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HARNACK INEQUALITIES FOR LOG-SOBOLEV FUNCTIONS
AND ESTIMATES OF LOG-SOBOLEV CONSTANTS1

By Feng-Yu Wang

Beijing Normal University and Universität Bielefeld

By using the maximum principle and analysis of heat semigroups,
Harnack inequalities are studied for log-Sobolev functions. From this, some
lower bound estimates of the log-Sobolev constant are presented by using
the spectral gap inequality and the coupling method. The resulting inequal-
ities either recover or improve the corresponding ones proved by Chung
and Yau. Especially, Harnack inequalities and estimates of log-Sobolev con-
stants can be dimension-free.

1. Introduction. Let M be a d-dimensional connected, compact Rieman-
nian manifold with boundary ∂M either convex or empty. Consider L = �+∇V
for some V ∈ C∞�M�. Let dµ = Z−1 exp�V�x��dx with Z = ∫

exp�V�x��dx,
and let K�V� ∈ R be such that Ric–HessV ≥ −K�V�. Simply denote K�0� = K
The log-Sobolev constant for L is defined as

�1�1� α = inf
f∈�

2µ�
∇f
2�
µ�f2 log f2� �

where � = �f ∈ C1�M�� µ�f2� = 1� f 
= constant�� A function in � is called
a log-Sobolev function (LSF) if it achieves the log-Sobolev constant.

Following the arguments of [5] and [10], a LSF is a solution to

�1�2� Lf = −α

2
f log f2�

Conversely, a nonconstant normalized solution to (1.2) is a LSF. By an obser-
vation of [5], f 
= 0 if f ∈ � solves (1.2). Without loss of generality, we may
only consider positive LSF’s. Starting from this point of view, [5] proved that
if V = 0, ∂M = � and K ≤ 0, then for any f > 0 solving (1.2),

�1�3� supf ≤ exp�d/2�

and

�1�4� 
∇ log f
2 + α log f ≤ αd/2�
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These then were used there to derive the following lower bound estimate of α
(V = 0� ∂M = �� K ≤ 0):

�1�5� α ≥ min
{
λ1

4e
�

2
dD2

}
�

where λ1 is the first eigenvalue (spectral gap) of � and D is the diameter of M.
Reference [5] suggested an alternative method to estimate α, although the

estimate (1.5) is not as sharp as some known ones. For instance, Deuschel–
Stroock’s estimate [7] (noting that λ1 ≥ π2/D2 for K ≤ 0): if V = 0, then

�1�6� α ≥ max
{
λ1

d
−K�

3λ1 − dK

d+ 2

}
�

See [1], [4], [11] and [12] for more estimates, especially in the negative curva-
ture case.

In this paper, we adopt both the maximum principle and a dimension-free
Harnack inequality for heat semigroups due to [12]. Our first result is an
extension of (1.4): if V = 0 and ∂M = �, then

�1�7� 
∇ log f
2 +
(
α+ 2

3
K

)
log f ≤ d

2α

(
α+ 2

3
K

)2

for any f > 0 solving (1.2). This implies

�1�8� supf ≤ exp
[
d

2
+ dK

3α

]
and the Harnack inequality

�1�9� f�x� ≤ f1−ε�y� exp
[(

α+ 2
3
K

)(
ρ�x�y�2

4ε
+ dε

2α

)]
for any ε ∈ �0�1�, where ρ is the Riemannian distance.

The proof of (1.7) is based on the maximum principle as in [5]. Next, we
use a different method to derive a dimension-free Harnack inequality. Let Pt

be the heat semigroup of L with reflecting boundary when ∂M 
= � and recall
that [12] presented the following inequality ([12], Lemma 2.1): for any positive
f ∈ C�M� and δ > 1� t ≥ 0� and for any positive g ∈ C�0� t��

�1�10� �Ptf�x��δ ≤ Ptf
δ�y� exp

[
δρ�x�y�2

∫ t
0 g�s�2 ds

4�δ− 1��∫ t
0 g�s� exp�−K�V�s�ds�2

]
�

From this we prove that if f > 0 solves (1.2), then

�1�11� �supf�1−2αt≤�inf f�1−αt exp
[

K�V�D2

1 − exp�−2K�V�t�
]
� t∈ �0�1/�2α���

Then, by using the above inequalities, we obtain some lower bound esti-
mates of α which can be dimension-free. For instance, if K�V� ≤ 0 we have
(see Corollary 4.2)

�1�12� α >
2�73
D2

�



HARNACK INEQUALITIES AND LOG-SOBOLEV CONSTANTS 655

It has been claimed in [5] that (1.4) and hence (1.3) also hold for the convex
boundary case, since the authors believed that the maximum points for the test
functions, that is, φ and ψ in Section 2, are interior points of the manifold. But
this observation seems suspicious in general; at least the following example
shows that a LSF may have no maximum points in the interior.

