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We study the eigenvalue distribution of N X N symmetric random
matrices Hy(x,y) = N"1/2h(x,y), x,y = 1,..., N, where h(x,y), x <7y
are Gaussian weakly dependent random variables. We prove that the
normalized eigenvalue counting function of Hy converges with probabil-
ity 1 to a nonrandom function u(A) as N — «. We derive an equation for
the Stieltjes transform of the measure d u(A) and show that the latter has
a compact support A,. We find the upper bound for lim supy _, ..[| Hy |l and
study asymptotically the case when there are no eigenvalues of Hy
outside of A, when N — o,

1. Introduction. The first studies of N X N random matrices date back
to the works in multivariate statistical analysis of the thirties and forties
[see, e.g., the monograph by Anderson (1984)]. In the early fifties, Wigner
used random matrices (RM) in nuclear physics, where the asymptotic behav-
ior for large-N of the eigenvalue statistics plays an important role [see the
collection of papers edited by Porter (1965)]. At present, random matrices are
of great interest because of their applications in various fields of theoretical
physics and also because of their rich mathematical content [see, e.g., the
monographs and reviews by Cohen, Kesten and Newman (1986), Crisanti,
Paladin and Vulpiani (1993), Bougerol and Lacroix (1985), Di Francesco,
Ginsparg and Zinn-Justin (1995), Mehta (1991) and Voiculescu, Dykema and
Nica (1992)].

In the RM theory, the following two classes of ensembles of Hermitian (or
real symmetric) matrices have been most studied:

1. Ensembles of random matrices with jointly independent entries.
2. Ensembles of N X N matrices whose probability distribution is invariant
with respect to the unitary (or orthogonal) transformations of C¥ (or R™).

These two classes of ensembles can be regarded as different generaliza-
tions of the Gaussian unitary (or orthogonal) ensemble that plays a funda-
mental role in the RM theory [see, e.g., the monograph by Mehta (1991) and
references therein]. This ensemble consists of Hermitian (or real symmetric,
respectively) N X N matrices Hy whose entries Hy(x, y), 1 <x <y < N are
independent Gaussian random variables with zero mathematical expectation
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914 A. BOUTET DE MONVEL AND A. KHORUNZHY

and variance v? for x # y and 2v? for x = y (for brevity we will consider the
orthogonal case called GOE).

Ensembles (1) and (2) are opposite generalizations of the GOE in the sense
that the matrices of (1) have independent arbitrarily distributed entries,
while those of (2) possess a rather strong statistical dependence that does not
decay even when the entries are far enough from one another in the matrix.
Thus, it is natural to expect that the eigenvalue distributions of matrices (1)
and (2) have different properties [see, e.g., Wigner (1955) and Boutet de
Monvel, Pastur and Shcherbina (1995), respectively].

The present paper deals with ensembles that can be regarded as interme-
diate between (1) and (2). More precisely, we consider the case when the
entries Hy(x, y) of a symmetric N X N matrix H, are weakly dependent
Gaussian random variables; that is, we assume that the correlations between
them vanish as the “distance” increases. This distance between H(x, y) and
Hy(x',y), x <y, &’ <y can be defined as the sum |x — «'| + [y — y'l.

We are interested in the asymptotic behavior as N — « of the spectral
norm and eigenvalue distribution of H,. These two characteristics are basic
in spectral RM theory and play an important role in many applications [see,
e.g., Bovier, Gayrard and Picco (1995), Crisanti, Paladin and Vulpiani (1993)
and Isopi and Newman (1992)].

Given an N X N real symmetric matrix Hy, the eigenvalue distribution is
described by the normalized eigenvalue counting function (NCF)

(1.1) o(hHy) = #{AV < AN7L, A < - <A,

where )\S-N ) = \,(Hy) are the eigenvalues of Hy. The spectral norm of Hy is
defined as
| Hyll = max|)\j(HN)|.
J
An important result of the RM theory is the semicircle law derived by

Wigner (1955). For the case of GOE it can be formulated as follows. Consider
the ensemble of real symmetric random matrices Hy with entries

1
(12) HN(xyy)=Wh(x’y)’ x,y=1,---,N,

where h(x,y), x <y, x,y € N are jointly independent random variables
defined on the same probability space. Assume that the family {A(x, y)} has a
Gaussian distribution and satisfies the conditions

(1.3a) Eh(x,y) =0
and

(1.3b) Eh(x,y)h(s,t) =v?[8(x —8)8(y —t) + 8(x—¢t)8(y —s)],
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where the symbol E denotes the mathematical expectation and & is the
Kronecker symbol:

1, ifx=o0,
8(x) = {o, if x # 0.

Then o(A; Hy) weakly converges with probability 1, when N — «, to a
nonrandom nondecreasing function a,(A),

(1.4a) lim o (A; Hy) = o,( 1),
(1.4b) oi(n) = | (@707 VAT = < 20,
’ 0, if Al > 2v.

Here and below, by weak convergence of NCF’s o(A; Hy) we mean the
weak convergence of the measures do(A; Hy) that are associated in a
natural way with nonnegative nondecreasing functions.

It follows from (1.4) that (—2v,2v) is the support of the measure do(A).
This means that the number n(N) of eigenvalues that fall into this interval
is proportional to N and lim ., n{(N)N~! = 1. In fact, a stronger statement
is valid: with probability 1 all eigenvalues of H, fall into this interval,
because, according to the results of Bronk (1964) and Geman (1980),

(1.5) Allim |Hyll = 2v with probability 1.

Analogous facts are known also for ensembles of random matrices with
independent entries more general than GOE. Namely, the semicircle law (1.4)
is valid for the ensemble of matrices Hy (1.2), where A(x, y), x <y are
arbitrary i.i.d. random variables satisfying (1.3) [see Pastur (1973) and Girko
(1975) for the sufficiency and necessity of these conditions, respectively, and
Girko (1988) for more details]. This ensemble is known as the Wigner
ensemble of random matrices.

Relation (1.5) was also shown to be true for the Wigner ensemble. In this
case, the condition E|h(x, y)|* < « is a sufficient and necessary one [see, e.g.,
Bai and Yin (1988) for a more general formulation]. Under more restrictive
conditions on the probability distribution of A(x, y), Boutet de Monvel and
Shcherbina (1995) derived that the exponential bound

Prob{||Hyll > 2v(1 + &)}
=exp{—N"log(1+ &)(1+0(1))}, Now

is valid for any given fixed ¢ > 0 with some positive 7. A similar estimate
follows from deep results recently obtained for the Wigner ensemble by Sinai
and Soshnikov (1998). Relation (1.6) can be regarded as a generalization of
estimates derived by Bronk (1964) for GUE and GOE.

In the present paper, our main goal is to understand how the statistical
dependence between entries of random matrix Hy can change the limiting
behavior of the spectral norm and eigenvalue distribution. Under rather
natural conditions, we find the upper bound for lim supy, _, .|| Hy|l, derive the

(1.6)
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estimate (1.6), and prove that the nonrandom limit w(A) of o(A; Hy) exists.
We show that in general the limit of || Hy || and the upper (lower) bound of the
support of du(A) do not coincide. We prove that this coincidence takes place
for a certain class of random matrices that includes the important particular
case when the random field {H(x, ¥)} can be regarded as a stationary one.
The paper is organized as follows. In Section 2 we formulate our main
statements. In Section 3 we prove the theorems of Section 2 with the help of
one key technical result (Theorem 3.1). Section 4 is devoted to the proof of
Theorem 3.1. In Section 5 we formulate and prove auxiliary statements.

