2, x,()Gi(2) dAM (2).
i,k i,k

The last part is identically zero for similar reasons as in the proof of (c). The
conclusion is proved since the integrand is less than or equal to ¢ and the total
variation of

¥ Xl + (e w0
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is uniformly bounded in N (for the d¢ integral) while the quadratic variation
of the martingale part is O(1/N).

PROOF OF THE LIMIT (A.9). The function o is smooth and we know from
Theorem 2 that

lim EN\ / 5 2 F(5 ea(9)al((5) — 4(s)) ds
k, J

_ /Ot /01 /01 (s, y)al(x — y)p(s, x)p(s, y)dydx ds| = 0;

therefore, we only need to prove that

tim [ [ [ £, 9l — ¥)pCs, Dol ) dy deds

e—01J0

t .1
+2-/0/0 (s, ¥)p*(s, y)dyds| = 0.

We change the variable z = x — y and y = y. We remember again the con-
struction of o/(x) = e 'a’(¢71x) and change the variable to w = ¢ 'z and
y = y. The result is the integral

[ e | [ [ o @loto. 3+ )~ pls, ) dwas] a,

which converges to 0 as ¢ — 0 by dominated convergence. O

A2, Proof of Lemma 4. Let m € Z_ be a fixed integer. Then there is a
finite set S,, € K such that d(z, S,,) < 1/m for any z € K.
Let z € K. There is a z* € S,, such that

lun(z, )| < lun (2", 0)| +[uy(z, ©) —uy(z", 0)|

SO

1
lun(z, o) < max [uy(u, w)| + —Ly(w)
ueS m

m

and hence

suplu(z o) = X fuy(u. o) + (@)

uesS,,

We take the expected value and we get

E¥[supluy(z 0)l] = ¥ EV[luy(u o)1+ 5 EV[Ly(o)]

zeK ueS,,
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hence

lim sup EN[sup lun (2, w)l] < —l1

1
N—oco zeK m

Since m is arbitrary, the lemma is proved. O

A.3. Proof of Lemma 6. Before proving Lemma 6 we can split its expres-
sion in two,

|
EN Os:;};i% Xk: f(% Z g(xx(s), xj(s))>
(A11) . . 2
-#% £ e, 20031 d)
and
1
EVN sup % > f(fo 8(x1(s), ¥)p(s, y) dy)

(A.12) e

2

— /01 f(/ol g(x, y)p(s, ¥) dy)P(S, x) dxi ;

both converging to 0 as N — oo.

PrROOF OF (A.11). A bound for (A.11) is

2

B ! :
e sup| 37 L8 x,() ~ | 8 9ol )y

with ¢ = p2|| f[|2..
We define the function
2

uy(x, w):= sup
0<s<t

1 1
w7 28 () - [ 8o os, ) dy

Using Lemma 4 we reach the conclusion as a consequence of Theorem 1 ap-
plied to the smooth function ¢(-) = g(x, -).
To prove (A.12) we only need to use Corollary 1 for the new smooth function

d(s,2) = £(fy g(x, y)p(s, y)dy). O

A.4. Proof of Proposition 11. Let f be an integrable function on the unit
circle and let F' be its periodic extension to the real line. We shall denote by
b(t, z), the heat kernel on the real line and, as before by p(, z), the heat
kernel on the unit circle.

The periodic extension on the line of the solution p(¢, x) to the Cauchy
problem lim,_, p(¢, x) = f(x) for the heat equation on the unit circle is equal
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to the solution to the problem on the line with initial condition F(x),

Bt = [ FO)pex—ndy =X [ FG)ptx - y)dy

nezZ "

by changing the variable z=y —n

1
- Z/O F(2)p(t,x — z+n)dz

nezZ

=/01F(z)2ﬁ(t,x—z+n)dz

neZ

:/Olf(z)Zﬁ(t,x—z+n)dz

nezZ
= /01 f(2)p(t, x —z)dz

from Jacobi’s theta function formula (or simply by an uniqueness argument).
We are interested in the || - | ;,-norm of the function p(¢, x) = f * g (¢, x),

1] .1 |P 1/p
||p||Lp[o,1]=(/0 [ r@nten -2 dz dx> .

We have

_y L (D)
)= 2 en(-E5)

- amen(-5)

© % (o) ()

hence has absolute value

< |:2L1-rt exp(—%)} |:1 + 2n§+ exp(—g—j)].

The last factor is independent of x and as ¢ approaches 0 it grows smaller
and smaller, hence we may assume it has a bound C > 0 independent of x, n
and p, say C = 1+2-Y exp(—n?). Naturally, the first term is exactly the heat
kernel on the real line and by applying Hélder’s inequality we obtain all the
estimates. O
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PROPOSITION 23. If u(dx) is a finite measure on the unit circle [let us as-

sume w(T') = 1 without loss of generalityl, p(t, x) is the heat kernel for the
unit circle and

1
p(s, x) = /0 p(t, x — y)p(dy)

then

ez, ey < ()L

for any p > 1.

PROOF.

L T e A T

and we apply the Hoélder inequality for the wu(dy) integral to the functions
identical to 1 and p(¢,x —-). O
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