Example 1.1. Let M = �a� b� with b > a and take V = 0. Then, for any
LSF f, f′ 
= 0 in �a� b�� Actually, by the Neumann boundary condition, we have
f′�a� = f′�b� = 0� Assume that there exists c ∈ �a� b� such that f′�c� = 0� For
any a′� b′ ∈ �a� b� with a′ < b′, let I�a′� b′� = �1/�b′ − a′�� ∫ b′

a′ f2�s�ds. We have
I�a� b� = 1. From this we see that min�I�a� c�� I�c� b�� ≤ 1� Without loss of
generality, we assume that I�c� b� ≤ 1� Denoting by α�c� b� the log-Sobolev
constant on �c� b�, we have

π2

�b− c�2
= α�c� b� ≤ 2

∫ b
c f

′�s�2 ds∫ b
c �f2 log f2��s�ds− �b− c�I�c� b� log I�c� b�

≤ 2
∫ b
c f

′�s�2 ds∫ b
c �f2 log f2��s�ds

= α = π2

�b− a�2
�

This is a contradiction.

It should be pointed out that the author is not sure yet whether there always
exists a LSF. It seems that the LSF may not exist when V = 0 and M = S

d−1.
Actually, for this case we have α = λ1 = d and α can be attained by

fε�x� =
1 + εf�x�
�1 + εf�2

as ε ↓ 0�

where f is the normalized first eigenfunction. Obviously, fε goes to constant
as ε ↓ 0. From this we guess that α could not be attained by any nonconstant
function.

The nonexistence of the LSF will, of course, cause difficulty when we try to
use a LSF to estimate α. But we will see in Section 3 that this can be overcome
by an approximation argument.

Finally, the relationship between a LSF and (1.2) may help us find more
examples with an exact evaluation of α.

Example 1.2. Take M = �a� b� and L = �d2/dx2�−�πε/�b−a���sin�πx/�b−
a����d/dx�, ε ∈ R. Then V = ε cos�πx/�b− a�� and α = π2/�b− a�2� We need
only consider the case that ε 
= 0. Let f�x� = exp�−ε cos�πx/�b− a���, then f
solves (1.2) with α = π2/�b − a�2 and µ�f2� = 1. Hence f is a LSF of L and
α = π2/�b− a�2�



656 F.-Y. WANG

2. Harnack inequalities.

Theorem 2.1. Suppose that V = 0 and ∂M = �. If f > 0 solves (1.2), then
(1.7) and (1.8) hold.

Proof. Let ψ = log f and

φ = 
∇ψ
2 + �α+ rK�ψ�
where r ∈ �0�1� is to be determined. By (1.2) we have

�ψ = −
∇ψ
2 − αψ = −φ+Krψ�

Letting x0 be the maximum point of φ, we have, at x0,

0 ≥ �φ = 2
∑
i� j

ψ2
ij + 2

∑
j

ψj��ψ�j + 2 Ric�∇ψ�∇ψ� + �α+ rK��ψ

≥ 2
d
��ψ�2 − 2K
∇ψ
2 + 2Kr
∇ψ
2 − �α+Kr�φ+Kr�α+Kr�ψ

= 2
d
φ2 −

{
4Kr

d
ψ+K�2 − r� + α

}
φ+ 2K2r2

d
ψ2 +K�α+Kr��2 − r�ψ�

Letting s = √
Kdα�r− 1�ψ+ �d2/16��K�2 − r� + α�2, we obtain

φ�x0� ≤ Krψ+ d

4
�K�2 − r� + α� + s

= − r

�1 − r�dαs
2 + s+ d

4
�K�2 − r� + α� + rd

16�1 − r�α �K�2 − r� + α�2

≤ d�1 − r�
4rα

[
α+ r�K�2 − r� + α�

2�1 − r�
]2

�

This proves (1.7) by taking r = 2/3.
Finally, letting y0 be the maximum point of f, by (1.7) we have(

α+ 2
3
K

)
log f�y0� ≤ φ�x0� ≤

d

2α

(
α+ 2

3
K

)2

�

This proves (1.8) by the fact that α+ 2
3K > 0 following from (1.6). ✷

Corollary 2.2. Under the assumption of Theorem 2.1, if f > 0 solves (1.2),
then (1.9) holds.