2. Main results and discussion. Let V be a nonrandom bounded
symmetric nonnegative operator in /2(N) with real entries V(x, y), x, y € N.
Let A(x,y), x <y, x, y € N be random variables defined on the same proba-
bility space (). We assume that the joint distribution of {2 (x, y)} is Gaussian
with the following properties [cf. (1.3)]:

(2.1a) Eh(x,y) =0
and
(2.1b) Eh(x,y)h(s,t) =V(x,s)V(y,t) + V(x,t)V(y,s).

One can easily show that the matrix C(x, y;s,t) = V(x, s)V(y,t) +
V(x,#)V(y, s) is nonnegatively defined and therefore satisfies the covariance
criterion [Loéve (1978)]. We prove this in Lemma 5.9 of Section 5.

We introduce random symmetric N X N matrices H, and V, by the
relations

12 h(x,y), ifx=<y,

(2.2) Hy(x,y)=N h(y,x), ifx>y,

x,y=1,...,N

and Vy(x,y) = V(x,y), x,y =1,..., N and define the spectral norm of H,
as

|Hyll= max |XM
N1 N| J |’

,,,,,,

where AV) are the eigenvalues of Hy.

THEOREM 2.1. Denote

- 1 -
(2.3) V=|Vlgz < o, v{") = limsup =TrVy <V
N> N
and assume that
1
2.4 (7 = liminf —Tr Vy > 0,
(2.4) U1 11{&12 N TN
where Tr denotes the trace of a matrix. Then the inequality
(2.5) lim sup|| Hy |l < 2/0{"'V
N-ox

holds with probability 1.
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REMARK. Using the technique developed to prove Theorem 2.1, it is
possible to consider the ensembles (2.1) and (2.2) such that [cf. (2.4)]
(2.6) N '!'TrVy=0(N""), N — «withsome > 0.

In this case, the upper bound for the norm ||Hy || remains the same as in (2.5),

but the estimate for probability Prob{ll Hy|l > 2y/ v{PV (1 + &)} that we derive
is changed [see (2.23) and proof of Theorem 3.1 in Section 4].

The quantities v{™’ and v{"’ coincide in an important particular case
where the limit of the normalized eigenvalue counting function (1.1) of Vj
exists,

(2.7) v(A) = lim o (X V).

Assuming (2.7), we can study the limiting eigenvalue distribution of Hy, in
more detail.

THEOREM 2.2. Let V satisfies conditions (2.3) and (2.7), then:

(1) There exists a nonrandom function u(A) such that
(2.8) Jim ¢ (s Hy) = w()

with probability 1.
(ii) The Stieltjes transform f(z) of du(A),

)= [ (A=2)"du(r), z<C\R

can be found from the relation

o= dv())
(2:92) ) = = e
where g(z) is a solution of the equation
= Adv(A)
(29b) g(z)—/(-) —z——/\g(z)’ ZEC\R.

This equation is uniquely solvable in the class F of functions ¢(z) analytic in
z € C\R and satisfying the conditions

lim n¢(in) < =, Im ¢(2z)Im z > 0, z € C\R.
n—ox

(iii) The support A, of the measure du()) satisfies the relation

(2.10) A, C (—2,/vlvm , 24/vqv,, ),

where

(2.11) v, = foo)\ dv(A), v, = Sup A,
0 AEA,

and A, is the support of the measure dv(A); also, if A € A,, then —A€A,.
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REMARKS. (i) Equation (2.9) was derived by Khorunzhy and Pastur (1994)
for random matrices (2.2) with Gaussian h(x, y) satisfying (2.1), where
V(x,y) = u(x — y) and
(2.12) u(—x) =u(x), x€2Z, ) lu(x)|<ce.

xeZ
The latter inequality implies that the family of random variables {A(x, y)} is
weakly correlated, that is, that the dependence between h(x, y) and h(s,t)
vanishes when |x — s| or |y — ¢|increases infinitely. Conditions (2.12) provide
the existence of the limit (2.7) given by the relation

v(A) = meas{p € [0,1]: @(p) < A},

where a(p) = L, . ;u(x)exp{2mixp}, p € [0, 1] [see, e.g., Grenander and Szeg6
(1958)].

(i) Several analogues of (2.9) are known for some classes of random
operators with statistically dependent coefficients [see, e.g., Wegner (1979),
Khorunzhy and Pastur (1993) and Khorunzhy (1996)].

(ii1) Condition (2.7) can be regarded as a certain form of the condition of
weak statistical dependence for the family {A(x, y)}. Indeed, it follows from
(2.3) and (2.7) that N~ 'LY yoalVix, ¥)]? is bounded as N — . Therefore the
N2 terms [V(x, y)]? cannot be all of the same order of magnitude. This
implies a decay of V(x, y) when |x — y| — .

(iv) In case V has a diagonal form

(2.13) V(ix,y) =w(x)é(x —y), x,y €N,w(x) >0,

the Gaussian random variables A(x, y) are uncorrelated and, hence, are
jointly independent. In this case, condition (2.7) is equivalent to the condition
that the following limit exists:

(2.14) v(A) = lim #{x:w(x) <A, x=1,...,N}JN L.
N>
This is true in the case where w(x) is determined as a realization of an

infinite sequence of i.i.d. random variables with distribution function »(A).
Then the law of large numbers implies (2.14).

(v) Set

0, ifix<o?
2.15 A) = ’ - )
(2.15) S A P
Then (2.9) reduces to the equation

1

2.16 = —.
(219 1) = =)

This equation was first derived by Marchenko and Pastur (1967) for the
Wigner ensemble of random matrices.
(vi) Any function ¢(z) € F admits a representation

#(2) = [ (A=2)"do(W),
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where o (1)) is a nonnegative nondecreasing function such that [*_, do(A) < .
This function can be found by the inversion formula

1 b
(2.17) 7 (b) = o(a) = lim —Im ["$(A + in) da,
nl0 T a

where a and b are such that o(A) is continuous at these points [see, e.g.,
Donoghue (1974)]. If the derivative o' exists on the whole axis, then (2.17)
can be rewritten as

1
(2.18) o'(a) = ;Im ¢(a +i0).

Using (2.18), one can easily derive from (2.16) an exact expression for g, (\)
(1.4b).

We obtain (2.5) and (2.8) and (2.9) under the rather weak and natural
conditions (2.3) and (2.4) and (2.7). In brief, we require that the matrix V
possess those spectral characteristics that we expect to exist for Hy in the
limit N — «. We see that the location of the support of the limiting eigen-
value distribution function is determined by the product v,v,,, while the
upper bound of the spectral norm ||Hy|| is determined by the variables v, and
IV |I. It is natural to assume that the lower bound of || H || also depends on the
norm [[V|| and therefore in general there exist eigenvalues of Hj lying
outside of the support A,.

A trivial example of a matrix Hy with this property is provided by (2.1)
and (2.2) when V(x, y) has the form of (2.13), with

_Ju', ifx=1,
(2.19) w(x) = {v, if x > 1.
In this case it is easy to see that v(A) is given by (2.15) and, hence, the
density of the limit eigenvalue distribution is given by (1.4) and has the
support (—2v, 2v). On the other hand, we have for the vector e,(x) = §(x — 1),
with probability 1,

1 N
|Hye I = — Y [h(x,1)] > v/ as N - =,
N x=1
This relation implies that lim supy, _, ., || H| NIIZ > vv'. Thus, for v’ > 4v one can
find with probability 1 eigenvalues of Hy outside (—2v,2v) in the limit
N - o,

THEOREM 2.3. Let V satisfies the conditions of Theorem 2.2 and

1 o
(2.20) T Vi < fo Adv()), reN
for all N € N. Then with probability 1,
(2.21) Lim IHyll = X,

where x,, = SUPAeAJM-
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It is easy to show that (2.20) is satisfied when V is a difference matrix

(2.22) V(ix,y) =u(x—y),

with nonnegative entries u(x) > 0 such that (2.12) holds (see Lemma 5.5 in
Section 5). It should be noted that all our results remain valid in the case
where condition (2.1b) is replaced by the condition

Eh(x,y)h(s,t) =V(x,s)V(y,t).

In this case the particular form (2.22) of V describes the random field
{h(x, y), x <y} that can be regarded as a version of a stationary random
field. In this connection, let us note that the matrices Hy resemble the
metrically transitive operators introduced and studied by Pastur and Figotin
(1992). These operators have the property that their spectra coincide with the
support of the limiting eigenvalue distribution function. Thus, our observa-
tions lead to the conjecture that the same property for random matrices is
also related with stationarity of the probability distribution of their entries. It
could be interesting to develop a more precise formulation of this conjecture.

To conclude, we remark that as a by-product of the proof of Theorems 2.1
and 2.3 [see estimates (3.14) and (3.24)] we obtain the estimate

(2.23) Prob{|[Hyll > x,(1 + &y)} < exp

N |6
_(%) sN(l-f—O(l))],

as N — =, where 0y = [[Vy|l/(N~! Tr Vy) and &y is an arbitrarily chosen
sequence such that N'/6(36y) /%y — « as N — =,
In the case of GOE, estimate (2.23) takes the form

Prob{|| Hyll > 2v(1 + y)}
< exp[—(N) ey/3(1 +0(1))], N -,

with 7= 1/6. In this case it is known that (2.24) holds also for > 1/6.
However, it is not hard to observe that the upper bound here is 2/3. In
particular, this follows from results obtained by Tracy and Widom (1994) that
the maximal eigenvalue of Ay is located in the vicinity of the point 2v(1 +
N~2/3). In this connection, it would be interesting to find an optimal improve-
ment of (2.23).

(2.24)

3. Infinite system of moment relations. To prove the theorems of
Section 2, we study the asymptotic behavior of the moments

M,N)=EH}, Hf=N'TrHf= f_ AP do(A; Hy), p € N.

We derive an infinite system of relations that involves the moments M p(N )
and certain terms vanishing for N — «. We develop a technique that allows
us to estimate these terms for p = O(N7) with some 7> 0, N — . Using
these estimates in the case of finite p, we obtain the convergence of M p(N )
as N — « and the convergence of do(A; Hy) with probability 1. The esti-
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mates derived for the case of infinitely increasing p allow us to study the
deviations of ||Hy|l.
Let us introduce the variables

M{"(N) =EH{V§, p,qe€Z,,Z,=NU{0}, M{(N) =1.
In the sequel we omit the subscripts N when this does not lead to confusion.

We compute the average

N
EH?(x,y) = ) EHP? (x,s)H(s,y)
s=1

with the help of the following statement.

PropoSITION 3.1. Let random variables v,,...,v, have a joint Gaussian
distribution with zero mathematical expectation. Then

n oF
(3-1) E?’jF(Vl’-uaYn) = Z E?’j%‘E &’y_a
i=1 i

where F(x4, ..., x,) is a nonrandom smooth function such that all integrals in
(3.1) exist.

One can easily prove this statement by integration by parts.
Taking into account (3.1), we derive the relation
EH? Y(a,b)H(x,y)
1P 2 . _
(3.2) - = X E{[H V] (e, ) [VE'](5,0)
i=0
+[HP"*"'V](a, y)[VH'](x, b)}

(see Lemma 5.1 for the proof). Applying (3.2) to M{?(N), we obtain

p—2
(3.3) EHPVI= ZE{Hp’z’iVHdi”+N’1H"*2*iVHiV"+1}.
i=0

Let us introduce the notation
< g > = § - E g )

where ¢ is an arbitrary random variable with finite expectation. Taking into
account the fact that EH2%+*1V 7= ( [see also (4.2) and Lemma 5.2 for the
proof], we derive from (3.3) that
k-1
Mz(llle)(N) = Z Mé%e)—2—2j(N)Mz(3‘+l)(N)
(3.4) Jj=0

+ @) (N) + W) o(N),
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where
2k -2
P _o(N)=N"' )} EH***'VH'VI*!
i=0
and
2k -2
Wi L (N) = Y EHZ*2IVYHIVITL),
i=0

The key observation is that ®%%_,(N) and W{}_,(N) are o(M§} ,(N)) as
N — =, To show this, we introduce variables

L(pb,)N(x,y) = Y [H“VH*: - VH*](x,y)
@;>0,%% ja;=p
and
DY P(byyeosby) = X [BEEIV) - (L DVKIEIVET |
Bi>0,X7L 1 Bi=p

and formulate our main technical result.

THEOREM 3.1. Let 0 = supy 0y, with 0y = Vy /v and

vV = Vy = N1 TrVy, VN= j:IInaxN|/\J»(VN)|.

,,,,,

IfN >N, > 3-2'%), then

(35) 0 <ELY) yV§ < (2k +2)*° (b — 1)° Vo IMP(N)

and

(4k + 4)*""™(B
Nm

forall ¢ =0 and b,k,B,, = by + -+ +b,, such that 2max{b, B,,,4k + 4} <
(N/36)V¢.

B,
n) "

(3.6) DY (by,...,b,) < VB4 O(N)

REMARKS. (1) To explain the form of the estimates (3.5) and (3.6), let us
note that LY) y is the sum of T'(2k, b) = (2k Fb- 1) terms, where T(2k, b) is

the number of all possible distributions of 2% 1dent1ca1 balls into b boxes.
Each of the terms involved can be estimated from above by the same
expression. So, to simplify the subsequent computations, we replace T(2k, b)
by its upper bound. This increases the value of the exponent of 4% + 4 in the
right-hand sides of the estimates (3.5) and (38.6). In turn, this leads to
decrease of the exponent 7 in the estimate for the possible growth of 2 < N™.
This is why we consider 7 = 1/6 as far from the optimal exponent.

(2) The factor N™ that appears in the right-hand side of (3.6) reflects a
special property of the moments M{J(N) and, hence, of the measure
do(A; Hy). In the theoretical physics literature this property is known as the
strong self-averaging property [see, e.g., Lifshitz, Gredeskul and Pastur
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(1988)]. In the RM theory, it was first observed by Berezin (1973). Here the
strong self-averaging means that the variance of the variables

[ e do(xHy),  peCiR),

is o(N~1). This is true for a wide class of random matrices. Actually, (3.6) is
an improvement of this statement. The form of (3.6) is based on the assertion
that the random variable

N[ o do it ~ B[ (0 do(as 1)

converges to a gaussian random variable as N — « [see, e.g., Girko (1988),
Khorunzhy, Khoruzhenko and Pastur (1996)].