Proof. By (1.7) we have

�2�1� 
∇ log f
 ≤
√

d

2α

(
α+ 2

3
K

)2

−
(
α+ 2

3
K

)
log f �
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For any x�y ∈ M with ρ�x�y� > 0, let γ� �0� ρ�x�y�� → M be any minimal
geodesic from x to y. Choose s1 and s2 such that

�2�2� f�γs1
� = max

�0� ρ�x�y��
f�γs�� f�γs2

� = min
�0� ρ�x�y��

f�γs��

Noting that α+ 2
3K > 0, by (2.1) we obtain

log
f�γs1

�
f�γs2

� =
∫ s1

s2

d

ds
log f�γs�ds

≤ ρ�x�y�
√

d

2α

(
α+ 2

3
K

)2

−
(
α+ 2

3
K

)
log f�γs2

� �

Therefore,

f�x� ≤ f�γs1
� ≤ f�γs2

� exp

[
ρ�x�y�

√
d

2α

(
α+ 2

3
K

)2

−
(
α+ 2

3
K

)
log f�γs2

�
]

≤ f1−ε�γs2
� exp

[
ε log f�γs2

�

+ ρ�x�y�
√

d

2α

(
α+ 2

3
K

)2

−
(
α+ 2

3
K

)
log f�γs2

�
]
�

Letting s =
√
�d/2α��α+ 2

3K�2 − �α+ 2
3K� log f�γs2

�� we have

f�x� ≤ f1−ε�y� exp
[
− εs2

α+ 2
3K

+ ρ�x�y�s+ dε

2α

(
α+ 2

3
K

)]

≤ f1−ε�y� exp
[(

α+ 2
3
K

)(
ρ�x�y�2

4ε
+ dε

2α

)]
� ✷

Theorem 2.3. Suppose that V ∈ C2�M� and ∂M is either convex or empty.
If f > 0 solves (1.2), then (1.11) holds.

Proof. Let x0 and y0 be, respectively, the maximum point and the mini-
mum point of f. By (1.2) we have

Ptf�x0� −Psf�x0� =
∫ t

s
Ex0Lf�xu�du = −α

∫ t

s
Ex0f�xu� log f�xu�du

≥ −α log f�x0�
∫ t

s
Puf�x0�du� t ≥ s ≥ 0�

This implies

�2�3� Ptf�x0� ≥ f�x0� exp�−αt log f�x0�� = f1−αt�x0��
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Similarly, we have

�2�4� Ptf�y0� ≤ f1−αt�y0��
On the other hand, by taking δ = 2 and g�s� = exp�−K�V�s� in (1.10), we

obtain

�Ptf�x0��2 ≤ Ptf
2�y0� exp

[
K�V�D2

1 − exp�−2K�V�t�
]

≤ f�x0�Ptf�y0� exp
[

K�V�D2

1 − exp�−2K�V�t�
]
�

The proof is now complete by combining this with (2.3) and (2.4). ✷

Corollary 2.4. Under the assumption of Theorem 2.3, if f > 0 is a LSF,
then

sup log f ≤ D2α+D2K�V�+�(2.5)

inf log f ≥ −27
16

D2α− 9
8
D2K�V�+�(2.6)

Proof. Let x0 and y0 be, respectively, the maximum and minimum points
of f. By taking δ = 2 and g�s� = exp�−K�V�s� in (1.10), we have

�Ptf�x0��2 ≤ Ptf
2�x� exp

[
K�V�D2

1 − exp�−2K�V�t�
]
�

By combining this with (2.3) and the fact that µ�Ptf
2� = µ�f2� = 1� we obtain

log f�x0� ≤
K�V�D2

2�1 − αt��1 − exp�−2K�V�t�� � αt ∈ �0�1��

Next, it is easy to check that

�2�7� K

1 − exp�−2Kt� ≤ 1
2t

+K+� t > 0�

Then

log f�x0� ≤
D2��1/2t� +K�V�+�

2�1 − αt� ≤ D2α+D2K�V�+

by taking t = �1/2α�.
Next, By (2.3), (2.4) and taking g�s� = exp�−K�V�s� in (1.10), we obtain