Here we prove that the moments of the random variable (H?¥ — EHE)*
are of the order N~ (?*®) when N — © and p + k — ® simultaneously. This
means that do(A; Hy) converges to a nonrandom limit much faster than the
strong self-averaging property predicts. Let us also note that a similar
observation is made by Sinai and Soshnikov (1998), who have proved that in

Wigner ensemble, the random variable Hjv — EH{" converges to a Gaussian
random variable when N,p - ©, p = N7, 7 < 1/2.

(3) Theorem 3.1 remains valid when 0 is replaced by 6,. This means that
we can replace condition (2.4) by condition (2.6), with = > 0 such that N /6,
—> 00,

We prove Theorem 3.1 in Section 4. It follows from (3.5) and (3.6) that

(q) 1 (2) qg+1 0(4k)2 (1) (g+1)
(3.7) |(D2k72(N)| ﬁEﬁszﬂ,NV = N M (N)M ) (N)
and
40(4k)°
(88) Wi o(N)| = D&% y(1,1) = sy MP(N) MED(N)

for all N > N, such that (N/360)"/® > 4k. Taking these estimates into ac-
count, we return to the proof of Theorem 2.1.

ProOOF OF THEOREM 2.1. Let us first note that given any positive number
e < 1, there exists N,(&) such that

0(4k)°  46(4k)°
N + N2 <e
Then (3.7) and (3.8) imply that

(3.9)

V N > max{N,, N,}.

kE—1
(310a)  (1-&) ¥ MY , »,(N)M§ O(N) < M{P(N)
j=0
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and
k-1
(3.10b) M{P(N) <(1+ &) X M), 5, (N)Mi*D(N),
j=0

where g € Z, and k € N.

Modifying slightly the arguments used by Boutet de Monvel and Shcherbina
(1995), we introduce a sequence of positive numbers m{? (N, ¢) determined
for a fixed positive £ < 1 by the relations

k-1
(8.11a) m{@(N,e)=(1+¢) ) m(klll_j(N, 8)m§q+1)(N, ), k>1,
j=0

(3.11b) m@(N,e) = (1+¢)°V3, mP(N,e)=1.
It is easy to see that the inequalities (3.10) imply the estimates
(3.12) m@(N, —e) <M (N) <m@(N, ¢).

Equation (3.11a) resembles the system of relations derived by Wigner (1955)
for the moments of the semicircle distribution (see Section 5, Lemma 5.4).
From this observation, we obtain

(8.13) mP(N, &) < [(1 + &)2ly | (1 + )°Vd, Iy =1vMVy
(see Lemma 5.6 for the proof). Thus we get
ME(N) < [(1+ e)21y]"
for k < 8" 1(N/36)"® when N is large enough. Let us show that this implies
(2.5).

In view of the definition of the moments M{®(N), we can write for any
a>0,

M{P(N) = E . )Adea(A;HN)
a2k
- (N)
B[NV 2 o)

\%

o2k
WProb{IIHNII > a}.

"

Then
Prob{|[Hyll = (1 + 2¢)21y}
MO(N
< N inf 2 (N) 7
(3.14) k [(1 + 28)2ZN]

N 1/6
=Nexp[—(%) log(l +

1+8).
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An elementary calculation shows that
Y. Prob{|Hyll > (1 + 2¢)2ly} < .
N=1
Since ¢ is arbitrary positive, then the Borel-Cantelli lemma implies (2.5). O

PrOOF OF THEOREM 2.2. Let us prove Theorem 2.2. In view of condition
(2.7), the following limits exist:

(3152)  lim mif(N, &) = f(e) = (1+ &) [A1dv(A).
This fact together with Lemma 5.4 implies that for any fixed k,q € Z,
(3.15b) gfim m{@ (N, &) = R (&),

where the moments m{?(e) satisfy the analogue of system (3.11) where
(3.11b) is replaced by the right-hand side of (3.15a).

Lemma 5.4 implies that the difference between m{?(—g) and m{?(e)
vanishes when & vanishes. This means that

(3.16) Jim MP(N) = A{9(0) = g,
where the () satisfy the system of relations
k-1
(8.172) A = LAY, kg1,
j=0
(3.17b) mg = [Adv(d), gz 1R =1

Relation (3.16) with ¢ = 0 can be rewritten in the form
]\lli_I)I;DOE NrEda (A Hy) = mi.
It follows from Lemma 5.2 of Section 5 that Ef/\?‘k+1 do(X; Hy) = 0. Let us
show that there exists a unique limiting measure du(A) with odd moments

zero and even moments 7 bounded by (2V)?* [see (3.13)].
Let us define the functions

(3.18) fO(z)=— Y m@pz2"1 gez
k=0

which are analytic in the region

(3.19) U={z:Imz|>2V?%+1)}.

Then it is easy to show that (3.17) is equivalent to the system of equations

(3.20) —2fD(2) =mP + fD(2) 9"V (2), qeZ,.

The system (3.20) has a unique solution that is also the unique solution of the
system

(3.21) FO(2) =f A dv(X)

_rant ez
—z — AMD(2) 7= 5
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(see Lemma 5.7 for the proof). Denoting f(2) = f(2) and fV(z) = g(2), we
obtain (2.9). In Lemma 5.8 we prove (iii) of Theorem 2.2.
At this point, we have derived the weak convergence (2.8) in average. To

prove that (2.8) holds with probability 1, we need to show that lim, _, .H. Z(ka )=
MY with probability 1. This can easily be proved in View of the convergence

(3.16) of the mathematical expectations M{P(N) = EH{Y)VY and the esti-
mate of the variance

(3.22) ECH{)VI)H{'Vi) = O(N?), N - wforfixedk,qecZ,,

which follows from relation (3.6) of Theorem 3.1. Let us note that in Lemma
5.2 we prove that

ECH )\ VHE V) = 0

[see also equality (4.3)].
The Borel-Cantelli lemma implies that each moment of the measure
da(A; Hy) converges with probability 1,

lim H{™ my, if p = 2k,
o 0, ifp=2k+1.

The moments MY’ uniquely determine the measure du(A) with Stieltjes
transform f(z). ThlS proves Theorem 2.2. O

ProoF oF THEOREM 2.3. Condition (2.20) implies that the inequality
(3.23) m@(N, &) < R (e)

holds for all N € N. It follows from Lemmas 5.7 and 5.8 that the moments
#(&) uniquely determine the measure with compact support du, (). Let us
denote by Xf) the upper edge of this support. Then (3.23), together with the
second inequality of (3.12), implies that for large N we have

M{)(N) < | <8>] forall & < (N/36)"°.

Repeating the arguments of the proof of Theorem 2.1, we obtain for arbitrary
g > 0 the inequality

N 1/6
(3.24) Prob{lIHNII > x(1 + eN)} < exp[— (ﬁ) ey(1+ 0(1))],

as N — o, hence

(3.25) lim sup || Hyll < x{*.
N->»

Lemma 5.4 implies that lim, , , x{* = x,. Relation (3.24) implies that

limsupl|Hyll < x, with probability 1.
N-o»

On the other hand, Theorem 2.2 implies that, with probability 1, any interval
(x, — A, x,) with fixed A > 0 contains eigenvalues of Hy in the limit N — ,
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and then

limsup||Hyll > x, — A with probability 1.
N>

This proves Theorem 2.3. Let us note that estimate (2.23) follows from (3.24)
because the right-hand side of this estimate does not depend on ¢ > 0. O

4. Proof of recurrent estimates. In this section we prove Theorem 3.1.
Let us consider the mathematical expectation

EL(pb)ch=N—1 3 Y E(H“V - H*1'VH*)(x,t)VI(t, x).
%8 a;>0,L8 ja;=p
We apply (5.1) to the last average (see Lemma 5.1 in Section 5) and obtain

b-1b-s—1p—2
ELPVi= Y ¥ Z EL? ; DVEL{ DY+l

s=0 ¢=0
b-1
(4.1) +N1 Y (b s)ELT ;7 DVeFsTI
s=0

b—1b-—s—1p—
+y ¥ Z (LEUIL sit)>E<L(t+1)Vq+s+1>
s=0 t=0 =

Taking into account the inequality (5.3) from Section 5 and the relations

(4.2) EL%+1 NVA =0, EL(”) NN >0
and
(4.3) D3 w(by,by) = 0,

which are proved in Lemma 5.2, we derive from (4.1) our first main inequal-
ity,
b-1 b—s—1k-1
EL{)Vi< Y Vs ¥ Y ELY, ) VEL{ V!

s=0 t=0 j=0
b—-1
(4.4) + N1 Z (b — S)VSEL(b erl)Vq+1
s=0
b—-1b-s-1
+ Y DE1IO(b—s—t,t+1).
s=0 t=0

The second relation concerns the variables D;’”). To derive it, we use the
identity

(4.5) E<§1><§2> EE<§1>§2

and write the equality

(4.6)  EXLGYV) - (Lyn-DVXLY(x,y)) = ECA,,_ LY (x, y),
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where we denote A, , = (L(Bbll)V> <L(Bbm'":11)V>. Using relations (3.2) and
(5.1), we obtain

E(A,,_ DL(x, y)

b,—1 (b, —s—1p,—2
= ) ( > > E{<Amf1>L(5bm'":zs:it)v[vs+1L(it+1)](x’y)}

s=0 t=0 i=0

+

— S
(4.7) E<Am—1>[L§§:_1’2VS”](x,y))

b,—1m-1
+ X

s=0 r=1

2b,
E{Ql Q. ~ [L(Bb:éy _‘5+1)Vs+1](x,y)
><Qr-%—l o Qm—l}’

where @, stands for (L(b JV. Let us note that the first mathematical
expectation in the right- hand side of (4.7) is of the form E{T )YZ. We rewrite
it in a form appropriate for our use, with the help of the identity

E<{T)YZ = ET{Y )EZ + ET{Z)EY + ETXY ){Z) — ETECY X{Z).

Using this identity and applying (4.5) to the third term of the right-hand side
of (4.7), we obtain our second main inequality,

7
(4.8) D¢ &(by,...,b,) < 2 R

i=1
where

R1= Z Z ZD(2’Z O2 Zj(bla”-’bmfl’bm_S_t)EL(;Jfrl)VquSJra

Ry= Y Y Y DG4 (b, by, t + DELF DV,
s=0 t=0 j=0

R,= ) DgrryatstD(p .. b, 1, b, —s—t,t+1),
s=0 t=0
bp—1k—1 b,—s—1
R,= )Y ) D %(bl, caba) Y D(zzj’q””)(bm—s—t,t+1),
s=0 j=0 t=0
b,,—1
3 m S +s+1
R, = D9 st Db . .,b, 1,0, —s+ 1),




EIGENVALUES OF RANDOM MATRICES 929

R, = Z D§r-Latst (bbb y,...,b, 1,b, +b —s+1),

r=1

> ZD(m 20)J(bl,_,,,br,1, bri1s-vsbpy)

X(2j + 1)EL(2bj,+bmfs+1)Vq+s+ 1.

It should be noted that in Section 3 we defined the variables Dy}’ only for
2 <m < 2k, k > 1. This means that for m = 2k, m =2k — 1,or m = 2k — 2,
certain terms in the right-hand side of (4.8) should be omitted. However, if we
set D{P) = 0 for m > 2k, then (4.8) will be valid for all £ > 1, m > 2.

Now we describe the induction procedure that we use to prove Theorem
3.1. Let us call “D-plane” the set of pairs (k,m), m > 2, k,m € N and
“L-line” the set of points j, j € N. Suppose that for some integer J > 3 the
estimates (3.5) and (3.6) are valid for all DY}’ and L, such that k' + m' < J,
J <J — 2. We will say that such points on our D-plane and L-line are
positive.

Let us introduce the set D(J + 1) of points (k, m) determined by the
relation £ + m = J + 1. The step of the induction is to prove that D(J + 1)
consists of positive points and that the point j = J — 1 is also positive. Then,
according to the induction principle, (3.5) and (3.6) will be proved for all fixed
k and m.

To add D(J + 1) to the set of positive points, we start from the point
k' =1, m' = J, which is apparently positive because (3.6) is true for these %’
and m'. Now let us assume that for some integer £ > 2 all points of D(J + 1)
satisfying &' < k — 1 are positive. Then all terms D and L involved in the
right-hand side of (4.8) correspond to positive points of the D-plane and L-line
and therefore satisfy (3.5) and (3.6). Our main goal is to derive that this
1mphes (8.5) for D{7*?. When this statement is proved, the point k' =k,
m=dJ+1—-Fkof the D-plane is shown to be positive so D(J + 1) consists of
positive points. When this is proved, we will show that the point j =J — 1in
the L-line is also positive. We do this with the help of (4.4).

Following the induction principle, let us first ensure that (3.5) and (3.6) are

valid for the initial points LV and D& 9(b,, b,). Let us first consider
ELPVi- Y  EHV - VA%VT

aizO,
apt o tay=2

= Y EV"HVPHV ™4,
Tm+p+o=b-1,
T, p, >0

It is not hard to see that in the latter sum there are b(b~+ 1/2 terms
corresponding to p > 0 and these can be estimated by V°® Y(V?T1V +
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N71V9%2%) The b remaining terms corresponding to p = 0 have the form
EH2V+0-1=Va*tby + N-1Va+b+1 and (3.5) obviously follows. Next, we
find that D (b, by) = 2b,b, N 1V b1#02%a%2 and that (3.6) is true for
k = 1. We emphasize that (3.5) and (3.6) are proved for 2 = 1 when q, b, b;
and b, are arbitrarily fixed. This implies that we do not need to care about
changes of these parameters in (4.4) and (4.8).
Let us turn now to the general case £ > 1 for LY). According to (3.5), we
assume that the first term in the right-hand side of (4.4) is less than
b-1 b-s—-1k-1

YV Y Y (4k - )b -s—t-1)
s=0 t=0 j=0

b—s—t—1

X(4j + 4)*¢'VsT1EL]) , , VELDV!
b-1 1
4.9 <F
( ) k,b sgo (4k+4)2s(b_1)23
k-1 bsl(l J +1 )Z(b—s—l—t)(j +1 )2t

EO = E+1 E+1

XELY_, , VELPVII,
with
Fy, = (4k + 0 V(6 - )V]" .