1 ≤ f1−δαt�x0� ≤ f1−αt�y0� exp
[

δK�V�D2

4�δ− 1��1 − e−2K�V�t�
]
� δαt ≤ 1�

By taking δ = 1/αt, we obtain

log f�y0� ≥
−K�V�D2

2�1 − αt�2�1 − exp�−2K�V�t�� � αt < 1�

By (2.7) and taking t = 1/3α, we prove (2.6). ✷
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3. Estimates of the log-Sobolev constant. In case the LSF may not
exist, we turn to consider the weak log-Sobolev constant αε for small ε > 0,
which is the largest possible constant such that

µ�f2 log f2� ≤ 2
αε

µ�
∇f
2� + ε� f ∈ � �

Then αε ↓ α as ε ↓ 0� By [10], the constant αε can be achieved and the
corresponding LSF could not be constant since ε 
= 0� Let fε be such a LSF,
then by [10],

�3�1� Lfε = −αε

2
fε log f2

ε +
1
2
αεεfε�

By the remark in [5] following Theorem 1, we may assume that fε > 0. There-
fore, by the proofs of Theorem 2.1 and Corollary 2.4, we have

sup log fε ≤ D2α+D2K�V�+ + hε�(3.2)

sup log fε ≤
d

2
+ dK

3α
+ hε if V = 0� ∂M = ��(3.3)

where hε → 0 as ε → 0�

Theorem 3.1. Under the assumption of Theorem 2.3, let λ1 be the first
eigenvalue of L. We have

�3�4� α ≥
√�1 +D2K�V�+�2 + 4D2λ1 − 1 −D2K�V�+

2D2
�

Especially, if K�V� ≤ 0, then

�3�5� α ≥
√

1 + 4D2λ1 − 1
2D2

≥
√

1 + 4π2 − 1
2D2

>
2�68
D2

�

Finally, for the case that V = 0 and ∂M = �, we have

�3�6� α ≥ 6λ1 − 2dK
3�d+ 2� �

Proof. By the spectral theory we have

�3�7� µ
{�Lfε�2} ≥ λ1µ�
∇fε
2��

Next, by (3.1) we have

�3�8�
µ
{�Lfε�2} = α2

εµ
{
f2
ε�log fε�2}+ ε2α2

ε

4
− εα2

εµ
{
f2
ε log fε�

= α2
εµ

{
f2
ε�log fε�2}− εαεµ�
∇fε
2� −

ε2α2
ε

4
�

Noting that

fεL�fε log fε� = −αεf
2
ε�log fε�2 + εαε

2
f2
ε log fε + fεLfε + 
∇fε
2�
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we have

αεµ
{
f2
ε�log fε�2} = εαε

2
µ
{
f2
ε log fε

}+ µ
{�1 + log fε�
∇fε
2

}
= ε

2
µ�
∇fε
2� +

ε2αε

4
+ µ

{�1 + log fε�
∇fε
2
}

≤
(

1 + ε

2
+ sup log fε

)
µ�
∇fε
2� +

ε2αε

4
�

By combining this with (3.6) and (3.7), we obtain

λ1µ�
∇fε
2� ≤ αε�1 + sup log fε�µ�
∇fε
2��

This implies

�3�9� αε ≥
λ1

1 + sup log fε

�

By (3.2) and letting ε ↓ 0, we obtain

α ≥ λ1

1 +D2α+D2K�V�+ �

This proves (3.4), and (3.5) then follows from the fact that λ1 ≥ π2/D2 for
K�V� ≤ 0; see, for example, [3]. Finally, (3.6) follows from (3.3) and (3.9). ✷

We remark that, for the free boundary case, one may also extend (3.6) to
the case V 
= 0. But the resulting estimate will depend on both K�V� and
�∇V�∞, due to the maximum principle. We omit this extension here since the
resulting estimate of α is usually less sharp.

4. Estimates of � by using coupling. The coupling method has been
used successfully to estimate the first eigenvalue; see, for example, [2] and [3].
The Harnack inequalities proved in Section 2 enable us to use this method to
estimate α. By the approximation procedure as in Section 3, we may assume
that the LSF exists. The coupling method then works as follows.