For s < b — 2 we can estimate the last sum over ¢ using the inequality

p i JH 1\H0 41\
v = su -
#(d) j=0,...I,)k—1t=o E+1 E+1
(4.10)
1
<l-—,
2(k +1)

which is proved in Lemma 5.3 (see Section 5). Then we find that the
right-hand side of (4.9) is less than

1 b—2 1
Fk’b[(l T2k +1)

EO (4k + 4)*5(b — 1)*°
1
+ b—-1 b—-1
(4k +4)" (b - 1)

X2k,q

<F

1
1- ———|X
- k’b( 4k +1) |70

where
E-1
— 1 1 +1
Xok g = Y EL(Z%_Q_ZJVEL(Z}V‘? .
j=0
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Using (3.5) again, we conclude that the second term of the right-hand side
of (4.4) is less than

b-1

b-1
— = (4k)* (b — )" °*VPEL]) VT
s=0

. Bbz o 42 ) 1 b-1 ) 1 -1
< I ﬁ( +4) ( +b—1) +( _(4k+4)2(b—1))

x VELY) v+t
< 20eF, ,(4k + 4)*(b + 1)’ N71X,, ..

In the last inequality, we used the elementary relation

1 b-1
(4.11) (1+b—1) <e forall b > 2

and the obvious estimate
VELS) ,Vi*'!' <Xy, ..
Assuming that (3.6) is valid for the third term of the right-hand side of
(4.4), we see that it is less than

4k2 bt et 2(b—s+1) b—s+1y7 T(1) tro+1
NT Zo Zo (4R)7° 77 (b —s + 1) VPEL§)_,Vi+!
s= t=

(AR et 2 )

—_— +

=&k, b N2 s—O( b — 1)
b-1 1

OVELY] V!
EO (4k + 4)* (b + 1)° hoe

<F, ,260e%(4k)°(b + 1)°’N72X,, ..
Now we can conclude that
EL)VY < Fy v Xon,q
oo, 20e(4k + 4)*(b + 1)
(4.12) 4(k + 1) N

20e%(4k + 4)°%(b + 1)°
+ N2 .

It follows from (4.1) that

1
Xyu,q < ELGVT + LELG) VT + DFO,(1,1).
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Applying (3.5) and (3.6) to the last two terms of this inequality, we obtain

—— 0(4k)° 46(4k)°
Xph,q < ELGIVI + —=— X,

> q NZ 2k, q

and finally that

0(4k)>  46(4k)°
N  N?

(4.13) Xy o< |1 ELD) V.

Elementary computations show that inequalities (4.12) and (4.13) imply
(3.5) for all N, k and b satisfying the conditions of Theorem 3.1.
Now we turn to the proof of (3.6). Let us denote

Giom.p = (4k + 4)*P (B, )PV En~1

and assume that (3.6) is true for all terms R,,..., R, involved in the
right-hand side of (4.8). Then for the first term we have
b, b,—s—-1pkp—1
R1 < Z Z Z m+2(B sft)(Bm _S_t)Bm*S*t
s=0 t=0 =

X(4j + 4)*¢'VEIELY) , , VELVI'!

k-1 b,

<G —_—
kmBJZOSZO(4k+4) Bs

-1 (k _])2(b t)(J + 1)2t (k J)

~ELY]_, , VELDVI

(k + 1)%°n (E+1)"
-1 \m
1 kb (R —J)
<G, pl1 - ———— ~— o ELY , , VELPVIL,
E, ,Bm( (4k+4)ZBm) jgo (k+ 1) 2k—2-2j 2]

It is easy to derive that R, is bounded by a similar expression, with
ELS) , ,,VEL)V" ! replaced by EL}) , ,,V¢"'EL})V. Then we can write
the inequality

< m m ’
1 2 k,m,B,, ( k )2B F (E 1) ”k J

where we use that B,, > 2m and denote

W.(j) = ELS)_, o, VELY)VI*t + ELG) , ,,VIH'ELG)V.
The function W,(j), j = 1,...,k — 1 is symmetric with respect to (k¢ — 1)/2.
Since (kB — j)™ is convex for m > 2, we can write

k=1 k-1
Y (k=) "W,(j) < 5(k™ + 1) ¥ W,(J) = (k" + 1) Xy, ,.

Jj=0 Jj=0
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Thus
1

R, +R, <Gy, p Xop J1 - ——————
1o e = Tk m, By 2’“’( 32m(k + 1)°

(4.14)
X

(1_ki1)m+ (k+11)”‘l'

For the next term R, of (4.8) we find easily that

(4k)3 b,—1
R, <G —_—
3 k,m,Bm N sgo
b,—s—1 miy, 2(B,,—s)
m A RS > o
= VEL]) ,Vi+!
Eo (k +1)"(k + 1)* =24k + 4)>*B;, ' 7°
G (4k + 4)’B2 ¢ . 1 !
< m -
£ B N 32m(k +1)°) T
It is not hard to derive that R, is bounded by the same expression and that
5 -G (4k + 4)*B26 . 1 ‘lX
<Gpp—F— |1 - —m—
P N 32m(k +1)°) T
and
B oG (4k + 4)B26 . 1 ‘lX
<Gupp—|1-—— .
oT kBN 32m(k +1)°)
Similar computations show that
k-1 4k
R, <G, , S E—
T k. ’ijg() (4k + 4)2
b,—1 1
)y

X —_——
= (4k +4)'B;,

m—1 . 2B, _{-b,)
JH1\2Buab
X bl1l-—
E‘l ( k+1)
LBy — b))
E+1 (Bm)Bmfl‘br

X ELS) , 5, VELGVI*h
Denoting B'=B,_, — b,, we observe that b.(B'/(B' + b,))? < 1. Taking
into account that R, is positive only when m > 3, we can estimate
j+1
E+1°

Y (1-P)PP2r <m(1-P)*" ?pt<1, P-=
r=1
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In view of these inequalities, we obtain

-1

1

R, <G, , 1- Xoh o
TR (g 1) ( 32m(k + 1)° 2ha

Using (4.12), we finally derive from (3.8) the estimate

D(an:’q)(blw"’bm)
G (1 1 )’” 1
< - +—
b B k+1 (k +1)
k 40B2(4k + 4)°
+ =+
(4.15) (k+1) N

-1

1
x[1- ——r—
32m(k + 1)

~ 0(4k)” ~ 40(4k)°

X111
N N2

-1
) ELJVY.

It remains to show that for all N, &, m, and B,, satisfying the conditions
of Theorem 3.1, the inequality

Dy 9(b,,...,b,) < Gk’m’BmEL(Zl,qu

holds. This can be done easily by simple computations. Indeed, the maximum
value of the expression in the square brackets of (4.15) is obtained when
m =2 and B,, = (N/36)"5. The maximum value of the next two factors
from the right-hand side of (4.15) is obtained in the cases when m = 2 and
B, = (N/360)"%, respectively. Then after simple computations, we see that
the product of these three factors is bounded by the expression

1 46(4k + 4)° (1 ) 46(4k)2)

1- 2+ 1) (39)1/31\72/3]( i 32(k + 1)

N

Now it is not hard to observe that this product is strictly less than 1 when the
inequality
402/3(4k + 4)° 1
<
N3 3(k+1)

holds. This inequality is valid for all & satisfying the conditions of Theorem
3.1. Theorem 3.1 is proved. O
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5. Auxiliary statements.

LEMMA 5.1. The relation (3.2) is true, so is the equality

ELY(x,y)
N b-1b-1p-2
51y =N L ; ; o E{(Z5PV ) (2, ) (VI V) (3,1 )
+ E{(LE=32)V ) (2, 9) (VIS TOVe) (2, ) ).

PrROOF. Let us assume that x <y in (3.2). Then according to (3.1) we can
write

EH?(a, b)H(x y)

0HP(a,b
\/_Et (W)[V(S’x)v(t,y)+V(8,y)V(t,x)],
Regarding the equality
JH?(a,b) Pt p—1-1 H(u,v) H
W lzou;'lH (a, u) h(s.1) HY(v,b), p=1

and the consequence of the definition (2.2)
dH(u,v) {S(u—s)é(v—t), ifuc<v,
dh(s,t) VN | 8(u —¢t)8(v —s), ifu>wv,
we obtain that
EH?(a,b)H(x,y)
p-1

=N Y YE{HP ' a,s)H(t,b) + H? ' !(a,t)H'(s,b)}

=0 s<t

X[V(s, x)V(t,y) + V(s,y)V(¢,2)](1+ (s —¢t)) "

This equality implies (3.2).
To prove (5.1), we start with the terms of L(pb) such that «, > 1. Given
fixed numbers (a;, ..., o), let us compute the expectation

E(H*V --- VH* Y (x,t)H(t,y) =S
with the help of (3.1). We obtain

b a.—1

S=N! 2 2 (HOV - VHO 1V (2, t)(VHIV - VH® V) (y,¢)
a,—1

r

i Y (H“V - VH 1V )(y,t)(VHIV - VH® V)(x,t).
r=1 j=0
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Note that if @y, =1 or o; =0 for some i, 1 <i <b — 1, then the terms
corresponding to r = b or r = i are absent.
Thus, we have
Y E(H“V - VH*)(x,y)

a;>20,a,>1
a;+ o Fay=p

p—2

b
LT E{(L, V) (s (VI )0
=1 j=0

II
T Mz

+ (L2 5,V ) (2, ) (VLS 0) (2, 1) ).
Similarly,
Y E(H“V - VH*)(x,y)

a;20,a,_1>1,a,=0
ay+ ot ay

=p
N b-1p—2
-N'E L ZE{( L)y V2)(x, ) (VI DV )(y, t)
t=1r=
+ (L2 5,V 2) (5, ) (VEL DV ) (2, ) ).
Denoting by ! a number such that «; > 1 and «;,; = = = a, = 0, we arrive

at (56.1). O

LEMMA 5.2. Let us consider the random variables

(5.2) My(a,b)(x,y) = [H®VA .. VAE-HAVE](x,y),
where the vectors a = (ay, ..., a;), b = (B,,..., B,) have positive integer com-
ponents. Given vectors a,,...,a,, let us denote {= X" la,l, where la| =

Y¢_,a, and
IN = E{MN(al,bl) "'MN(am,bm)}, MN(a,b) = N_l TI‘MN(a,b).
Then:

(1) If { is even, then Iy is strictly positive.
(i) If { is odd, then Iy is equal to zero.

Proor. (i) Using (3.2), it is easy to show that I with { = 2q is a linear
combination of terms of the form (5.2) but with new a’, b} such that
{'=2q — 2. The coefficients in this linear combination are of the form
ViI> 0, ¢ > 0 multiplied by 1 or 1/N. Repeating this procedure, we arrive at
a finite number of summands that include factors

E(H,ViH, V), E{HZVY} or E{H,V{H,V}}.

Easy computations based on (3.1) show that these factors are also positive
because of the positivity of V). Thus, (i) is proved.

To prove (ii), we use a similar procedure. Starting from I, with { = 2q + 1,
we obtain at each step a linear combination of terms of the same form but
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with o diminished by 2. At the final stage with {” = 1, we obtain zero due to
(2.1a).

Having proved (i) and (ii), it is easy to obtain the relations (4.2).

Next, let us derive (4.3). According to the definition, DS ¢)(b,, b,) is a sum
of terms of the form

E(LTPVITN,V) or ELY)VELY:V,

that are equal to zero according to (ii).

In conclusion, let us note that

(5.3) ELY) W Vi* < VRELY) \Vy,  Vy=[Vyl.
One can easily prove this inequality using the previous argument.
LEMMA 5.3. Inequality (4.10) is valid for arbitrary d € N.
PrROOF. Let us check (4.10) for d = 1. We denote P = (j + 1)/(k + 1) and

observe that the function (1 — P)> + P2,1/(k + 1) <P < k/(k + 1) takes its
maxima at the boundary points. Since 2 > 1, then

. ? I ) 2 2 ) 1
— + =1- + - —
( k+1) (k+1) E+1 (/@+1)2S 2(k + 1)
Now assume that d > 2 and consider the case P < 1/2. Then

d

Y (1-P)* 7P < (1 -P)* +dP?(1 - P)* "% = y(P).

t=0

The function (P) is strictly decreasing for 1/(k + 1) < P < 1/2. Therefore,

5.4 d 1 o ¢ + i
>4 Wk()s(_kﬂ) (k+1)"  (k+1)°|

Introduce the variable 7= (d — 1)/(k + 1). Then (5.4) together with the
elementary inequality (4.11) imply that
—27
7Tk(d) < m(’r-f— 1+ k2)
T, 7> 0 is strictly decreasing, then
1+ k2 1
(k + 1) <1 2k + 1)

Since the function e ™2

m,(d) <

LEMMA 5.4. Let n'? and A\? be determined by the relations

k-1
1 1
n{® = ny), n@th. nP=Z >0kqe”Z,
j=0
k-1
A A(1 A 1 A 5
Ap = Y AP, ath AW =2 >0,k,qeZ,,
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0) — 40 — 7 1
where my’ = my’ =1 and Z, and Z, satisfy
zZ,<Vi,  Z <V
Suppose that there exists a positive number & such that
Z, - 2,1 < V1.
Then
(5.5) |n® — AP| < £8*V 2%,

Proor. Obviously we have that

(5.6) O <79, AW < /@,

where
Z AR, A G0 =V k,qeZ, /) = 1.

It is easy to observe that 72 = Vn,, where the moments n, are deter-
mined by the recurrence relations
k-1
n,=VvV=2}y Ny_1-;n;, n,= 1.
j=0
Denoting AY) = n{? — A2, we deduce
-1
D M P L R (ol
j=0
Then it is not hard to show that the inequalities AY’ < sV imply the
estimates AY) < £2*(2V)?*V . One can check this d1rect1y with the help of
the last equahty and estimates n(? < (2V)*V9 and A{? < (2V)*V. These
are the consequences of inequalities (5.6) and

n, < (2V)2k

This estimate is valid because, was as proved by Wigner (1955), the n, are
the even moments of the semicircle distribution (1.4) with v = V:

ny = [XEday(A). O
LEMMA 5.5. Let V be given by (2.22) with u(x) > 0. Then (2.20) is true.

Proor. It is easy to see that

w N
fo A dv()) =N! gVQ(x, x)

=N} ]Xv: Y u(x —sy)u(sy —sy) - u(s,_y — ).

x=1s,€7
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Then

N
Vi) =N 'TrVg=N1Y Y'u(x—s)u(s, —8y) u(s, , —x)

x=1 s;

where X' means that the sum is taken over the set of (s, ..., s,_,), such that
s; > N for at least one variable s;. It is obvious that the latter sum is
nonnegative and (2.20) is true. O

LEMMA 5.6. Inequality (3.13) is true.