Theorem 4.1. Let f > 0 be a LSF. Define β1 = supf and β2 = sup 
1 +
log f
� Next, let �xt� yt� be a coupling for the L-diffusion process with coupling
time T = inf�t ≥ 0� xt = yt�� We have:

(i) α ≥ �supx�y∈MEx�yT�−1�β1 − 1�/�β1 logβ1��
(ii) If there exists ρ̄ ∈ C�M×M� with ρ̄ ≥ cρ for some c > 0 such that

�4�1� Ex�yρ̄�xt� yt� ≤ ρ̄�x�y� exp�−δt�

for some δ > 0 and all t ≥ 0� Then α ≥ δ/β2�
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Proof. (i) Let x0 and y0 be, respectively, the maximum point and the
minimum point of f. We have

1 = 1
f�x0� − f�y0�

{
Ex0� y0�f�xt� − f�yt�� +

∫ t

0
Ex0�y0�Lf�xs� −Lf�ys��ds

}

≤ Px0�y0�T > t� + αδ�f log f�
f�x0� − f�y0�

∫ t

0
Px0�y0�T > s�ds�

where

δ�f log f� �= supf log f− inf f log f

= f�x0� log f�x0� − �f�y0� ∨ exp�−1�� log�f�y0� ∨ exp�−1��

=
∫ f�x0�

f�y0�∨exp�−1�
�1 + log s�ds

≤ �f�x0� − f�y0� ∨ exp�−1�� 1
β1 − 1

∫ β1

1
�1 + log s�ds

≤ �f�x0� − f�y0��
β1 logβ1

β1 − 1
�

Here, we have used the facts that f�y0� ≤ 1 and �1/�β1 − r�� ∫ β1
r �1 + log s�ds

is increasing in r. Therefore

α ≥ �β1 − 1�Px0� y0�T ≤ t�
β1 logβ1E

x0� y0T
�

This proves (i) by letting t ↑ ∞�
(ii) For any ε > 0� choose xε 
= yε such that

f�xε� − f�yε�
ρ̄�xε� yε�

≥ sup
f�x� − f�y�

ρ̄�x�y� − ε �= C− ε�

Noting that


f�x� log f�x� − f�y� log f�y�

ρ̄�x�y� ≤ β2
f�x� − f�y�


ρ̄�x�y� ≤ Cβ2�

by (4.1) we obtain

�C− ε�ρ̄�xε� yε� ≤ f�xε� − f�yε�
≤ Exε�yε 
f�xt� − f�yt�


+ α
∫ t

0
Exε�yε 
�f log f��xs� − �f log f��ys�
ds

≤ CExε�yε ρ̄�xt� yt� + αCβ2

∫ t

0
Exε�yε ρ̄�xs� ys�ds

≤ Cρ̄�xε� yε�
[

exp�−δt� + αβ2�1 − exp�−δt��
δ

]
�

The proof of (ii) is then completed by letting t ↑ ∞ and ε ↓ 0. ✷
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We remark that by [2], we have λ1 ≥ δ if (4.1) holds. Then, (ii) of Theorem
4.1 is implied by the proof of Theorem 3.1. As has been shown in [2], [3] and
[13] for λ1, one may obtain explicit lower bounds of α by Theorem 4.1 and
using the coupling by reflection due to [6] and [8]. For instance, we have the
following result.

Corollary 4.2. (i) If K�V� ≤ 0, we have

α ≥ c0

D2
�

where c0 > 0 solves c2 = 8�1 − e−c�. It is easy to check that c0 > 2�73, then
�1�12� holds.

(ii) Suppose that V = 0 and ∂M = �. If K ≤ 0, then

α ≥ 16�1 − e−d/2�
dD2

�

Proof. For the coupling by reflection, we have (see [2] and [13])

�Ex�yT�−1 ≥ 8
D2

if K�V� ≤ 0�

Then (ii) follows from (1.8) and Theorem 4.1(i). Next, by Corollary 2.4, β1 ≤
exp�αD2�� By Theorem 4.1(i) we obtain

α ≥ 8�1 − exp�−αD2��
D4α

�

Letting c = D2α, we have c > 0 and

c2 ≥ 8�1 − e−c��

Therefore, c ≥ c0 if c0 > 0 satisfies c2
0 = 8�1 − e−c0�. ✷

Finally, we would like to point out that this paper gives a line to estimate
the first eigenvalue for the nonlinear problem (1.2). Actually, the coupling
method may also apply to a more general version of (1.2),

Lf = −λF�f��

see, for example, Lu [9]. Especially if �F′�∞ < ∞� we have

λ ≥ δ/�F′�∞
for any positive eigenvalue λ, where δ satisfies (4.1). This then enables one
to present a general formula for the lower bound of λ in the spirit of [3],
Theorem 1.1.
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