PrOOF. Let us show first that the moments m{?(N, ¢) given by (3.11)
satisfy
(5.7 my¢*Y(N,¢e) <(1+&)’Vym(N,e), k,qeNU/{0}.

If £ =0, then (5.7) obviously follows from definition (3.11b). As for (3.11a),
one can easily prove that if (5.7) holds for m{?(N, &), q € Z,, then the same
is true for m$#) (n, &), q € Z,.

We derive from (5.7) that for k,q € N U {0},

m@(N, &) < (1 + £)”*Vy 2 m | (N, e)m@(N,e).
Jj=0

Let us introduce the numbers m{ (N, ¢) satisfying the relations

-1
AO(N, &) = (1 + £)”*Vy 2 (N, e)m(N, &),
Jj=0

@ = (1+ 8)"?Vg.
Then
(5.8) m@(N, &) < (N, ¢).

Let us introduce the functions
i (2) = = X mP(N, &)z 2!
k=0

that satisfy the relations
m§’(N, &)
—z = (1+ &)V fiD.(2)

(5.9) fP.(z) = qeZ,=NU{0}.

In Lemma 5.7 we prove that the equation given by (5.9) with ¢ =1 is
uniquely solvable in F and the function fy(z)= f(o) (z) is the Stieltjes
transform of a measure day .(A) such that

PPN, &) = [ 2 day, (1),
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It is easy to see that fN(z) has the form
- 1
I(e) = —z—(1+ 8)3/2‘7N§N(2) ’
where the function gy(z) € F is the unique solution of the equation
1+ 8)3/20(1N)
—z = (1+ )" Vydn(2)
It follows from the proof of Lemma 5.8 that
supp day ,(A) C (—=2(1 + €)ly,2(1 + €)ly), Iy = [U(IN)VN]I/z.
Thus,

gn(z) =

(N, &) < [41 + 2)%13]".

This inequality combined with (5.8) proves that m{(N, &) < [4(1 + £)21%]*%.
We derive from (5.7) that

~ ~ k
m@(N, &) < (1 + &)’ VgmO (N, &) < (1 + &)"*Vg[4(1 + £)13]".
This gives (3.13). O

LEMMA 5.7. The system of equations (3.20) considered for z € U (3.19) has
a unique solution. This solution satisfies the relations (3.21). The equation

given by (3.21) for q =1 is uniquely solvable in the class of functions F
defined in Theorem 2.2.

ProoF. Let us rewrite (3.20) in vector form. To do this, we introduce the
linear space B of vectors K with components K, € C, ¢ € Z, and determine
the norm

IKllg = sup V7I|K,I.
qeZ,
Let us introduce a linear operator S, such that
(S.K), = —z‘qu+1, qeZ,.

Then (3.20) can be rewritten in terms of the vector K with components
K, = f9(z) as follows:

(5.10) K= -2"'M+K,S,K,

where

M,=mg = [xdv()), qeZ, MeB.

We are going to show that (5.10) has a unique solution in B. First let us
note that if a vector K' belongs to B, then the vector S, K’ also belongs to B.
It is easy to observe that for z € U (3.19) the operator S, is bounded,

IS,Ilg = sup IS, K'll<VIzI ' <1/2.

KeB
IK'[lg=1
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Let us introduce the sequence of vectors K™, m € Z, given by the relations
K™D = —27IM + K{™S, K™, K® = M.

Taking into account that |[M]|| < 1, it is easy to derive that |[[K™)|| < 1 for all
zeU.
The difference

U, =KD K™, mez,
can be estimated by
ol = [[ K4 = K{ D] 8,00 + Kpr 5, (K K 0)|

72

s, [l

|z

Now it is clear that the sequence K™ converges in B, when m — », to a
vector K satisfying (5.10). Obviously, this is the unique solution.

Now let us prove that (3.21) for ¢ = 1 has also a unique solution f(z)
that belongs to the class F. We do this with the help of the successive
approximations procedure used by Khorunzhy and Pastur (1994). We con-
sider the sequence of functions f('(z), m € Z, given by the relations
w  Adv(A o
fhy(2) = fo Tﬁﬁy)(z) f&(z) = —zflfO Adv(A).

It is easy to see that £(’(z) € Ffor all m € Z,.
We denote ¢, ; =1, — £ and obtain
AQ
2+ MP(2)][2 + M

enei(2) = en(2) [ 1 7.

Hence,
[ @ne1(2)] < VZIm 2] g, (2)].

Thus, we have that for z € U the sequence f"(z) converges when m — = to
a unique function f®(z) satisfying (3.21) for g = 1.

Since f’(z) € F, then these functions represent the Stieltjes transforms
of the measures dg,,()\) that converge weakly as m — «. Therefore, f(z) —
fP(2) for all fixed z € C\R and f®(z) € F. Let us note that a similar
argument proves the existence of a unique solution in the class F of equation
B9 forg=1. 0O

LEMMA 5.8. The measure du(A) has a finite support A, that satisfies
(2.10). A, has the property that, if A € A, then —A € A,.

PrOOF. Repeating the arguments of the proof of (5.7), we derive that the
moments 747 of the measure du(\) satisfy the inequalities

O <m@, k,qeZ,,
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where the m{? are given by the relations
E-1 oc
w0 = v, Y mP, A, me = [ ATdv()),
0

m
Jj=0

It is easy to see that the functions

satisfy the system of equations
,;,L(Oq)
~z =0, ["(2)’

which is uniquely solvable (see Lemma 5.7). We see that if A # 0, then
Im f©(X + i0) is equal to zero if and only if Im f®P(A + i0) = 0.

It follows from (5.11) that
-z + 2% - 4vp,

2v,,

(5.11) fD(z) =

oz -

b

where we choose the branch of the square root which satisfies
Im fO(z)Imz >0, zeC\R.
Thus, Im f®O(A + i0) > 0 if and only if |A| < 2y/v,v,, . The same statement is

valid for Im (A + i0). Using (2.18), we obtain that m{ < (2,/v,v,,)* and
therefore

Y < (2 ViU, )k VEkeN.

Obviously, this implies (2.10).
The symmetry property of A, follows from the observation that the
solution of (3.21) is odd in z

FO(-2) = ~f(2),  qeL..
According to (2.18), this equality implies that the support A, is a symmetric
set. O

LEMMA 5.9. Let V(x,y) be the matrix defined in Section 2. Then the
bilinear form determined by the matrix C(x,y;s,t) = V(x,s)V(y,t) +
V(x,t)V(y, s) on vectors & with componenis &(x,y) €C, x <y, x,y €N
such that ¥, _ | €(x, YI? < o, is positive.

ProoF. The covariance criterion [Loéve (1978)] provides the existence of a
family of random variables y(x), x € N with joint Gaussian distribution of
zero mathematical expectation and covariance matrix V(x, y) = Ey(x)y(y).
Using (3.1), it is easy to show that the random variables a(x, y) = y(x)y(y)
— V(x, y), x <y are correlated with covariance matrix C,

E(a(x,y)a(s,t)) =V(x,s)V(y,t) + V(x,t)V(y,s).
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Therefore for any vector § # 0 with a finite number of nonzero components,
we have

Y C(x,y;s,t)é(x,y)é(s,t) =E| ¥ a(x,y)é(x,y)| >0. O

x<y,s<t x<y
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